
A deidable haraterization of loally testabletree languages
Thomas Plae and Lu Segou�nINRIA and LSV at ENS CahanAbstrat. A regular tree language L is loally testable if the member-ship of a tree into L depends only on the presene or absene of someneighborhoods in the tree. In this paper we show that it is deidablewhether a regular tree language is loally testable.1 IntrodutionThis paper is part of a general program trying to understand the expressive powerof �rst-order logi over trees. We say that a lass of regular tree languages has adeidable haraterization if the following problem is deidable: given as inputa �nite tree automaton, deide if the reognized language belongs to the lassin question. Usually a deision algorithm requires a solid understanding of theexpressive power of the orresponding lass and is therefore useful in any ontextwhere a preise boundary of this expressive power is ruial. For instane, we donot possess yet a deidable haraterization of the tree languages de�nable inFO(≤), the �rst-order logi using a binary prediate ≤ for the anestor relation.We onsider here the lass of tree languages de�nable in a fragment of FO(≤)known as Loally Testable (LT). A language is in LT if its membership dependsonly on the presene or absene of neighborhoods of a ertain size in the tree. Alosely related family of languages is the lass LTT of Loally Threshold Testablelanguages. Membership in suh languages is obtained by ounting the number ofneighborhoods of a ertain size up to some threshold. The lass LT is the speialase where no ounting is done, the threshold is 1. In this paper we provide adeidable haraterization of the lass LT over trees.Deidable haraterizations are usually obtained by exhibiting a set of losureproperties that holds exatly for the languages in the lass under investigation. Itis therefore neessary to have a formalism for expressing these properties. Thisformalism must also ome with some tools for proving that the properties doharaterize the lass, typially with indution mehanisms, but also for provingthe deidability of those properties.Over words one formalism turned out to be suessful for haraterizing manylass of regular languages. The losure properties are expressed as identities onthe syntati monoid of the regular language. The syntati monoid of a regularlanguage being the transition monoid of its minimal deterministi automata.For instane the lass of languages de�nable in FO(≤) is haraterized by thefat that their syntati monoid is aperiodi. The later property orrespondsto the identity xω = xω+1 where ω is the size of the monoid. This equationis easily veri�able automatially on the syntati monoid. Similarly, the lasses



LTT and LT have been haraterized using deidable identities on the syntatimonoid [BS73,MN74,BP89,TW85℄.Over trees the situation is more omplex and right now there is no formalismthat an easily express all the losure properties of the lasses for whih we havea deidable haraterization. The most suessful formalism is ertainly forestalgebra [BW07℄. For instane, forest algebra was used for obtaining deidableharaterizations for the lasses of tree languages de�nable in EF+EX [BW06℄,EF+F−1 [Boj07b,Pla08℄, BC-Σ1(<) [BSS08,Pla08℄, ∆2(≤) [BS08,Pla08℄. How-ever it is not lear yet how to use forest algebra for haraterizing the lassLTT over trees and a di�erent formalism was used for obtaining a deidableharaterization for this lass [BS09℄.We were not able to obtain a reasonable set of identities for LT either byusing forest algebra or the formalism used for haraterizing LTT. Our approahis slightly di�erent.There is another tehnique that worked on words for deiding the lass LT.It is based on the �delay theorem� [Str85,Til87℄ for omputing the expeted sizeof the neighborhoods: Given a regular language L, a number k an be omputedsuh that if L is in LT then it is in LT by investigating the neighborhoods ofsize k. One this k is available, deiding whether L is indeed in LT or not isa simple exerise. On words, a deision algorithm for LT (and also for LTT)has been obtained suessfully using this approah [Boj07a℄. Unfortunately alle�orts to prove a similar delay theorem on trees have failed so far.We obtain a deidable haraterization of LT by ombining the two ap-proahes mentioned above. We �rst exhibit a set of neessary and deidableonditions for a regular tree language to be in LT. Those onditions are ex-pressed using the formalism introdued for haraterizing LTT. We then showthat for languages satisfying suh onditions one an ompute the expeted sizeof the neighborhoods. Using this tehnique we obtain a haraterization of LTfor ranked trees and for unranked unordered trees.Other related work. There exists several formalisms that were used for expressingidentities orresponding to several lasses of languages but not in a deidable way.Among them let us mention the notion of prelones introdued in [EW05℄ as itis lose to the one we use in this paper for expressing our neessary onditions.Organization of the paper. We start with ranked trees and give the neessarynotations and preliminary results in Setion 2. Setion 3 exhibits several ondi-tions and proves they are deidable and neessary for being in LT. In Setion 4we show that for the languages satisfying the neessary onditions the expetedsize of the neighborhoods an be omputed, hene onluding the deidabilityof the haraterization. Finally in Setion 5 we show how our result extends tounranked trees. Due to spae limitations several proofs are missing.2 Notations and preliminariesWe �rst prove our result for the ase of binary trees. The ase of unrankedunordered trees will be onsidered in Setion 5.



Trees. We �x a �nite alphabet Σ, and onsider �nite binary trees with labelsin Σ. All the results presented here extend to arbitrary ranks in a straightfor-ward way. A language is a set of trees. We use standard notations for trees.For instane by the desendant (resp. anestor) relation we mean the re�exivetransitive losure of the hild (resp. inverse of hild) relation.Given a tree t and a node x of t the subtree of t rooted at x, onsisting ofall the nodes of t whih are desendants of x, is denoted by t|x. A ontext isa tree with a designated (unlabeled) leaf alled its port whih ats as a hole.Given ontexts C and C ′, their onatenation C · C ′ is the ontext formed byidentifying the root of C ′ with the port of C. A tree C ·t an be obtained similarlyby onatenating a ontext C and a tree t. Given a tree t and two nodes x, y of
t suh that y is a desendant (not neessarily strit) of x, the ontext C = t[x, y]is de�ned from t1 = t|x by replaing t1|y by a port. In this ase we say that Cis a ontext ourring in t.Types. Let t be a tree and x be a node of t and k be a positive integer, the k-typeof x in t is the (isomorphism type of the) restrition of t|x to the set of nodesof t at distane at most k from x. A k-type τ ours in a tree t if there exists anode in t of k-type τ . If C is a ontext ourring in a tree t then the k-type ofa node of C is the k-type of that node in t. Notie that the k-type of a node of
C depends on the surrouding tree t, in partiular the port of C has a k-type.Given two trees t and t′ we denote by t 4k t′ the fat that all k-types thatour in t also our in t′. Similarly we an speak of t 4k C when t is a tree and
C is a ontext ourring in some tree t′. We denote by t ≃k t′ the property thatthe root of t and the root of t′ have the same k-type and t and t′ agree on their
k-types: t 4k t′ and t′ 4k t . Note that when k is �xed the number of k-typesis �nite and hene the equivalene relation ≃k has �nite index.A language L is said to be κ-loally testable (is in LTκ) if L is a union ofequivalene lasses of ≃κ. A language is said to be loally testable (is in LT) ifthere is a κ suh that it is κ-loally testable. In words this says that in orderto test whether a tree t belongs to L it is enough to hek for the presene orabsene of κ-types in t, for some big enough κ.The problem. We want an algorithm deiding if a given regular language is inLT. If omplexity does not matter, we an assume that the given language L isgiven as a MSO formula. Another option would be to start with a bottom-uptree automata for L or, even better, the minimal deterministi bottom-up treeautomata that reognizes L. The main di�ulty is to ompute a bound on κ,the size of the neighborhood, whenever suh a κ exists.The string ase is a speial ase of the tree ase as it orresponds to trees ofrank 1. A deision proedure for LT was obtained in the string ase independentlyby [BS73,MN74℄. It is based on a haraterization of the syntati semigroup ofthe language by means of the equations exe = exexe and exeye = eyexe, where
e is an arbitrary idempotent (ee = e) while x and y are arbitrary elements of thesemigroup. The equations are then easily veri�ed on the syntati semigroup.In the ase of trees, we were not able to obtain a reasonably simple set ofidentities for haraterizing LT. Nevertheless we an show:



Theorem 1 It is deidable whether a regular tree language is in LT.Our strategy for proving Theorem 1 is as follows. In a �rst step we provideneessary, and deidable, onditions for a language to be in LT. In a seond stepwe show that if a language veri�es those onditions then we an ompute a κsuh that it is in LT i� it is in LTκ. Finally we show that one κ is �xed, it isdeidable whether a regular language is a �nite union of lasses of ≃κ.Before starting providing the proof details we note that there exists examplesshowing that the neessary onditions are not su�ient, see the end of Setion 3.This is not immediate to see and goes beyond the sope of this paper. We alsonote that the problem of �nding κ whenever suh a κ exists is a speial ase ofthe delay-theorem. In the ase of LT, the delay theorem says that if a �nite stateautomaton A reognizes a language in LT then this language must be in LTκfor a κ omputable from A. This theorem holds over strings [Str85,Til87℄ andan be used in order to deide whether a regular language is in LT as explainedin [Boj07a℄. We were not able to prove suh a general theorem for trees. Ourseond step an be seen as a partiular ase of the delay theorem for languagessatisfying the onditions provided by the �rst step.
3 Neessary onditionsIn this setion we exhibit neessary onditions for a regular language to be inLT. These onditions will play a ruial role in our deision algorithm. Theseonditions are expressed using the same formalism as the one used in [BS09℄ forharaterizing LTT.Guarded operations. Let t be a tree, and x, x′ be two nodes of t suh that x and
x′ are not related by the desendant relationship. The horizontal swap of t atnodes x and x′ is the tree t′ onstruted from t by replaing t|x with t|x′ andvie-versa, see Figure 1 (left). A horizontal swap is said to be k-guarded if x and
x′ have the same k-type.Let t be a tree and x, y, z be three nodes of t suh that x, y, z are not relatedby the desendant relationship and suh that t|x = t|y. The horizontal transferof t at x, y, z is the tree t′ onstruted from t by replaing t|y with a opy of t|z,see Figure 1 (right). A horizontal transfer is k-guarded if x, y, z have the same
k-type.
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Fig. 1. Horizontal Swap (left) and Horizontal Transfer (right)



Let t be a tree of root a, and x, y, z be three nodes of t suh that y is adesendant of x and z is a desendant of y. The vertial swap of t at x, y, z isthe tree t′ onstruted from t by swapping the ontext between x and y withthe ontext between y and z, see Figure 2 (left). A vertial swap is k-guarded if
x, y, z have the same k-type.Let t be a tree of root a, and x, y, z be three nodes of t suh that y is adesendant of x and z is a desendant of y suh that ∆ = t[x, y] = t[y, z]. Thevertial stutter of t at x, y, z is the tree t′ onstruted from t by removing theontext between x and y, see Figure 2 (right). A vertial stutter is k-guarded if
x, y, z have the same k-type.
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Fig. 2. Vertial Swap (left) and Vertial Stutter (right)Let L be a tree language and k be a number. If X is any of the four on-strutions above, horizontal or vertial swap, or vertial stutter or horizontaltransfer, we say that L is losed under k-guarded X if for every tree t and everytree t′ onstruted from t using k-guarded X then t is in L i� t′ is in L. Notiethat being losed under k-guarded X implies being losed under k′-guarded Xfor k′ > k. An important observation is that eah of the k-guarded operationspreserves (k + 1)-types.If L is losed under all the k-guarded operations desribed above, we saythat L is k-tame. A language is said to be tame if it is k-tame for some k. Thefollowing simple result shows that tameness is a neessary ondition for LT.Proposition 1 If L is in LT then L is tame.We now turn to the deision proedure for testing tameness. If k is �xed, itis simple to hek whether L is k-tame, see for instane [BS09℄. The followingproposition shows that k an be assumed to be bounded by a simple funtion ofthe size of any bottom-up tree automata reognizing L. It an be shown using apumping argument.Proposition 2 Given a regular language L, it is deidable whether L is tame.Moreover, if this is the ase, a k suh that L is k-tame an be e�etively om-puted.Example 1 Over strings tameness haraterizes exatly LT as vertial swapand vertial stutter are exatly the extensions to trees of the equations given in



Setion 2 for LT. Over trees this is no longer the ase as the following exampleshows. For simplifying the presentation we assume that nodes may have between0 to three hildren. All trees in our language L have the same struture onsistingof a root of label a from whih exatly three sequenes of nodes with only onehild (strings) are attahed. The trees in L have therefore exatly three leaves, andthose must have three distint labels among {h1, h2, h3}. One branh, exeptedfor its leaf, must be of the form b∗cd∗, another one of the form b∗cd∗ and thelast one of the form b∗c′d∗, where b, , ' and d are distint labels. The readeran verify that L is tame. It is not in LT beause replaing exatly one node oflabel  by a node of label ' in a tree with long branhes yields a tree with thesame neighborhood but not in L.
4 Deiding LT for tame languagesIn this setion we show that it is deidable whether a regular tree language isin LT. In view of Proposition 1 and Proposition 2 it is su�ient to show thatit is deidable whether a tame regular tree language is in LT. Hene Theorem 1follows from the following proposition.Proposition 3 Assume L is a tame regular tree language. Then it is deidablewhether there exists a κ suh that L is in LTκ.Proof. Assume L is tame. Then from Proposition 2 one an e�etively omputea k suh that L is k-tame. The proof of the proposition is then divided in twosteps. The �rst one shows that for k-tame languages, if suh a κ exists then κis at most exponential in k. The seond step, Lemma 1 below, shows that when
κ is �xed then being a union of ≃κ is deidable. The proof of the seond step isstraightforward and is left to the reader.Lemma 1 Let L be a regular tree language and κ a number. It is deidablewhether L is in LTκ or not.The rest of this setion is devoted to the proof of the �rst step showingthat for k-tame regular tree language a bound on κ an be obtained. This is aonsequene of the lemma below. Reall that for eah k, the number of k-typesis �nite. Let βk be this number.Lemma 2 Let L be a k-tame regular tree language. Set l = βk + 1. Then forall l′ > l and any two trees t, t′ if t ≃l t′ then there exists two trees T, T ′ with1. t ∈ L i� T ∈ L2. t′ ∈ L i� T ′ ∈ L3. T ≃l′ T ′To see that the �rst step follows from Lemma 2, assume that L is a k-tameregular tree language in LT. Then, by de�nition of LT, L is in LTl′ for some l′. If
l′ > βk + 1 then, from Lemma 2, L is also in LTl. Hene for testing membership



in LT it is su�ient to test membership in LTl for l = βk + 1 whih is deidableby Lemma 1.Before proving Lemma 2 we need some extra terminology. A non-empty on-text C ourring in a tree t is a loop of k-type τ if the k-type of its root and the
k-type of its port is τ . A non-empty ontext C ourring in a tree t is a k-loop ifthere is some k-type τ suh that C is a loop of k-type τ . Note that if C is a loopof k-type τ and x is a node of type τ in a tree t then inserting C at node x doesnot modify the k-type of the nodes of t (it may add new k-types, oming fromthe nodes of C). In partiular the k-type of x is unhanged. Given a ontext Cwe all the path from the root of C to its port the prinipal path of C. Finally,the result of the insertion of a k-loop C at a node x of a tree t is a tree T suhthat if t = D · t|x then T = D · C · t|x. Typially an insertion will our onlywhen the k-type of x is τ and C is a loop of k-type τ . In this ase the k-typesof the nodes of t are unhanged by this operation.Proof (of Lemma 2). Suppose that L is k-tame. Reall that the number of k-types is βk. Therefore, by hoie of l, in every branh of a l-type one an �nd atleast one k-type that is repeated. This provides many k-loops that an be movedaround whenever neessary in order to obtain similar bigger types.Take l′ > l, we build T and T ′ from t and t′ by inserting k-loops in t and t′without a�eting their membership in L.Let B = {τ0, ..., τn} be the set of k-types τ suh that there is a loop of k-type
τ in t or in t′. For eah τ ∈ B we �x a ontext Cτ as follows. Beause τ ∈ Bthere is a ontext C in t or t′ that is a loop of k-type τ . For eah τ ∈ B, we �xarbitrarily suh a C and set Cτ as C · . . . · C

︸ ︷︷ ︸

l′

, l′ onatenation of the ontext C.Notie that the path from the root of Cτ to its port is then bigger than l′.We now desribe the onstrution of T from t. The onstrution of T ′ from
t′ is done similarly. The tree T is onstruted by inserting simultaneously a opyof the ontext Cτ at all nodes of type τ ∈ B of t.We now show that T and T ′ have the desired properties. The third propertyis easy to verify (proof omitted in this abstrat).Claim 1 T ≃l′ T ′The other two properties, t ∈ L i� T ∈ L and t′ ∈ L i� T ′ ∈ L, are notobvious at all. This is the di�ult part of the proof and it requires tameness ofthe language. It is a onsequene of Lemma 3 below. ⊓⊔In order to onlude the proof of Proposition 3 it remains to show the follow-ing lemma. This lemma shows a key onsequene of the fat that L is k-tame: theinsertion of k-loops that don't introdue new (k+1)-types preserves membershipinto L.Lemma 3 Let L be a k-tame regular tree language. Let t be a tree and x anode of t of k-type τ . Let t′ be another tree suh that t ≃k+1 t′ and C be a loopof k-type τ in t′. Consider the tree T onstruted from t by inserting a opy of
C at x. Then t ∈ L i� T ∈ L.



Proof. The proof is done in two steps. First we use the k-tame property of Lto show that we an insert a k-loop C ′ at x in t suh that the prinipal pathof C is the same as the prinipal path of C ′. By this we mean that there is abijetion from the prinipal path of C ′ to the prinipal path of C that preserves
(k + 1)-types. In a seond step we replae one by one the subtrees hanging fromthe prinipal path of C ′ with the orresponding subtrees in C.First some terminology. Given two nodes x, y of some tree T , we say that xis a l-anestor of y if y is a desendant of the left hild of x. Similarly we de�ner-anestorship.Consider the ontext C ourring in t′. Let y0, · · · , yn be the nodes of t′on the prinipal path of C and τ0, · · · , τn be their respetive (k + 1)-type. For
0 ≤ i < n, set ci to l if yi+1 is a left hild of yi and r otherwise.From t we onstrut using k-guarded swaps and k-vertial stutter a tree t1suh that there is a sequene of nodes x0, · · · , xn in t1 with for all 0 ≤ i < n,
xi is of type τi and xi is an ci-anestor of xi+1. The tree t1 is onstruted byindution on n. If n = 0 then this is a onsequene of t ≃k+1 t′ that one an�nd in t a node of type τ0. Consider now the ase n > 0. By indution we haveonstruted from t a tree t′1 suh that x0, · · · , xn−1 is an appropriate sequene in
t′1. By symmetry we onsider the ase where yn is the left hild of yn−1. Beauseall k-guarded operations preserve (k + 1)-types, we have t ≃k+1 t′1 and henethere is a node x of t′1 of type τn. If xn−1 is a l-anestor of x then we are done.Otherwise onsider the left hild x′ of x and notie that beause yn is a hild of
yn−1 and xn−1 has the same (k + 1)-type than yn−1 then x′, yn and x have thesame k-type.We know that x is not a desendant of x′. There are two ases. If x and x′are not related by the desendant relationship then by k-guarded swaps we anreplae the subtree rooted in x′ by the subtree rooted in x and we are done. If
x is an anestor of x′ then the ontext between x and x′ is a k-loop and we anuse k-guarded vertial stutter to dupliate it. This plaes x as the left hild of
xn−1 and we are done.From t1 we onstrut using k-guarded swaps and k-guarded vertial stuttera tree t2 suh that there is a path x0, · · · , xn in t2 with for all 0 ≤ i < n, xi isof type τi.Consider the sequene x0, · · · , xn obtained in t1 from the previous step. Re-all that the k-type of x0 is that same as the k-type of xn. Hene using k-guardedvertial stutter we an dupliate in t1 the ontext rooted in x0 and whose port is
xn. Let t′1 the resulting tree. We thus have two opies of the sequene x0, · · · , xnthat we denote by the top opy and the bottom opy. Assume xi is not a hild of
xi−1. Notie that the ontext between the appropriate hild of xi−1 and xi is a
k-loop. Using k-guarded vertial swap we an move the top opy of this ontextnext to its bottom opy. Using k-guarded vertial stutter this extra opy anbe removed. We are left with an instane of the initial sequene in the bottomopy, while in the top one xi is a hild of xi−1. Repeating this argument yieldsthe desired tree t2.



Consider now the ontext C ′ = t2[x0, xn]. It is a loop of k-type τ . Let T ′ bethe tree onstruted from t by inserting C ′ in x. The proof of the following laimis omitted in this abstrat.Claim 2 T ′ ∈ L i� t ∈ L.It remains to show that T ′ ∈ L i� T ∈ L. By onstrution of T ′ we have
C ′ 4k+1 t. Consider now a node xi in the prinipal path of C ′. Let Ti be thesubtree branhing out the prinipal path of C at xi and T ′

i be the subtree branh-ing out the prinipal path of C ′ at xi. The laim below shows that replaing T ′

iwith Ti does not a�et membership into L. Hene a repeated use of that laimeventually shows that T ′ ∈ L i� T ∈ L.Claim 3 Let u and u′ be two trees. Assume s and s′ are subtrees respetivelyof u and u′ suh that the roots of s and s′ have the same k-type. Consider theontext D suh that u = Ds.If s 4k+1 D and s′ 4k+1 D then Ds ∈ L i� Ds′ ∈ L.Proof (sketh). The proof is done by indution on the depth of s′. The idea isto replae s with s′ node by node.Assume �rst that s′ is of depth less than k. Then beause the k-type of theroots of s and s′ are equal, we have s = s′ and the result follows.Assume now that s′ is of depth greater than k. Let x be the root of s. Let
τ be the (k + 1)-type of the root of s′. Beause s′ 4k+1 D we know that thereexists a node y in D of type τ . We onsider two ases depending on the relationbetween x and y.� If y is an anestor of x, let E be u[y, x] and notie that x and y have thesame k-type. Hene we an dupliate E using a k-guarded vertial stutter.The resulting tree is DEs and beause L is k-tame, DEs ∈ L i� Ds ∈ L.Let z be the root of E in DEs. Notie that by onstrution z is of type

τ . Let s1 be the subtree of DEs rooted at the left hild of z and let s′1 bethe subtree of s′ rooted at the left hild of the root of s′. By onstrution
s1 4k+1 D, s′1 4k+1 D. Beause their parent have the same (k + 1)-type,the roots of s1 and s′1 have the same k-type. As the depth of s′1 is stritlysmaller than the depth of s′, by indution we an replae s1 by s′1 withouta�eting membership into L. Similarly we do the same for the right hildand we are done.� Assume now that x and y are not related by the desendant relationship.We know that x, y have the same k-type and that s 4k+1 D. Let s′′ bethe subtree of Ds rooted at y. It an be shown that, as a onsequene oftameness (this is where k-guarded horizontal transfer is used), replaing Dsby Ds′′ does not a�et membership in L . As y′′ is of type τ , we an proeedby indution as above and replae the left and right subtrees of s′′ by theirorresponding subtrees of s′ to get the desired result. ⊓⊔This onludes the proof of the deision algorithm in the ase of trees. Wenote that in the ase of strings Lemma 3 is extremely powerful and is su�ient



for showing that tameness implies membership in LT. This is due to the fatthat, on strings, any two nodes with the same type indue a loop and thereforeLemma 3 applies to this loop. This lemma an then be used for transforming byindution a string to any other one with the same ourrenes of types. Howeverover trees this no longer work as the two nodes may be inomparable.
5 Unranked treesIn this setion we onsider unranked unordered trees, where eah node has anarbitrary number of hildren but no order is assumed on these hildren. Ourgoal is to extend the result of the previous setion and provide a deidableharaterization of Loally Testable languages of unranked trees. Due to spaelimitations, we mostly only mention here our results, their proofs will appear inthe journal version of this paper.The �rst issue is to �nd an appropriate notion of LT for unranked trees.Reall that a language of binary trees is LT if its membership depends onlyon the presene or absene of neighborhoods of a ertain size. With unrankedtrees, there may be in�nitely many di�erent possible neighborhoods of a ertainsize and hene this de�nition does not imply that the language is regular1. Theidea is to replae isomorphism types with FO de�nable types suh that for eahisomorphism type there are only �nitely many FO de�nable types.We will use the following notion of type. The de�nition of k-type remainsunhanged: it is the isomorphism type of tree indued by nodes at depth at most
k. As mentioned above there are now in�nitely many k-types. We thereforeintrodue a more �exible notion that depends on one extra parameter l thatrestrits the horizontal information. It is de�ned by indution on k. Consider anunordered tree t. For k = 0, the (k, l)-type of t is just the label of the root of
t. For k > 0 the (k, l)-type of t is the label of its root together with, for eah
(k − 1, l)-type, the number, up to threshold l, of hildren of the root of t of thistype.From this we de�ne two lasses of Loally Testable languages. The mostgeneral one, denoted ALT (A for Aperiodi), is de�ned as follows. Two treesare (k, l)-equivalent if they have the same ourrenes of (k, l)-types and theirroots have the same (k, l)-type. A language L is in ALT if there is a k anda l suh that L is a union of (k, l)-equivalene lasses. In the framework offorest algebra [BW07℄, languages in ALT have a syntati forest algebra whosehorizontal monoid satis�es hω = hω+1.The seond one, denoted ILT in the sequel (I for Idempotent), assumes l = 1:A language L is in ILT if there is a k suh that L is a union of (k, 1)-equivalenelasses. In the framework of forest algebra languages in ILT have a syntatiforest algebra whose horizontal monoid satis�es h + h = h.The main result of this setion is that we an extend the deidable hara-terization obtained for ranked trees to both ILT and ALT.1 In this setion, by regular we mean de�nable in MSO using the hild prediate. Thereis also an equivalent automata model.



Theorem 2 It is deidable whether a regular unranked tree language is ILT.It is deidable whether a regular unranked tree language is ALT.The notions of k-tame and (k, l)-tame are de�ned as in Setion 3 using k-types and (k, l)-types. For unranked unordered trees both notions are idential:Lemma 4 For every regular unordered tree language L and every k there is anumber l, omputable from k and L, suh that if L is k-tame, then L is (k, l)-tame.In the idempotent ase we an ompletely haraterize ILT. It orresponds totameness together with an extra losure property denoted horizontal stutter. Atree language L is losed under horizontal stutter i� for any tree t and any node
x of t, replaing t|x with two opies of t|x does not a�et membership into L.Theorem 3 A regular unordered tree language is in ILT i� it is tame and losedunder horizontal stutter.This immediately implies the ILT part of Theorem 2 as both tameness andlosure under horizontal stutter are deidable properties.Proof (sketh). That the right-hand side onditions are neessary is obvious. Forthe other diretion we �rst use Lemma 4 to ompute l from k. We then provethe adaptation of Claim 3 to forests. Given two forests h and h′, h + h′ denotesthe forest onsisting of the trees of h followed by the trees of h′. Given a forest
h, a(h) is the tree whose root has label a and whose hildren are the trees of h.Consider now two trees t and t′ that are (k, l)-equivalent. Then t = a(h) and
t′ = a(h′) for some a and forests h and h′ that are (k − 1, l)-equivalent. Assumenow that t ∈ L. By horizontal stutter, a(h+h) is also in L. Beause h and h′ are
(k−1, l)-equivalent we an use Claim 3 and replae one opy of h by h′ and have
a(h + h′) ∈ L. Claim 3 applies again and yields a(h′ + h′) ∈ L. By horizontalstutter this implies that t′ ∈ L.Hene L is a union of (k, l)-equivalene lasses. From losure under horizontalstutter this implies that L is a union of (k, 1)-equivalene lasses and is in ILT.

⊓⊔For ALT we follow the lines of the binary tree ase and Theorem 2 followsfrom the unranked variant of Proposition 3:Proposition 4 Assume L is a tame regular unordered tree language. Then it isdeidable whether there exists a κ suh that L is in ALTκ.
6 DisussionWe have provided a reursive proedure for testing whether a regular tree lan-guage is loally testable.



Our haraterization extends to unranked unordered trees. For ordered trees,we believe that tameness together with a property that essentially say that thehorizontal monoid is in LT should provide a deision proedure for an intuitivenotion of LT over ordered unranked trees. Note that in this setting it is no longerlear whether tameness is deidable or not. We leave this ase for future work.From the minimal deterministi automata de�ning a regular tree languageour proedure yields a multi exponential algorithm. On words this test for LTan be done in polynomial time. Note that testing whether a tree language istame requires only polynomial time on the minimal deterministi bottom-up treeautomata. A better omplexity for testing LT ould be obtained by exhibiting anie set of identities for the lass of LT. This is left for future work.
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