
Separating Regular Languages with Two Quantifier
Alternations

Thomas Place
LaBRI, Bordeaux University,

Bordeaux, France
Email: tplace@labri.fr

Abstract—We investigate the quantifier alternation hierarchy
of first-order logic over finite words. To do so, we rely on the
separation problem. For each level in the hierarchy, this problem
takes two regular languages as input and asks whether there
exists a formula of the level that accepts all words in the first
language and no word in the second one. Usually, obtaining an
algorithm that solves this problem requires a deep understanding
of the level under investigation.

We present such an algorithm for the level Σ3 (formulas having
at most 2 alternations beginning with an existential block). We
also obtain as a corollary that one can decide whether a regular
language is definable by a Σ4 formula (formulas having at most
3 alternations beginning with an existential block).

Keywords-First-order logic; Quantifier alternation; Regular
languages; Words; Expressive power; Separation; Decidable
characterizations;

I. INTRODUCTION

Context. This paper is part of a research effort whose aim is
to understand the expressive power of logics over words. In
this context, we say that a logic has a decidable membership
problem (or decidable characterization) when the following
problem is decidable: given as input a regular language, decide
if it can be defined with a formula of the logic in question.
Having a membership algorithm in hand amounts to having an
effective description of all regular properties that the logic can
express. For this reason, obtaining a membership algorithm is
often considered as the goal to strive for when trying to get a
precise understanding of the expressive power of a logic.

The quest for membership algorithms has been very fruitful.
A well-known example of this success is the algorithm obtained
for first-order logic (FO). It is based on Schützenberger’s
Theorem [Sch65], [MP71], which states that a regular language
is definable in FO if and only if its syntactic monoid is
aperiodic. Since the syntactic monoid is a finite computable
object and aperiodicity a decidable property, the membership
algorithm is immediate from the theorem. However, it is
actually from the proof of the theorem than one learns the
most about FO. Indeed, this proof, which has often been
revisited even as late as [DG08], requires a canonical method
for constructing a FO formula for any language having an
aperiodic syntactic monoid.

Since this first success a lot of efforts have been made to
obtain similar results for natural fragments of FO. Among
these, the quantifier alternation hierarchy is prominent. In this
hierarchy, FO formulas are classified by counting quantifier

alternations in their prenex normal form. A formula is Σi if it
has at most i blocks of quantifiers and starts with an existential
one. Furthermore, since the negation of a Σi formula is not Σi

in general, the hierarchy also considers BΣi formulas: boolean
combinations of Σi formulas. The hierarchy is known to be
strict [BK78], [Tho82]: Σi ( BΣi ( Σi+1. Hence, a natural
question is whether one can find a membership algorithm for
each level. However, despite having been given a lot of attention,
progress on this question has been slow and solutions are only
known for the lower levels (see [Pin11], [AK10], [Pin98] for
detailed bibliographies).

State of the art. Historically, BΣ1 is the first level to have
been given a membership algorithm, a result known as Simon’s
Theorem [Sim75]. More than a decade later, an algorithm was
also found for Σ2 [Arf87], [PW97]. Following this, it took
more than a decade again to obtain membership algorithms for
BΣ2 and Σ3 [PZ14a]. An explanation for this slow progress
is each new level has required new conceptual ideas. This is
illustrated by the techniques used in [PZ14a]. In order to make
progress, the authors had to consider a question that is deeper
than membership: the separation problem.

For a given logic, a separation algorithm takes as input two
regular languages and decides whether there exists a formula
of the logic that accepts all words of the first language and
no words of the second one. Membership can be reduced to
separation: deciding whether a regular language is separable
from its complement (also regular) amounts to deciding
membership for this language. Hence, separation is often a
more difficult question than membership. However, it is also
a more rewarding one [CMM13], [PRZ13], [PZ14b], [PZ15].
In particular, membership algorithms for BΣ2 and Σ3 were
obtained in [PZ14a] by relying on two results:

1) A separation algorithm for Σ2.
2) Results that link membership for BΣi and Σi+1 to

separation for Σi for any i.
The most simple link is with Σi+1: one can effectively

reduce membership for Σi+1 to separation for Σi. In view
of this result, an immediate question is as follows: ”can we
define a problem P , such that separation for Σi+1 can be
effectively reduced to P for Σi ?” A natural starting point to
the investigation of this question is separation for Σ3.

Contribution. In this paper, we present a separation algorithm
for Σ3 (and therefore a membership algorithm for Σ4 by the



reduction above [PZ14a]). While we do not provide a definitive
answer to the question above, our result seems to indicate that
this answer should be ”no”. Indeed, our technique does not
work by reduction to an independent problem for Σ2. Instead,
we consider a problem that generalizes simultaneously and
links the separation problems for both Σ2 and Σ3. We rely on
the computation of a new object: a (finite) set of Σ-trees that
can be associated to any finite monoid M recognizing regular
languages. This set captures information with respect to Σ2,
Σ3 and M . This includes which pairs of languages recognized
by M are separable using Σ2 or Σ3. However, a large part of
this information goes beyond separation and is only needed for
the computation of Σ-trees. We use a least fixpoint algorithm:
we saturate a set of trivial Σ-trees with correct operations until
a fixpoint is reached.

Our techniques can be seen as a generalization of the
techniques of [PZ14a]. In particular, Σ-trees generalize the
”Σ2-chains” used in the separation algorithm of Σ2. However,
Σ-trees are much more involved as they capture and link
information about two distinct formalisms (i.e. Σ2 and Σ3)
in a single object. In fact, it seems that for each new level
of the hierarchy getting a separation algorithm requires to
consider objects that are both conceptually and technically
more involved than for the previous one.

Note that while Σ-trees are based on the monoid definition
of regular languages, we do not rely on involved algebraic
machinery (Σ-trees could be adapted to work with automata).
In particular, our proof is entirely combinatorial. Our main
motivation for working with monoids rather than automata
is that it slightly simplifies the presentation and enables us
to rely on powerful combinatorial theorems such as Simon’s
factorization forest Theorem [Sim90].

Organization of the paper. We begin with preliminary defini-
tions in Section II. In Section III, we define the mathematical
tools we will need. Section IV presents Σ-trees which are
the central object of our separation algorithm. The algorithm
is presented in Section V. We prove its correctness and
completeness in Sections VI and VII respectively. Due to
space restrictions, some proofs are omitted and available in
the full version of the paper.

II. PRELIMINARIES

In this section, we present the objects that we investigate in
the paper. More precisely, we define the quantifier alternation
hierarchy within first-order logic and state the membership and
separation problems.

A. First-Order Logic and Quantifier Alternation

For the whole paper, we fix a finite alphabet A. We denote
by A∗ the set of all words over A (including the empty word
denoted by ε). If u, v ∈ A∗ are words over A, we denote by
u · v or uv the word obtained by concatenation of u and v
and by alph(u) the alphabet of u, i.e., the smallest subset B
of A such that u ∈ B∗. Finally, a factor of v ∈ A∗ is a word
u ∈ A∗ such that v = u′uu′′ for some u′, u′′ ∈ A∗.

A language is a subset of A∗. In this paper we consider
regular languages. These are the languages that can be
equivalently defined by monadic second-order logic, finite
automata or finite monoids. In the paper we work with the
monoid definition. We recall this definition in Section III.

First-Order Logic. We view a word as a logical structure
made of a sequence of positions. Each position has a label in
the alphabet A and can be quantified. We denote by ’<’ the
linear order over the positions. We consider first-order logic,
FO, using the following predicates:
• for each a ∈ A, a unary predicate Pa that selects positions

labeled with an a.
• a binary predicate ’<’ for the linear order.

To every first-order formula ϕ, one can associate the language
{w ∈ A∗ | w |= ϕ} of words that satisfy ϕ. Hence, FO defines
a class of languages: the class of all languages that can be
defined using a FO formula.

One can classify FO formulas by counting their number of
quantifier alternations. Set i ∈ N, a formula is said to be Σi

(resp. Πi) if its prenex normal form has either
• exactly i− 1 quantifier alternations (i.e., exactly i blocks

of quantifiers) starting with an ∃ (resp. ∀), or
• strictly less than i− 1 quantifier alternations (i.e., strictly

less than i blocks of quantifiers)
For example, a formula whose prenex normal form is

∀x1∃x2∀x3∀x4 ϕ(x1, x2, x3, x4) (with ϕ quantifier-free)

is Π3. In general, the negation of a Σi formula is not a Σi

formula (it is a Πi formula). Hence it is relevant to define BΣi

formulas as FO formulas that are boolean combinations of Σi

and Πi formulas. This gives a strict hierarchy of classes of
languages as presented in Figure 1.

Σ1

Π1

BΣ1

Σ2

Π2

BΣ2

Σ3

Π3

BΣ3

Σ4

Π4

(

(

(

(

(

(

(

(

(

(

(

(

Fig. 1. Quantifier Alternation Hierarchy

B. Decision Problems

We investigate two decisions problems. Each problem is
parametrized by a class of languages C. Given such a class C,
the membership problem for C is as follows:

INPUT: A regular language L.
OUTPUT: Does L ∈ C ?

The separation problem is more general. Given three
languages L,L0, L1, we say that L separates L0 from L1

if L0 ⊆ L and L1 ∩ L = ∅. Set C as a class of languages,
we say that L0 is C-separable from L1 if some language in
C separates L0 from L1. Observe that when C is not closed
under complement (for example when C = Σi or C = Πi), the



definition is not symmetrical: L0 could be C-separable from L1

while L1 is not C-separable from L0. The separation problem
for C is as follows:

INPUT: Two regular languages L0 and L1.
OUTPUT: Is L0 C-separable from L1 ?

The separation problem refines the membership problem.
Indeed, observe that asking whether a language L is C-separable
from its complement is equivalent to asking whether L ∈ C
(the only potential separator is L itself). Hence, since regular
languages are closed under complement, membership can easily
be reduced to separation.

Both problems have been extensively studied in the literature
for first-order logic and many of its natural fragments. The
membership problem was proved to be decidable for FO
itself [Sch65], [MP71] and up to the Σ3,Π3 level in the hierar-
chy [Sim75], [Kna83], [Arf87], [PW97], [GS00], [PZ14a]. The
separation problem is known to be decidable for FO [PZ14b]
and up to the Σ2,Π2 level in the hierarchy [CMM13], [PRZ13],
[PZ14a], [PZ15]. In this paper, we prove the following theorem.

Theorem 1. The separation problem is decidable for Σ3 and
Π3.

Moreover, it is known [PZ14a] that for any i > 1, the
membership problem for Σi+1 can be effectively reduced to
the separation problem for Σi. Hence, we also obtain the
following corollary.

Corollary 2. The membership problem is decidable for Σ4

and Π4.

The remainder of the paper is devoted to the proof of
Theorem 1. In Sections III and IV, we introduce objects that
we will need in our separation algorithm. More precisely, in
Section III, we recall some well-known combinatorial tools such
as monoids and the logical preorders associated to the hierarchy.
In Section IV, we introduce a new object that is specific to this
paper: Σ-trees. Σ-Trees are central to our separation algorithm,
which we present in Section V.

III. TOOLS

In this section we present well-known combinatorial tools
that we will need in order to present our results. Namely, we
introduce the logical preorders that can be associated to any
level in the hierarchy as well as the monoid definition of regular
languages. Additionally, we recall a well-known combinatorial
result on monoids that will be needed in our proofs: Simon’s
Factorization Forests Theorem.

A. Σi preorders

It is usual to associate a preorder over A∗ to each level
Σi in the hierarchy. The definition is based on the notion of
quantifier rank. The quantifier rank of a first-order formula is
the length of the longest sequence of nested quantifiers inside
the formula. For example, the following formula,

∀x Pa(x)⇒ ((∃y (y < x∧Pc(y))∧(∃y∃z x < y < z∧Pb(y)))

has quantifier rank 3. In particular, it is well-known that for a
fixed k, there is a finite number of non-equivalent first-order
formulas of rank less than k.

Set k, i > 1 and w,w′ ∈ A∗. We write w .k
i w
′ if any Σi

formula of rank at most k satisfied by w is satisfied by w′

as well. One can verify that .k
i is a preorder. Moreover, the

following facts can be verified from the definitions.

Fact 3. For all k, i > 1 and all u, v ∈ A∗, we have,

u .k+1
i v ⇒ u .k

i v
u .k

i+1 v ⇒ u .k
i v and v .k

i u

Proof: The only non-trivial implication is u .k
i+1 v ⇒

v .k
i u. Assume that u .k

i+1 v, we prove that v .k
i u. We need

to prove that any Σi formula of rank less than k that is satisfied
by v is satisfied by u as well. We prove the contrapositive:
for any Σi formula ϕ of rank less than k, if u satisfies ¬ϕ,
then v satisfies ¬ϕ. This is immediate from the hypothesis
(u .k

i+1 v) since the negation of a Σi formula is in particular
a Σi+1 formula.

Fact 4. For all k, i ∈ N, a language L ⊆ A∗ can be defined
by a Σi formula of rank k if and only if L is saturated by .k

i ,
i.e., L = {w | ∃w′ ∈ L s.t. w′ .k

i w}.

We finish with classical properties of the preorders .k
i . The

proofs are based on Ehrenfeucht-Fraı̈ssé arguments. We begin
with decomposition and composition lemmas.

Lemma 5 (Decomposition). Set k, i > 1 and w1, w2, v ∈ A∗
such that w1w2 .k

i v. Then v can be decomposed as v = v1v2
with w1 .k−1

i v1 and w2 .k−1
i v2.

Lemma 6 (Composition). Set k, i > 1 and w1, w2, v1, v2 ∈ A∗
such that w1 .k

i v1 and w2 .k
i v2. Then, we have w1w2 .k

i

v1v2.

These two first properties are actually inherited from full
first-order logic and they do not depend on the level i to which
they are applied. This is not the case of the next property which
is specific to the quantifier alternation hierarchy and links the
preorders .k

i and .k
i+1 for all i.

Lemma 7. Set k, i > 1 and u, v, u`, ur ∈ A∗ such that v .k
i u,

u .k
i+1 u` and u .k

i+1 ur. Then, for k′ > 2k, we have,

u2k
′
.k

i+1 (u`)
k′v(ur)k

′

The property stated in Lemma 7 is generic to all levels
in the hierarchy. However, it involves two levels in the same
statement. As we will see when defining Σ-trees in Section IV,
this makes this property difficult to manipulate. It turns out
that when i = 1 (and therefore i+ 1 = 2), it can be replaced
by the following lemma which involves only .k

2 (and whose
statement is a consequence of the special case of Lemma 7
when i = 1).

Lemma 8. Set k > 1 and u, v, u`, ur such that alph(v) =
alph(u), u .k

2 u` and u .k
2 ur. Then, for k′ > 22k, we have,

u2k
′
.k

2 (u`)
k′v(ur)k

′



B. Monoid Definition of Regular Languages

A semigroup is a set S equipped with an associative
multiplication denoted by ’·’. A monoid M is a semigroup in
which there exists a neutral element denoted 1M . Observe that
A∗ is a monoid with concatenation as the multiplication and ε
as the neutral element.

Given a finite semigroup S, it is well known that there is a
number ω(S) (denoted by ω when S is understood from the
context) such that for each element s ∈ S, sω is an idempotent:
sω = sω · sω .

Let L be a language and M be a monoid. We say that L is
recognized by M if there exists a monoid morphism α : A∗ →
M and an accepting set F ⊆ M such that L = α−1(F ). It
is well known that a language is regular if and only if it can
be recognized by a finite monoid. Such a finite monoid can
be computed from any automaton or monadic second-order
formula that defines the language.

Morphisms and Separation. Separation takes two regular
languages L0, L1 as input. It will be convenient to have a single
monoid recognizing both of them (with different accepting sets),
rather than having to deal with two objects. This can always be
assumed without loss of generality as such a monoid can easily
be constructed. If L0, L1 are recognized by two morphisms
α0 : A∗ → M0 and α1 : A∗ → M1 into finite monoids
M0,M1. Then, M0 ×M1 equipped with the componentwise
multiplication (s0, s1) · (t0, t1) = (s0t0, s1t1) is a monoid
that recognizes both L0 and L1 with the morphism α : w 7→
(α0(w), α1(w)). From now on, we work with such a single
monoid recognizing both languages.

Alphabet compatibility. In the paper, we work with mor-
phisms satisfying an additional property. A morphism α :
A∗ →M is said to be alphabet compatible, if for all u, v ∈ A∗,
α(u) = α(v) ⇒ alph(u) = alph(v). Note that when α
is alphabet compatible for all s ∈ M having a preimage,
alph(s) is well defined as the unique B ⊆ A such that for all
u ∈ α−1(s), alph(u) = B. The following simple lemma states
that we will be able to assume without loss of generality that
all our morphisms are alphabet compatible.

Lemma 9. From any morphism α : A∗ → M into a finite
monoid M , one can compute an alphabet compatible morphism
β that recognizes all languages recognized by α.

Proof: Since 2A is a monoid together with union as the
multiplication, it suffices to take β as the morphism:

β : A∗ → M × 2A

w 7→ (α(w),alph(w))

C. Simon’s Factorization Forests Theorem

In order to prove our separation algorithm, we will need a
famous combinatorial result on monoids: Simon’s Factorization
Forests Theorem. We state this theorem here. For more details
on factorization forests and a proof of the theorem, we refer
the reader to [Boj09], [Kuf08].

Let M be a finite monoid and α : A∗ → M a morphism.
An α-factorization forest is an ordered unranked tree whose
nodes are labeled by words in A∗ and such that for any inner
node x with label w, if its children have labels w1, . . . , wn

listed from left to right, then w = w1 · · ·wn. Moreover, all
nodes x in the forest must be of the three following kinds:
• leaves which are labeled by either a single letter or the

empty word.
• binary inner nodes which have exactly two children.
• idempotent inner nodes which have an arbitrary number of

children whose labels w1, . . . , wn satisfy α(w1) = · · · =
α(wn) = e for some idempotent e ∈M .

If w ∈ A∗, an α-factorization forest for w is an α-
factorization forest whose root is labeled by w. The height of
a factorization forest is the largest h ∈ N such that it contains
a branch with h inner nodes.

Theorem 10 ([Sim90], [Kuf08]). For all words w ∈ A∗, there
exists an α-factorization forest for w of height smaller than
3|M | − 1.

In our proof, we will need an additional result on factor-
ization forests that we state below. We define the idempotent
height of an α-factorization forest as the largest number p such
that there exists a branch that contains p idempotent nodes in
the forest.

Lemma 11. Let w ∈ A∗ that admits an α-factorization forest
of height h and idempotent height p. Then any factor u ∈ A∗
of w admits an α-factorization forest of height at most h+ 2
and idempotent height at most p.

The proof of Lemma 11 is a simple induction on the structure
of the factorization forest of w. This forest can be “repaired”
into a factorization forest for u by adding additional binary
nodes.

IV. Σ-TREES

In this section, we define Σ-trees which are key to our
separation algorithm. The notion is based on the following
lemma (which is an immediate consequence of Fact 4).

Lemma 12. Let i > 1 and L0, L1 be any two languages. Then
L0 is not Σi-separable from L1 if and only if for all k > 1
there exists w0 ∈ L0 and w1 ∈ L1 such that w0 .k

i w1.

Lemma 12 gives a simple criterion equivalent to Σi-
separability. However, the quantification is over k which ranges
over all naturals and it is not immediate that this criterion can
be decided. Indeed, since A∗ is infinite, .k

i is endlessly refined
as k gets larger. The main idea behind our separation algorithm
is to exploit the fact that our two inputs are regular languages
and proceed as follows:

1) Take some morphism α : A∗ →M into a finite monoid
M that recognizes both L0 and L1.

2) Abstract the preorder .k
i over M with respect to α. This

amounts to considering the pairs (s, t) ∈M2, such that
for all k, one can find witnesses u, v ∈ A∗ such that



u .k
i v, α(u) = s and α(v) = t. We say that (s, t) is

a pair for Σi. The criterion of Lemma 12 can easily be
adapted to rely only on the set of such pairs.

3) Compute all pairs (s, t) ∈M2 for Σi.
Essentially, this is what we do. The difficulty in this approach

is finding an algorithm for step 3 above. What we want is a
least fixpoint algorithm: the algorithm should start from the
set of pairs (s, s) which are trivially pairs for Σi (for any i)
and saturate this set with operations inspired from Lemmas 6
and 7 until a fixpoint is reached.

However, this is made difficult by the fact that using Lemma 7
requires information that is not captured by the set of pairs
(s, t) for Σi: information that links Σi and Σi+1. Indeed, using
Lemma 7 requires a single word u that simultaneously satisfies
the three following properties: v .k

i u, u .k
i+1 u` and u .k

i+1

ur, in order to conclude that u2k
′
.k

i+1 (u`)
k′v(ur)k

′
for a

large enough k′. This cannot be adapted to pairs for Σi and
Σi+1. Indeed, it may happen that (t, s) is a pair for Σi and
(s, s`), (s, sr) are pairs for Σi+1 while the witnesses chosen
for s have to be different for all three pairs. This means that a
naive adaptation of Lemma 7 as an operation involving Σi and
Σi+1 pairs only would yield an algorithm that is not correct:
pairs that are not pairs for Σi+1 might be computed.

For this reason, we will need to consider objects that are
more general than the Σi pairs. In particular, in order to use
Lemma 7 in the Σ3 case, we have to consider an object that
generalizes both the Σ3 pairs and the Σ2 pairs and connects
the two objects (note that we avoid having to generalize the
Σ1 pairs as well by relying on Lemma 8). These more general
objects are what we call Σ-trees.

Note that Σ-trees are tailored to Σ3-separation. It seems that
for higher levels in the hierarchy, objects that are even more
general have to be considered.

We separate the presentation in three parts. In the first part,
we define a notion of M -trees for any finite monoid M . We
then define Σ-trees as a special set of M -trees that can be
associated to a morphism α : A∗ → M . Finally, in the third
part, we link Σ-trees to the separation problem.

A. M -Trees for a Monoid M

Fix a finite monoid M . A M -tree of height 0 is simply an
element of M . For all h > 1, a M -tree of height h is a pair
(s,S) where s ∈M and S is a set of M -trees of height h−1.
As the name suggests, M -trees can be represented as trees
(see Figure 2).

s

rtt

rs r

Representation of (s, {(t, {s, r}), (t, {r}), (r, ∅)})

Fig. 2. Representation of a M -Tree of height 2

Remark 13. While we define M -trees for all heights, for
Σ3-separation, we only use M -trees of height at most 2.

In the paper, we denote M -trees by r, s, t, . . . and sets of
M -trees by R,S,T, . . . In particular, for all h, we denote by
M(h,M) (or M(h) when M is clear from the context), the
set of all M -trees of height h. For all h, M(h) is finite.

Monoid Operation. For all h, we equip the set M(h) with
a monoid operation. The definition is by induction on h. For
h = 0, M(0) = M is already a monoid by definition. For
h > 1, if (s,S) and (r,R) are M -trees of height h, we set
(s,S) · (r,R) = (sr,SR) with SR = {s · r | s ∈ S and r ∈
R}. One can verify that this multiplication does give a monoid
structure to the sets M(h) for all h > 0.

Preorder. For all h, we equip the set M(h) with a preorder
”v” that is compatible with our monoid operation. Intuitively,
given a M -tree, a smaller one is obtained by removing subtrees
in its representation (see Figure 3). The formal definition is by
induction on h. When h = 0, the preorder ”v” is just equality.
Otherwise, given M -trees of height h > 1, s = (s,S) and
r = (r,R), we write s v r when s = r and for all s′ ∈ S,
there exists r′ ∈ R such that s′ v r′. One can verify that for
all h ∈ N, v is preorder and the following fact.

Fact 14. For all h > 0, v is compatible with the monoid
operation of M(h): given s, t, s′, t′ ∈ M(h), if s v t and
s′ v t′, then ss′ v tt′.

s

tt

r

v

s

rtt

rs r s

Fig. 3. M -Trees comparable with ”v”

Finally, for all h and all S ⊆M(h), we denote by ↓S, the
downset of S, i.e. ↓S = {s | ∃s′ ∈ S such that s v s′} is
the set of all M -trees that are smaller than a tree of S.

Transforming M -Trees. We define two operations that will
allow us to build M -trees of height h+1 from M -trees of height
h and vice-versa. The first operation, called root duplication,
is applied to single M -trees. It completes a M -tree of height h
into a M -tree of type h+ 1 by duplicating its root. Let h > 0
and let r = (r,R) ∈ M(h), we set dup(r) as the M -tree
dup(r) = (r, {r}) ∈M(h+ 1) (see Figure 4).

r

rst

r

r

r

rst

dup(r )

Fig. 4. Root Duplication



Our second operation, called root removal, is applied to sets
of M -trees. It builds a set of M -trees of height h− 1 from a
set of M -trees of height h by removing their roots. Set h > 1
and S ⊆ M(h), we define rem(S) ⊆ M(h − 1) as the set
rem(S) =

⋃
(r,R)∈S R (see Figure 5).

r

r

t s

t

sr

tt

,

R

r

t s

sr

tt
, ,

rem(R)

Fig. 5. Root Removal

The following fact states that root duplication and root
removal are morphisms and can be verified from the definitions.

Fact 15. Let h > 0, s, t ∈M(h) and S,T ⊆M(h+ 1).
• rem(S · T) = rem(S) · rem(T)
• dup(s · t) = dup(s) · dup(t)

B. Set of Σ-Trees Associated to a Morphism

Given a fixed morphism α : A∗ →M into a finite monoid
M , we are not interested in all M -trees, but only in those that
carry information with respect to the preorders .k

i .
Given h > 0 and a tuple (i1, . . . , ih) ∈ (N \ {0})h of levels

in the hierarchy, we associate to α the set Ti1,...,ih [α] ⊆M(h)
of Σi1,...,ih -trees of α. We first define a set of Σi1,...,ih [k]-trees
for each rank k. The Σi1,...,ih -trees will then be those that are
Σi1,...,ih [k]-trees for all k.

We begin with the general definition. We will then present an
example of Σ2,3[k]-tree. Let h > 0, (i1, . . . , ih) ∈ (N \ {0})h
(if h = 0, the tuple is empty) and k > 1. Given r ∈ M(h),
whether r is a Σi1,...,ih [k]-tree depends on the existence of a
witness w ∈ A∗. We say that w is a (k, (i1, . . . , ih))-witness
for r if one of the two following properties hold,
• If h = 0, the tuple is empty and we ask that α(w) = r

(recall that M(0) = M ).
• If h > 1, set (r,R) = r ∈M(h). We ask that α(w) = r

and for all r′ ∈ R ⊆ M(h − 1), there exists w′ ∈ A∗
such that w .k

i1
w′ and w′ is a (k, (i2, . . . , ih))-witness

for r′.
Given t ∈M(h), we let t ∈ Tk

i1,...,ih
[α] if and only if there

exists a (k, (i1, . . . , ih))-witness w for t. Finally, we define,
Ti1,...,ih [α] = ∩kTk

i1,...,ih
[α], the set of Σi1,...,ih-trees for α.

We now illustrate the definition with a Σ2,3[k]-tree.

Example of Σ2,3[k]-tree. Let u, v1, v2, v3, w1, w2, w3 ∈ A∗

be words and r, s1, s2, s3, t1, t2, t3 ∈M be their images under
α. Observe that, when h = 0, the definition of witness does
not depend on k or the preorders: any word is a (k, ())-witness
for its image. We will use the fact that w1, w2, w3 are (k, ())-
witnesses for t1, t2, t3.

In order to build a Σ2,3[k]-tree out of the words u, v1, v2,
v3, w1, w2, w3, we now have to assume some links between

these words with respect to the preorders. With respect to .k
2 ,

we assume that u .k
2 v1, u .k

2 v2 and u .k
2 v3. With respect

to .k
3 , we assume that v1 .k

3 w1, v1 .k
3 w2 and v2 .k

3 w3.
These links can be represented in a tree-like fashion as depicted
in Figure 6.

u

v3v2v1

w3w1 w2

. k
2

.
k2

.
k
2

.
k3

.
k3

.
k3

Fig. 6. Links between the words u, v1, v2, v3, w1, w2 and w3

Since α(v1) = s1, v1 .k
3 w1 and v1 .k

3 w2, we conclude
that v1 is a (k, 3)-witness for (s1, {t1, t2}). Similarly, since
α(v2) = s2 and v2 .k

3 w3, v2 is a (k, 3)-witness for (s2, {t3}).
Finally, since α(v3) = s3, v3 is a (k, 3)-witness for (s3, ∅).

Using this knowledge, we can now construct a M -tree of
height 2 for which u is a (k, (2, 3))-witness. Since α(u) = r,
u .k

2 v1, u .k
2 v2 and u .k

2 v3 we obtain that u is a (k, (2, 3))-
witness for the M -tree depicted in Figure 7. Hence this M -tree
belongs to Tk

2,3[α].

r

s3s2s1

t3t1 t2

Fig. 7. A Σ2,3[k]-tree of height 2 and (k, (2, 3))-witness u

An important observation is that for any i, the Σi pairs
we discussed at the beginning of the section are encoded in
Σi-trees: (s, t) is a pair for Σi if and only if (s, {t}) is a
Σi-tree.

However Σi1,...,ih -trees may capture much more information.
In particular, Σ2,3-trees capture exactly the kind of information
that pairs for Σ2 and Σ3 were lacking. Indeed, assume that the
tree (t, {s, {s`, sr}}) is a Σ2,3-tree. In particular, this means
that (t, s) is a pair for Σ2 and (s, s`), (s, sr) are pairs for Σ3.
But we know more: for all k, the same word can serve as the
witness for s in all three pairs.

Additional Properties. We finish the definitions with a few
lemmas that will be useful when manipulating Σ-trees.

Lemma 16. Let h > 0 and (i1, . . . , ih) ∈ (N \ {0})h, then,
for all k ∈ N, Ti1,...,ih [α] ⊆ Tk+1

i1,...,ih
[α] ⊆ Tk

i1,...,ih
[α].

Proof: Immediate from the definition and Fact 3 (for any
k, i > 1, u .k+1

i v ⇒ u .k
i v).



The second lemma is a consequence of Lemma 6 (the
preorders .k

i are precongruences) and states that Ti1,...,ih [α]
is a monoid.

Lemma 17. Let h > 0 and (i1, . . . , ih) ∈ (N \ {0})h. For all
k ∈ N, if u, v are (k, (i1, . . . , ih))-witnesses for s, t ∈M(h),
then uv is a (k, (i1, . . . , ih))-witness for st.

In particular, Tk
i1,...,ih

[α] and Ti1,...,ih [α] are submonoids
of M(h).

Proof: The proof is immediate using Lemma 6 and an
induction on h.

The last lemma states some simple closure properties of the
sets of Σ-trees.

Lemma 18. Let h > 0, and (i1, . . . , ih) ∈ (N \ {0})h.

• ↓Ti1,...,ih [α] = Ti1,...,ih [α].
• For all t ∈ Ti2,...,ih [α], dup(t) ∈ Ti1,...,ih [α].
• Ti2,...,ih [α] = rem(Ti1,...,ih [α]).

Proof: The first item is immediate from the definition. The
second item follows from the fact that if w is a (k, (i2, . . . , ih))-
witness for t ∈ M(h − 1) then it is also a (k, (i1, . . . , ih))-
witness for dup(t) (since w .k

i1
w). The last item follows from

the definition and the second item.

C. Σ-Trees and Separation

Theorem 19. Let L1, L2 be regular languages and let α :
A∗ →M be a morphism into a finite monoid M that recognizes
them both with accepting sets F1, F2 ⊆M .

Then, for any i ∈ N \ {0}, L1 is Σi-separable from L2 if
and only if for all s1, s2 ∈ F1, F2, (s1, {s2}) 6∈ Ti[α].

Proof: This is classical and an immediate consequence of
Lemma 12.

It follows from Theorem 19 that the separation problem for
Σi amounts to finding an algorithm that computes Ti[α] from
a morphism α. Though the terminology used was different, this
was proven to be possible for i = 1 and i = 2. Both algorithms
are least fixpoint algorithms. For i = 1 the algorithm is simple
and only needs to consider the set T1[α] itself (actually, in this
case, even considering only pairs for Σ1 suffices). For i = 2,
the algorithm slightly generalizes T2[α] by parametrizing the
set with subsets of the alphabet (see [PZ14a]). However, by
restricting it to alphabet compatible morphisms, this algorithm
can be reformulated to work directly with the set T2[α].

In the paper, we present an algorithm for the case i = 3.
Our technique requires to work with the set T2,3[α] (which
generalizes T3[α] by Lemma 18). Moreover, it only works
for morphisms α that are alphabet compatible (we know
from Lemma 9 that this is not restrictive for separation).
An interesting observation is that the objects our algorithms
consider become more and more complicated as i gets larger.
For i > 4, it seems that objects that are more general than
Σ-trees need to be considered (in particular the set T2,3,4[α]
does not seem to capture enough information).

V. A SEPARATION ALGORITHM FOR Σ3

In this section, we present our algorithm which, given an
alphabet compatible morphism α : A∗ →M as input, computes
the set T3[α]. By Lemma 9, we know that from any two regular
languages, one can always compute an alphabet compatible
morphism that recognizes them both. Hence, by Theorem 19
this will prove Theorem 1: Σ3-separability is decidable. As
we explained, our algorithm actually computes a more general
object: the set T2,3[α].

Note that intuitively, our algorithm actually computes both
T2,3[α] and T3[α] simultaneously: by Lemma 18, T3[α] is
encoded in T2,3[α] (T3[α] = rem(T2,3[α])) and every M -tree
t ∈ T3[α] can be lifted as the M -tree dup(t) ∈ T2,3[α].

We now present the algorithm. We assume fixed an alphabet
compatible morphism α : A∗ → M into a finite monoid
M . Recall that since α is alphabet compatible, alph(s) is
well defined for all s ∈ M (we may assume without loss
of generality that α is surjective). Moreover, we extend the
notation to elements of M(h) for h > 1, if s = (s,S) ∈M(h),
we set alph(s) = alph(s).

As we explained, our algorithm computes a least fixpoint.
Initially, we define a set I, that contains only trivial Σ2,3-trees.
Then, we saturate this map with four operations until a fixpoint
is reached.

Let us first define the set I ⊆ T2,3[α] ⊆M(2). We define
I = {(α(w), {(α(w), {α(w)})}) | w ∈ A∗}. Observe that it
is immediate that I ⊆ T2,3[α] and that I can be computed.

We now define our least fixpoint procedure. To any R ⊆
M(2), we associate a set Sat(R) ⊆M(2) that we define as the
smallest set (with respect to inclusion) such that R ⊆ Sat(R)
and which is closed under the following four operations.

(1) Downset Closure. This reflects the fact that T2,3[α] is
closed under downset (see Lemma 18). We ask that,

↓Sat(R) ⊆ Sat(R) (1)

(2) Multiplication Closure. This reflects Lemma 17, i.e. the
fact that T2,3[α] is a monoid. We ask that,

Sat(R) · Sat(R) ⊆ Sat(R) (2)

(3) Σ2 Closure. For all r ∈ Sat(R), consider S = {s ∈
rem(Sat(R)) | alph(s) = alph(r)} ⊆M(1), we ask that,

rω · (1M ,S) · rω ∈ Sat(R) (3)

with ω as ω(M(2)). This operation is based on Lemma 8.
When Sat(R) = T2,3[α], S is the set that contains all M -
trees of T3[α] having alphabet alph(r). We use this set and r
to construct a new M -tree which, by Lemma 8, has to belong
to T2,3[α] as well.

(4) Σ3 Closure. For all r ∈ M and all s ∈ M(1) such that
(r, {s}) ∈ Sat(R), we ask that,

dup(sω · (1M , {1M , r}) · sω) ∈ Sat(R) (4)

with ω as ω(M(1)). This operation is based on Lemma 7.
Given a M -tree of the form (r, {s}) in T2,3[α], one can prove



using Lemma 7 that the M -tree sω · (1M , {1M , r}) · sω has to
belong to T3[α]. We then lift this Σ3-tree as a Σ2,3-tree with
root duplication.

This finishes the definition of Sat(R). It is immediate from
the definition that given R as input, one can compute Sat(R)
with a least fixpoint algorithm. It now remains to prove that
this algorithm can be used to compute T2,3[α] from I. We
state this result in the following proposition.

Proposition 20. T2,3[α] = Sat(I)

It follows from Proposition 20 that from any alphabet
compatible morphism α, one can compute the set T2,3[α].
Therefore, one can compute T3[α]. Finally, we obtain from
Theorem 19 that one can decide the Σ3-separation problem
which proves our main theorem: Theorem 1.

It now remains to prove Proposition 20. We prove that there
exists ` ∈ N (depending only on α) such that

T2,3[α] ⊆ T`
2,3[α] ⊆ Sat(I) ⊆ T2,3[α]

That T2,3[α] ⊆ T`
2,3[α] is immediate from Lemma 16 for

any ` ∈ N. The inclusion Sat(I) ⊆ T2,3[α] corresponds to
correctness of the algorithm: all computed M -trees are Σ2,3-
trees. The proof amounts to showing that T2,3[α] is closed
under the four operations and is based on Lemmas 7 and 8.
We present this proof in Section VI.

Finally, the most difficult inclusion is that there exists `
such that T`

2,3[α] ⊆ Sat(I). This inclusion corresponds to
completeness of the algorithm: all Σ2,3-trees are computed. We
present this proof in Section VII.

VI. CORRECTNESS IN PROPOSITION 20

Recall that an alphabet compatible morphism α : A∗ →M
is fixed. We prove that Sat(I) ⊆ T2,3[α] in Proposition 20. By
definition Sat(I) is the smallest set containing I and closed
under the four operations of Section V. It is immediate from
the definition that I ⊆ T2,3[α]. We need to prove that T2,3[α]
is closed under downset closure, multiplication closure, Σ2

closure and Σ3 closure.
Closure under downset and multiplication is immediate from

Lemmas 18 and 17. We now prove Σ2 closure and Σ3 closure.
We devote a subsection to each proof.

A. Σ2 Closure

This is a consequence of Lemma 8. Set r ∈ T2,3[α] and
S = {s ∈ rem(T2,3[α]) | alph(s) = alph(r)}. We have to
prove that

t = rω · (1M ,S) · rω ∈ T2,3[α]

By definition, T2,3[α] = ∩kTk
2,3[α], hence, it suffices to prove

that for all k, t ∈ Tk
2,3[α]: we need to find a (k, (2, 3))-witness

w ∈ A∗ for t.
Since r ∈ T2,3[α], by definition, there exists a (k, (2, 3))-

witness u for r. Set k′ = 22kω (with ω as ω(M(2))). We prove
that w = u2k

′
is a (k, (2, 3))-witness for t.

Set (r,R) = r, it follows that t = (rω,RωSRω). By defi-
nition of u, α(u) = r, hence, α(w) = rω. Set t′ ∈ RωSRω,
we have to find a (k, 3)-witness w′ for t′ such that w .k

2 w
′.

By definition t′ = r1 · s · r2 with r1, r2 ∈ Rω and s ∈ S.
By Lemma 17, we know that uk

′
is a (k, (2, 3))-witness for

(rω,Rω), hence there exists (k, 3)-witnesses u1, u2 for r1, r2
such that uk

′
.k

2 u1 and uk
′
.k

2 u2. Moreover, we know
from Lemma 18 that rem(T2,3[α]) = T3[α], hence S = {s ∈
T3[α] | alph(s) = alph(r)}. This means that there exists a
(k, 3)-witness v for s. We define w′ = u1vu2 which is by
definition and Lemma 17 a (k, 3)-witness for t′. It remains to
prove that w .k

2 w
′.

We prove that w = u2k
′
.k

2 u
k′vuk

′
.k

2 u1vu2 = w′. We
have alph(r) = alph(s), hence alph(u) = alph(v). Moreover,
k′ = 22kω, hence we can apply Lemma 8 to conclude that
u2k

′
.k

2 u
k′vuk

′
. Finally, since uk

′
.k

2 u1 and uk
′
.k

2 u2, we
obtain uk

′
vuk

′
.k

2 u1vu2 from Lemma 6.

B. Σ3 Closure

This is a consequence of Lemma 7. Set r ∈M and s ∈M(1)
such that (r, {s}) ∈ T2,3[α]. We have to prove that

dup(sω · (1M , {1M , r}) · sω) ∈ T2,3[α]

By Lemma 18, we know that {dup(t) | t ∈ T3[α]} ⊆ T2,3[α].
Hence it suffices to prove that,

t = sω · (1M , {1M , r}) · sω ∈ T3[α]

By definition, T3[α] = ∩kTk
3 [α], hence, it suffices to prove

that for all k, t ∈ Tk
3 [α]: we need to find a (k, 3)-witness

w ∈ A∗ for t.
By hypothesis, there is a (k, (2, 3))-witness v for (r, {s}).

Hence there is a (k, 3)-witness u for s such that v .k
2 u. Set

k′ = 2kω and w = u2k
′ω (with ω = ω(M(1))), we prove that

w is (k, 3)-witness for t.
Set (s, S) = s, by definition t = (sω, Sω · {1M , r} · Sω).

By choice of u, α(u) = s and by choice of k′, α(w) = sω.
Set t′ ∈ Sω · {1M , r} · Sω , we have to find w′ ∈ A∗ such that
α(w′) = t′ and w .k

3 w
′.

By definition, there exists s1, s2 ∈ Sk′ such that either
t′ = s1 · s2 or t′ = s1 · r · s2. By Lemma 17, uk

′
is a (k, 3)-

witness for sk
′

= (sk
′
, Sk′). Hence, there exist u1, u2 such

that α(u1) = s1, α(v2) = s2, uk
′
.k

3 u1 and uk
′
.k

3 u2.
If t′ = s1 ·s2, we simply set w′ = u1u2, it is then immediate

from Lemma 6, that w = uk
′
uk
′
.k

3 u1u2 = w′. Otherwise,
t′ = s1 · r · s2 and we set w′ = u1vu2. Observe that since
v .k

2 u and k′ = 2kω, we can apply Lemma 7 and obtain
that w = u2k

′
.k

3 u
k′vuk

′
. It then follows from Lemma 6 that

uk
′
vuk

′
.k

3 u1vu2 = w′. Hence w .k
3 w
′ and we are finished.

VII. COMPLETENESS IN PROPOSITION 20

Recall that an alphabet compatible morphism α : A∗ →M
into a finite monoid M is fixed. In this section, we prove that
there exists ` ∈ N such that the inclusion T`

2,3[α] ⊆ Sat(I)
holds in Proposition 20. Note that we do not state the constant
` explicitly. However, it can be computed from our proof



argument. We begin with additional terminology that we require
in order to present our argument.

Generated Σ-Trees. Set k ∈ N, to any w ∈ A∗, we associate
a Σ3[k]-tree gk(w) ∈M(1) as follows,

gk(w) = (α(w), {α(w′) | w .k
3 w
′}) ∈M(1)

By definition, gk(w) is the maximal M -tree for which w is a
(k, 3)-witness.

Fact 21. For all k > 1, Tk
3 [α] = ↓{gk(w) | w ∈ A∗}.

We define a similar object for Σ2,3[k]-trees. For technical
reasons, we need this object to have more parameters. Set
k2, k3 ∈ N, w ∈ A∗ and L ⊆ A∗. We define,

gLk2,k3
(w) = (α(w), {gk3(w′) | w .k2

2 w′ ∧w′ ∈ L}) ∈M(2)

Again, one can verify the following fact from the definitions.

Fact 22. For all k > 1, Tk
2,3[α] = ↓{gA∗k,k(w) | w ∈ A∗}.

We will also use the following fact which follows from
Fact 3 (i.e. the preorders .k

i are refined when k gets larger):

Fact 23. For all L ⊆ A∗, w ∈ A∗ and k2, k3, k′2, k
′
3 > 1 such

that k2 6 k′2 and k3 6 k′3,

gk′3(w) v gk3
(w)

gLk′2,k′3
(w) v gLk2,k3

(w)

This finishes the definition of generated Σ-trees. We can
now prove the inclusion T`

2,3[α] ⊆ Sat(I) for some `. We
rely on two propositions that we state below. We say that a
language is closed under factors if any factor of a word in the
language is in the language as well.

Proposition 24 (Σ2 Level). There exists k2 ∈ N such that for
all k ∈ N, there exists k3 ∈ N such that for all L ⊆ A∗, if
L is closed under factors and gk(u) ∈ rem(Sat(I)) for any
u ∈ L, then for all w ∈ A∗, gLk2,k3

(w) ∈ Sat(I).

Proposition 25 (Σ3 Level). There exists k ∈ N such that for
all w ∈ A∗, gk(w) ∈ rem(Sat(I)).

Let us first use the two propositions to conclude the proof
of completeness in Proposition 20. Set k2 as defined in
Proposition 24 and k as defined in Proposition 25. From our
choice of k, we obtain a third natural k3 from Proposition 24.
Set ` = max(k2, k3), we prove that T`

2,3[α] ⊆ Sat(I). Let
t ∈ T`

2,3[α], by Fact 22 and Fact 23 we get w ∈ A∗ such
that t v gA

∗

k2,k3
(w). Moreover, we know from our choice of k

in Proposition 25 that for all u ∈ A∗, gk(u) ∈ rem(Sat(I)).
Hence, by choice of k2, k3, setting L = A∗ in Proposition 24
yields gA

∗

k2,k3
(w) ∈ Sat(I). By downset closure, we finally

obtain that t ∈ Sat(I).
It now remains to prove Propositions 24 and 25. Both proofs

are inductions on the structure of a factorization forest of w.
They are both generalizations of the proof of the Σ2-separation
algorithm of [PZ14a]. The proof of Proposition 24 relies on Σ2

closure and is independent from Proposition 25. It is available
in the full version of the paper.

We concentrate on Proposition 25. The proof relies on Σ3

closure and uses Proposition 24 as a subresult (this is where
we use the parameter L in the statement of Proposition 24).
This interaction between the two results is not surprising. This
reflects the fact that in order to compute some Σ2,3-trees the
least fixpoint algorithm might have to alternate several times
between Σ2 and Σ3 closure.

We devote the remainder of the section to proving Proposi-
tion 25. We define a new morphism γ that generalizes α. We
will then use γ-factorization forests.

For the remainder of the section, we fix k2 as the natural
defined in Proposition 24. By definition, k2 only depends on
the morphism α : A∗ → M . Consider the preorder .k2

2 . We
denote by ∼=k2

2 the equivalence generated by .k2
2 . Recall that

by Lemma 6, ∼=k2
2 is a congruence for concatenation, hence

the quotient A∗/ ∼=k2
2 is a finite monoid (finiteness comes from

the fact that there are only finitely many non equivalent Σ2

formulas of quantifier rank k2). We write

γ : A∗ → M × (A∗/ ∼=k2
2 )

w 7→ (α(w), [w]∼=k2
2

)

with [w]∼=k2
2

as the equivalence class of w. Proposition 25 is
now a consequence of the following proposition.

Proposition 26. For all h, p ∈ N, there exists k ∈ N such
that for all w ∈ A∗ admitting a γ-factorization forest of
height at most h and idempotent height at most p, gk(w) ∈
rem(Sat(I)).

By Theorem 10 any word w ∈ A∗ admits a γ-factorization
forest of height (and hence idempotent height) at most
3|M × (A∗/ ∼=k2

2 )| − 1. Hence Proposition 25 is an immediate
consequence of Proposition 26.

To simplify notations, for all h, p ∈ N, we write that w ∈ A∗
satisfies H(p, h) when w admits a γ-factorization forest of
height at most h and idempotent height at most p. We prove
that for all h, p there exists k such that for any w satisfying
H(p, h), gk(w) ∈ rem(Sat(I)). We use induction on two
parameters that we list by order of importance:

1) the idempotent height p.
2) the height h.

In the base case h = 0 (and therefore p = 0). We set k = 2. A
word w admitting a γ-factorization forest of height h = 0 is
either a single letter a ∈ A or the empty word. One can verify
that since k = 2, the only word w′ ∈ A∗ such that w .k

3 w
′

is w itself. Hence,

gk(w) = (α(w), {α(w)}) ∈ rem(I) ⊆ rem(Sat(I))

We now set h, p ∈ N such that h > 1. We begin by using
induction to define the natural k that we need. For the remainder
of the proof, we will denote by n the size of the set of M -trees
of height 1: n = |M(1)|. Using induction and Proposition 24,
we can define the three following naturals:

1) By induction on h, there exists kh ∈ N such that for any
word w satisfying H(p, h− 1), gkh

(w) ∈ rem(Sat(I)).



2) By induction on p, there exists kp ∈ N such that for
any word w satisfying H(p − 1, h + n + 1), gkp

(w) ∈
rem(Sat(I)).

3) We can use Proposition 24 for kp and we obtain k3 ∈ N
such that for all L ⊆ A∗, if L is closed under factors
and gkp

(u) ∈ rem(Sat(I)) for any u ∈ L, then for all
v ∈ A∗, gLk2,k3

(v) ∈ Sat(I).
For the remainder of the proof, we will use kh, kp and k3 to
denote these naturals. Finally, we define:

k′ = max(kh, kp, k2, k3)
k = 3n+ k′

Note that in order to define kp and k3, we implicitly assumed
that p > 0. When p = 0, all factorization forests we consider
have binary nodes only and setting k′ = kh suffices. We now
prove that for any w ∈ A∗ that satisfies H(p, h), we have
gk(w) ∈ rem(Sat(I)). The proof works by decomposing w
into factors according to the γ-factorization forest given by
H(p, h). We will then be able to treat these factors using our
choice of k. The decomposition is made with the following
decomposition lemma.

Lemma 27 (Decomposition Lemma). Let w1, w2 ∈ A∗ and
k > 1, then gk(w1w2) v gk−1(w1) · gk−1(w2).

Proof: Set (s, S) = gk(w1w2), (s1, S1) = gk−1(w1) and
(s2, S2) = gk−1(w2). By definition, we have s = α(w1w2) =
s1s2. We need to prove that S ⊆ S1S2. Set t ∈ S, by definition
there exists v ∈ A∗ such that α(v) = t and w1w2 .k

3 v. Using
Lemma 5, we obtain that v = v1v2 with w1 .k−1

3 v1 and
w2 .k−1

3 v2. It follows that α(v1) ∈ S1 and α(v2) ∈ S2.
Hence, t = α(v1v2) ∈ S1S2 which terminates the proof.

After having decomposed gk(w) with Lemma 27, we will
need to prove two things:

1) That some individual factors are in rem(Sat(I)).
2) That the composition of the factors is in rem(Sat(I)).

The first item will always be obtained by choice of k. The
second item will be obtained from the first one by using
downset, multiplication and Σ3 closure. In particular, we will
often use the following fact which is a simple combination of
multiplication and downset closure.

Fact 28. Set t, t′ ∈ rem(Sat(I)) and s v t · t′. Then s ∈
rem(Sat(I)).

Proof: From Fact 15, we know that rem(Sat(I)) ·
rem(Sat(I)) = rem(Sat(I) ·Sat(I)). Hence, we have t · t′ ∈
rem(Sat(I) ·Sat(I)) and it follows that t · t′ ∈ rem(Sat(I))
by multiplication closure. Finally, that s ∈ rem(Sat(I))
follows by downset closure.

We will also need the following composition lemma.

Lemma 29 (Composition Lemma). Let w1, w2 ∈ A∗ and
k > 0, then gk(w1) · gk(w2) v gk(w1w2).

Proof: Set (s, S) = gk(w1w2), (s1, S1) = gk(w1) and
(s2, S2) = gk−1(w). By definition, we have s = s1s2, we now
prove that S1S2 ⊆ S. Let s1 ∈ S1 and s2 ∈ S2, we obtain

v1, v2 ∈ A∗ such that α(v1) = s1, α(v2) = s2, w1 .k
3 v1 and

w2 .k
3 v2. Hence, it follows from Lemma 6 that w1w2 .k

3 v1v2
and s1s2 ∈ S.

We can now start the proof. Recall that we want to prove
that gk(w) ∈ rem(Sat(I)). If the γ-factorization forest of
w given by H(p, h) is a leaf, we conclude using the same
argument as in the case h = 0 above. Otherwise, we consider
two cases depending on whether the topmost node in the forest
is binary or idempotent.

A. First Case : Binary Node

By hypothesis, w can be decomposed as w = w1w2 with
w1, w2 satisfying H(p, h− 1). By choice of kh, we know that
gkh

(w1) ∈ rem(Sat(I)) and gkh
(w2) ∈ rem(Sat(I)).

We know from Lemma 27 that gk(w) v gk−1(w1) ·
gk−1(w2). Moreover, since by definition k−1 > kh, it follows
from Fact 23 that gk(w) v gkh

(w1) · gkh
(w2). It then follows

from Fact 28 that gk(w) ∈ rem(Sat(I)).

B. Second Case: Idempotent Node

Set e = α(w). Recall that γ(w) is by hypothesis an
idempotent, hence e and [w]∼=k2

2
are idempotents as well. We

first detail our hypothesis: w admits a γ(w)-decomposition.

γ(w)-Decompositions. Given any u ∈ A∗, we say that u
admits a γ(w)-decomposition u1, . . . , um if
(a) u = u1 · · ·um,
(b) γ(u1) = · · · = γ(um) = γ(w).
(c) for all i, ui satisfies H(p− 1, h− 1).

Note that since γ(w) is idempotent, Item b means that for
all i 6 j, α(ui · · ·uj) = e and ui · · ·uj ∼=k2

2 w. By hypothesis
of this case, we have the following fact.

Fact 30. w admits a γ(w)-decomposition w1, . . . , wm.

Our objective is to prove that gk(w) ∈ rem(Sat(I)).
Note that, in general, the number of factors m in the γ(w)-
decomposition of w can be arbitrarily large. This means that
we cannot use an argument similar to the previous case.
Indeed, using Lemma 27, we could obtain that gk(w) v
gk−m(w1) · · · gk−m(wm). However, since m can be arbitrarily
large, we have no guarantee that k − m is large enough to
obtain gk−m(wi) ∈ rem(Sat(I)) (or even that k −m > 0).

Instead, we partition w1 · · ·wm as a bounded number of
subdecompositions that we can treat using the Σ3 closure.
The partition is defined by induction on a parameter of the
γ(w)-decomposition that we define now.

Index of a γ(w)-decomposition. Recall that we defined k′ =
max(kh, kp, k2, k3) (i.e. k′ = k−3n). Let u ∈ A∗ that admits
a γ(w)-decomposition u1, . . . , um. Let (f, F ) ∈M(1) be an
idempotent and i 6 m, we say that (f, F ) can be inserted at
position i if there exists 1 6 j 6 i such that i− (j − 1) 6 n
and,

gk′(uj) · · · gk′(ui) = gk′(uj) · · · gk′(ui) · (f, F )

The index of a γ(w)-decomposition u1, . . . , um is the number
of distinct idempotents (f, F ) ∈M(1) that can be inserted at



some position i 6 m. Observe that by definition, the index of
any γ(w)-decomposition is bounded by n = |M(1)|.

Lemma 31. Let u ∈ A∗ admitting a γ(w)-decomposition
u1, . . . , um of index q and set k̂ > q+ 2n+ k′. Then gk̂(u) ∈
rem(Sat(I)).

Before proving this lemma, we use it to conclude the
idempotent case. We know that our γ(w)-decomposition
w1, . . . , wm of w has an index q 6 n. Moreover, we know
that k = 3n+ k′ > q + 2n+ k′, hence, it is immediate from
Lemma 31 that gk(w) ∈ rem(Sat(I)). It now remains to
prove Lemma 31.

Proof: We begin by treating the case when m is ”small”
in front of k̂. We use an argument that is similar to the binary
node case. In the main proof (which uses induction on q), we
will use this special case twice.

Lemma 32. Let l > m+ kp, the gl(u) ∈ rem(Sat(I)).

Proof: By hypothesis, l − (m − 1) > kp. Hence, using
Lemma 27 m− 1 times and Fact 23, we obtain that,

gl(u) v gkp(u1) · · · gkp(um)

Since by hypothesis all factors ui satisfy H(p− 1, h− 1) (and
therefore H(p− 1, h+n+ 1)), we obtain by choice of kp that
for all i, gkp

(ui) ∈ rem(Sat(I)). It then follows from Fact 28
that gl(u) ∈ rem(Sat(I)).

We can now start the main proof. We proceed by induction
on q. The induction base and the induction step are both based
on the following lemma which states that if m is large enough,
we know that an idempotent can be inserted at position i 6 n.

Lemma 33. Assume that m > n. There exists i < i′ 6 n+ 1
such that,

gk′(u1) · · · gk′(ui) = gk′(u1) · · · gk′(ui) · (e, E)

with (e, E) = (gk′(ui+1) · · · gk′(ui′))ω .

Proof: We use the pigeon-hole principle. By definition of
n, there exists i < i′ 6 n+ 1 such that gk′(u1) · · · gk′(ui) =
gk′(u1) · · · gk′(ui′). The result then follows.

We can now start the induction. In the base case, q = 0
and no idempotent can be inserted. It follows from Lemma 33
that n > m and therefore that k̂ > m+ kp. We conclude that
gk̂(u) ∈ rem(Sat(I)) using Lemma 32.

Assume now that q > 0, if n > m, we can again conclude
using Lemma 32. Otherwise, we get i < i′ 6 n + 1 and
an idempotent (e, E) ∈ M(1) as defined in Lemma 33. Set
j 6 m as the largest number such that (e, E) can be inserted
at position j in the γ(w)-decomposition of u. Observe that j
has to exist (and i 6 j) since (e, E) can be inserted at position
i. Using Lemma 27, we obtain that,

gk̂(u) v gk̂−1(u1 · · ·uj) · gk̂−1(uj+1 · · ·um)

Observe that uj+1, . . . , um is a γ(w)-decomposition whose
index is smaller than that of u1, . . . , um (all idempotents that
can be inserted in uj+1, . . . , um can be inserted in u1, . . . , um

and by choice of j, (e, E) cannot be inserted in uj+1, . . . , um).
Hence, using induction in Lemma 31, we conclude that
gk̂−1(uj+1 · · ·um) ∈ rem(Sat(I)).

We now prove that gk̂−1(u1 · · ·uj) ∈ rem(Sat(I)). In view
of Fact 28, this will suffice to terminate the proof. We define
j′ = j−(n−1). Observe that when j′ 6 i, since i 6 n, we have
j 6 2n− 1 and k̂− 1 > j+kp. Hence, that gk̂−1(u1 · · ·uj) ∈
rem(Sat(I)) is a consequence of Lemma 32. Assume now
that j′ > i. We consider the following objects:

(e, T ) = gk′(u1) · · · gk′(ui)
(e, S) = gk′(ui+1 · · ·uj′−1) · gk′(uj′) · · · gk′(uj)

Recall that k̂ > q + 2n + k′, in particular k̂ − 1 > 2n + k′.
Therefore, using Lemma 27 several times (at most 2n times
since i 6 n and j − j′ = n− 1) and Fact 23 one can verify
that:

gk̂−1(u1 · · ·uj) v (e, T ) · (e, S)

Moreover, by definition of the positions i, j and of the
idempotent (e, E) , we have (e, T ) · (e, E) = (e, T ) and
(e, S) · (e, E) = (e, S). Hence we obtain,

gk̂−1(u1 · · ·uj) v (e, T ) · (e, E) · (e, S) · (e, E)

Observe that since k′ > kp, it follows from Fact 23 that
(e, T ) v gkp(u1) · · · gkp(ui). Hence, it follows from our choice
of kp and Fact 28 that (e, T ) ∈ rem(Sat(I)). By Fact 28, it
now remains to prove that (e, E)·(e, S)·(e, E) ∈ rem(Sat(I)).
We define,

(e, S′) = gk′(ui+1 · · ·uj)
(e,R) = gk′(ui+1 · · ·ui′)

It is immediate from Lemma 29 that (e, S) v (e, S′), and
(e, E) = (gk′(ui+1) · · · gk′(ui′))ω v (e,R)ω . Hence, we have

(e, E) · (e, S) · (e, E) v (e,R)ω · (e, S′) · (e,R)ω

By downset closure, it then suffices to prove that (e,R)ω ·
(e, S′) · (e,R)ω ∈ rem(Sat(I)). Set an (arbitrary) order on
the elements of S′ and observe that

(e,R)ω ·(e, S′)·(e,R)ω v
∏
s∈S′

(e,R)ω ·(1M , {1M , s})·(e,R)ω

where the product indexed by S′ is made in the order that we
chose. Therefore, that (e,R)ω ·(e, S′) ·(e,R)ω ∈ rem(Sat(I))
follows from Fact 28 and the next lemma.

Lemma 34. (e,R)ω · (1M , {1M , s}) · (e,R)ω ∈ rem(Sat(I))
for any s ∈ S′.

We finish with the proof of Lemma 34. We prove that for
all s ∈ S′, we have (s, {(e,R)}) ∈ Sat(I). Using Σ3 closure,
we will then be able to conclude that:

dup((e,R)ω · (1M , {1M , s}) · (e,R)ω) ∈ Sat(I)

By definition of root duplication and removal, it will then
follow that (e,R)ω · (1M , {1M , s}) · (e,R)ω ∈ rem(Sat(I)),
finishing the proof.



We now prove that for any s ∈ S′, (s, {(e,R)}) ∈ Sat(I).
This is a consequence of our choice of k2 and k3 as given by
Proposition 24. We prove that (s, {(e,R)}) v gLk2,k3

(v) for
some v ∈ A∗ and a L satisfying the appropriate conditions.
Recall that (e,R) and (e, S′) are defined as follows,

(e, S′) = gk′(ui+1 · · ·uj)
(e,R) = gk′(ui+1 · · ·ui′)

Hence, since s ∈ S′, there exists v ∈ A∗ such that α(v) = s
and ui+1 · · ·uj .k′

3 v. Since k2 6 k′, we can use the first item
in Fact 3 to obtain that ui+1 · · ·uj .k2

3 v. Moreover, using the
second item in Fact 3, we get that v .k2

2 ui+1 · · ·uj .
Furthermore, since u1, . . . , um is a γ(w)-decomposition,

we have γ(ui+1 · · ·uj) = γ(ui+1 · · ·ui′). Therefore, we have
ui+1 · · ·uj ∼=k2

2 ui+1 · · ·ui′ . By combining this with v .k2
2

ui+1 · · ·uj , we obtain that v .k2
2 ui+1 · · ·ui′ .

Define L as the language of all factors of ui+1 · · ·ui′ . Since
ui+1 · · ·ui′ ∈ L and v .k2

2 ui+1 · · ·ui′ , we get,

(s, {(e,R)}) = (s, {gk′(ui+1 · · ·ui′)}) v gLk2,k′(v)

Finally, since k3 6 k′, it follows from Fact 23 that gLk2,k′
(v) v

gLk2,k3
(v) and therefore that (s, {(e,R)}) v gLk2,k3

(v). By
downset closure it now suffices to prove that gLk2,k3

(v) ∈
Sat(I) to conclude that (s, {(e,R)}) ∈ Sat(I) and terminate
the proof.

Recall that we used Proposition 24 to choose k2, k3 so that
if L is closed under factors and gkp

(u) ∈ rem(Sat(I)) for any
u ∈ L, then for any v ∈ A∗, gLk2,k3

(v) ∈ Sat(I). Since our
language L of factors of ui+1 · · ·ui′ is closed under factors
by definition, we only have to prove that for any u ∈ L,
gkp(u) ∈ rem(Sat(I)). By choice of kp, this amounts to
proving that any u ∈ L satisfies H(p− 1, h+ n+ 1). This is
what we do now.

By hypothesis on γ(w)-decompositions all words among
ui+1, . . . , ui′ satisfy H(p − 1, h − 1): they admit a γ-
factorization forest of height at most h − 1 and idempotent
height at most p − 1. Since i′ − i 6 n, one can combine
these forests into a single forest for ui+1 · · ·ui′ by adding at
most n binary nodes. The resulting forest has height at most
h− 1 +n and idempotent height at most p− 1. By Lemma 11,
this means that any factor of ui+1 · · ·ui′ (i.e. any word of L)
admits a γ-factorization forest of height at most h + n + 1
and idempotent height at most p − 1. Hence any word of L
satisfies H(p− 1, h+ n+ 1) which terminates the proof.

VIII. CONCLUSION

We proved that separation is decidable for Σ3 and Π3. It
is known [PZ14a] that this also yields decidability of the
membership problem for Σ4 and Π4. Another interesting
consequence is that these results can be lifted [PZ15] to the
variants of these logics whose signature has been enriched with
the successor relation: separation is decidable for Σ3(<,+1)
and Π3(<,+1) and membership is decidable for Σ4(<,+1)
and Π4(<,+1).

In order to obtain these results, we defined new objects
(Σ-trees) that are much more involved than the machinery

necessary for solving Σ2-separability. The most immediate
question is whether this new machinery can be reused for
higher levels. Unfortunately, the answer appears to be negative:
while Σ-trees remain relevant, Σ4-separability seems to require
new ideas and more general objects.

Another question is BΣ3. As explained in the introduction,
it was proven in [PZ14a] that for all i, membership for BΣi as
well is linked to separation for Σi. However, the link is not as
strong as the one with Σi+1 and no formal reduction is known.
In particular, while this link is used in [PZ14a] to obtain a BΣ2-
membership algorithm, the proof technique is dependent on the
inner workings of the Σ2-separation algorithm. Again, whether
this can be replicated for BΣ3 is not clear. However, the link
with Σ3-separability remains and it would be interesting to
know what can be obtained from our algorithm.

REFERENCES

[AK10] J. Almeida and O. Klı́ma. New decidable upper bound of the 2nd
level in the Straubing-Thérien concatenation hierarchy of star-free
languages. Disc. Math. & Theo. Comp. Sci., 2010.

[Arf87] M. Arfi. Polynomial operations on rational languages. In STACS’87,
1987.

[BK78] J. Brzozowski and R. Knast. The dot-depth hierarchy of star-free
languages is infinite. J. Comp. Syst. Sci., 1978.

[Boj09] M. Bojańczyk. Factorization forests. In DLT’09, 2009.
[CMM13] W. Czerwiński, W. Martens, and T. Masopust. Efficient separability

of regular languages by subsequences and suffixes. In ICALP’13,
2013.

[DG08] V. Diekert and P. Gastin. First-order definable languages. In Logic
and Automata: History and Perspectives, volume 2. Amsterdam
Univ. Press, 2008.

[GS00] C. Glaßer and H. Schmitz. Languages of dot-depth 3/2. In
(STACS’00), 2000.

[Kna83] R. Knast. A semigroup characterization of dot-depth one languages.
RAIRO, 1983.

[Kuf08] M. Kufleitner. The height of factorization forests. In MFCS’08,
2008.

[MP71] R. McNaughton and S. Papert. Counter-Free Automata. 1971.
[Pin98] J.E. Pin. Bridges for concatenation hierarchies. In ICALP’98,

1998.
[Pin11] J.E. Pin. Theme and variations on the concatenation product. In

CAI’11, 2011.
[PRZ13] T. Place, L. Rooijen, and M. Zeitoun. Separating regular languages

by piecewise testable and unambiguous languages. In MFCS’13,
2013.

[PW97] J.E. Pin and P. Weil. Polynomial closure and unambiguous product.
Theory Comp. Syst., 1997.

[PZ14a] T. Place and M. Zeitoun. Going higher in the first-order quantifier
alternation hierarchy on words. In ICALP’14, 2014.

[PZ14b] T. Place and M. Zeitoun. Separating regular languages with first-
order logic. In CSL-LICS’14, 2014.

[PZ15] T. Place and M. Zeitoun. Separation and the successor relation.
In STACS’15, 2015.

[Sch65] M.P. Schützenberger. On finite monoids having only trivial
subgroups. Information and Control, 1965.

[Sim75] I. Simon. Piecewise testable events. In 2nd GI Conference on
Automata Theory and Formal Languages, 1975.

[Sim90] I. Simon. Factorization forests of finite height. TCS, 1990.
[Str94] Howard Straubing. Finite Automata, Formal Logic and Circuit

Complexity. 1994.
[Tho82] W. Thomas. Classifying regular events in symbolic logic. J. Comp.

Syst. Sci., 1982.



APPENDIX A
APPENDIX TO SECTION III: EHRENFEUCHT-FRAÏSSÉ GAMES

In this appendix, we prove Lemma 5, Lemma 6, Lemma 7
and Lemma 8. The proofs are all based on Ehrenfeucht-Fraı̈ssé
arguments.

We divide the appendix in two parts. First we recall the
definition of Ehrenfeucht-Fraı̈ssé games. Then we use them to
prove the lemmas.

A. Ehrenfeucht-Fraı̈ssé games

It is well known that the preorders .k
i can be given a game

definition. Fix i ∈ N, we define the game associated to .k
i .

We call this game the Σi game.
The board of the game consists of two words w,w′ ∈ A∗ and

there are two players called Spoiler and Duplicator. Moreover,
there exists a distinguished word among w,w′ that we call the
active word. The game is set to last a predefined number k of
rounds. When the game starts, both players have k pebbles.
Moreover, there are two parameters that get updated during the
game, the active word and a counter c called the alternation
counter. The counter c is initially set to 0 and remains smaller
or equal to i as the game progresses.

At the start of each round j, Spoiler chooses a word, either
w or w′. Spoiler can always choose the active word, in which
case both c and the active word remain unchanged. However,
Spoiler can only choose the word that is not active when
c < i − 1, in which case the active word is switched and c
is incremented by 1 (in particular this means that the active
word can be switched at most i− 1 times). If Spoiler chooses
w (resp. w′), he puts a pebble on a position xj in w (resp. x′j
in w′).

Duplicator must answer by putting a pebble at a position x′j
in w′ (resp. xj in w). Moreover, Duplicator must ensure that
all pebbles that have been placed up to this point verify the
following condition: for all j1, j2 6 j, the labels at positions
xj1 , x

′
j1

are the same, and xj1 < xj2 iff x′j1 < x′j2 .
Duplicator wins if she manages to play for all k rounds, and

Spoiler wins as soon as Duplicator is unable to play.

Lemma 35 (Folklore). For all k, i ∈ N and w,w′ ∈ A∗,
w .k

i w
′ iff Duplicator has a winning strategy for playing k

rounds in the Σi game played on w,w′ with w as the initial
active word.

B. Proof of the Lemmas

We begin with the Decomposition and Composition Lemmas
that we restate below.

Lemma 5 (Decomposition Lemma). Set k, i > 1 and
u1, u2, v ∈ A∗ such that u1u2 .k

i v. Then v can be
decomposed as v = v1v2 with u1 .k−1

i v1 and u2 .k−1
i v2.

Proof: By hypothesis Duplicator has a winning strategy in
the Σi game played on u1u2, v with u1u2 as initial active word.
Assume Spoiler begins by placing a pebble on the leftmost
position of u2 and let x be the position in v given as answer by
Duplicator’s winning strategy. We decompose v as v = v1v2

such that x is the leftmost position in v2. Since Duplicator
has a strategy for playing k − 1 more rounds, it follows that
u1 .k−1

i v1 and u2 .k−1
i v2.

Lemma 6 (Composition Lemma). Set k, i > 1 and
u1, u2, v1, v2 ∈ A∗ such that u1 .k

i v1 and u2 .k
i v2. Then,

we have u1v1 .k
i u2v2.

Proof: By Lemma 35, Duplicator has a winning strategy
for playing k rounds in the Σi game played on u1, v1 with u1
as the initial active word and in the Σi game played on u2, v2
with u2 as the initial active word. These strategies can easily
be combined in a single strategy for playing k rounds in the
Σi game played on u1u2, v1v2 with u1u2 as the initial active
word which terminates the proof.

We now turn to Lemma 7. We will need the following
intermediate lemma which states a well-known property of full
first-order logic.

Lemma 36. Let k, k1, k2 ∈ N be such that k1, k2 > 2k − 1
and u ∈ A∗. Then, for all i > 1:

uk1 .k
i u

k2

Proof: This is well known for full first-order logic: it can
be proven that any FO formula of rank k that is satisfied by
uk1 is satisfied by uk2 as well (see [Str94] for details).

We can now prove Lemma 7. We restate the lemma below.

Lemma 7. Set k, i ∈ N and u, v, u`, ur ∈ A∗ such that u .k
i+1

u`, u .k
i+1 ur and v .k

i u. Then, for k′ > 2k, we have,

u2k
′
.k

i+1 (u`)
k′v(ur)k

′

Proof: We prove a slightly more general result as stated
in the following claim:

Claim. Set k, i ∈ N, u, v ∈ A∗ and `, `′, r, r′ > 2k such that
v .k

i u. Then,
u`+r .k

i+1 (u)`
′
v(u)r

′

It is immediate from the claim that under the conditions
of Lemma 7, we have u2k

′
.k

i+1 (u)k
′
v(u)k

′
. Moreover, by

Lemma 6, we have (u)k
′
v(u)k

′
.k

i+1 (u`)
k′v(ur)k

′
. Hence

it follows by transitivity that u2k
′
.k

i+1 (u`)
k′v(ur)k

′
which

proves Lemma 7.
It now remains to prove the claim. Set k, i ∈ N, u, v ∈ A∗

and `, `′, r, r′ > 2k such that v .k
i u. We prove that Duplicator

has a winning strategy in the k-rounds Σi+1 game played on
u`+r and (u)`

′
v(u)r

′
with u`+r as initial active word. The

proof is by induction on k. We describe how Duplicator can
play the first round, the strategy for the following rounds is
then obtained by induction or from Lemma 36. We distinguish
two cases depending on Spoiler’s move.

Case 1: Spoiler plays in (u)`
′
v(u)r

′
. This means that the

alternation counter c is increased to 1 and that the active word
becomes (u)`

′
v(u)r

′
. We prove that (u)`

′
v(u)r

′
.k

i u
`+r. By

Lemma 35 this gives Duplicator a winning strategy for all
remaining rounds.



Observe that by Lemma 36, we know that (u)r
′
.k

i (u)r−1

and (u)`
′
.k

i (u)`. Hence, since v .k
i u by hypothesis, it

follows from Lemma 6 that (u)`
′
v(u)r

′
.k

i u
`+r.

Case 2: Spoiler plays in u`+r. Let x be the position of u`+r

on which Spoiler puts his pebble. By definition x is is inside
a copy of the word u. Since u`+r contains more than 2k+1

copies of u, by symmetry we can assume that there are at least
2k copies of u to the right of x. We now define a position x′

inside w′ that will serve as Duplicator’s answer. We choose
x′ so that it belongs to a copy of u inside (u)`

′
v(u)r

′
and

is at the same relative position inside this copy as x is in its
own copy of u. Therefore, to fully define x′, it only remains
to define the copy of u in which we choose x′. Let n be the
number of copies of u to the left of x in u`+r, that is, x
belongs to the (n+ 1)-th copy of u starting from the left of
u`+r. If n < 2k−1− 1, then x′ is chosen inside the (n+ 1)-th
copy of u starting from the left of (u)`

′
v(u)r

′
. Otherwise, x′

is chosen inside the 2k−1-th copy of u starting from the left
of (u)`

′
v(u)r

′
. Observe that these copies always exist and are

inside (u)`
′
, since `′ > 2k.

Set u`+r = wpuwq and (u)`
′
v(u)r

′
= w′puw

′
q, with

the two distinguished u factors being the copies containing
the positions x, x′. By Lemma 35, it suffices to prove that
wp .k−1

i+1 w′p and wq .k−1
i+1 w′q to conclude that Duplicator

can play for the remaining k − 1 rounds. If n < 2k−1 − 1,
then by definition, wp = w′p, therefore it is immediate that
wp .k−1

i+1 w
′
p. Otherwise, both wp and w′p are concatenations of

at least 2k−1 − 1 copies of u. Therefore wp .k−1
i+1 w

′
p follows

Lemma 36. Finally observe that by definition wq = v`1vr and
w′q = v`

′
1uvr

′
with `1 + r > 2k and `′1, r

′ > 2k−1. Therefore,
it is immediate by induction on k that wq .k−1

i+1 w
′
q .

We finish with the proof of Lemma 8 that we restate below.

Lemma 8. Set k ∈ N and u, v, u`, ur such that u .k
2 u`,

u .k
2 ur and alph(v) = alph(u). Then, for k′ > 22k, we

have,
u2k

′
.k

2 (u`)
k′v(ur)k

′

Proof: Using a simple Ehrenfeucht-Fraı̈ssé argument, it
can be verified that when alph(v) = alph(u), we have v .k

1

u2
k−1. The lemma is then a simple consequence of Lemma 7.

APPENDIX B
APPENDIX TO SECTION III: FACTORIZATION FORESTS

In this appendix, we prove Lemma 11. Recall the statement
of Lemma 11.

Lemma 11. Let w ∈ A∗ that admits an α-factorization forest
of height h and idempotent height p. Then any factor u ∈ A∗
of w admits an α-factorization forest of height at most h+ 2
and idempotent height at most p.

Proof: The result is a consequence of the following claim
which treats the special case when u is either a prefix or a
suffix of w.

Claim. Let w ∈ A∗ that admits an α-factorization forest of
height h and idempotent height p. Then any prefix or suffix
u ∈ A∗ of w admits an α-factorization forest of height at most
h+ 1 and idempotent height at most p.

Observe that a factor u of w is by definition the prefix of
a suffix of w. Hence, using the claim twice, we obtain that
any factor u of w admits an α-factorization forest of height
at most (h+ 1) + 1 = h+ 2 and idempotent height at most p
which terminates the proof of Lemma 11

It now remains to prove the claim. We prove the prefix case
(the suffix case can be proved using a symmetrical argument).
Let w that admits an α-factorization forest of height h and
idempotent height p and let u be a prefix of w. We construct
an α-factorization forest for u by induction on the structure of
the α-factorization forest of w.

If the topmost node in the forest of w is a leaf node, w = a
or w = ε. Hence p = 0 and h = 1. Since u is a prefix of w,
we have u = a or u = ε. Hence u admits an α-factorization
forest of height 1 < 2 = h+ 1 and idempotent height 0 = p.

If the topmost node in the forest of w is a binary node, it has
two children labeled with w1, w2 (admitting α-factorization
forests of heights at most h − 1 and idempotent heights at
most p) and w = w1w2. By definition, u is either a prefix
of w1 (in which case the result is immediate by induction)
or there exists a prefix u′ of w2 such that u = w1u

′. In the
latter case, we know by induction hypothesis that u′ admits
an α-factorization forest of height at most (h − 1) + 1 = h
and idempotent height at most p. Using one binary node, one
can then combine the forest of w1 and the forest of u′ into a
forest for u. By definition, this new forest has height at most
h+ 1 and idempotent height at most p.

Finally, if the topmost node is an idempotent node, its
children are labeled with w1, . . . , wn (admitting α-factorization
forests of heights at most h − 1 and idempotent heights at
most p − 1), w = w1 · · ·wn and α(w1) = · · ·α(wn) is an
idempotent e ∈M . Set i as the smallest natural such that u is
a prefix of w1 · · ·wi. If i = 1, u is a prefix of w1 and the result
is immediate by induction. Otherwise there exists a prefix u′

of wi such that u = w1 · · ·wi−1u
′. We know that,

• u′ admits an α-factorization forest of height at most (h−
1) + 1 = h and idempotent height at most p− 1 (this is
by induction).

• w1 · · ·wi−1 admits an α-factorization forest of height at
most h and idempotent height at most p (whose topmost
node is an idempotent node with children labeled with
w1, . . . , wi−1).

These two forests can be combined into a single forest for u
with one binary node. By definition, this forest has height at
most h+ 1 and idempotent height at most p.

APPENDIX C
APPENDIX TO SECTION VII: PROOF OF PROPOSITION 24

In this appendix, we terminate the completeness proof of
Proposition 20 that we began in Section VII. It remained to
prove Proposition 24.



Recall that an alphabet compatible morphism α : A∗ →M
into a finite monoid M is fixed. Let us restate Proposition 24.

Proposition 24 (Σ2 Level). There exists k2 ∈ N such that for
all k ∈ N, there exists k3 ∈ N such that for all L ⊆ A∗, if
L is closed under factors and gk(u) ∈ rem(Sat(I)) for any
u ∈ L, then for all w ∈ A∗, gLk2,k3

(w) ∈ Sat(I).

As for Proposition 25 we prove Proposition 24 by relying
on a generalized proposition. Note that in this case it suffices
to work directly with the morphism α.

Proposition 37. For all h ∈ N, there exists k2 ∈ N such that
for all k ∈ N, there exists k3 ∈ N such that for all L ⊆ A∗, if
L is closed under factors and gk(u) ∈ rem(Sat(I)) for any
u ∈ L, then for all w ∈ A∗ admitting an α-factorization forest
of height at most h, gLk2,k3

(w) ∈ Sat(I).

By Theorem 10 any word w ∈ A∗ admits an α-factorization
forest of height at most 3|M | − 1. Hence Proposition 24 is
an immediate consequence of Proposition 37. It now remains
to prove Proposition 37. We proceed by induction on h. The
proof structure is similar to that of Proposition 26. However,
because this result is tied to the Σ2 level, we are able to
simplify the argument in many places (in particular, observe
that the idempotent height is no longer used as an induction
parameter). The main difference occurs in the idempotent case
when proving the result corresponding to Lemma 31.

In the base case h = 0, we choose k2 = 2. For any k ∈ N,
we choose k3 = 2 as well. Any word w admitting an α-
factorization forest of height at most h = 0 is either single letter
a ∈ A or the empty word. One can verify that since k2 = k3 =
2, for any u, v ∈ A∗, w .k2

2 u .k3
3 v ⇒ w = u = v. Hence,

for any L ∈ A∗ either w 6∈ L and gLk2,k3
(w) = (α(w), ∅) ∈ ↓ I

or w ∈ L and gLk2,k3
(w) = (α(w), {(α(w), {α(w)})}) ∈ I.

This terminates the induction base. Assume now that h > 1.
For the remainder of the proof, we will denote by n, the size
of the set of M -trees of height 2: n = |M(2)|. We first need
to choose k2 ∈ N. For this, we use our induction hypothesis
which we state in the following fact.

Fact 38 (Induction Hypothesis). There exists k′2 such that for
all k ∈ N there exists k′3 ∈ N such that for all L ⊆ A∗, if
L is closed under factors and gk(u) ∈ rem(Sat(I)) for any
u ∈ L, then for all w ∈ A∗ admitting an α-factorization forest
of height at most h− 1, gLk′2,k′3(w) ∈ Sat(I).

We choose k2 = k′2 + 3n where k′2 is as defined in Fact 38.
Set k ∈ N, we now need to choose k3 ∈ N. Let k′3 be as
defined in Fact 38 for the natural k we just defined. We choose
k3 = max(k, k′3) + 3n.

Finally, set L ⊆ A∗ closed under factors and such that
gk(u) ∈ rem(Sat(I)) for all u ∈ L. We fix w ∈ A∗ that
admits an α-factorization forest of height at most h. We need
to prove that

gLk2,k3
(w) ∈ Sat(I)

As we did in the proof of Proposition 26, the proof
decomposes w according to its α-factorization forest. To do

so we use the following decomposition lemma (note that the
proof of this lemma is where we need L to be closed under
factors).

Lemma 39 (Decomposition Lemma). Let L ⊆ A∗ that is
closed under factors, w1, w2 ∈ A∗ and k2, k3 > 1, then

gLk2,k3
(w1w2) v gLk2−1,k3−1(w1) · gLk2−1,k3−1(w2)

Proof: We define (s,S) = gLk2,k3
(w1w2), (s1,S1) =

gLk2−1,k3−1(w1), (s2,S2) = gLk2−1,k3−1(w2). By definition,
s = α(w1w2) = s1s2. Set s ∈ S, we need to find s′ ∈ S1 ·S2

such that s v s′. By definition, there exists u ∈ L such that
s = gk3

(u) and w1w2 .k2
3 u. Using Lemma 5, we obtain

that u = u1u2 with w1 .k2−1
3 u1 and w2 .k2−1

3 u2. Set
s′ = gk3−1(u1) · gk3−1(u2).

Observe that since L is assumed to be closed under factors,
u1, u2 ∈ L. Hence, we have gk3−1(u1) ∈ S1, gk3−1(u2) ∈ S2

and s′ ∈ S1 · S2. Finally that s = gk3
(u) v gk3−1(u1) ·

gk3−1(u2) = s′ is an immediate consequence of Lemma 27.

We can now start the proof. By hypothesis, w admits an
α-factorization forest of height at most h. If this height is 0, we
conclude as in the base case above. Otherwise, we distinguish
two cases depending on the nature of the topmost node in this
forest.

A. Case 1: Binary Node

By hypothesis w = w1w2 with w1, w2 admitting α-
factorization forests of heights at most h − 1. Hence, by
choice of k′2, k

′
3 in Fact 38, gLk′2,k′3

(w1) ∈ Sat(I) and
gLk′2,k′3

(w2) ∈ Sat(I).
Using Lemma 39 we obtain that gLk2,k3

(w) v
gLk2−1,k3−1(w1) · gLk2−1,k3−1(w2). Moreover, since by
definition k3 − 1 > k′3 and k2 − 1 > k′2, it follows from
Fact 23 that gLk2,k3

(w) v gLk′2,k′3
(w1) · gLk′2,k′3(w2). It is then

immediate from multiplication and downset closure that
gLk2,k3

(w) ∈ Sat(I).

B. Case 2: Idempotent Node

Set e = α(w) and B = alph(w). Recall that since α is
alphabet compatible, any word of image e has alphabet B. We
also define S = {s ∈ rem(Sat(I)) | alph(s) = B}. Notice
that by Σ2 closure, for any r ∈ Sat(I) such that alph(r) = B,
we have,

rω · (1M ,S) · rω ∈ Sat(R)

We begin by adapting the notion of decomposition to our
hypothesis.

e-Decompositions. Given any u ∈ A∗, we say that u admits
a e-decomposition u1, . . . , um if
(a) u = u1 · · ·um,
(b) α(u1) = · · · = α(um) = e.
(c) for all i, gLk′2,k′3(ui) ∈ Sat(I).

In particular, since alph(e) = B observe that for any e-
decomposition u1, . . . , um, alph(ui) = B, for all i.



Lemma 40. w admits a e-decomposition w1, . . . , wm.

Proof: By hypothesis of this case, we know that w admits
a decomposition w = w1 · · ·wm that satisfies Item a, Item b
and such that all factors wi admit a α-factorization forest of
height at most h− 1. Item c is by choice of k′2, k

′
3 in Fact 38.

We will also need the following lemma which is where we
use our hypothesis on L. Recall that we defined S = {s ∈
rem(Sat(I)) | alph(s) = B}.

Lemma 41. Let u ∈ A∗ that admits an e-decomposition u =
u1 · · ·um. Then for all i 6 j, gLk′2,k(ui · · ·uj) v (e,S).

Proof: By definition, α(ui · · ·uj) = e and, in particular,
alph(ui · · ·uj) = B. Let v ∈ L such that ui · · ·uj .

k′2
2 v. We

need to prove that gk(v) ∈ S, i.e. that gk(v) ∈ rem(Sat(I))
and that alph(gk(v)) = B.

That gk(v) ∈ rem(Sat(I)) is by hypothesis on the language
L. Furthermore, we have alph(gk(v)) = alph(α(v)) =

alph(v). We can now use the fact that ui · · ·uj .k′2
2 v to

conclude that alph(v) = alph(ui · · ·uj) = B (the alphabet of
a word can be tested in Σ2).

As we did in the proof of Proposition 25, we will decom-
pose the e-decomposition of w into a bounded number of
subdecompositions. Let us first adapt the notion of index to
e-decompositions.

Index of an e-decomposition. Set ` = k3 − 3n (hence,
by definition, ` = max(k, k′3)). Let u ∈ A∗ that admits
an e-decomposition u1, . . . , um. Let (f,F) ∈ M(2) be an
idempotent and i 6 m, we say that (f,F) can be inserted at
position i if there exists 1 6 j 6 i such that i− (j − 1) 6 n
and,

gLk′2,`(wj) · · · gLk′2,`(wi) = gLk′2,`(wj) · · · gLk′2,`(wi) · (f,F)

The index of an e-decomposition u1, . . . , um is the number
of distinct idempotents (f,F) ∈M(2) that can be inserted at
some position i 6 m. Observe that by definition, the index of
any e-decomposition is bounded by n = |M(2)|.

Lemma 42. Let u ∈ A∗ that admits a e-decomposition
u1, . . . , um of index q and set k̂2 > q + 2n + k′2 and
k̂3 > q + 2n+ `. Then gL

k̂2,k̂3
(u) ∈ Sat(I).

Before proving this lemma, we use it to conclude the idem-
potent case. We know that our e-decomposition w1, . . . , wm of
w has an index q 6 n. Moreover, by definition k2 > 3n+ k′2
and k3 > 3n+ `, hence, it is immediate from Lemma 42 that
gLk2,k3

(w) ∈ Sat(I). It now remains to prove Lemma 42.
Proof: As we did when proving the Σ3 result, we begin

by considering the case when m is ”small”.

Lemma 43. Assume that p2 > m+k′2 and p3 > m+k′3, then
gLp2,p3

(u) ∈ Sat(I).

Proof: We have p2−(m−1) > k′2 and p3−(m−1) > k′3,
hence, we can apply Lemma 39 and Fact 23 to obtain that,

gLp2,p3
v gLk′2,`(u1) · · · gLk′2,`(um) v gLk′2,k′3(u1) · · · gLk′2,k′3(um)

Moreover, it follows from Item c in the definition of e-
decompositions that for all i, gLk′2,k′3

(ui) ∈ Sat(I). It then
follows from the multiplication and downset closures that
gLp2,p3

(u) ∈ Sat(I).
We can now start the main proof which works by induction

on q. The proof is based on the following lemma.

Lemma 44. Assume that n > m. There exists i 6 n such that,

gLk′2,`(w1) · · · gLk′2,`(wi) = gLk′2,`(w1) · · · gLk′2,`(wi) · (e,E)

with (e,E) ∈ Sat(I) an idempotent.

Proof: It is immediate from the pigeon-hole principle that
there exists i < i′ 6 n+ 1 such that,

gLk′2,`(w1) · · · gLk′2,`(wi) = gLk′2,`(w1) · · · gLk′2,`(wi′)

Hence, we set (e,E) = (gLk′2,`
(wi+1) · · · gLk′2,`(wi′))

ω. That
(e,E) ∈ Sat(I) is immediate from Item c in the definition of
e-decompositions and the multiplication closure.

It follows from Lemma 44 that when q = 0 (i.e. when
no idempotent can be inserted), we have m 6 n. Hence,
k̂2 > m+ k′2 and k̂3 > m+ k′3 and the induction base follows
from Lemma 43. It remains to treat the case when q > 1. For
the remainder of the proof, we assume that we are in this case.

If m 6 n, we conclude using Lemma 43 as in the base
case. Otherwise, let i 6 n and (e,E) ∈ Sat(I) be as defined
in Lemma 44. Set j 6 m as the largest number such that
(e,E) can be inserted at position j in the e-decomposition of
u. Observe that j has to exist since (e,E) can be inserted at
position i. In particular, we have i 6 j. Using Lemma 39, we
obtain that,

gL
k̂2,k̂3

(u) v gL
k̂2−1,k̂3−1

(u1 · · ·uj) · gLk̂2−1,k̂3−1
(uj+1 · · ·um)

Observe that uj+1, . . . , um is a e-decomposition whose index
is smaller than that of u1, . . . , um (all idempotents that can be
inserted in uj+1, . . . , um can be inserted in u1, . . . , um and
by choice of j, (e,E) cannot be inserted in uj+1, . . . , um).
Hence, we can apply our induction hypothesis in Lemma 42
and conclude that gL

k̂2−1,k̂3−1
(uj+1 · · ·um) ∈ Sat(I).

We now prove that gL
k̂2−1,k̂3−1

(u1 · · ·uj) ∈ Sat(I). It will
then follow from multiplication and downset closure that
gL
k̂2,k̂3

(u) ∈ Sat(I). Set j′ = j − (n − 1) and observe that
when j′ 6 i, since i 6 n, we have j 6 2n − 1. Hence, that
gL
k̂2−1,k̂3−1

(u1 · · ·uj) ∈ Sat(I) follows from Lemma 43.
We finish with the case when i < j′. We consider the

following objects:

(e,S′) = gLk′2,`
(ui+1 · · ·uj′−1) · gLk′2,`(uj′) · · · g

L
k′2,`

(uj)

(e,R) = gLk′2,`
(u1) · · · gLk′2,`(ui)

Recall that k̂2 > q + 2n+ k′2 and k̂3 > q + 2n+ `. Therefore,
using Lemma 39 several times (at most 2n times), one can
verify that:

gL
k̂2−1,k̂3−1

(u1 · · ·uj) v (e,R) · (e,S′)



Moreover, by definition of the positions i, j and of the
idempotent (e,E) , we have (e,R) · (e,E) = (e,R) and
(e,S′) · (e,E) = (e,S). Hence we obtain,

gL
k̂2−1,k̂3−1

(u1 · · ·uj) v (e,R) · (e,E) · (e,S′) · (e,E)

By multiplication closure and Item c in the definition of e-
decompositions (e,R) ∈ Sat(I). Therefore, by multiplication
closure and downset closure, it suffices to prove that (e,E) ·
(e,S′) · (e,E) ∈ Sat(I) to conclude. We use Σ2 closure.

Observe that by definition and Lemma 41, (e,S′) v
(e,S)j−j

′+2. It is also immediate by multiplication closure that
SS ⊆ S and therefore that (e,S)j−j

′+2 v (e,S). Moreover,
since alph((e,E)) = B, it is immediate by Σ2-closure that

(e,E) · (e,S) · (e,E) = (e,E) · (1M ,S) · (e,E) ∈ Sat(I)

Hence, by downset closure, we obtain that (e,E) · (e,S′) ·
(e,E) ∈ Sat(I) which terminates the proof.


	Introduction
	Preliminaries
	First-Order Logic and Quantifier Alternation
	Decision Problems

	Tools
	Sigma i preorders
	Monoid Definition of Regular Languages
	Simon's Factorization Forests Theorem

	Sigma-Trees
	M-Trees for a Monoid M
	Set of Sigma-Trees Associated to a Morphism
	Sigma-Trees and Separation

	A Separation Algorithm for Sigma 3
	Correctness in Proposition 20
	Sigma 2 Closure
	Sigma 3 Closure

	Completeness in Proposition 20
	First Case : Binary Node
	Second Case: Idempotent Node

	Conclusion
	References
	Appendix A: Appendix to Section III: Ehrenfeucht-Fraïssé Games
	Ehrenfeucht-Fraïssé games
	Proof of the Lemmas

	Appendix B: Appendix to Section III: Factorization Forests
	Appendix C: Appendix to Section VII: Proof of Proposition 24
	Case 1: Binary Node
	Case 2: Idempotent Node


