
A de
idable
hara
terization of lo
ally testabletree languages
Thomas Pla
e and Lu
 Segou�nINRIA and LSV at ENS Ca
hanAbstra
t. A regular tree language L is lo
ally testable if the member-ship of a tree into L depends only on the presen
e or absen
e of someneighborhoods in the tree. In this paper we show that it is de
idablewhether a regular tree language is lo
ally testable.1 Introdu
tionThis paper is part of a general program trying to understand the expressive powerof �rst-order logi
 over trees. We say that a
lass of regular tree languages has ade
idable
hara
terization if the following problem is de
idable: given as inputa �nite tree automaton, de
ide if the re
ognized language belongs to the
lassin question. Usually a de
ision algorithm requires a solid understanding of theexpressive power of the
orresponding
lass and is therefore useful in any
ontextwhere a pre
ise boundary of this expressive power is
ru
ial. For instan
e, we donot possess yet a de
idable
hara
terization of the tree languages de�nable inFO(≤), the �rst-order logi
 using a binary predi
ate ≤ for the an
estor relation.We
onsider here the
lass of tree languages de�nable in a fragment of FO(≤)known as Lo
ally Testable (LT). A language is in LT if its membership dependsonly on the presen
e or absen
e of neighborhoods of a
ertain size in the tree. A
losely related family of languages is the
lass LTT of Lo
ally Threshold Testablelanguages. Membership in su
h languages is obtained by
ounting the number ofneighborhoods of a
ertain size up to some threshold. The
lass LT is the spe
ial
ase where no
ounting is done, the threshold is 1. In this paper we provide ade
idable
hara
terization of the
lass LT over trees.De
idable
hara
terizations are usually obtained by exhibiting a set of
losureproperties that holds exa
tly for the languages in the
lass under investigation. Itis therefore ne
essary to have a formalism for expressing these properties. Thisformalism must also
ome with some tools for proving that the properties do
hara
terize the
lass, typi
ally with indu
tion me
hanisms, but also for provingthe de
idability of those properties.Over words one formalism turned out to be su

essful for
hara
terizing many
lass of regular languages. The
losure properties are expressed as identities onthe synta
ti
 monoid of the regular language. The synta
ti
 monoid of a regularlanguage being the transition monoid of its minimal deterministi
 automata.For instan
e the
lass of languages de�nable in FO(≤) is
hara
terized by thefa
t that their synta
ti
 monoid is aperiodi
. The later property
orrespondsto the identity xω = xω+1 where ω is the size of the monoid. This equationis easily veri�able automati
ally on the synta
ti
 monoid. Similarly, the
lasses

LTT and LT have been
hara
terized using de
idable identities on the synta
ti
monoid [BS73,M
N74,BP89,TW85℄.Over trees the situation is more
omplex and right now there is no formalismthat
an easily express all the
losure properties of the
lasses for whi
h we havea de
idable
hara
terization. The most su

essful formalism is
ertainly forestalgebra [BW07℄. For instan
e, forest algebra was used for obtaining de
idable
hara
terizations for the
lasses of tree languages de�nable in EF+EX [BW06℄,EF+F−1 [Boj07b,Pla08℄, BC-Σ1(<) [BSS08,Pla08℄, ∆2(≤) [BS08,Pla08℄. How-ever it is not
lear yet how to use forest algebra for
hara
terizing the
lassLTT over trees and a di�erent formalism was used for obtaining a de
idable
hara
terization for this
lass [BS09℄.We were not able to obtain a reasonable set of identities for LT either byusing forest algebra or the formalism used for
hara
terizing LTT. Our approa
his slightly di�erent.There is another te
hnique that worked on words for de
iding the
lass LT.It is based on the �delay theorem� [Str85,Til87℄ for
omputing the expe
ted sizeof the neighborhoods: Given a regular language L, a number k
an be
omputedsu
h that if L is in LT then it is in LT by investigating the neighborhoods ofsize k. On
e this k is available, de
iding whether L is indeed in LT or not isa simple exer
ise. On words, a de
ision algorithm for LT (and also for LTT)has been obtained su

essfully using this approa
h [Boj07a℄. Unfortunately alle�orts to prove a similar delay theorem on trees have failed so far.We obtain a de
idable
hara
terization of LT by
ombining the two ap-proa
hes mentioned above. We �rst exhibit a set of ne
essary and de
idable
onditions for a regular tree language to be in LT. Those
onditions are ex-pressed using the formalism introdu
ed for
hara
terizing LTT. We then showthat for languages satisfying su
h
onditions one
an
ompute the expe
ted sizeof the neighborhoods. Using this te
hnique we obtain a
hara
terization of LTfor ranked trees and for unranked unordered trees.Other related work. There exists several formalisms that were used for expressingidentities
orresponding to several
lasses of languages but not in a de
idable way.Among them let us mention the notion of pre
lones introdu
ed in [EW05℄ as itis
lose to the one we use in this paper for expressing our ne
essary
onditions.Organization of the paper. We start with ranked trees and give the ne
essarynotations and preliminary results in Se
tion 2. Se
tion 3 exhibits several
ondi-tions and proves they are de
idable and ne
essary for being in LT. In Se
tion 4we show that for the languages satisfying the ne
essary
onditions the expe
tedsize of the neighborhoods
an be
omputed, hen
e
on
luding the de
idabilityof the
hara
terization. Finally in Se
tion 5 we show how our result extends tounranked trees. Due to spa
e limitations several proofs are missing.2 Notations and preliminariesWe �rst prove our result for the
ase of binary trees. The
ase of unrankedunordered trees will be
onsidered in Se
tion 5.

Trees. We �x a �nite alphabet Σ, and
onsider �nite binary trees with labelsin Σ. All the results presented here extend to arbitrary ranks in a straightfor-ward way. A language is a set of trees. We use standard notations for trees.For instan
e by the des
endant (resp. an
estor) relation we mean the re�exivetransitive
losure of the
hild (resp. inverse of
hild) relation.Given a tree t and a node x of t the subtree of t rooted at x,
onsisting ofall the nodes of t whi
h are des
endants of x, is denoted by t|x. A
ontext isa tree with a designated (unlabeled) leaf
alled its port whi
h a
ts as a hole.Given
ontexts C and C ′, their
on
atenation C · C ′ is the
ontext formed byidentifying the root of C ′ with the port of C. A tree C ·t
an be obtained similarlyby
on
atenating a
ontext C and a tree t. Given a tree t and two nodes x, y of
t su
h that y is a des
endant (not ne
essarily stri
t) of x, the
ontext C = t[x, y]is de�ned from t1 = t|x by repla
ing t1|y by a port. In this
ase we say that Cis a
ontext o

urring in t.Types. Let t be a tree and x be a node of t and k be a positive integer, the k-typeof x in t is the (isomorphism type of the) restri
tion of t|x to the set of nodesof t at distan
e at most k from x. A k-type τ o

urs in a tree t if there exists anode in t of k-type τ . If C is a
ontext o

urring in a tree t then the k-type ofa node of C is the k-type of that node in t. Noti
e that the k-type of a node of
C depends on the surrouding tree t, in parti
ular the port of C has a k-type.Given two trees t and t′ we denote by t 4k t′ the fa
t that all k-types thato

ur in t also o

ur in t′. Similarly we
an speak of t 4k C when t is a tree and
C is a
ontext o

urring in some tree t′. We denote by t ≃k t′ the property thatthe root of t and the root of t′ have the same k-type and t and t′ agree on their
k-types: t 4k t′ and t′ 4k t . Note that when k is �xed the number of k-typesis �nite and hen
e the equivalen
e relation ≃k has �nite index.A language L is said to be κ-lo
ally testable (is in LTκ) if L is a union ofequivalen
e
lasses of ≃κ. A language is said to be lo
ally testable (is in LT) ifthere is a κ su
h that it is κ-lo
ally testable. In words this says that in orderto test whether a tree t belongs to L it is enough to
he
k for the presen
e orabsen
e of κ-types in t, for some big enough κ.The problem. We want an algorithm de
iding if a given regular language is inLT. If
omplexity does not matter, we
an assume that the given language L isgiven as a MSO formula. Another option would be to start with a bottom-uptree automata for L or, even better, the minimal deterministi
 bottom-up treeautomata that re
ognizes L. The main di�
ulty is to
ompute a bound on κ,the size of the neighborhood, whenever su
h a κ exists.The string
ase is a spe
ial
ase of the tree
ase as it
orresponds to trees ofrank 1. A de
ision pro
edure for LT was obtained in the string
ase independentlyby [BS73,M
N74℄. It is based on a
hara
terization of the synta
ti
 semigroup ofthe language by means of the equations exe = exexe and exeye = eyexe, where
e is an arbitrary idempotent (ee = e) while x and y are arbitrary elements of thesemigroup. The equations are then easily veri�ed on the synta
ti
 semigroup.In the
ase of trees, we were not able to obtain a reasonably simple set ofidentities for
hara
terizing LT. Nevertheless we
an show:

Theorem 1 It is de
idable whether a regular tree language is in LT.Our strategy for proving Theorem 1 is as follows. In a �rst step we providene
essary, and de
idable,
onditions for a language to be in LT. In a se
ond stepwe show that if a language veri�es those
onditions then we
an
ompute a κsu
h that it is in LT i� it is in LTκ. Finally we show that on
e κ is �xed, it isde
idable whether a regular language is a �nite union of
lasses of ≃κ.Before starting providing the proof details we note that there exists examplesshowing that the ne
essary
onditions are not su�
ient, see the end of Se
tion 3.This is not immediate to see and goes beyond the s
ope of this paper. We alsonote that the problem of �nding κ whenever su
h a κ exists is a spe
ial
ase ofthe delay-theorem. In the
ase of LT, the delay theorem says that if a �nite stateautomaton A re
ognizes a language in LT then this language must be in LTκfor a κ
omputable from A. This theorem holds over strings [Str85,Til87℄ and
an be used in order to de
ide whether a regular language is in LT as explainedin [Boj07a℄. We were not able to prove su
h a general theorem for trees. Ourse
ond step
an be seen as a parti
ular
ase of the delay theorem for languagessatisfying the
onditions provided by the �rst step.
3 Ne
essary
onditionsIn this se
tion we exhibit ne
essary
onditions for a regular language to be inLT. These
onditions will play a
ru
ial role in our de
ision algorithm. These
onditions are expressed using the same formalism as the one used in [BS09℄ for
hara
terizing LTT.Guarded operations. Let t be a tree, and x, x′ be two nodes of t su
h that x and
x′ are not related by the des
endant relationship. The horizontal swap of t atnodes x and x′ is the tree t′
onstru
ted from t by repla
ing t|x with t|x′ andvi
e-versa, see Figure 1 (left). A horizontal swap is said to be k-guarded if x and
x′ have the same k-type.Let t be a tree and x, y, z be three nodes of t su
h that x, y, z are not relatedby the des
endant relationship and su
h that t|x = t|y. The horizontal transferof t at x, y, z is the tree t′
onstru
ted from t by repla
ing t|y with a
opy of t|z,see Figure 1 (right). A horizontal transfer is k-guarded if x, y, z have the same
k-type.

t|x t|
x
′

x x′ ⇐⇒

t|
x
′ t|x

x x′

t|x t|x t|z

x y z ⇐⇒

t|x t|z t|z

x y z

Fig. 1. Horizontal Swap (left) and Horizontal Transfer (right)

Let t be a tree of root a, and x, y, z be three nodes of t su
h that y is ades
endant of x and z is a des
endant of y. The verti
al swap of t at x, y, z isthe tree t′
onstru
ted from t by swapping the
ontext between x and y withthe
ontext between y and z, see Figure 2 (left). A verti
al swap is k-guarded if
x, y, z have the same k-type.Let t be a tree of root a, and x, y, z be three nodes of t su
h that y is ades
endant of x and z is a des
endant of y su
h that ∆ = t[x, y] = t[y, z]. Theverti
al stutter of t at x, y, z is the tree t′
onstru
ted from t by removing the
ontext between x and y, see Figure 2 (right). A verti
al stutter is k-guarded if
x, y, z have the same k-type.

C

∆1

∆2

T

x

y

z

⇐⇒

C

∆2

∆1

T

x

y

z

C

∆

∆

T

x

y

z

⇐⇒

C

∆

T

x

z

Fig. 2. Verti
al Swap (left) and Verti
al Stutter (right)Let L be a tree language and k be a number. If X is any of the four
on-stru
tions above, horizontal or verti
al swap, or verti
al stutter or horizontaltransfer, we say that L is
losed under k-guarded X if for every tree t and everytree t′
onstru
ted from t using k-guarded X then t is in L i� t′ is in L. Noti
ethat being
losed under k-guarded X implies being
losed under k′-guarded Xfor k′ > k. An important observation is that ea
h of the k-guarded operationspreserves (k + 1)-types.If L is
losed under all the k-guarded operations des
ribed above, we saythat L is k-tame. A language is said to be tame if it is k-tame for some k. Thefollowing simple result shows that tameness is a ne
essary
ondition for LT.Proposition 1 If L is in LT then L is tame.We now turn to the de
ision pro
edure for testing tameness. If k is �xed, itis simple to
he
k whether L is k-tame, see for instan
e [BS09℄. The followingproposition shows that k
an be assumed to be bounded by a simple fun
tion ofthe size of any bottom-up tree automata re
ognizing L. It
an be shown using apumping argument.Proposition 2 Given a regular language L, it is de
idable whether L is tame.Moreover, if this is the
ase, a k su
h that L is k-tame
an be e�e
tively
om-puted.Example 1 Over strings tameness
hara
terizes exa
tly LT as verti
al swapand verti
al stutter are exa
tly the extensions to trees of the equations given in

Se
tion 2 for LT. Over trees this is no longer the
ase as the following exampleshows. For simplifying the presentation we assume that nodes may have between0 to three
hildren. All trees in our language L have the same stru
ture
onsistingof a root of label a from whi
h exa
tly three sequen
es of nodes with only one
hild (strings) are atta
hed. The trees in L have therefore exa
tly three leaves, andthose must have three distin
t labels among {h1, h2, h3}. One bran
h, ex
eptedfor its leaf, must be of the form b∗cd∗, another one of the form b∗cd∗ and thelast one of the form b∗c′d∗, where b,
,
' and d are distin
t labels. The reader
an verify that L is tame. It is not in LT be
ause repla
ing exa
tly one node oflabel
 by a node of label
' in a tree with long bran
hes yields a tree with thesame neighborhood but not in L.
4 De
iding LT for tame languagesIn this se
tion we show that it is de
idable whether a regular tree language isin LT. In view of Proposition 1 and Proposition 2 it is su�
ient to show thatit is de
idable whether a tame regular tree language is in LT. Hen
e Theorem 1follows from the following proposition.Proposition 3 Assume L is a tame regular tree language. Then it is de
idablewhether there exists a κ su
h that L is in LTκ.Proof. Assume L is tame. Then from Proposition 2 one
an e�e
tively
omputea k su
h that L is k-tame. The proof of the proposition is then divided in twosteps. The �rst one shows that for k-tame languages, if su
h a κ exists then κis at most exponential in k. The se
ond step, Lemma 1 below, shows that when
κ is �xed then being a union of ≃κ is de
idable. The proof of the se
ond step isstraightforward and is left to the reader.Lemma 1 Let L be a regular tree language and κ a number. It is de
idablewhether L is in LTκ or not.The rest of this se
tion is devoted to the proof of the �rst step showingthat for k-tame regular tree language a bound on κ
an be obtained. This is a
onsequen
e of the lemma below. Re
all that for ea
h k, the number of k-typesis �nite. Let βk be this number.Lemma 2 Let L be a k-tame regular tree language. Set l = βk + 1. Then forall l′ > l and any two trees t, t′ if t ≃l t′ then there exists two trees T, T ′ with1. t ∈ L i� T ∈ L2. t′ ∈ L i� T ′ ∈ L3. T ≃l′ T ′To see that the �rst step follows from Lemma 2, assume that L is a k-tameregular tree language in LT. Then, by de�nition of LT, L is in LTl′ for some l′. If
l′ > βk + 1 then, from Lemma 2, L is also in LTl. Hen
e for testing membership

in LT it is su�
ient to test membership in LTl for l = βk + 1 whi
h is de
idableby Lemma 1.Before proving Lemma 2 we need some extra terminology. A non-empty
on-text C o

urring in a tree t is a loop of k-type τ if the k-type of its root and the
k-type of its port is τ . A non-empty
ontext C o

urring in a tree t is a k-loop ifthere is some k-type τ su
h that C is a loop of k-type τ . Note that if C is a loopof k-type τ and x is a node of type τ in a tree t then inserting C at node x doesnot modify the k-type of the nodes of t (it may add new k-types,
oming fromthe nodes of C). In parti
ular the k-type of x is un
hanged. Given a
ontext Cwe
all the path from the root of C to its port the prin
ipal path of C. Finally,the result of the insertion of a k-loop C at a node x of a tree t is a tree T su
hthat if t = D · t|x then T = D · C · t|x. Typi
ally an insertion will o

ur onlywhen the k-type of x is τ and C is a loop of k-type τ . In this
ase the k-typesof the nodes of t are un
hanged by this operation.Proof (of Lemma 2). Suppose that L is k-tame. Re
all that the number of k-types is βk. Therefore, by
hoi
e of l, in every bran
h of a l-type one
an �nd atleast one k-type that is repeated. This provides many k-loops that
an be movedaround whenever ne
essary in order to obtain similar bigger types.Take l′ > l, we build T and T ′ from t and t′ by inserting k-loops in t and t′without a�e
ting their membership in L.Let B = {τ0, ..., τn} be the set of k-types τ su
h that there is a loop of k-type
τ in t or in t′. For ea
h τ ∈ B we �x a
ontext Cτ as follows. Be
ause τ ∈ Bthere is a
ontext C in t or t′ that is a loop of k-type τ . For ea
h τ ∈ B, we �xarbitrarily su
h a C and set Cτ as C · . . . · C

︸ ︷︷ ︸

l′

, l′
on
atenation of the
ontext C.Noti
e that the path from the root of Cτ to its port is then bigger than l′.We now des
ribe the
onstru
tion of T from t. The
onstru
tion of T ′ from
t′ is done similarly. The tree T is
onstru
ted by inserting simultaneously a
opyof the
ontext Cτ at all nodes of type τ ∈ B of t.We now show that T and T ′ have the desired properties. The third propertyis easy to verify (proof omitted in this abstra
t).Claim 1 T ≃l′ T ′The other two properties, t ∈ L i� T ∈ L and t′ ∈ L i� T ′ ∈ L, are notobvious at all. This is the di�
ult part of the proof and it requires tameness ofthe language. It is a
onsequen
e of Lemma 3 below. ⊓⊔In order to
on
lude the proof of Proposition 3 it remains to show the follow-ing lemma. This lemma shows a key
onsequen
e of the fa
t that L is k-tame: theinsertion of k-loops that don't introdu
e new (k+1)-types preserves membershipinto L.Lemma 3 Let L be a k-tame regular tree language. Let t be a tree and x anode of t of k-type τ . Let t′ be another tree su
h that t ≃k+1 t′ and C be a loopof k-type τ in t′. Consider the tree T
onstru
ted from t by inserting a
opy of
C at x. Then t ∈ L i� T ∈ L.

Proof. The proof is done in two steps. First we use the k-tame property of Lto show that we
an insert a k-loop C ′ at x in t su
h that the prin
ipal pathof C is the same as the prin
ipal path of C ′. By this we mean that there is abije
tion from the prin
ipal path of C ′ to the prin
ipal path of C that preserves
(k + 1)-types. In a se
ond step we repla
e one by one the subtrees hanging fromthe prin
ipal path of C ′ with the
orresponding subtrees in C.First some terminology. Given two nodes x, y of some tree T , we say that xis a l-an
estor of y if y is a des
endant of the left
hild of x. Similarly we de�ner-an
estorship.Consider the
ontext C o

urring in t′. Let y0, · · · , yn be the nodes of t′on the prin
ipal path of C and τ0, · · · , τn be their respe
tive (k + 1)-type. For
0 ≤ i < n, set ci to l if yi+1 is a left
hild of yi and r otherwise.From t we
onstru
t using k-guarded swaps and k-verti
al stutter a tree t1su
h that there is a sequen
e of nodes x0, · · · , xn in t1 with for all 0 ≤ i < n,
xi is of type τi and xi is an ci-an
estor of xi+1. The tree t1 is
onstru
ted byindu
tion on n. If n = 0 then this is a
onsequen
e of t ≃k+1 t′ that one
an�nd in t a node of type τ0. Consider now the
ase n > 0. By indu
tion we have
onstru
ted from t a tree t′1 su
h that x0, · · · , xn−1 is an appropriate sequen
e in
t′1. By symmetry we
onsider the
ase where yn is the left
hild of yn−1. Be
auseall k-guarded operations preserve (k + 1)-types, we have t ≃k+1 t′1 and hen
ethere is a node x of t′1 of type τn. If xn−1 is a l-an
estor of x then we are done.Otherwise
onsider the left
hild x′ of x and noti
e that be
ause yn is a
hild of
yn−1 and xn−1 has the same (k + 1)-type than yn−1 then x′, yn and x have thesame k-type.We know that x is not a des
endant of x′. There are two
ases. If x and x′are not related by the des
endant relationship then by k-guarded swaps we
anrepla
e the subtree rooted in x′ by the subtree rooted in x and we are done. If
x is an an
estor of x′ then the
ontext between x and x′ is a k-loop and we
anuse k-guarded verti
al stutter to dupli
ate it. This pla
es x as the left
hild of
xn−1 and we are done.From t1 we
onstru
t using k-guarded swaps and k-guarded verti
al stuttera tree t2 su
h that there is a path x0, · · · , xn in t2 with for all 0 ≤ i < n, xi isof type τi.Consider the sequen
e x0, · · · , xn obtained in t1 from the previous step. Re-
all that the k-type of x0 is that same as the k-type of xn. Hen
e using k-guardedverti
al stutter we
an dupli
ate in t1 the
ontext rooted in x0 and whose port is
xn. Let t′1 the resulting tree. We thus have two
opies of the sequen
e x0, · · · , xnthat we denote by the top
opy and the bottom
opy. Assume xi is not a
hild of
xi−1. Noti
e that the
ontext between the appropriate
hild of xi−1 and xi is a
k-loop. Using k-guarded verti
al swap we
an move the top
opy of this
ontextnext to its bottom
opy. Using k-guarded verti
al stutter this extra
opy
anbe removed. We are left with an instan
e of the initial sequen
e in the bottom
opy, while in the top one xi is a
hild of xi−1. Repeating this argument yieldsthe desired tree t2.

Consider now the
ontext C ′ = t2[x0, xn]. It is a loop of k-type τ . Let T ′ bethe tree
onstru
ted from t by inserting C ′ in x. The proof of the following
laimis omitted in this abstra
t.Claim 2 T ′ ∈ L i� t ∈ L.It remains to show that T ′ ∈ L i� T ∈ L. By
onstru
tion of T ′ we have
C ′ 4k+1 t. Consider now a node xi in the prin
ipal path of C ′. Let Ti be thesubtree bran
hing out the prin
ipal path of C at xi and T ′

i be the subtree bran
h-ing out the prin
ipal path of C ′ at xi. The
laim below shows that repla
ing T ′

iwith Ti does not a�e
t membership into L. Hen
e a repeated use of that
laimeventually shows that T ′ ∈ L i� T ∈ L.Claim 3 Let u and u′ be two trees. Assume s and s′ are subtrees respe
tivelyof u and u′ su
h that the roots of s and s′ have the same k-type. Consider the
ontext D su
h that u = Ds.If s 4k+1 D and s′ 4k+1 D then Ds ∈ L i� Ds′ ∈ L.Proof (sket
h). The proof is done by indu
tion on the depth of s′. The idea isto repla
e s with s′ node by node.Assume �rst that s′ is of depth less than k. Then be
ause the k-type of theroots of s and s′ are equal, we have s = s′ and the result follows.Assume now that s′ is of depth greater than k. Let x be the root of s. Let
τ be the (k + 1)-type of the root of s′. Be
ause s′ 4k+1 D we know that thereexists a node y in D of type τ . We
onsider two
ases depending on the relationbetween x and y.� If y is an an
estor of x, let E be u[y, x] and noti
e that x and y have thesame k-type. Hen
e we
an dupli
ate E using a k-guarded verti
al stutter.The resulting tree is DEs and be
ause L is k-tame, DEs ∈ L i� Ds ∈ L.Let z be the root of E in DEs. Noti
e that by
onstru
tion z is of type

τ . Let s1 be the subtree of DEs rooted at the left
hild of z and let s′1 bethe subtree of s′ rooted at the left
hild of the root of s′. By
onstru
tion
s1 4k+1 D, s′1 4k+1 D. Be
ause their parent have the same (k + 1)-type,the roots of s1 and s′1 have the same k-type. As the depth of s′1 is stri
tlysmaller than the depth of s′, by indu
tion we
an repla
e s1 by s′1 withouta�e
ting membership into L. Similarly we do the same for the right
hildand we are done.� Assume now that x and y are not related by the des
endant relationship.We know that x, y have the same k-type and that s 4k+1 D. Let s′′ bethe subtree of Ds rooted at y. It
an be shown that, as a
onsequen
e oftameness (this is where k-guarded horizontal transfer is used), repla
ing Dsby Ds′′ does not a�e
t membership in L . As y′′ is of type τ , we
an pro
eedby indu
tion as above and repla
e the left and right subtrees of s′′ by their
orresponding subtrees of s′ to get the desired result. ⊓⊔This
on
ludes the proof of the de
ision algorithm in the
ase of trees. Wenote that in the
ase of strings Lemma 3 is extremely powerful and is su�
ient

for showing that tameness implies membership in LT. This is due to the fa
tthat, on strings, any two nodes with the same type indu
e a loop and thereforeLemma 3 applies to this loop. This lemma
an then be used for transforming byindu
tion a string to any other one with the same o

urren
es of types. Howeverover trees this no longer work as the two nodes may be in
omparable.
5 Unranked treesIn this se
tion we
onsider unranked unordered trees, where ea
h node has anarbitrary number of
hildren but no order is assumed on these
hildren. Ourgoal is to extend the result of the previous se
tion and provide a de
idable
hara
terization of Lo
ally Testable languages of unranked trees. Due to spa
elimitations, we mostly only mention here our results, their proofs will appear inthe journal version of this paper.The �rst issue is to �nd an appropriate notion of LT for unranked trees.Re
all that a language of binary trees is LT if its membership depends onlyon the presen
e or absen
e of neighborhoods of a
ertain size. With unrankedtrees, there may be in�nitely many di�erent possible neighborhoods of a
ertainsize and hen
e this de�nition does not imply that the language is regular1. Theidea is to repla
e isomorphism types with FO de�nable types su
h that for ea
hisomorphism type there are only �nitely many FO de�nable types.We will use the following notion of type. The de�nition of k-type remainsun
hanged: it is the isomorphism type of tree indu
ed by nodes at depth at most
k. As mentioned above there are now in�nitely many k-types. We thereforeintrodu
e a more �exible notion that depends on one extra parameter l thatrestri
ts the horizontal information. It is de�ned by indu
tion on k. Consider anunordered tree t. For k = 0, the (k, l)-type of t is just the label of the root of
t. For k > 0 the (k, l)-type of t is the label of its root together with, for ea
h
(k − 1, l)-type, the number, up to threshold l, of
hildren of the root of t of thistype.From this we de�ne two
lasses of Lo
ally Testable languages. The mostgeneral one, denoted ALT (A for Aperiodi
), is de�ned as follows. Two treesare (k, l)-equivalent if they have the same o

urren
es of (k, l)-types and theirroots have the same (k, l)-type. A language L is in ALT if there is a k anda l su
h that L is a union of (k, l)-equivalen
e
lasses. In the framework offorest algebra [BW07℄, languages in ALT have a synta
ti
 forest algebra whosehorizontal monoid satis�es hω = hω+1.The se
ond one, denoted ILT in the sequel (I for Idempotent), assumes l = 1:A language L is in ILT if there is a k su
h that L is a union of (k, 1)-equivalen
e
lasses. In the framework of forest algebra languages in ILT have a synta
ti
forest algebra whose horizontal monoid satis�es h + h = h.The main result of this se
tion is that we
an extend the de
idable
hara
-terization obtained for ranked trees to both ILT and ALT.1 In this se
tion, by regular we mean de�nable in MSO using the
hild predi
ate. Thereis also an equivalent automata model.

Theorem 2 It is de
idable whether a regular unranked tree language is ILT.It is de
idable whether a regular unranked tree language is ALT.The notions of k-tame and (k, l)-tame are de�ned as in Se
tion 3 using k-types and (k, l)-types. For unranked unordered trees both notions are identi
al:Lemma 4 For every regular unordered tree language L and every k there is anumber l,
omputable from k and L, su
h that if L is k-tame, then L is (k, l)-tame.In the idempotent
ase we
an
ompletely
hara
terize ILT. It
orresponds totameness together with an extra
losure property denoted horizontal stutter. Atree language L is
losed under horizontal stutter i� for any tree t and any node
x of t, repla
ing t|x with two
opies of t|x does not a�e
t membership into L.Theorem 3 A regular unordered tree language is in ILT i� it is tame and
losedunder horizontal stutter.This immediately implies the ILT part of Theorem 2 as both tameness and
losure under horizontal stutter are de
idable properties.Proof (sket
h). That the right-hand side
onditions are ne
essary is obvious. Forthe other dire
tion we �rst use Lemma 4 to
ompute l from k. We then provethe adaptation of Claim 3 to forests. Given two forests h and h′, h + h′ denotesthe forest
onsisting of the trees of h followed by the trees of h′. Given a forest
h, a(h) is the tree whose root has label a and whose
hildren are the trees of h.Consider now two trees t and t′ that are (k, l)-equivalent. Then t = a(h) and
t′ = a(h′) for some a and forests h and h′ that are (k − 1, l)-equivalent. Assumenow that t ∈ L. By horizontal stutter, a(h+h) is also in L. Be
ause h and h′ are
(k−1, l)-equivalent we
an use Claim 3 and repla
e one
opy of h by h′ and have
a(h + h′) ∈ L. Claim 3 applies again and yields a(h′ + h′) ∈ L. By horizontalstutter this implies that t′ ∈ L.Hen
e L is a union of (k, l)-equivalen
e
lasses. From
losure under horizontalstutter this implies that L is a union of (k, 1)-equivalen
e
lasses and is in ILT.

⊓⊔For ALT we follow the lines of the binary tree
ase and Theorem 2 followsfrom the unranked variant of Proposition 3:Proposition 4 Assume L is a tame regular unordered tree language. Then it isde
idable whether there exists a κ su
h that L is in ALTκ.
6 Dis
ussionWe have provided a re
ursive pro
edure for testing whether a regular tree lan-guage is lo
ally testable.

Our
hara
terization extends to unranked unordered trees. For ordered trees,we believe that tameness together with a property that essentially say that thehorizontal monoid is in LT should provide a de
ision pro
edure for an intuitivenotion of LT over ordered unranked trees. Note that in this setting it is no longer
lear whether tameness is de
idable or not. We leave this
ase for future work.From the minimal deterministi
 automata de�ning a regular tree languageour pro
edure yields a multi exponential algorithm. On words this test for LT
an be done in polynomial time. Note that testing whether a tree language istame requires only polynomial time on the minimal deterministi
 bottom-up treeautomata. A better
omplexity for testing LT
ould be obtained by exhibiting ani
e set of identities for the
lass of LT. This is left for future work.
Referen
es[Boj07a℄ M. Boja«
zyk. A new algorithm for testing if a regular language is lo
allythreshold testable. Inf. Pro
ess. Lett., 104(3):91�94, 2007.[Boj07b℄ M. Boja«
zyk. Two-way unary temporal logi
 over trees. In IEEE Symposiumon Logi
 in Computer S
ien
e (LICS), pages 121�130, 2007.[BP89℄ D. Beauquier and J-E. Pin. Fa
tors of words. In Intl. Coll. on Automata,Languages and Programming (ICALP), pages 63�79, 1989.[BS73℄ J. A. Brzozowski and I. Simon. Chara
terizations of lo
ally testable languages.Dis
rete Math., 4:243�271, 1973.[BS08℄ M. Boja«
zyk and L. Segou�n. Tree languages de�ned in �rst-order logi
with one quanti�er alternation. In Intl. Coll. on Automata, Languages andProgramming (ICALP), 2008.[BS09℄ M. Benedikt and L. Segou�n. Regular languages de�nable in FO and FOmod.ACM Trans. Of Computational Logi
, 2009. To appear.[BSS08℄ M. Boja«
zyk, L. Segou�n, and H. Straubing. Pie
ewise testable tree lan-guages. In IEEE Symposium on Logi
 in Computer S
ien
e (LICS), 2008.[BW06℄ M. Boja«
zyk and I. Walukiewi
z. Chara
terizing ef and ex tree logi
s. The-oreti
al Computer S
ien
e, 358(255-272), 2006.[BW07℄ M. Boja«
zyk and I. Walukiewi
z. Forest algebras. In Automata and Logi
:History and Perspe
tives, pages 107 � 132. Amsterdam University Press, 2007.[EW05℄ Z. Esik and P. Weil. Algebrai

hara
terization of regular tree languages.Theoreti
al Computer S
ien
e, 340:291�321, 2005.[M
N74℄ R. M
Naughton. Algebrai
 de
ision pro
edures for lo
al testability. Math.Syst. Theor., 8:60�76, 1974.[Pla08℄ T. Pla
e. Chara
terization of logi
s over ranked tree languages. In Conferen
eon Computer S
ien
e Logi
 (CSL), pages 401�415, 2008.[Str85℄ H. Straubing. Finite semigroup varieties of the form V*D. Journal of Pureand Applied Algebra, 36:53�94, 1985.[Til87℄ B. Tilson. Categories as algebra: an essential ingredient in the theory ofmonoids. J. Pure Appl. Algebra, 48:83�198, 1987.[TW85℄ D. Thérien and A. Weiss. Graph
ongruen
es and wreath produ
ts. J. Pureand Applied Algebra, 36:205�215, 1985.[Wil96℄ T. Wilke. An algebrai

hara
terization of frontier testable tree languages.Theoreti
al Computer S
ien
e, 154(1):85�106, 1996.

