A decidable characterization of locally testable
tree languages

Thomas Place and Luc Segoufin

INRIA and LSV at ENS Cachan

Abstract. A regular tree language L is locally testable if the member-
ship of a tree into L depends only on the presence or absence of some
neighborhoods in the tree. In this paper we show that it is decidable
whether a regular tree language is locally testable.

1 Introduction

This paper is part of a general program trying to understand the expressive power
of first-order logic over trees. We say that a class of regular tree languages has a
decidable characterization if the following problem is decidable: given as input
a finite tree automaton, decide if the recognized language belongs to the class
in question. Usually a decision algorithm requires a solid understanding of the
expressive power of the corresponding class and is therefore useful in any context
where a precise boundary of this expressive power is crucial. For instance, we do
not possess yet a decidable characterization of the tree languages definable in
FO(<), the first-order logic using a binary predicate < for the ancestor relation.

We consider here the class of tree languages definable in a fragment of FO(<)
known as Locally Testable (LT). A language is in LT if its membership depends
only on the presence or absence of neighborhoods of a certain size in the tree. A
closely related family of languages is the class LTT of Locally Threshold Testable
languages. Membership in such languages is obtained by counting the number of
neighborhoods of a certain size up to some threshold. The class LT is the special
case where no counting is done, the threshold is 1. In this paper we provide a
decidable characterization of the class LT over trees.

Decidable characterizations are usually obtained by exhibiting a set of closure
properties that holds exactly for the languages in the class under investigation. It
is therefore necessary to have a formalism for expressing these properties. This
formalism must also come with some tools for proving that the properties do
characterize the class, typically with induction mechanisms, but also for proving
the decidability of those properties.

Over words one formalism turned out to be successful for characterizing many
class of regular languages. The closure properties are expressed as identities on
the syntactic monoid of the regular language. The syntactic monoid of a regular
language being the transition monoid of its minimal deterministic automata.
For instance the class of languages definable in FO(<) is characterized by the
fact that their syntactic monoid is aperiodic. The later property corresponds
to the identity 2 = z“*! where w is the size of the monoid. This equation
is easily verifiable automatically on the syntactic monoid. Similarly, the classes

LTT and LT have been characterized using decidable identities on the syntactic
monoid [BS73,McN74,BP89, TW85].

Over trees the situation is more complex and right now there is no formalism
that can easily express all the closure properties of the classes for which we have
a decidable characterization. The most successful formalism is certainly forest
algebra [BWO7]. For instance, forest algebra was used for obtaining decidable
characterizations for the classes of tree languages definable in EF+EX [BWO06],
EF+F~! [Boj07b,Pla08], BC-X; (<) [BSS08,Pla08]|, A2(<) [BS08,Pla08]. How-
ever it is not clear yet how to use forest algebra for characterizing the class
LTT over trees and a different formalism was used for obtaining a decidable
characterization for this class [BS09].

We were not able to obtain a reasonable set of identities for LT either by
using forest algebra or the formalism used for characterizing LT'T. Our approach
is slightly different.

There is another technique that worked on words for deciding the class LT.
It is based on the “delay theorem” [Str85,Til87] for computing the expected size
of the neighborhoods: Given a regular language L, a number k£ can be computed
such that if L is in LT then it is in LT by investigating the neighborhoods of
size k. Once this k is available, deciding whether L is indeed in LT or not is
a simple exercise. On words, a decision algorithm for LT (and also for LTT)
has been obtained successfully using this approach [Boj07a]. Unfortunately all
efforts to prove a similar delay theorem on trees have failed so far.

We obtain a decidable characterization of LT by combining the two ap-
proaches mentioned above. We first exhibit a set of necessary and decidable
conditions for a regular tree language to be in LT. Those conditions are ex-
pressed using the formalism introduced for characterizing LTT. We then show
that for languages satisfying such conditions one can compute the expected size
of the neighborhoods. Using this technique we obtain a characterization of LT
for ranked trees and for unranked unordered trees.

Other related work. There exists several formalisms that were used for expressing
identities corresponding to several classes of languages but not in a decidable way.
Among them let us mention the notion of preclones introduced in [EWO05] as it
is close to the one we use in this paper for expressing our necessary conditions.

Organization of the paper. We start with ranked trees and give the necessary
notations and preliminary results in Section 2. Section 3 exhibits several condi-
tions and proves they are decidable and necessary for being in LT. In Section 4
we show that for the languages satisfying the necessary conditions the expected
size of the neighborhoods can be computed, hence concluding the decidability
of the characterization. Finally in Section 5 we show how our result extends to
unranked trees. Due to space limitations several proofs are missing.

2 Notations and preliminaries

We first prove our result for the case of binary trees. The case of unranked
unordered trees will be considered in Section 5.

Trees. We fix a finite alphabet X', and consider finite binary trees with labels
in Y. All the results presented here extend to arbitrary ranks in a straightfor-
ward way. A language is a set of trees. We use standard notations for trees.
For instance by the descendant (resp. ancestor) relation we mean the reflexive
transitive closure of the child (resp. inverse of child) relation.

Given a tree ¢ and a node z of ¢ the subtree of ¢ rooted at z, consisting of
all the nodes of ¢ which are descendants of x, is denoted by t|.. A context is
a tree with a designated (unlabeled) leaf called its port which acts as a hole.
Given contexts C' and C’, their concatenation C - C' is the context formed by
identifying the root of C” with the port of C. A tree C-t can be obtained similarly
by concatenating a context C' and a tree ¢. Given a tree ¢ and two nodes z,y of
t such that y is a descendant (not necessarily strict) of z, the context C' = ¢[x, y]
is defined from t; = t|, by replacing ¢1|, by a port. In this case we say that C
is a context occurring in t.

Types. Let t be a tree and x be a node of ¢t and k be a positive integer, the k-type
of z in t is the (isomorphism type of the) restriction of ¢|, to the set of nodes
of t at distance at most k from x. A k-type 7 occurs in a tree t if there exists a
node in t of k-type 7. If C' is a context occurring in a tree ¢ then the k-type of
a node of C' is the k-type of that node in t. Notice that the k-type of a node of
C depends on the surrouding tree t, in particular the port of C' has a k-type.

Given two trees ¢ and ¢’ we denote by t <, t’ the fact that all k-types that
occur in t also occur in ¢'. Similarly we can speak of ¢ < C' when ¢ is a tree and
C is a context occurring in some tree t’. We denote by t ~ t' the property that
the root of ¢ and the root of ¢’ have the same k-type and ¢ and ¢’ agree on their
k-types: t <, t' and t' <, t . Note that when k is fixed the number of k-types
is finite and hence the equivalence relation ~; has finite index.

A language L is said to be -locally testable (is in LT) if L is a union of
equivalence classes of ~,. A language is said to be locally testable (is in LT) if
there is a x such that it is x-locally testable. In words this says that in order
to test whether a tree ¢ belongs to L it is enough to check for the presence or
absence of k-types in ¢, for some big enough x.

The problem. We want an algorithm deciding if a given regular language is in
LT. If complexity does not matter, we can assume that the given language L is
given as a MSO formula. Another option would be to start with a bottom-up
tree automata for L or, even better, the minimal deterministic bottom-up tree
automata that recognizes L. The main difficulty is to compute a bound on k,
the size of the neighborhood, whenever such a k exists.

The string case is a special case of the tree case as it corresponds to trees of
rank 1. A decision procedure for LT was obtained in the string case independently
by [BS73,McN74]. It is based on a characterization of the syntactic semigroup of
the language by means of the equations exe = exexe and exeye = eyexe, where
e is an arbitrary idempotent (ee = e) while 2 and y are arbitrary elements of the
semigroup. The equations are then easily verified on the syntactic semigroup.

In the case of trees, we were not able to obtain a reasonably simple set of
identities for characterizing LT. Nevertheless we can show:

Theorem 1 [t is decidable whether a regular tree language is in LT.

Our strategy for proving Theorem 1 is as follows. In a first step we provide
necessary, and decidable, conditions for a language to be in L'T. In a second step
we show that if a language verifies those conditions then we can compute a s
such that it is in LT iff it is in LT,. Finally we show that once « is fixed, it is
decidable whether a regular language is a finite union of classes of ~,.

Before starting providing the proof details we note that there exists examples
showing that the necessary conditions are not sufficient, see the end of Section 3.
This is not immediate to see and goes beyond the scope of this paper. We also
note that the problem of finding x whenever such a k exists is a special case of
the delay-theorem. In the case of LT, the delay theorem says that if a finite state
automaton A recognizes a language in LT then this language must be in LT
for a k computable from A. This theorem holds over strings [Str85,Til87] and
can be used in order to decide whether a regular language is in LT as explained
in [Boj07a]. We were not able to prove such a general theorem for trees. Our
second step can be seen as a particular case of the delay theorem for languages
satisfying the conditions provided by the first step.

3 Necessary conditions

In this section we exhibit necessary conditions for a regular language to be in
LT. These conditions will play a crucial role in our decision algorithm. These
conditions are expressed using the same formalism as the one used in [BS09] for
characterizing LTT.

Guarded operations. Let t be a tree, and x, 2’ be two nodes of ¢ such that z and
2’ are not related by the descendant relationship. The horizontal swap of ¢ at
nodes = and z’ is the tree ¢’ constructed from ¢ by replacing t|, with ¢|,, and
vice-versa, see Figure 1 (left). A horizontal swap is said to be k-guarded if x and
2’ have the same k-type.

Let t be a tree and x, y, z be three nodes of ¢ such that x,y, z are not related
by the descendant relationship and such that ¢|, = t|,. The horizontal transfer
of t at x,y, z is the tree t’ constructed from ¢ by replacing t|, with a copy of /.,
see Figure 1 (right). A horizontal transfer is k-guarded if z,y, z have the same
k-type.

Y Z" X, x, Y
tlz tll‘/ t|m’ tlz |z |z |z |z |z |z

Fig. 1. Horizontal Swap (left) and Horizontal Transfer (right)

Let t be a tree of root a, and x,y,z be three nodes of ¢ such that y is a
descendant of x and z is a descendant of y. The vertical swap of t at z,y, z is
the tree ¢’ constructed from ¢ by swapping the context between x and y with
the context between y and z, see Figure 2 (left). A vertical swap is k-guarded if
x,Y, z have the same k-type.

Let t be a tree of root a, and x,y, z be three nodes of ¢ such that y is a
descendant of x and z is a descendant of y such that A = t[z,y] = t[y, z]. The
vertical stutter of t at x,y, z is the tree ¢’ constructed from ¢ by removing the
context between z and y, see Figure 2 (right). A vertical stutter is k-guarded if
x,Y, z have the same k-type.

Fig. 2. Vertical Swap (left) and Vertical Stutter (right)

Let L be a tree language and k& be a number. If X is any of the four con-
structions above, horizontal or vertical swap, or vertical stutter or horizontal
transfer, we say that L is closed under k-guarded X if for every tree ¢t and every
tree ¢’ constructed from ¢ using k-guarded X then ¢ is in L iff ¢’ is in L. Notice
that being closed under k-guarded X implies being closed under k’-guarded X
for ¥’ > k. An important observation is that each of the k-guarded operations
preserves (k + 1)-types.

If L is closed under all the k-guarded operations described above, we say
that L is k-tame. A language is said to be tame if it is k-tame for some k. The
following simple result shows that tameness is a necessary condition for LT.

Proposition 1 If L is in LT then L is tame.

We now turn to the decision procedure for testing tameness. If £ is fixed, it
is simple to check whether L is k-tame, see for instance [BS09]. The following
proposition shows that k& can be assumed to be bounded by a simple function of
the size of any bottom-up tree automata recognizing L. It can be shown using a
pumping argument.

Proposition 2 Given a reqular language L, it is decidable whether L is tame.
Moreover, if this is the case, a k such that L is k-tame can be effectively com-
puted.

Example 1 Qver strings tameness characterizes exvactly LT as vertical swap
and vertical stutter are exactly the extensions to trees of the equations given in

Section 2 for LT. QOuver trees this is no longer the case as the following example
shows. For simplifying the presentation we assume that nodes may have between
0 to three children. All trees in our language L have the same structure consisting
of a root of label a from which exactly three sequences of nmodes with only one
child (strings) are attached. The trees in L have therefore exactly three leaves, and
those must have three distinct labels among {h;, hy, hs}. One branch, excepted
for its leaf, must be of the form b*cd*, another one of the form b*cd* and the
last one of the form b*c'd*, where b, ¢, ¢’ and d are distinct labels. The reader
can verify that L is tame. It is not in LT because replacing exactly one node of
label ¢ by a node of label ¢’ in a tree with long branches yields a tree with the
same neighborhood but not in L.

4 Deciding LT for tame languages

In this section we show that it is decidable whether a regular tree language is
in LT. In view of Proposition 1 and Proposition 2 it is sufficient to show that
it is decidable whether a tame regular tree language is in LT. Hence Theorem 1
follows from the following proposition.

Proposition 3 Assume L is a tame reqular tree language. Then it is decidable
whether there exists a x such that L is in LT,,.

Proof. Assume L is tame. Then from Proposition 2 one can effectively compute
a k such that L is k-tame. The proof of the proposition is then divided in two
steps. The first one shows that for k-tame languages, if such a x exists then k
is at most exponential in k. The second step, Lemma 1 below, shows that when
k is fixed then being a union of ~, is decidable. The proof of the second step is
straightforward and is left to the reader.

Lemma 1 Let L be a regular tree language and x a number. It is decidable
whether L is in LT,, or not.

The rest of this section is devoted to the proof of the first step showing
that for k-tame regular tree language a bound on x can be obtained. This is a
consequence of the lemma below. Recall that for each k, the number of k-types
is finite. Let §; be this number.

Lemma 2 Let L be a k-tame regular tree language. Set | = [+ 1. Then for
all I’ > [and any two trees t,t’ if t ~; t’ then there exists two trees T, T’ with

l.teLif TelL
2.t eLifT"e L
3. T~y T

To see that the first step follows from Lemma 2, assume that L is a k-tame
regular tree language in LT. Then, by definition of LT, L is in LT, for some I’. If
" > B +1 then, from Lemma 2, L is also in LT;. Hence for testing membership

in LT it is sufficient to test membership in LT; for [= 8; + 1 which is decidable
by Lemma 1.

Before proving Lemma 2 we need some extra terminology. A non-empty con-
text C occurring in a tree ¢ is a loop of k-type T if the k-type of its root and the
k-type of its port is 7. A non-empty context C' occurring in a tree ¢ is a k-loop if
there is some k-type 7 such that C is a loop of k-type 7. Note that if C' is a loop
of k-type 7 and z is a node of type 7 in a tree ¢t then inserting C' at node = does
not modify the k-type of the nodes of ¢ (it may add new k-types, coming from
the nodes of C'). In particular the k-type of z is unchanged. Given a context C
we call the path from the root of C to its port the principal path of C. Finally,
the result of the insertion of a k-loop C' at a node x of a tree ¢ is a tree 7" such
that if t = D - t|, then T'= D - C - t|,. Typically an insertion will occur only
when the k-type of x is 7 and C is a loop of k-type 7. In this case the k-types
of the nodes of ¢ are unchanged by this operation.

Proof (of Lemma 2). Suppose that L is k-tame. Recall that the number of k-
types is B. Therefore, by choice of [, in every branch of a [-type one can find at
least one k-type that is repeated. This provides many k-loops that can be moved
around whenever necessary in order to obtain similar bigger types.

Take I’ > I, we build T and T’ from ¢ and ¢ by inserting k-loops in ¢ and ¢’
without affecting their membership in L.

Let B = {19, ..., 7} be the set of k-types 7 such that there is a loop of k-type
7in t or in ¢'. For each 7 € B we fix a context C, as follows. Because 7 € B
there is a context C in ¢ or ¢’ that is a loop of k-type 7. For each T € B, we fix
arbitrarily such a C and set C as C' -...- C, I’ concatenation of the context C.

l/
Notice that the path from the root of C; to its port is then bigger than I’.

We now describe the construction of 7' from ¢. The construction of 7" from
t' is done similarly. The tree T is constructed by inserting simultaneously a copy
of the context C; at all nodes of type 7 € B of t.

We now show that T" and T” have the desired properties. The third property
is easy to verify (proof omitted in this abstract).

Claim 1 T ~; T’

The other two properties, t € L if T' € L and t' € L iff T € L, are not
obvious at all. This is the difficult part of the proof and it requires tameness of
the language. It is a consequence of Lemma 3 below. ad

In order to conclude the proof of Proposition 3 it remains to show the follow-
ing lemma. This lemma shows a key consequence of the fact that L is k-tame: the
insertion of k-loops that don’t introduce new (k+1)-types preserves membership
into L.

Lemma 3 Let L be a k-tame regular tree language. Let ¢t be a tree and x a
node of ¢ of k-type 7. Let ¢’ be another tree such that ¢ ~; 1 ¢’ and C be a loop
of k-type 7 in t’. Consider the tree T constructed from ¢ by inserting a copy of
Catz. Thente Liff T € L.

Proof. The proof is done in two steps. First we use the k-tame property of L
to show that we can insert a k-loop C’ at x in ¢ such that the principal path
of C is the same as the principal path of C’. By this we mean that there is a
bijection from the principal path of C’ to the principal path of C' that preserves
(k + 1)-types. In a second step we replace one by one the subtrees hanging from
the principal path of C’ with the corresponding subtrees in C.

First some terminology. Given two nodes z,¥y of some tree T', we say that x
is a l-ancestor of y if y is a descendant of the left child of x. Similarly we define
r-ancestorship.

Consider the context C' occurring in '. Let yg,- -, ¥y, be the nodes of ¢’
on the principal path of C and 7q,- - ,7, be their respective (k + 1)-type. For
0 <i<n,set ¢; tolif y;41 is a left child of y; and r otherwise.

From ¢ we construct using k-guarded swaps and k-vertical stutter a tree t;
such that there is a sequence of nodes xg,--- ,x, in t; with for all 0 < i < n,
x; is of type 7, and x; is an c¢;-ancestor of x;;1. The tree t; is constructed by
induction on n. If n = 0 then this is a consequence of ¢ ~ 1 ¢’ that one can
find in ¢ a node of type 79. Consider now the case n > 0. By induction we have
constructed from ¢ a tree] such that xg,- - ,x,_1 is an appropriate sequence in
t]. By symmetry we consider the case where y,, is the left child of y,,—;. Because
all k-guarded operations preserve (k + 1)-types, we have ¢t ~; t} and hence
there is a node z of] of type 7,. If x,,_1 is a l-ancestor of = then we are done.
Otherwise consider the left child x’ of x and notice that because y, is a child of
Yn—1 and x,,_1 has the same (k + 1)-type than y,_; then z’, y, and x have the
same k-type.

We know that z is not a descendant of z’. There are two cases. If x and z’
are not related by the descendant relationship then by k-guarded swaps we can
replace the subtree rooted in 2’ by the subtree rooted in x and we are done. If
z is an ancestor of z’ then the context between z and z’ is a k-loop and we can
use k-guarded vertical stutter to duplicate it. This places x as the left child of
Tn—1 and we are done.

From t¢; we construct using k-guarded swaps and k-guarded vertical stutter

a tree to such that there is a path xq,---,x, in ty with for all 0 < i < n, z; is
of type 7;.
Consider the sequence xg, - - - ,z, obtained in t; from the previous step. Re-

call that the k-type of x(is that same as the k-type of x,,. Hence using k-guarded
vertical stutter we can duplicate in ¢; the context rooted in ¢ and whose port is
Zn. Let t] the resulting tree. We thus have two copies of the sequence xq, - - - , z,
that we denote by the top copy and the bottom copy. Assume z; is not a child of
xi_1. Notice that the context between the appropriate child of z;_; and z; is a
k-loop. Using k-guarded vertical swap we can move the top copy of this context
next to its bottom copy. Using k-guarded vertical stutter this extra copy can
be removed. We are left with an instance of the initial sequence in the bottom
copy, while in the top one z; is a child of x;_;. Repeating this argument yields
the desired tree t5.

Consider now the context C' = t5[xg, z,]. It is a loop of k-type 7. Let T’ be
the tree constructed from ¢ by inserting C’ in . The proof of the following claim
is omitted in this abstract.

Claim 2 T € L ifft € L.

It remains to show that 7/ € L iff T € L. By construction of 7" we have
C’ %41 t. Consider now a node x; in the principal path of C’. Let T; be the
subtree branching out the principal path of C' at z; and T be the subtree branch-
ing out the principal path of C’ at x;. The claim below shows that replacing 77
with T; does not affect membership into L. Hence a repeated use of that claim
eventually shows that 77 € L iff T € L.

Claim 3 Let u and v’ be two trees. Assume s and s’ are subtrees respectively
of u and v’ such that the roots of s and s’ have the same k-type. Consider the
context D such that uw = Ds.

If s k41 D and s’ <41 D then Ds € L iff Ds’ € L.

Proof (sketch). The proof is done by induction on the depth of s’. The idea is
to replace s with s’ node by node.

Assume first that s’ is of depth less than k. Then because the k-type of the
roots of s and s’ are equal, we have s = s’ and the result follows.

Assume now that s’ is of depth greater than k. Let x be the root of s. Let
7 be the (k + 1)-type of the root of s’. Because s’ <j+1 D we know that there
exists a node y in D of type 7. We consider two cases depending on the relation
between x and y.

— If y is an ancestor of z, let E be u[y,x] and notice that z and y have the
same k-type. Hence we can duplicate E using a k-guarded vertical stutter.
The resulting tree is DFEs and because L is k-tame, DEs € L iff Ds € L.
Let z be the root of F in DFEs. Notice that by construction z is of type
7. Let s1 be the subtree of DE's rooted at the left child of z and let s| be
the subtree of s’ rooted at the left child of the root of s’. By construction
$1 <k+1 D, 8] <k+1 D. Because their parent have the same (k + 1)-type,
the roots of s; and s} have the same k-type. As the depth of s} is strictly
smaller than the depth of s’, by induction we can replace s; by s} without
affecting membership into L. Similarly we do the same for the right child
and we are done.

— Assume now that z and y are not related by the descendant relationship.
We know that x,y have the same k-type and that s <1 D. Let s” be
the subtree of Ds rooted at y. It can be shown that, as a consequence of
tameness (this is where k-guarded horizontal transfer is used), replacing Ds
by Ds" does not affect membership in L . As y” is of type 7, we can proceed
by induction as above and replace the left and right subtrees of s” by their
corresponding subtrees of s’ to get the desired result. a

This concludes the proof of the decision algorithm in the case of trees. We
note that in the case of strings Lemma 3 is extremely powerful and is sufficient

for showing that tameness implies membership in LT. This is due to the fact
that, on strings, any two nodes with the same type induce a loop and therefore
Lemma 3 applies to this loop. This lemma can then be used for transforming by
induction a string to any other one with the same occurrences of types. However
over trees this no longer work as the two nodes may be incomparable.

5 Unranked trees

In this section we consider unranked unordered trees, where each node has an
arbitrary number of children but no order is assumed on these children. Our
goal is to extend the result of the previous section and provide a decidable
characterization of Locally Testable languages of unranked trees. Due to space
limitations, we mostly only mention here our results, their proofs will appear in
the journal version of this paper.

The first issue is to find an appropriate notion of LT for unranked trees.
Recall that a language of binary trees is LT if its membership depends only
on the presence or absence of neighborhoods of a certain size. With unranked
trees, there may be infinitely many different possible neighborhoods of a certain
size and hence this definition does not imply that the language is regular®. The
idea is to replace isomorphism types with FO definable types such that for each
isomorphism type there are only finitely many FO definable types.

We will use the following notion of type. The definition of k-type remains
unchanged: it is the isomorphism type of tree induced by nodes at depth at most
k. As mentioned above there are now infinitely many k-types. We therefore
introduce a more flexible notion that depends on one extra parameter [that
restricts the horizontal information. It is defined by induction on k. Consider an
unordered tree t. For k = 0, the (k,[)-type of ¢ is just the label of the root of
t. For k > 0 the (k,l)-type of t is the label of its root together with, for each
(k — 1,1)-type, the number, up to threshold I, of children of the root of ¢ of this
type.

From this we define two classes of Locally Testable languages. The most
general one, denoted ALT (A for Aperiodic), is defined as follows. Two trees
are (k,l)-equivalent if they have the same occurrences of (k,!)-types and their
roots have the same (k,[)-type. A language L is in ALT if there is a k and
a [such that L is a union of (k,[)-equivalence classes. In the framework of
forest algebra [BWO0T7], languages in ALT have a syntactic forest algebra whose
horizontal monoid satisfies h* = h<t1,

The second one, denoted ILT in the sequel (I for Idempotent), assumes [= 1:
A language L is in ILT if there is a k such that L is a union of (k, 1)-equivalence
classes. In the framework of forest algebra languages in ILT have a syntactic
forest algebra whose horizontal monoid satisfies h + h = h.

The main result of this section is that we can extend the decidable charac-
terization obtained for ranked trees to both ILT and ALT.

! In this section, by regular we mean definable in MSO using the child predicate. There
is also an equivalent automata model.

Theorem 2 [t is decidable whether a regular unranked tree language is ILT.
1t is decidable whether a regular unranked tree language is ALT.

The notions of k-tame and (k,/)-tame are defined as in Section 3 using k-
types and (k,)-types. For unranked unordered trees both notions are identical:

Lemma 4 For every regular unordered tree language L and every k there is a
number [, computable from k and L, such that if L is k-tame, then L is (k,1)-
tame.

In the idempotent case we can completely characterize ILT. It corresponds to
tameness together with an extra closure property denoted horizontal stutter. A
tree language L is closed under horizontal stutter iff for any tree ¢ and any node
x of t, replacing t|, with two copies of ¢|,, does not affect membership into L.

Theorem 3 A regular unordered tree language is in ILT iff it is tame and closed
under horizontal stutter.

This immediately implies the ILT part of Theorem 2 as both tameness and
closure under horizontal stutter are decidable properties.

Proof (sketch). That the right-hand side conditions are necessary is obvious. For
the other direction we first use Lemma 4 to compute [from k. We then prove
the adaptation of Claim 3 to forests. Given two forests h and h’, h + h’ denotes
the forest consisting of the trees of h followed by the trees of h'. Given a forest
h, a(h) is the tree whose root has label a and whose children are the trees of h.
Consider now two trees ¢ and t' that are (k,[)-equivalent. Then ¢ = a(h) and
t' = a(h’) for some a and forests h and A’ that are (k — 1,1)-equivalent. Assume
now that ¢t € L. By horizontal stutter, a(h+ h) is also in L. Because h and b’ are
(k—1,1)-equivalent we can use Claim 3 and replace one copy of h by k' and have
a(h+ h') € L. Claim 3 applies again and yields a(h’ + k') € L. By horizontal
stutter this implies that t’ € L.
Hence L is a union of (k, [)-equivalence classes. From closure under horizontal
stutter this implies that L is a union of (k, 1)-equivalence classes and is in ILT.
O

For ALT we follow the lines of the binary tree case and Theorem 2 follows
from the unranked variant of Proposition 3:

Proposition 4 Assume L is a tame reqular unordered tree language. Then it is
decidable whether there exists a k such that L is in ALT,,.

6 Discussion

We have provided a recursive procedure for testing whether a regular tree lan-
guage is locally testable.

Our characterization extends to unranked unordered trees. For ordered trees,
we believe that tameness together with a property that essentially say that the
horizontal monoid is in LT should provide a decision procedure for an intuitive
notion of LT over ordered unranked trees. Note that in this setting it is no longer
clear whether tameness is decidable or not. We leave this case for future work.

From the minimal deterministic automata defining a regular tree language
our procedure yields a multi exponential algorithm. On words this test for LT
can be done in polynomial time. Note that testing whether a tree language is
tame requires only polynomial time on the minimal deterministic bottom-up tree
automata. A better complexity for testing LT could be obtained by exhibiting a
nice set of identities for the class of LT. This is left for future work.

References

[Boj07a] M. Bojariczyk. A new algorithm for testing if a regular language is locally
threshold testable. Inf. Process. Lett., 104(3):91-94, 2007.

[Boj07b] M. Bojainiczyk. Two-way unary temporal logic over trees. In IEEE Symposium
on Logic in Computer Science (LICS), pages 121-130, 2007.

[BP89] D. Beauquier and J-E. Pin. Factors of words. In Intl. Coll. on Automata,
Languages and Programming (ICALP), pages 63-79, 1989.

[BS73] J. A. Brzozowski and I. Simon. Characterizations of locally testable languages.
Discrete Math., 4:243-271, 1973.

[BS08] M. Bojanczyk and L. Segoufin. Tree languages defined in first-order logic
with one quantifier alternation. In Intl. Coll. on Automata, Languages and
Programming (ICALP), 2008.

[BS09] M. Benedikt and L. Segoufin. Regular languages definable in FO and FOmod.
ACM Trans. Of Computational Logic, 2009. To appear.

[BSS08] M. Bojariczyk, L. Segoufin, and H. Straubing. Piecewise testable tree lan-
guages. In IEEE Symposium on Logic in Computer Science (LICS), 2008.

[BWO06] M. Bojariczyk and I. Walukiewicz. Characterizing ef and ex tree logics. The-
oretical Computer Science, 358(255-272), 2006.

[BW07] M. Bojanczyk and I. Walukiewicz. Forest algebras. In Automata and Logic:
History and Perspectives, pages 107 — 132. Amsterdam University Press, 2007.

[EWO05] Z. Esik and P. Weil. Algebraic characterization of regular tree languages.
Theoretical Computer Science, 340:291-321, 2005.

[McN74] R. McNaughton. Algebraic decision procedures for local testability. Math.
Syst. Theor., 8:60-76, 1974.

[Pla08] T. Place. Characterization of logics over ranked tree languages. In Conference
on Computer Science Logic (CSL), pages 401-415, 2008.

[Str85] H. Straubing. Finite semigroup varieties of the form V*D. Journal of Pure
and Applied Algebra, 36:53-94, 1985.

[Til87] B. Tilson. Categories as algebra: an essential ingredient in the theory of
monoids. J. Pure Appl. Algebra, 48:83-198, 1987.

[TW85] D. Thérien and A. Weiss. Graph congruences and wreath products. J. Pure
and Applied Algebra, 36:205—215, 1985.

[Wil96] T. Wilke. An algebraic characterization of frontier testable tree languages.
Theoretical Computer Science, 154(1):85-106, 1996.

