
Going higher in the First-order
Quantifier Alternation Hierarchy on Words?

Thomas Place and Marc Zeitoun

LaBRI, Université de Bordeaux, France

Abstract. We investigate the quantifier alternation hierarchy in first-
order logic on finite words. Levels in this hierarchy are defined by counting
the number of quantifier alternations in formulas. We prove that one
can decide membership of a regular language to the levels BΣ2 (boolean
combination of formulas having only 1 alternation) and Σ3 (formulas
having only 2 alternations beginning with an existential block). Our proof
works by considering a deeper problem, called separation, which, once
solved for lower levels, allows us to solve membership for higher levels.

The connection between logic and automata theory is well known and has a
fruitful history in computer science. It was first observed when Büchi, Elgot and
Trakhtenbrot proved independently that the regular languages are exactly those
that can be defined using a monadic second-order logic (MSO) formula. Since
then, many efforts have been made to investigate and understand the expressive
power of relevant fragments of MSO. In this field, the yardstick result is often
to prove decidable characterizations, i.e., to design an algorithm which, given as
input a regular language, decides whether it can be defined in the fragment under
investigation. More than the algorithm itself, the main motivation is the insight
given by its proof. Indeed, in order to prove a decidable characterization, one has
to consider and understand all properties that can be expressed in the fragment.

The most prominent fragment of MSO is first-order logic (FO) equipped
with a predicate ”<” for the linear-order. The expressive power of FO is now
well-understood over words and a decidable characterization has been obtained.
The result, Schützenberger’s Theorem [20,10], states that a regular language is
definable in FO if and only if its syntactic monoid is aperiodic. The syntactic
monoid is a finite algebraic structure that can effectively be computed from any
representation of the language. Moreover, aperiodicity can be rephrased as an
equation that needs to be satisfied by all elements of the monoid. Therefore,
Schützenberger’s Theorem can indeed be used to decide definability in FO.

In this paper, we investigate an important hierarchy inside FO, obtained by
classifying formulas according to the number of quantifier alternations in their
prenex normal form. More precisely, an FO formula is Σi if its prenex normal form
has at most (i− 1) quantifier alternations and starts with a block of existential
quantifiers. The hierarchy also involves the classes BΣi of boolean combinations of
Σi formulas, and the classes ∆i of languages that can be defined by both a Σi and
? Supported by ANR 2010 BLAN 0202 01 FREC

the negation of a Σi formula. The quantifier alternation hierarchy was proved to
be strict [6,31]: ∆i (Σi (BΣi (∆i+1. In the literature, many efforts have been
made to find decidable characterizations of levels of this well-known hierarchy.

Despite these efforts, only the lower levels are known to be decidable. The class
BΣ1 consists exactly of all piecewise testable languages, i.e., such that membership
of a word only depends on its subwords up to a fixed size. These languages were
characterized by Simon [21] as those whose syntactic monoid is J -trivial. A
decidable characterization of Σ2 (and hence of ∆2 as well) was proven in [3].
For∆2, the literature is very rich [27]. For example, these are exactly the languages
definable by the two variable restriction of FO [29]. These are also those whose
syntactic monoid is in the class DA [14]. For higher levels in the hierarchy, getting
decidable characterizations remained an important open problem. In particular,
the case of BΣ2 has a very rich history and a series of combinatorial, logical, and
algebraic conjectures have been proposed over the years. We refer to [12,2,11,13]
for an exhaustive bibliography. So far, the only known effective result was partial,
working only when the alphabet is of size 2 [25]. One of the main motivations for
investigating this class in formal language theory is its ties with two other famous
hierarchies defined in terms of regular expressions. In the first one, the Straubing-
Thérien hierarchy [23,28], level i corresponds exactly to the class BΣi [30]. In the
second one, the dot-depth hierarchy [7], level i corresponds to adding a predicate
for the successor relation in BΣi [30]. Proving decidability for BΣ2 immediately
proves decidability of level 2 in the Straubing-Thérien hierarchy, but also in the
dot-depth hierarchy using a reduction by Straubing [24].

In this paper, we prove decidability for BΣ2, ∆3 and Σ3. These new results
are based on a deeper decision problem than decidable characterizations: the
separation problem. Fix a class Sep of languages. The Sep-separation problem
amounts to decide whether, given two input regular languages, there exists a
third language in Sep containing the first language while being disjoint from the
second one. This problem generalizes decidable characterizations. Indeed, since
regular languages are closed under complement, testing membership in Sep can
be achieved by testing whether the input is Sep-separable from its complement.
Historically, the separation problem was first investigated as a special case of a
deep problem in semigroup theory, see [1]. This line of research gave solutions
to the problem for several classes. However, the motivations are disconnected
from our own, and the proofs rely on deep, purely algebraic arguments. Recently,
a research effort has been made to investigate this problem from a different
perspective, with the aim of finding new and self-contained proofs relying on
elementary ideas and notions from language theory only [8,16,19,17]. This paper
is a continuation of this effort: we solve the separation problem for Σ2, and use
our solution as a basis to obtain decidable characterizations for BΣ2, ∆3 and Σ3.

Our solution works as follows: given two regular languages, one can easily
construct a monoid morphism α : A∗ → M that recognizes both of them. We
then design an algorithm that computes, inside the monoid M , enough Σ2-related
information to answer the Σ2-separation question for any pair of languages that
are recognized by α. It turns out that it is also possible (though much more

difficult) to use this information to obtain decidability of BΣ2, ∆3 and Σ3. This
information amounts to the notion of Σ2-chain, our main tool in the paper. A
Σ2-chain is an ordered sequence s1, . . . , sn ∈M that witnesses a property of α
wrt. Σ2. Let us give some intuition in the case n = 2 – which is enough to make
the link with Σ2-separation. A sequence s1, s2 is a Σ2-chain if any Σ2 language
containing all words in α−1(s1) intersects α−1(s2). In terms of separation, this
means that α−1(s1) is not separable from α−1(s2) by a Σ2 definable language.

This paper contains three main separate and difficult new results: (1) an algo-
rithm to compute Σ2-chains – hence Σ2-separability is decidable (2) decidability
of Σ3 (decidability of ∆3 is an immediate consequence), and (3) decidability
of BΣ2. Computing Σ2-chains is achieved using a fixpoint algorithm that starts
with trivial Σ2-chains such as s, s, . . . , s, and iteratively computes more Σ2-chains
until a fixpoint is reached. Note that its completeness proof relies on the Factoriza-
tion Forest Theorem of Simon [22]. This is not surprising, as the link between this
theorem and the quantifier alternation hierarchy was already observed in [14,4].

For Σ3, we prove a decidable characterization via an equation on the syntactic
monoid of the language. This equation is parametrized by the set of Σ2-chains of
length 2. In other words, we use Σ2-chains to abstract an infinite set of equations
into a single one. The proof relies again on the Factorization Forest Theorem of
Simon [22] and is actually generic to all levels in the hierarchy. This means that
for any i, we define a notion of Σi-chain and characterize Σi+1 using an equation
parametrized by Σi-chains of length 2. However, decidability of Σi+1 depends on
our ability to compute the Σi-chains of length 2, which we can only do for i = 2.

Our decidable characterization of BΣ2 is the most difficult result of the paper.
As for Σ3, it is presented by two equations parametrized by Σ2-chains (of length
2 and 3). However, the characterization is this time specific to the case i = 2.
This is because most of our proof relies on a deep analysis of our algorithm that
computes Σ2-chains, which only works for i = 2. The equations share surprising
similarities with the ones used in [5] to characterize a totally different formalism:
boolean combination of open sets of infinite trees. In [5] also, the authors present
their characterization as a set of equations parametrized by a notion of “chain”
for open sets of infinite trees (although their “chains” are not explicitly identified
as a separation relation). Since the formalisms are of different nature, the way
these chains and our Σ2-chains are constructed are completely independent,
which means that the proofs are also mostly independent. However, once the
construction analysis of chains has been done, several combinatorial arguments
used to make the link with equations are analogous. In particular, we reuse and
adapt definitions from [5] to present these combinatorial arguments in our proof.
One could say that the proofs are both (very different) setups to apply similar
combinatorial arguments in the end.
Organization. We present definitions on languages and logic in Sections 1 and 2
respectively. Section 3 is devoted to the presentation of our main tool: Σi-chains.
In Section 4, we give our algorithm computing Σ2-chains. The two remaining
sections present our decidable characterizations, for Σ3 and ∆3 in Section 5 and
for BΣ2 in Section 6. Due to lack of space, proofs can be found in [18].

1 Words and Algebra

Words and Languages. We fix a finite alphabet A and we denote by A∗ the set
of all words over A. If u, v are words, we denote by u · v or uv the word obtained
by concatenation of u and v. If u ∈ A∗ we denote by alph(u) its alphabet, i.e.,
the smallest subset B of A such that u ∈ B∗. A language is a subset of A∗.
In this paper we consider regular languages: these are languages definable by
nondeterministic finite automata, or equivalently by finite monoids. In the paper,
we only work with the monoid representation of regular languages.

Monoids. A semigroup is a set S equipped with an associative multiplication
denoted by ’·’. A monoid M is a semigroup in which there exists a neutral element
denoted 1M . In the paper, we investigate classes of languages, such as Σi, that are
not closed under complement. For such classes, it is known that one needs to use
ordered monoids. An ordered monoid is a monoid endowed with a partial order ’6’
which is compatible with multiplication: s 6 t and s′ 6 t′ imply ss′ 6 tt′. Given
any finite semigroup S, it is well known that there is a number ω(S) (denoted by
ω when S is understood from the context) such that for each element s of S, sω

is an idempotent: sω = sω · sω.
Let L be a language and M be a monoid. We say that L is recognized by M if

there exists a monoid morphism α : A∗ →M and an accepting set F ⊆M such
that L = α−1(F). It is well known that a language is regular if and only if it can
be recognized by a finite monoid.

Syntactic Ordered Monoid of a Language. The syntactic preorder 6L of
a language L is defined as follows on pairs of words in A∗: w 6L w′ if for
all u, v ∈ A∗, uwv ∈ L ⇒ uw′v ∈ L. Similarly, we define ≡L, the syntactic
equivalence of L as follows: w ≡L w′ if w 6L w′ and w′ 6L w. One can verify
that 6L and ≡L are compatible with multiplication. Therefore, the quotient
ML of A∗ by ≡L is an ordered monoid for the partial order induced by the
preorder 6L. It is well known that ML can be effectively computed from L.
Moreover, ML recognizes L. We call ML the syntactic ordered monoid of L and
the associated morphism the syntactic morphism.

Separation. Given three languages L,L0, L1, we say that L separates L0 from
L1 if L0 ⊆ L and L1 ∩ L = ∅. Set X as a class of languages, we say that L0 is
X-separable from L1 if some language in X separates L0 from L1. Observe that
when X is not closed under complement, the definition is not symmetrical: L0
could be X-separable from L1 while L1 is not X-separable from L0.

When working on separation, we consider as input two regular languages
L0, L1. It will be convenient to have a single monoid recognizing both of them,
rather than having to deal with two objects. Let M0,M1 be monoids recognizing
L0, L1 together with the morphisms α0, α1, respectively. Then, M0×M1 equipped
with the componentwise multiplication (s0, s1) · (t0, t1) = (s0t0, s1t1) is a monoid
that recognizes both L0 and L1 with the morphism α : w 7→ (α0(w), α1(w)).
From now on, we work with such a single monoid recognizing both languages.

Chains and Sets of Chains. Set M as a finite monoid. A chain for M is a
word over the alphabet M , i.e., an element of M∗. A remark about notation is
in order here. A word is usually denoted as the concatenation of its letters. Since
M is a monoid, this would be ambiguous here since st could either mean a word
with 2 letters s and t, or the product of s and t in M . To avoid confusion, we
will write (s1, . . . , sn) a chain of length n on the alphabet M .

In the paper, we will consider both sets of chains (denoted by T ,S, . . .) and
sets of sets of chains (denoted by T,S, . . .). In particular, if T is a set of sets of
chains, we define ↓T, the downset of T, as the set:

↓T = {T | ∃S ∈ T, T ⊆ S}.

We will often restrict ourselves to considering only chains of a given fixed length.
For n ∈ N, observe that Mn, the set of chains of length n, is a monoid when
equipped with the componentwise multiplication. Similarly the set 2Mn of sets of
chains of length n is a monoid for the operation: S·T = {s̄t̄ ∈Mn | s̄ ∈ S t̄ ∈ T }.

2 First-Order Logic and Quantifier Alternation Hierarchy

We view words as logical structures made of a sequence of positions labeled over A.
We denote by < the linear order over the positions. We work with first-order
logic FO using unary predicates Pa for all a ∈ A that select positions labeled
with an a, as well as a binary predicate for the linear order <. The quantifier
rank of an FO formula is the length of its longest sequence of nested quantifiers.

One can classify first-order formulas by counting the number of alternations
between ∃ and ∀ quantifiers in the prenex normal form of the formula. Set
i ∈ N, a formula is said to be Σi (resp. Πi) if its prenex normal form has i− 1
quantifier alternations (i.e., i blocks of quantifiers) and starts with an ∃ (resp. ∀)
quantification. For example, a formula whose prenex normal form is

∀x1∀x2∃x3∀x4 ϕ(x1, x2, x3, x4) (with ϕ quantifier-free)

is Π3. Observe that a Πi formula is by definition the negation of a Σi formula.
Finally, a BΣi formula is a boolean combination of Σi formulas. For X =
FO, Σi, Πi or BΣi, we say that a language L is X-definable if it can be defined
by an X-formula. Finally, we say that a language is ∆i-definable if it can be
defined by both a Σi and a Πi formula. It is known that this gives a strict infinite
hierarchy of classes of languages as represented in Figure 1.

Preorder for Σi. Let w,w′ ∈ A∗ and k, i ∈ N. We write w .k
i w′ if any Σi

formula of quantifier rank k satisfied by w is also satisfied by w′. Observe that
since a Πi formula is the negation of a Σi formula, we have w .k

i w
′ iff any Πi

formula of quantifier rank k satisfied by w′ is also satisfied by w. One can verify
that .k

i is a preorder for all k, i. Moreover, by definition, a language L can be
defined by a Σi formula of rank k iff L is saturated by .k

i , i.e., for all w ∈ L and
all w′ such that w .k

i w
′, we have w′ ∈ L.

∆1

Σ1

Π1

BΣ1 ∆2

Σ2

Π2

BΣ2 ∆3

Σ3

Π3

BΣ3 ∆4

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

Fig. 1. Quantifier Alternation Hierarchy

3 Σi-Chains

We now introduce the main tool of this paper: Σi-chains. Fix a level i in the
quantifier alternation hierarchy and α : A∗ →M a monoid morphism. A Σi-chain
for α is a chain (s1, . . . , sn) ∈M∗ such that for arbitrarily large k ∈ N, there exist
words w1 .k

i · · · .k
i wn mapped respectively to s1, . . . , sn by α. Intuitively, this

contains information about the limits of the expressive power of the logic Σi with
respect to α. For example, if (s1, s2) is a Σi-chain, then any Σi language that
contains all words of image s1 must also contain at least one word of image s2.

In this section, we first give all definitions related to Σi-chains. We then
present an immediate application of this notion: solving the separation problem
for Σi can be reduced to computing the Σi-chains of length 2.

3.1 Definitions

Σi-Chains. Fix i a level in the hierarchy, k ∈ N and B ⊆ A. We define Ck
i [α]

(resp. Ck
i [α,B]) as the set of Σi[k]-chains for α (resp. for (α,B)) and Ci[α] (resp.

Ci[α,B]) as the set of Σi-chains for α (resp. for (α,B)). For i = 0, we set
Ci[α] = Ck

i [α] = M∗. Otherwise, let s̄ = (s1, . . . , sn) ∈M∗. We let

– s̄ ∈ Ck
i [α] if there exist w1, . . . , wn ∈ A∗ verifying w1 .k

i w2 .k
i · · · .k

i wn

and for all j, we have α(wj) = sj . Moreover, s̄ ∈ Ck
i [α,B] if the words wj

can be chosen so that they satisfy additionally alph(wj) = B for all j.
– s̄ ∈ Ci[α] if for all k, we have s̄ ∈ Ck

i [α]. That is, Ci[α] =
⋂

k Ck
i [α]. In the

same way, Ci[α,B] =
⋂

k Ck
i [α,B].

One can check that if i > 2, then Ck
i [α] =

⋃
B⊆A Ck

i [α,B], since the fragment
Σi can detect the alphabet (i.e., for i > 2, w .k

i w
′ implies alph(w) = alph(w′)).

Similarly for i > 2, the set of Σi-chains for α is Ci[α] =
⋃

B⊆A Ci[α,B]. Observe
that all these sets are closed under subwords. Therefore, by Higman’s lemma, we
get the following fact.

Fact 1 For all i, k ∈ N and B ⊆ A, Ci[α,B] and Ck
i [α,B] are regular languages.

Fact 1 is interesting but essentially useless in our argument, as Higman’s
lemma provides no way for actually computing a recognizing device for Ci[α,B].

For any fixed n ∈ N, we let Ck
i,n[α,B] be the set of Σi[k]-chains of length n

for α,B, i.e., Ck
i,n[α,B] = Ck

i [α,B]∩Mn. We define Ci,n[α,B], Ck
i,n[α] and Ci,n[α]

similarly. The following fact is immediate.

Fact 2 If B,C ⊆ A, then Ck
i,n[α,B] · Ck

i,n[α,C] ⊆ Ck
i,n[α,B ∪ C]. In particu-

lar, Ck
i,n[α] and Ci,n[α] (resp. Ck

i,n[α,B] and Ci,n[α,B]) are submonoids (resp.
subsemigroups) of Mn.

This ends the definition of Σi-chains. However, in order to define our algorithm
for computing Σ2-chains and state our decidable characterization of BΣ2, we will
need a slightly refined notion: compatible sets of chains .
Compatible Sets of Σi-Chains. In some cases, it will be useful to know that
several Σi-chains with the same first element can be ‘synchronized’. For example
take two Σi-chains (s, t1) and (s, t2) of length 2. By definition, for all k there
exist words w1, w

′
1, w2, w

′
2 whose images under α are s, t1, s, t2 respectively, and

such that w1 .k
i w
′
1 and w2 .k

i w
′
2. In some cases (but not all), it will be possible

to choose w1 = w2 for all k. The goal of the notion of compatible sets of chains
is to record the cases in which this is true.

Fix i a level in the hierarchy, k ∈ N and B ⊆ A. We define two sets of sets
of chains: Ck

i [α,B], the set of compatible sets of Σi[k]-chains for (α,B), and
Ci[α,B], the set of compatible sets of Σi-chains for (α,B). Let T be a set of
chains, all having the same length n and the same first element s1.
– T ∈ Ck

i [α,B] if there exists w ∈ A∗ such that alph(w) = B, α(w) = s1, and
for all chains (s1, . . . , sn) ∈ T , there exist w2, . . . , wn ∈ A∗ verifying w .k

i

w2 .k
i · · · .k

i wn, and for all j = 2, . . . , n, α(wj) = sj , and alph(wj) = B.
– T ∈ Ci[α,B] if T ∈ Ck

i [α,B] for all k.
As before we set Ck

i [α] and Ci[α] as the union of these sets for all B ⊆ A.
Moreover, we denote by Ck

i,n[α,B],Ci,n[α,B],Ck
i,n[α] and Ci,n[α] the restriction

of these sets to sets of chains of length n (i.e., subsets of 2Mn).
Fact 3 If B,C ⊆ A, then Ck

i,n[α,B] · Ck
i,n[α,C] ⊆ Ck

i,n[α,B ∪ C]. In particu-
lar, Ck

i,n[α] and Ci,n[α] (resp. Ck
i,n[α,B] and Ci,n[α,B]) are submonoids (resp.

subsemigroups) of 2Mn .

3.2 Σi-Chains and Separation
We now state a reduction from the separation problem by Σi and by Πi-definable
languages to the computation of Σi-chains of length 2.
Theorem 4. Let L1, L2 be regular languages and α : A∗ → M be a morphism
into a finite monoid recognizing both languages with accepting sets F1, F2 ⊆M .
Set i ∈ N. Then the following properties hold:
1. L1 is Σi-separable from L2 iff for all s1, s2 ∈ F1, F2, (s1, s2) 6∈ Ci[α].
2. L1 is Πi-separable from L2 iff for all s1, s2 ∈ F1, F2, (s2, s1) 6∈ Ci[α].

The proof of Theorem 4, which is parametrized by Σi-chains, is standard
and identical to the corresponding theorems in previous separation papers, see
e.g., [19]. In Section 4, we present an algorithm computing Σi-chains of length 2
at level i = 2 of the alternation hierarchy (in fact, our algorithm needs to compute
the more general notion of sets of compatible Σ2-chains). This makes Theorem 4
effective for Σ2 and Π2.

4 Computing Σ2-Chains

In this section, we give an algorithm for computing all Σ2-chains and sets of
compatible Σ2-chains of a given fixed length. We already know by Theorem 4
that achieving this for length 2 suffices to solve the separation problem for Σ2
and Π2. Moreover, we will see in Sections 5 and 6 that this algorithm can be
used to obtain decidable characterizations for Σ3, Π3, ∆3 and BΣ2. Note that
in this section, we only provide the algorithm and intuition on its correctness.

For the remainder of this section, we fix a morphism α : A∗ →M into a finite
monoid M . For any fixed n ∈ N and B ⊆ A, we need to compute the following:

1. the sets C2,n[α,B] of Σ2-chains of length n for α.
2. the sets C2,n[α,B] of compatible subsets of C2,n[α,B].

Our algorithm directly computes the second item, i.e., C2,n[α,B]. More
precisely, we compute the map B 7→ C2,n[α,B]. Observe that this is enough to
obtain the first item since by definition, s̄ ∈ C2,n[α,B] iff {s̄} ∈ C2,n[α,B]. Note
that going through compatible subsets is necessary for the technique to work,
even if we are only interested in computing the map B 7→ C2,n[α,B].

Outline. We begin by explaining what our algorithm does. For this outline,
assume n = 2. Observe that for all w ∈ A∗ such that alph(w) = B, we have{

(α(w), α(w))
}
∈ C2,n[α,B]. The algorithm starts from these trivially compatible

sets, and then saturates them with two operations that preserve membership in
C2,n[α,B]. Let us describe these two operations. The first one is multiplication:
if S ∈ C2,n[α,B] and T ∈ C2,n[α,C] then S · T ∈ C2,n[α,B ∪ C] by Fact 3. The
main idea behind the second operation is to exploit the following property of Σ2:

∀k ∃` w .k
2 u,w .k

2 u
′ and alph(w′) = alph(w) =⇒ w2` .k

2 u
`w′u′`.

This is why compatible sets are needed: in order to use this property, we need
to have a single word w such that w .k

2 u and w .k
2 u
′, which is information

that is not provided by Σ2-chains. This yields an operation that states that
whenever S belongs to C2,n[α,B], then so does Sω · T · Sω, where T is the set of
chains (1M , α(w′)) with alph(w′) = B. Let us now formalize this procedure and
generalize it to arbitrary length.

Algorithm. As we explained, our algorithm works by fixpoint, starting from
trivial compatible sets. For all n ∈ N and B ⊆ A, we let In[B] be the set
In[B] =

{
{(α(w), . . . , α(w))} | alph(w) = B

}
⊆ 2Mn . Our algorithm will start

from the function f0 : 2A → 22Mn

that maps any C ⊆ A to In[C].
Our algorithm is defined for any fixed length n > 1. We use a procedure Satn

taking as input a mapping f : 2A → 22Mn

and producing another such mapping.
The algorithm starts from f0 and iterates Satn until a fixpoint is reached.

When n > 2, the procedure Satn is parametrized by C2,n−1[α,B], the sets of
Σ2-chains of length n− 1, for B ⊆ A. This means that in order to use Satn, one
needs to have previously computed the Σ2-chains of length n− 1 with Satn−1.

We now define the procedure Satn. If S is a set of chains of length n − 1
and s ∈ M , we write (s,S) for the set {(s, s1, . . . , sn−1) | (s1, . . . , sn−1) ∈ S},
which consists of chains of length n. Let f : 2A → 22Mn

be a mapping, written
f = (C 7→ TC). For all B ⊆ A, we define a set Satn[B](f) in 2Mn . That is,
B 7→ Satn[B](f) is again a mapping from 2A to 22Mn

. Observe that when n = 1,
there is no computation to do since for all B, C2,1[α,B] = I1[B] by definition.
Therefore, we simply set Sat1[B](C 7→ TC) = TB. When n > 2, we define
Satn[B](C 7→ TC) as the set TB ∪MB ∪OB with

MB =
⋃

C∪D=B

(TC · TD) (1)

OB =
{
T ω · (1M , C2,n−1[α,B]) · T ω | T ∈ TB

}
(2)

This ends the description of the procedure Satn. We now formalize how to
iterate it. For any mapping f : 2A → 2Mn and any B ⊆ A , we set Sat0n[B](f) =
f(B). For all j > 1, we set Satjn[B](f) = Satn[B](C 7→ Satj−1

n [C](f)). By
definition of Satn, for all j > 0 and B ⊆ A, we have Satjn(f)[B] ⊆ Satj+1

n (f)[B] ⊆
2Mn . Therefore, there exists j such that Satjn[B](f) = Satj+1

n [B](f). We denote
by Sat∗n[B](f) this set. This finishes the definition of the algorithm. Its correctness
and completeness are stated in the following proposition.

Proposition 5. Let n > 1, B ⊆ A and ` > 3|M | · 2|A| · n · 222|M|n . Then

C2,n[α,B] = C`
2,n[α,B] = ↓Sat∗n[B](C 7→ In[C]).

Proposition 5 states correctness of the algorithm (the set ↓Sat∗n[B](C 7→ In[C])
only consists of compatible sets of Σ2-chains) and completeness (this set contains
all such sets). It also establishes a bound `. This bound is a byproduct of the
proof of the algorithm. It is of particular interest for separation and Theorem 4.
Indeed, one can prove that for any two languages that are Σ2-separable and
recognized by α, the separator can be chosen with quantifier rank ` (for n = 2).

We will see in Sections 5 and 6 how to use Proposition 5 to get decidable
characterizations of Σ3, Π3, ∆3 and BΣ2. We already state the following corollary
as a consequence of Theorem 4.
Corollary 6. Given as input two regular languages L1, L2 it is decidable to test
whether L1 can be Σ2-separated (resp. Π2-separated) from L2.

5 Decidable Characterizations of Σ3, Π3, ∆3

In this section we present our decidable characterizations for ∆3, Σ3 and Π3.
We actually give characterizations for all classes ∆i, Σi and Πi in the quantifier
alternation hierarchy. The characterizations are all stated in terms of equations on
the syntactic monoid of the language. However, these equations are parametrized
by the Σi−1-chains of length 2. Therefore, getting decidable characterizations
depends on our ability to compute the set of Σi−1-chains of length 2, which we
are only able to do for i 6 3. We begin by stating our characterization for Σi,
and the characterizations for Πi and ∆i will then be simple corollaries.

Theorem 7. Let L be a regular language and α : A∗ → M be its syntactic
morphism. For all i > 1, L is definable in Σi iff M satisfies the following
property:

sω 6 sωtsω for all (t, s) ∈ Ci−1[α]. (3)

It follows from Theorem 7 that it suffices to compute the Σi−1-chains of length
2 in order to decide whether a language is definable in Σi. Also observe that when
i = 1, by definition we have (t, 1M) ∈ C0[α] for all t ∈M . Therefore, (3) can be
rephrased as 1M 6 t for all t ∈M , which is the already known equation for Σ1,
see [14]. Similarly, when i = 2, (3) can be rephrased as sω 6 sωtsω whenever t is
a ‘subword’ of s, which is the previously known equation for Σ2 (see [14,4]).

The proof of Theorem 7 is done using Simon’s Factorization Forest Theorem
and is actually a generalization of a proof of [4] for the special case of Σ2.
Here, we state characterizations of Πi and ∆i as immediate corollaries. Recall
that a language is Πi-definable if its complement is Σi-definable, and that it is
∆i-definable if it is both Σi-definable and Πi-definable.

Corollary 8. Let L be a regular language and let α : A∗ →M be its syntactic
morphism. For all i > 1, the following properties hold:

– L is definable in Πi iff M satisfies sω > sωtsω for all (t, s) ∈ Ci−1[α].
– L is definable in ∆i iff M satisfies sω = sωtsω for all (t, s) ∈ Ci−1[α].

We finish the section by stating decidability for the case i = 3. Indeed by
Proposition 5, one can compute the Σ2-chains of length 2 for any morphism.
Therefore, we get the following corollary.

Corollary 9. Definability of a regular language in ∆3, Σ3 or Π3 is decidable.

6 Decidable Characterization of BΣ2

In this section we present our decidable characterization for BΣ2. In this case,
unlike Theorem 7, the characterization is specific to the case i = 2 and does
not generalize as a non-effective characterization for all levels. The main reason
is that both the intuition and the proof of the characterization rests on a deep
analysis of our algorithm for computing Σ2-chains, which is specific to level i = 2.
The characterization is stated as two equations that must be satisfied by the
syntactic morphism of the language. The first one is parametrized by Σ2-chains of
length 3, and the second one by sets of compatible Σ2-chains of length 2 through
a more involved relation that we define below.

Alternation Schema. Let α : A∗ →M be a monoid morphism and let B ⊆ A. A
B-schema for α is a triple (s1, s2, s

′
2) ∈M3 such that there exist T ∈ C2[α,B] and

r1, r
′
1 ∈M verifying s1 = r1r

′
1, (r1, s2) ∈ C2[α,B] ·T ω and (r′1, s′2) ∈ T ω ·C2[α,B].

Intuitively, the purpose of B-schemas is to abstract a well-known property of
Σ2 on elements of M : one can prove that if (s1, s2, s

′
2) is a B-schema, then for

all k ∈ N, there exist w1, w2, w
′
2 ∈ A∗, mapped respectively to s1, s2, s

′
2 under α,

and such that for all u ∈ B∗, w1 .k
2 w2uw

′
2.

Theorem 10. Let L be a regular language and α : A∗ → M be its syntactic
morphism. Then L is definable in BΣ2 iff M satisfies the following properties:

sω
1 s

ω
3 = sω

1 s2s
ω
3

sω
3 s

ω
1 = sω

3 s2s
ω
1

for (s1, s2, s3) ∈ C2[α] (4)

(s2t2)ωs1(t′2s′2)ω = (s2t2)ωs2t1s
′
2(t′2s′2)ω

for (s1, s2, s
′
2) and (t1, t2, t′2) B-schemas for some B ⊆ A (5)

The proof of Theorem 10 is far more involved than that of Theorem 7. However,
a simple consequence is decidability of definability in BΣ2. Indeed, it suffices to
compute Σ2-chains of length 3 and the B-schemas for all B ⊆ A to check validity
of both equations. Computing this information is possible by Proposition 5, and
therefore, we get the following corollary.

Corollary 11. Definability of a regular language in BΣ2 is decidable.

7 Conclusion

We solved the separation problem for Σ2 using the new notion of Σ2-chains, and
we used our solution to prove decidable characterizations for BΣ2, ∆3, Σ3 and Π3.
The main open problem in this field remains to lift up these results to higher levels
in the hierarchy. In particular, we proved that for any natural i, generalizing our
separation solution to Σi (i.e., being able to compute the Σi-chains of length 2)
would yield a decidable characterization for Σi+1, Πi+1 and ∆i+1.

Our algorithm for computing Σ2-chains cannot be directly generalized for
higher levels. An obvious reason for this is the fact that it considers Σ2-chains
parametrized by sub-alphabets. This parameter is designed to take care of the
alternation between levels 1 and 2, but is not adequate for higher levels. However,
this is unlikely to be the only problem. In particular, we do have an algorithm
that avoids using the alphabet, but it remains difficult to generalize. We leave
the presentation of this alternate algorithm for further work.

Another open question is to generalize our results to logical formulas that
can use a binary predicate +1 for the successor relation. In formal languages,
this corresponds to the well-known dot-depth hierarchy [7]. It was proved in [24]
and [15] that decidability of BΣ2(<,+1) and Σ3(<,+1) is a consequence of our
results for BΣ2(<) and Σ3(<). However, while the reduction itself is simple,
its proof rely on deep algebraic arguments. We believe that our techniques
can be generalized to obtain direct proofs of the decidability of BΣ2(<,+1)
and Σ3(<,+1).

References

1. J. Almeida. Some algorithmic problems for pseudovarieties. Publ. Math. Debrecen,
54:531–552, 1999. Proc. of Automata and Formal Languages, VIII.

2. J. Almeida and O. Kĺıma. New decidable upper bound of the 2nd level in the
Straubing-Thérien concatenation hierarchy of star-free languages. DMTCS, 2010.

3. M. Arfi. Polynomial operations on rational languages. In STACS’87, 1987.
4. M. Bojanczyk. Factorization forests. In DLT’09, pages 1–17, 2009.
5. M. Bojanczyk and T. Place. Regular languages of infinite trees that are boolean

combinations of open sets. In ICALP’12, pages 104–115, 2012.
6. J. Brzozowski and R. Knast. The dot-depth hierarchy of star-free languages is

infinite. J. Comp. Syst. Sci., 16(1):37–55, 1978.
7. R. S. Cohen and J. Brzozowski. Dot-depth of star-free events. J. Comp. Syst. Sci.,

5:1–16, 1971.
8. W. Czerwinski, W. Martens, and T. Masopust. Efficient separability of regular

languages by subsequences and suffixes. In ICALP’13, pages 150–161, 2013.
9. M. Kufleitner. The height of factorization forests. In MFCS’08, 2008.

10. R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, 1971.
11. J.-E. Pin. Bridges for concatenation hierarchies. In ICALP’98, 1998.
12. J.-E. Pin. Theme and variations on the concatenation product. In 4th Int. Conf.

on Algebraic Informatics, pages 44–64. Springer, 2011.
13. J.-E. Pin and H. Straubing. Monoids of upper triangular boolean matrices. In

Semigroups. Structure and Universal Algebraic Problems, volume 39 of Colloquia
Mathematica Societatis Janos Bolyal, pages 259–272. North-Holland, 1985.

14. J.-E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory of
Computing Systems, 30(4):383–422, 1997.

15. J.-E. Pin and P. Weil. The wreath product principle for ordered semigroups.
Communications in Algebra, 30:5677–5713, 2002.

16. T. Place, L. van Rooijen, and M. Zeitoun. Separating regular languages by piecewise
testable and unambiguous languages. In MFCS’13, pages 729–740, 2013.

17. T. Place, L. van Rooijen, and M. Zeitoun. Separating regular languages by locally
testable and locally threshold testable languages. In FSTTCS’13, LIPIcs, 2013.

18. T. Place and M. Zeitoun. Going higher in the first-order quantifier alternation
hierarchy on words. Arxiv, 2014.

19. T. Place and M. Zeitoun. Separating regular languages with first-order logic. In
CSL-LICS’14, 2014.

20. M. P. Schützenberger. On finite monoids having only trivial subgroups. Information
and Control, 8:190–194, 1965.

21. I. Simon. Piecewise testable events. In 2nd GI Conference on Automata Theory
and Formal Languages, pages 214–222, 1975.

22. I. Simon. Factorization forests of finite height. TCS, 72(1):65–94, 1990.
23. H. Straubing. A generalization of the Schützenberger product of finite monoids.

TCS, 1981.
24. H. Straubing. Finite semigroup varieties of the form V ∗ D. J. Pure App. Algebra,

36:53–94, 1985.
25. H. Straubing. Semigroups and languages of dot-depth two. TCS, 1988.
26. H. Straubing. Finite Automata, Formal Logic and Circuit Complexity. 1994.
27. P. Tesson and D. Therien. Diamonds are forever: The variety DA. In Semigroups,

Algorithms, Automata and Languages, pages 475–500. World Scientific, 2002.
28. D. Thérien. Classification of finite monoids: the language approach. TCS, 1981.
29. D. Thérien and T. Wilke. Over words, two variables are as powerful as one quantifier

alternation. In STOC’98, pages 234–240. ACM, 1998.
30. W. Thomas. Classifying regular events in symbolic logic. J. Comp. Syst. Sci., 1982.
31. W. Thomas. A concatenation game and the dot-depth hierarchy. In Computation

Theory and Logic, pages 415–426. 1987.

Appendix

We divide this appendix into several sections. In Appendix A, we define the main
tools we will use for our proofs: Ehrenfeucht-Fräıssé games and factorization
forests. In Appendix B, we complete Section 4 by proving the correctness and
completeness of our algorithm for computing Σ2-chains. In Appendix C, we prove
Theorem 7, i.e. our characterization of Σi(<) (which is decidable for i 6 3). The
remaining appendices are then devoted to the proof of Theorem 10, i.e. our decid-
able characterization of BΣ2(<). In Appendix D we define Chains Trees which
are our main tool for proving the difficult direction of the characterization. In
Appendix E we give an outline of the proof. Finally, Appendix F and Appendix G
are devoted to proving the two most difficult propositions in the proof.

A Tools

In this appendix we define Ehrenfeucht-Fräıssé games and factorization forests.
Both notions are well-known and we will use them several times in our proofs.

A.1 Ehrenfeucht-Fräıssé Games

It is well known that the expressive power of logics can be expressed in terms of
games. These games are called Ehrenfeucht-Fräıssé games. We define here the
game tailored to the quantifier alternation hierarchy.

Before we give the definition, a remark is in order. There are actually two
ways to define the class of Σi(<)-definable languages. First, one can consider all
first-order formulas and say that a formula is Σi(<) if it has at most i blocks of
quantifiers once rewritten in prenex normal form. This is what we do. However,
one can also restrict the set of allowed formulas to those that are already in
prenex form and have at most i blocks of quantifiers. While this does not change
the class of Σi(<)-definable languages as a whole, this changes the set of formulas
of quantifier rank k for a fixed k. Therefore, this changes the preorder .k

i . This
means that there is a version of the Ehrenfeucht-Fräıssé game for each definition.
In this paper, we use the version that corresponds to the definition given in the
main part of the paper (i.e., the one considering all first-order formulas).

Ehrenfeucht-Fräıssé games. Set i a level in the quantifier alternation hierarchy.
We define the game for Σi(<). The board of the game consists of two words
w,w′ ∈ A∗ and there are two players called Spoiler and Duplicator. Moreover,
there exists a distinguished word among w,w′ that we call the active word. The
game is set to last a predefined number k of rounds. When the game starts, both
players have k pebbles. Moreover, there are two parameters that get updated
during the game, the active word and a counter c called the alternation counter.
Initially, c is set to 0.

At the start of each round j, Spoiler chooses a word, either w or w′. Spoiler
can always choose the active word, in which case both c and the active word
remain unchanged. However, Spoiler can only choose the word that is not active

when c < i− 1, in which case the active word is switched and c is incremented
by 1 (in particular this means that the active word can be switched at most i− 1
times). If Spoiler chooses w (resp. w′), he puts a pebble on a position xj in w
(resp. x′j in w′).

Duplicator must answer by putting a pebble at a position x′j in w′ (resp. xj

in w). Moreover, Duplicator must ensure that all pebbles that have been placed
up to this point verify the following condition: for all `1, `2 6 j, the labels at
positions x`1

, x′`1
are the same, and x`1 < x`2 iff x′`1

< x′`2
.

Duplicator wins if she manages to play for all k rounds, and Spoiler wins as
soon as Duplicator is unable to play.

Lemma 12 (Folklore). For all k, i ∈ N and w,w′ ∈ A∗, w .k
i w
′ iff Duplicator

has a winning strategy for playing k rounds in the Σi(<) game played on w,w′

with w as the initial active word.

Note that we will often use Lemma 12 implicitly and alternate between the
original and the game definition of .k

i . We now give a few classical lemmas on
Ehrenfeucht-Fräıssé games that we reuse several times in our proofs. We begin
with a lemma stating that .k

i is a pre-congruence, i.e. that it is compatible with
the concatenation product.

Lemma 13. Let i ∈ N and let w1, w2, w
′
1, w

′
2 ∈ A∗ such that w1 .k

i w2 and
w′1 .k

i w
′
2. Then w1w

′
1 .k

i w2w
′
2.

Proof. By Lemma 12, Duplicator has winning strategies in the level i games
between w1, w2 and w′1, w′2, with w1, w

′
1 as initial active words respectively. These

strategies can be easily combined into a strategy for the level i game between w1w
′
1

and w2w
′
2 with w1w

′
1 as intial active word. We conclude that w1w

′
1 .k

i w2w
′
2. ut

The second property concerns full first-order logic.

Lemma 14. Let k, k1, k2 ∈ N be such that k1, k2 > 2k − 1. Let v ∈ A∗. Then

∀i ∈ N, vk1 .k
i v

k2 .

Proof. This is well known for full first-order logic (see [26] for details). ut

We finish with another classical property, which is this time specific to Σi(<).

Lemma 15. Let i ∈ N, let k, `, r, `′, r′ ∈ N be such that `, r, `′, r′ > 2k and let
u, v ∈ A∗ such that u .k

i v. Then we have:

v`vr .k
i+1 v

`′uvr′ .

Proof. Set w = v`vr and w′ = v`′uvr′ . We prove that w .k
i+1 w′ using an

Ehrenfeucht-Fräıssé argument: we prove that Duplicator has a winning strategy
for the game in k rounds for Σi+1(<) played on w,w′ with w as initial active word.
The proof goes by induction on k. We distinguish two cases depending on the
value, 0 or 1, of the alternation counter c after Spoiler has played the first round.

Case 1: c = 1. In this case, by definition of the game, it suffices to prove that
w′ .k

i w. From our hypothesis we already know that u .k
i v. Moreover, it follows

from Lemma 14 that v`′ .k
i v

` and vr′ .k
i v

r−1. It then follows from Lemma 13
that w′ .k

i w.
Case 2: c = 0. By definition, this means that Spoiler played on some position
x in w. Therefore x is inside a copy of the word v. Since w contains more than
2k+1 copies of v, by symmetry we can assume that there are at least 2k copies
of v to the right of x. We now define a position x′ inside w′ that will serve as
Duplicator’s answer. We choose x′ so that it belongs to a copy of v inside w′
and is at the same relative position inside this copy as x is in its own copy of v.
Therefore, to fully define x′, it only remains to define the copy of v in which we
choose x′. Let n be the number of copies of v to the left of x in w, that is, x
belongs to the (n+ 1)-th copy of v starting from the left of w. If n < 2k−1 − 1,
then x′ is chosen inside the (n + 1)-th copy of v starting from the left of w′.
Otherwise, x′ is chosen inside the 2k−1-th copy of v starting from the left of w′.
Observe that these copies always exist, since `′ > 2k.

Set w = wpvwq and w′ = w′pvw
′
q, with the two distinguished v factors being

the copies containing the positions x, x′. By definition of the game, it suffices to
prove that wp .k−1

i+1 w′p and wq .k−1
i+1 w′q to conclude that Duplicator can play for

the remaining k−1 rounds. If n < 2k−1−1, then by definition, wp = w′p, therefore
it is immediate that wp .k−1

i+1 w′p. Otherwise, both wp and w′p are concatenations
of at least 2k−1− 1 copies of v. Therefore wp .k−1

i+1 w′p follows Lemma 14. Finally
observe that by definition wq = v`1vr and w′q = v`′1uvr′ with `1 + r > 2k and
`′1, r

′ > 2k−1. Therefore, it is immediate by induction on k that wq .k−1
i+1 w′q. ut

A.2 Simon’s Facorization Forests Theorem
In this appendix, we briefly recall the definition of factorization forests and state
the associated theorem. Proofs and more detailed presentations can be found
in [9,4]

Let M be a finite monoid and α : A∗ →M a morphism. An α-factorization
forest is an ordered unranked tree with nodes labeled by words in A∗ and such
that for any inner node x with label w, if x1, . . . , xn are its children listed from
left to right with labels w1, . . . , wn, then w = w1 · · ·wn. Moreover, all nodes x in
the forest must be of the three following kinds:
– leaf nodes which are labeled by either a single letter or the empty word.
– binary nodes which have exactly two children.
– idempotent nodes which have an arbitrary number of children whose labels
w1, . . . , wn verify α(w1) = · · · = α(wn) = e for some idempotent e ∈M .
If w ∈ A∗, an α-factorization forest for w is an α-factorization forest whose

root is labeled by w.
Theorem 16 (Factorization Forest Theorem of Simon [22,9]). For all
w ∈ A∗, there exists an α-factorization forest for w of height smaller than
3|M | − 1.

B Appendix to Section 4: Proving the Algorithm

In this appendix, we prove Proposition 5, that it is the correctness and complete-
ness of our algorithm which computes sets of compatible Σ2-chains. Recall that
our algorithm works by fixpoint. Given as input a morphism α : A∗ →M into a
finite monoid M and a natural n ∈ N, it applies iteratively the procedure Satn,
starting from the application C 7→ In[C], where In[C] is the set of trivial sets
of compatible Σ2-chains of length n for α,C. The fixpoint is a collection of sets
indexed by subalphabets B, denoted by Sat∗n[B](C 7→ In[C]).

We have to show that when the algorithm reaches its fixpoint, the computed
set ↓Sat∗n[B](C 7→ In[C]) consists exactly of all compatible sets of Σ2-chains
of length n. This is formulated in Proposition 5, which we restate. In addition,
it states that for every length n, one can compute a rank `(n) that suffices to
capture all sets of compatible sets of Σ2-chains of length n. In the following,
we let

`(n) = 3|M | · 2|A| · n · 222|M|n

.

Proposition 5. Let n > 1, B ⊆ A and ` > `(n). Then

C2,n[α,B] = C`
2,n[α,B] = ↓Sat∗n[B](C 7→ In[C]).

We proceed by induction on n. Observe that when n = 1 all three sets are by
definition equal to In[B], therefore the result is immediate. Assume now that
n > 2. Using our induction hypothesis we have the following fact.

Fact 17 Let B ⊆ A, then C2,n−1[α,B] = C
`(n−1)
2,n−1 [α,B]. Moreover, it follows that

C2,n−1[α,B] = C`(n−1)
2,n−1 [α,B].

For all B ⊆ A, we prove the following inclusions: C2,n[α,B] ⊆ C`
2,n[α,B] ⊆

↓Sat∗n[B](C 7→ In[C]) ⊆ C2,n[α,B]. Observe that C2,n[α,B] ⊆ C`
2,n[α,B] is

immediate by definition. Therefore, we have two inclusions to prove:

– ↓Sat∗n[B](C 7→ In[C]) ⊆ C2,n[α,B], this corresponds to correctness of the
algorithm: all computed sets are indeed sets of compatible Σ2-chains.

– C`
2,n[α,B] ⊆ ↓Sat∗n[B](C 7→ In[C]), this corresponds to completeness of the

algorithm: all sets of compatible Σ2-chains are computed.

We give each proof its own subsection. Note that Fact 17 (i.e., induction on n) is
only used in the completeness proof.

B.1 Correctness of the Algorithm

In this subsection, we prove that for all B ⊆ A, ↓Sat∗n[B](C 7→ In[C]) ⊆
C2,n[α,B]. This is a consequence of the following proposition.

Proposition 18. Set B ⊆ A, for all k ∈ N, Sat∗n[B](C 7→ In[C]) ⊆ Ck
2,n[α,B].

Before proving Proposition 18, we explain how it is used to prove correctness.
By definition, for all B, C2,n[α,B] =

⋂
k∈N Ck

2,n[α,B]. Therefore, it is immediate
from the proposition that Sat∗n[B](C 7→ In[C]) ⊆ C2,n[α,B]. Moreover, by
definition, ↓C2,n[α,B] = C2,n[α,B]. We conclude that ↓Sat∗n[B](C 7→ In[C]) ⊆
C2,n[α,B] which terminates the correctness proof. It now remains to prove
Proposition 18.

Let k ∈ N, B ⊆ A and R ∈ Sat∗n[B](C 7→ In[C]). We need to prove that
R ∈ Ck

2,n[α,B]. By definition, R ∈ Satjn[B](C 7→ In[C]) for some j. We proceed
by induction on j. If j = 0, this is immediate since R ∈ In[B] ⊆ Ck

2,n[α,B].
Assume now that j > 0. For all D ⊆ A, we set TD = Satj−1

n [D](C 7→ In[C]).
By induction hypothesis, for every D ⊆ A, every element of TD belongs to
Ck

2,n[α,D]. Since R ∈ Satjn[B](C 7→ In[C]), by definition we have R ∈ TB ∪
MB ∪OB with

MB =
⋃

C∪D=B

(TC · TD)

OB = {T ω · (1M , C2,n−1[α,B]) · T ω | T ∈ TB}

If R ∈ TB , it is immediate by induction that R ∈ Ck
2,n[α,B] and we are finished.

Assume now thatR ∈MB . This means that there exist C,D such that C∪D = B,
TC ∈ TC and TD ∈ TD such that R = TC · TD. By induction hypothesis, we
have TC ∈ Ck

2,n[α,C] and TD ∈ Ck
2,n[α,D]. It is then immediate by Fact 3 that

R = TC · TD ∈ Ck
2,n[α,B].

It remains to treat the case when R ∈ OB . In that case, we get T ∈ TB such
that R = T ω ·(1M , C2,n−1[α,B]) ·T ω. In the following, we write h = ω×22k (with
ω as ω(2Mn)). Note that by definition of the number ω, we have T ω = T h, and
in particular, R = T h · (1M , C2,n−1[α,B]) · T h. Observe first that by induction
hypothesis, we know that T ∈ Ck

2,n[α,B]. In particular, this means that all chains
in T have the same first element. We denote by t1 this element. By definition
of Ck

2,n[α,B], we get u ∈ A∗ such that alph(u) = B, α(u) = t1 and for all chains
(t1, . . . , tn) ∈ T there exist u2, . . . , un ∈ A∗ satisfying u .k

2 u2 .k
2 · · · .k

2 un and
for all j, tj = α(uj) and alph(uj) = B.

We now prove that R ∈ Ck
2,n[α,B]. Set w = u2h and r1 = α(w) = tω1 , by

definition alph(w) = B. Observe that since R = T ω ·(1M , C2,n−1[α,B]) ·T ω, every
chain in R has r1 as first element. We now prove that for any chain (r1, . . . , rn) ∈
R, there exist w2, . . . , wn ∈ A∗ satisfying w .k

2 w2 .k
2 · · · .k

2 wn and for all j,
rj = α(wj) and alph(wj) = B. By definition, this will mean that R ∈ Ck

2,n[α,B].
Set (r1, . . . , rn) ∈ R. By hypothesis, (r1, . . . , rn) = (t′1t′′1 , t′2s2t

′′
2 , . . . , t

′
nsnt

′′
n)

with (t′1, . . . , t′n), (t′′1 , . . . , t′′n) ∈ T h and (s2, . . . , sn) ∈ C2,n−1[α,B]. In particular,
t′1 = t′′1 = th1 = tω1 . Since T ∈ C2,n[α,B], we have T h ∈ C2,n[α,B], so we
get w′2, . . . , w′n, w′′2 , . . . , w′′n ∈ A∗ such that for all j, alph(w′j) = alph(w′′j) = B,
α(w′j) = t′j and α(w′′j) = t′′j and we have:

uh .k
2 w
′
2 .k

2 · · · .k
2 w
′
n

uh .k
2 w
′′
2 .k

2 · · · .k
2 w
′′
n

On the other hand, using the fact that (s2, . . . , sn) ∈ C2,n−1[α,B], we get words
v2, . . . , vn ∈ A∗, mapped to s2, . . . , sn by α and all having alphabet B, such
that v2 .k

2 · · · .k
2 vn. For all j > 2, set wj = w′jvjw

′′
j . Observe that for any

j > 2, alph(wj) = B and α(wj) = sj . Therefore it remains to prove that
w .k

2 w2 .k
2 · · · .k

2 wn to terminate the proof. That w2 .k
2 · · · .k

2 wn is
immediate by Lemma 13. Recall that w = u2h, therefore the last inequality is a
consequence of the following lemma.

Lemma 19. uhuh .k
2 w
′
2v2w

′′
2

Proof. By Lemma 13, we have uhv2u
h .k

2 w
′
2v2w

′′
2 . Therefore, it suffices to prove

that uhuh .k
2 u

hv2u
h to conclude. Recall that by definition alph(v2) = alph(u) =

B, therefore, it is straightforward to see that

v2 .k
1 u

2k

(6)

Moreover, we chose h = ω × 22k. Therefore, it is immediate from Lemma 15
and (6) that uhuh .k

2 u
hv2u

h. ut

B.2 Completeness of the Algorithm

We need to prove that for all B ⊆ A, we have C`
2,n[α,B] ⊆ ↓Sat∗n[B](C 7→ In[C])

for ` > `(n), where `(n) = 3|M | · 2|A| ·n · 222|M|n . We do this by proving a slightly
more general proposition by induction. To state this proposition, we need more
terminology.

Generated Compatible Sets. Set k ∈ N, w ∈ A∗ and B = alph(w). We set
Gk

n(w) ∈ 2Mn as the following set of chains of length n: (t1, . . . , tn) ∈ Gk
n(w) iff

t1 = α(w) and there exists w2, . . . , wn ∈ A∗ satisfying

– for all j, α(wj) = tj .
– w .k

2 w2 .k
2 · · · .k

2 wn.

Observe that the last item implies that all wj have the same alphabet alph(w).
Therefore, by definition, any Gk

n(w) is a compatible set of Σ2-chains of length n:
Gk

n(w) ∈ Ck
2,n[α, alph(w)]. Moreover, any compatible set of Σ2-chains of length

n, T ∈ Ck
2,n[α,B] is a subset of Gk

n(w) for some w of alphabet B. We finish the
definition with a decomposition lemma that will be useful in the proof.

Lemma 20. Let w1, . . . , wm+1 ∈ A∗ and k ∈ N with k > m, then:

Gk
n(w1 · · ·wm+1) ⊆ Gk−m

n (w1) · · · Gk−m
n (wm+1)

Proof. Let (s1, . . . , sn) ∈ Gk
n(w1 · · ·wm+1). By definition, there exists u1, . . . , un

such that u1 = w1 · · ·wm+1, for all i, α(ui) = si and u1 .k
2 · · · .k

2 un. Using
a simple Ehrenfeucht-Fräıssé argument, we obtain that all words ui can be
decomposed as ui = ui,1 · · ·ui,m+1 with u1,1 = w1, . . . , u1,m+1 = wm+1 and for

all j: u1,j .k−m
2 · · · .k−m

2 un,j . For all i, j, set si,j = α(ui,j). By definition, for
all j, (s1,j , . . . , sn,j) ∈ Gk−m

n (wj). Moreover, we have

(s1, . . . , sn) = (s1,1, . . . , sn,1) · · · (s1,m+1, . . . , sn,m+1).

Therefore, we have (s1, . . . , sn) ∈ Gk−m
n (w1) · · · Gk−m

n (wm+1) which terminates
the proof. ut

We can now state our inductive proposition and prove that C`
2,n[α,B] ⊆

↓Sat∗n[B](C 7→ In[C]). Set β : A∗ →M × 2A defined as β(w) = (α(w), alph(w)).

Proposition 21. Let B ⊆ A, j ∈ N and w ∈ A∗ that admits a β-factorization
forest of height h and such that alph(w) = B. Set k > h · 222|M|n + `(n− 1), then
Gk

n(w) ∈ ↓Sat∗n[B](C 7→ In[C]).

Before proving Proposition 21, we explain how to use it to terminate our
completeness proof. Set T ∈ C`

2,n[α,B], by definition, this means that there exists
w ∈ A∗ such that alph(w) = B and T ⊆ G`

n(w). By Theorem 16, we know that w
admits a β-factorization forest of height at most 3|M |2|A|. Therefore, by choice
of `, we can apply Proposition 21 and we obtain Gk

n(w) ∈ ↓Sat∗n[B](C 7→ In[C]).
By definition of ↓ it is then immediate that T ∈ ↓Sat∗n[B](C 7→ In[C]) which
terminates the proof.

It remains to prove Proposition 21. Note that this is where we use Fact 17
(i.e. induction on n). Set w ∈ A∗ that admits a β-factorization forest of height
h, B = alph(w) and k > h× 223|M|n + `(n− 1). We need to prove that Gk

n(w) ∈
↓Sat∗n[B](C 7→ In[C]), i.e., to construct T ∈ Sat∗n[B](C 7→ In[C]) such that
Gk

n(w) ⊆ T . The proof is by induction on the height h of the factorization forest
of w. It works by applying the proposition inductively to the factors given by
this factorization forest. In particular, we will use Lemma 20 to decompose Gk

n(w)
according to this factorization forest. Then, once the factors have been treated
by induction, we will use the definition of the procedure Satn (i.e. Operations (1)
and (2)) to conclude. In particular, we will use the following fact several times.

Fact 22 ↓Sat∗n[B](C 7→ In[C]) is subsemigroup of 2Mn .

Proof. We prove that Sat∗n[B](C 7→ In[C]) is subsemigroup of 2Mn , the result is
then immediate by definition of ↓. Set S1,S2 ∈ Sat∗n[B](C 7→ In[C]). By definition
of Satn (see Operation (1)), we have S1 · S2 ∈ Satn[B](B 7→ Sat∗n[B](C 7→
In[C])) = Sat∗n[B](C 7→ In[C]). ut

We now start the induction. We distinguish three cases depending on the
nature of the topmost node in the β-factorization forest of w.

Case 1: the topmost node is a leaf. In that case, h = 1 and w is a single letter
word a ∈ A. In particular B = alph(w) = {a}. Observe that k > 2, therefore, one
can verify that Gk

n(a) = {(α(a), . . . , α(a))}. It follows that Gk
n(a) ∈ In[B] which

terminates the proof for this case.

Case 2: the topmost node is a binary node. We use induction on h and
Operation (1) in the definition of Satn. By hypothesis w = w1 · w2 with w1, w2
words admitting β-factorization forests of heights h1, h2 6 h−1. SetB1 = alph(w1)
and B2 = alph(w2), by definition, we have B = B1 ∪B2. Moreover, observe that

k − 1 > (h− 1) · 222|M|n

+ `(n− 1).

Therefore, we can apply our induction hypothesis to w1, w2 and we obtain T1 ∈
Sat∗n[B1](C 7→ In[C]) and T2 ∈ Sat∗n[B2](C 7→ In[C]) such that Gk−1

n (w1) ⊆ T1
and Gk−1

n (w2) ⊆ T2. By Operation (1) in the definition of Sat, it is immediate
that T1 · T2 ∈ Sat∗n[B](C 7→ In[C]). Moreover, by Lemma 20, Gk

n(w) ⊆ Gk−1
n (w1) ·

Gk−1
n (w2) ⊆ T1 · T2. It follows that Gk

n(w) ∈ ↓Sat∗n[B](C 7→ In[C]) which
terminates this case.

Case 3: the topmost node is an idempotent node. This is the most difficult
case. We use induction on h, Operation (2) in the definition of Satn and Fact 22.
Note that this is also where Fact 17 (i.e. induction on n in the general proof of
Proposition 5) is used. We begin by summarizing our hypothesis: w admits what
we call an (e,B)-decomposition.

(e,B)-Decompositions. Set k̃ = (h−1)·222|M|n +`(n−1), e ∈M an idempotent
and u ∈ A∗. We say that u admits an (e,B)-decomposition u1, . . . , um if

a) u = u1 · · ·um,
b) for all j, alph(uj) = B and α(uj) = e and
c) for all j, Gk̃

n(wj) ∈ ↓Sat∗n[B](C 7→ In[C]).

Note that b) means that β(uj) is a constant idempotent, where we recall that
β : A∗ →M × 2A is the morphism defined by β(w) = (α(w), alph(w)).

Fact 23 w admits an (e,B)-decomposition for some idempotent e ∈M .

Proof. By hypothesis of Case 3, there exists a decomposition w1, . . . , wm of w
that satisfies points a) and b). Moreover, for all j, wj admits a β-factorization
forest of height hj 6 h−1. Therefore point c) is obtained by induction hypothesis
on the height h. ut

For the remainder of this case, we assume that the idempotent e ∈M and the
(e,B)-decomposition w1, . . . , wm of w are fixed. We finish the definition, with
the following useful fact, which follows from Fact 17.

Fact 24 Assume that u admits an (e,B)-decomposition u1, . . . , um and let i 6
j 6 m. Then, G`(n−1)

n (ui · · ·uj) ⊆ (e, C2,n−1[B]).

Proof. Let (s1, . . . , sn) ∈ G`(n−1)
n (ui · · ·uj). Since α(ui · · ·uj) = e, we have s1 = e.

Moreover, it is immediate from Fact 17 that (s2, . . . , sn) ∈ C2
n−1[α,B]. We

conclude that (s1, . . . , sn) ∈ (e, C2,n−1[B]). ut

Recall that we want to prove that Gk
n(w) ∈ ↓Sat∗n[B](C 7→ In[C]). In general,

the number of factors m in the (e,B)-decomposition of w can be arbitrarily
large. In particular, it is possible that k − (m − 1) < k̃. This means that we
cannot simply use Lemma 20 as we did in the previous case to conclude that
Gk

n(w) ⊆ Gk̃
n(w1) · · · Gk̃

n(wm). However, we will partition w1, . . . , wm as a bounded
number of subdecompositions that we can treat using Operation (2) in the
definition of Satn. The partition is given by induction on a parameter of the
(e,B)-decomposition w1, . . . , wm that we define now.

Index of an (e,B)-decomposition. Set kn = 2|M |n (the size of the monoid
2Mn). Let u ∈ A∗ that admits an (e,B)-decomposition u1, . . . , um and let j ∈ N
such that 1 6 j 6 m − kn (i.e. j is the index of one of the first m − kn

factors in the decomposition). The kn-sequence occurring at j is the sequence
Gk̃

n(wj), . . . ,Gk̃
n(wj+kn

) ∈ ↓Sat∗n[B](C 7→ In[C]). The index of u1, . . . , um is the
number of kn-sequences that occur in u1, . . . , um. Observe that by definition, there
are at most (kn)kn+1 kn-sequences. Therefore the index of the decomposition is
bounded by (kn)kn+1. We proceed by induction on the index of the decomposition
and state this induction in the following lemma.

Lemma 25. Let u ∈ A∗ admitting an (e,B)-decomposition u1, . . . , um of index
g and set k̂ > 2g+ 2(kn + 1) + k̃+ `(n− 1). Then Gk̂

n(u) ∈ ↓Sat∗n[B](C 7→ In[C]).

Before proving this lemma, we use it to conclude Case 3. We know that
our (e,B)-decomposition w1, . . . , wm has an index g 6 (kn)kn+1. Therefore, it
suffices to prove that k > 2(kn)kn+1 + 2(kn + 1) + k̃ + `(n − 1) to conclude
that Gk

n(w) ∈ ↓Sat∗n[B](C 7→ In[C]) using Lemma 25. One can verify that
222|M|n

> 2(kn)kn+1 + 2(kn + 1) as soon as kn > 2. It is then immediate that

k = h·222|M|n

+`(n−1) > 222|M|n

+(h−1)·222|M|n

+`(n−1) = 222|M|n

+k̃+`(n−1)

Proof (of Lemma 25). The proof goes by induction on the index g. We distinguish
two cases depending on whether there exists a kn-sequence that occurs at two
different positions in the (e,B)-decomposition.

Assume first that this is not the case, i.e., all kn-sequences occurring at
positions 1 6 j 6 m − kn are different. Since there are exactly g kn-sequences
occurring in the decomposition, a simple pigeon-hole principle argument yields
that m 6 g + kn. We use our choice of k̂ to conclude with a similar argument to
the one we used in Case 2. By Lemma 20, we have:

Gk̂
n(u) ⊆ Gk̂−(m−1))

n (u1) · · · Gk̂−(m−1)
n (um)

Observe that by hypothesis of this case, k̂−(m−1) > k̃. Therefore, by definition of
(e,B)-decompositions, for all j, Gk̂−(m−1))

n (uj) ∈ ↓Sat∗n[B](C 7→ In[C]). It is then
immediate from Fact 22 that Gk̂−(m−1))

n (u1) · · · Gk̂−(m−1)
n (um) ∈ ↓Sat∗n[B](C 7→

In[C]). We conclude that Gk̂
n(u) ∈ ↓Sat∗n[B](C 7→ In[C]) which terminates this

case.

Assume now that there exist j, j′ ∈ N such that 1 6 j < j′ 6 m− (kn − 1),
and the kn-sequences occurring at j and j′ are the same. For the remainder
of the proof, we set R1, . . . ,Rkn+1 as this common kn-sequence. Moreover, we
assume that j and j′ are chosen minimal and maximal respectively, i.e. there
exists no j′′ < j or j′′ > j′ such that R1, . . . ,Rkn+1 occur at j′′. By definition of
a kn-sequence, recall that we have R1, . . . ,Rkn+1 ∈ ↓Sat∗n[B](C 7→ In[C]). Set

v1 = u1 · · ·uj−1,

v2 = uj · · ·uj′+kn

v3 = uj′+kn+1 · · ·um.

By Lemma 20, we know that

Gk̂
n(u) ⊆ Gk̂−2

n (v1) · Gk̂−2
n (v2) · Gk̂−2

n (v3)

We prove that for i = 1, 2, 3, Gk̂−2
n (vi) ∈ ↓Sat∗n[B](C 7→ In[C]). By Fact 22, it

will then be immediate that Gk̂
n(u) ∈ ↓Sat∗n[B](C 7→ In[C]) which terminates

the proof. Observe that by choice of j, j′, u1, . . . , uj−1 and uj′+kn+1, . . . , um are
(e,B)-decompositions of index smaller than g (the kn-sequence R1, . . . ,Rkn+1
does not occur in these decompositions). Therefore, it is immediate by induction
hypothesis on g that Gk̂−2

n (v1),Gk̂−2
n (v3) ∈ ↓Sat∗n[B](C 7→ In[C]).

It remains to prove that Gk̂−2
n (v2) ∈ ↓Sat∗n[B](C 7→ In[C]). If j′ 6 j + kn,

then v2 admits an (e,B)-decomposition of length smaller than 2(kn + 1) and
we can conclude using Lemma 20 as in the previous case. Therefore, assume
that j′ > j + kn and set v = uj+kn+1 · · ·uj′−1 and observe that by definition
v2 = uj · · ·uj+kn

· v · uj′ · · ·uj′+kn
. Moreover, k̂ − 2 − 2(kn + 1) > k̃, using

Lemma 20 we get that

Gk̂−2
n (v2) ⊆ Gk̃

n(uj) · · · Gk̃
n(uj+kn

) · Gk̃
n(v) · Gk̃

n(uj′) · · · Gk̃
n(uj′+kn

)

By definition R1, . . . ,Rkn+1 is the kn-sequence occurring at both j and j′.
Therefore, it follows that

Gk̂−2
n (v2) ⊆ R1 · · ·Rkn+1 · Gk̃

n(v) · R1 · · ·Rkn+1 (7)

Intuitively, we want to find an idempotent in the sequence R1 · · ·Rkn+1 in order
to apply Operation (2). Observe that since the Rj are elements of the monoid
2Mn and kn = 2|M |n , the sequence R1 · · ·Rkn+1 must contain a ”loop.” By
this we mean that there exists j1 < j2 such that R1 · · ·Rj1 = R1 · · ·Rj2 . Set
S1 = R1 · · ·Rj1 , S2 = Rj1+1 · · ·Rj2 and S3 = Rj2+1 · · ·Rkn+1. By definition of
S1,S2,S3, we have R1 · · ·Rkn+1 = S1 · (S2)ω · S3. Note that by Fact 22, we have
S1,S2,S3 ∈ ↓Sat∗n[B](C 7→ In[C]). By replacing this in (7), we get

Gk̂−2
n (u2) ⊆ S1 · (S2)ω · S3 · Gk̃

n(v) · S1 · (S2)ω · S3

Moreover, observe that k̃ > `(n − 1), therefore, using Fact 24, we get that
S3 · Gk̃

n(v) · S1 ⊆ (e, C2,n−1[B]). Moreover, since all chains in S2 have e as first
element (see Fact 24), it is immediate that (S2)ω · (e, C2,n−1[B]) · (S2)ω = (S2)ω ·
(1M , C2,n−1[B]) · (S2)ω. This yields

Gk̂−2
n (u2) ⊆ S1 · (S2)ω · (1M , C2,n−1[B]) · (S2)ω · S3.

Since S2 ∈ ↓Sat∗n[B](C 7→ In[C]), it is immediate by Operation (2) in the
definition of Satn that (S2)ω · (1M , C2,n−1[B]) · (S2)ω ∈ ↓Sat∗n[B](C 7→ In[C]).
It then follows from Fact 22 that S1 · (S2)ω · (1M , C2,n−1[B]) · (S2)ω · S3 ∈
↓Sat∗n[B](C 7→ In[C]) and therefore that Gk̂−2

n (u2) ∈ ↓Sat∗n[B](C 7→ In[C])
which terminates the proof. ut

C Proof of Theorem 7: Characterization of Σi(<)

In this appendix, we prove Theorem 7, i.e., our characterization for Σi(<). For
this whole appendix, we assume that the level i in the quantifier alternation
hierarchy is fixed.

Theorem 7. Let L be a regular language and α : A∗ → M be its syntactic
morphism. For all i > 1, L is definable in Σi(<) iff α satisfies:

sω 6 sωtsω for all (t, s) ∈ Ci−1[α] (3)

There are two directions. We give each one its own subsection.

C.1 Equation (3) is necessary

We prove that the syntactic morphism of any Σi(<)-definable language satis-
fies (3). We state this in the following proposition.

Proposition 26. Let L be a Σi(<)-definable language and let α : A∗ → M be
its syntactic morphism. Then α satisfies (3).

Proof. By hypothesis, L is defined by some Σi(<)-formula ϕ. Let k be its
quantifier rank. Set (t, s) ∈ Ci−1[α], we need to prove that sω 6 sωtsω. Since
(t, s) ∈ Ci−1[α], by definition, there exist v, u such that α(v) = t, α(u) = s and
v .k

i−1 u. By Lemma 15, we immediately obtain

u2kω · u2kω .k
i u

2kω · v · u2kω.

It then follows from Lemma 13 that for any w1, w2 ∈ A∗ we have:

w1 · u2kω · u2kω · w2 .k
i w1 · u2kω · v · u2kω · w2. (8)

By definition, this means that w1 ·u2kω ·w2 ∈ L implies that w1 ·u2kωvu2kω ·w2 ∈ L.
Which, by definition of the syntactic preorder, means that sω 6 sωtsω. ut

C.2 Equation (3) is sufficient

It remains to prove that whenever α satisfies (3), L is definable in Σi(<). This is
a consequence of the following proposition.

Proposition 27. Let L be a regular language such that its syntactic morphism
α : A∗ →M satisfies (3). Then there exists k ∈ N such that for all u, v ∈ A∗:

u .k
i v ⇒ α(u) 6 α(v)

Assume for now that Proposition 27 holds and let α satisfy (3). Let then u, v ∈ A∗
with u ∈ L and u .k

i v. By Proposition 27, we deduce that α(u) 6 α(v) which,
by definition of the preorder 6, implies that v ∈ L. Therefore, .k

i saturates L,
so L is definable in Σi(<).

It remains to prove Proposition 27. We begin by choosing k. The choice
depends on the following lemma. Recall that Ck

i,2[α] is the set of chains of length
2 belonging to Ck

i [α].

Fact 28 For any morphism α : A∗ → M into a finite monoid M , there exists
ki ∈ N such that for all k > ki, Ck

i,2[α] = Ci,2[α].

Proof. This is because for all k < k′, Ck′

i,2[α] ⊆ Ck
i,2[α] ⊆M2. Since M2 is a finite

set, there exists an index ki such that for all k 6 ki, Ck
i,2[α] = Cki

i,2[α]. It is then
immediate by definition that Cki

i,2[α] = Ci,2[α]. ut

Observe that while proving proving the existence ki is easy, the proof is
non-constructive and computing ki from i, α is a difficult problem. In particular,
having ki allows us to compute all Σi-chains of length 2 via a brute-force
algorithm. When i = 2, we proved in Proposition 5 that it suffices to take
k2 = 3|M | · 2|A| · 2 · 222|M|2 .

We can now prove Proposition 27. Set ki−1 as defined in Fact 28 for i − 1.
This means that (s, t) is a Σi−1-chain for α iff there exists u, v ∈ A∗ such that
α(u) = s, α(v) = t and u .ki−1

i−1 v. We prove that Proposition 27 holds for
k = 6|M |+ ki−1. This follows from the next lemma.

Lemma 29. Let h ∈ N and u, v ∈ A∗, such that u admits an α-factorization
forest of height smaller than h. Then

u .2h+ki−1
i v ⇒ α(u) 6 α(v)

Observe that by Theorem 16 all words admit an α-factorization forest of
height less than 3|M |. Therefore, Proposition 27 is an immediate consequence of
Lemma 29. It remains to prove the lemma.

Proof (of Lemma 29). We distinguish three cases depending on the nature of
the topmost node in the α-factorization forest of u. If the topmost node is a leaf
then u is a single letter word. Moreover, since 2h+ ki−1 = 2 + ki−1 > 2, we have
u .2

i v, therefore, v = u and α(u) = α(v).

If the topmost node is a binary node then u = u1 · u2 with u1, u2 admitting
α-factorization forests of height h1, h2 6 h−1. Using a simple Ehrenfeucht-Fräıssé
argument, we get that v = v1 · v2 with u1 .2h+ki−1−1

i v1 and u2 .2h+ki−1−1
i v2.

Since 2h+ ki−1− 1 > 2(h− 1) + ki−1, we can use our induction hypothesis which
yields that α(u1) 6 α(v1) and α(u2) 6 α(v2). By combining the two we obtain
that α(u) = α(u1) · α(u2) 6 α(v1) · α(v2) = α(v).

If the topmost node is an idempotent node for some idempotent e, then
u = u1 · u′ · u2 such that α(u1) = α(u2) = α(u′) = e and u1, u2 admit α-
factorization forests of height h1, h2 6 h−1. By using a simple Ehrenfeucht-Fräıssé
argument we get that v = v1 ·v′ ·v2 such that u1 .2h+ki−1−2

i v1, u′ .2h+ki−1−2
i v′

and u2 .2h+ki−1−2
i v2. Applying the induction hypothesis as in the previous case,

we get that e = α(u1) 6 α(v1) and e = α(u2) 6 α(v2). However, we cannot apply
induction on u′ since the height of its α-factorization forest has not decreased. We
use Equation (3) instead. We know that u′ .2h+ki−1−2

i v′, therefore, by choice
of ki, we have (α(v′), α(u′)) ∈ Ci−1[α]. Recall that by hypothesis of this case,
α(u′) = e. Therefore, by Equation (3), we get that:

α(u) = e 6 e · α(v′) · e 6 α(v1) · α(v′) · α(v2) = α(v)

which terminates the proof. ut

D Analyzing Σ2-Chains: Chain Trees

In this appendix, we define chain trees. Chain trees are our main tool in the
proof of the difficult ’if’ direction of Theorem 10. The main goal of the notion is
to analyze how Σ2-chains are constructed. In particular we are interested in a
specific property of the set of Σ2-chains that we define now.

Alternation. Let M be a finite monoid. We say that a chain (s1, . . . , sn) ∈M∗
has alternation ` if there are exactly ` indices i such that si 6= si+1. We say that
a set of chains S has bounded alternation if there exists a bound ` ∈ N such that
all chains in S have alternation at most `.

We will see in Appendix E that C2[α] having bounded alternation is another
characterization of BΣ2(<). The difficult direction of Theorem 10 will then be
reduced to proving that if C2[α] has unbounded alternation then one of the two
equations in the characterization is contradicted. Therefore, we will need a way to
analyze how Σ2-chains with high alternation are built. In particular, we will need
to extract a property from the set of Σ2-chains that decides which equation is
contradicted. This is what chain trees are for. Intuitively, a chain tree is associated
to a single Σ2-chain and represents a computation of our algorithm (see Section 4)
that yields this Σ2-chain.

As we explained in the main paper, one can find connections between our proof
and that of the characterization of boolean combination of open sets of trees [5].
In [5] as well, the authors consider a notion of “chains” which corresponds to
open sets of trees and need to analyze how they are built. This is achieved with
an object called “Strategy Tree”. Though strategy trees and chain trees share

the same purpose, i.e., analyzing how chains are built, there is no connection
between the notions themselves since they deal with completely different objects.

We organize the appendix in three subsections. We first define the general
notion of chain trees. In the second subsection, we define the main tool we use
to analyze chain trees: context values. In particular, we prove that we can use
context values to generate B-schemas. Finally, in the last subsection, we define
a strict subset of chain trees: the locally optimal chain trees and prove that it
suffices to consider only such chain trees (i.e., that for any Σ2-chain there exists
a locally optimal chain tree that “computes” it).

D.1 Definition

Set α : A∗ →M a morphism into a finite monoid M . We associate to α a set T[α]
of chain trees. As we explained, a chain tree is associated to a single Σ2-chain
for α and represents a way to compute this Σ2-chain using our algorithm. Note
that our algorithm works with sets of compatible sets of Σ2-chains, while chain
trees are for single Σ2-chains. This difference will be reflected in the definition.
For all n ∈ N we define `n = ω(2Mn).

Chain Trees. Set n ∈ N. A chain tree T of level n for α is an ordered unranked
tree that may have two types of (unlabeled) inner nodes: product nodes and
operation nodes, and two types of leaves, labeled with a Σ2-chain of length n:
initial leaves and operation leaves. Moreover, to each node x in the tree, we
associate an alphabet alph(x) ⊆ A and a value val(x) ∈Mn by induction on the
structure of the tree.

Intuitively, each type of node corresponds to a part of the algorithm that
computes Σ2-chains. Initial leaves correspond to the initial trivial compatible sets
from which the algorithm starts, product nodes correspond to the product (1),
finally operation nodes and leaves can only be used together and correspond to
the application of (2). We now give a precise definition of each type of node.

Initial Leaves. An initial leaf x is labeled with a constant Σ2-chain (s, · · · , s) ∈
C2,n[α,B] for some B ⊆ A. We set alph(x) = B and val(x) = (s, · · · , s).

Operation Leaves. An operation leaf x is labeled with an arbitrary Σ2-chain
s̄ ∈ C2,n[α,B] for some B ⊆ A. We set alph(x) = B and val(x) = s̄. Note that
we will set constraints on the parents of operation leaves. In particular, these
parents are always operation nodes. We will see this in details when defining
operation nodes.

Product Nodes. A product node x is unlabeled. It can have an arbitrary number
of children x1, . . . , xm which are all initial leaves, product nodes or operation
nodes. In particular, we set alph(x) = alph(x1) ∪ · · · ∪ alph(xm) and val(x) =
val(x1) · · · val(xm).

Operation Nodes. An operation node x has exactly 2`n + 1 children sharing the
same alphabet B. The (`n + 1)-th child, called the central child of x, has to
be an operation leaf. The other children, called the context children of x, are

either operation nodes, product nodes or initial leaves and the set of their values
must be compatible for α,B (i.e. it must belong to C2,n[α,B]). Finally, we set
a restriction on the value of the central child. Since the values of the context
children of x form a compatible set of Σ2-chains, they all share the same first
component, that we call t. We require the first component of the value of the
central child to be t`n . This means that the central child is an operation node
labeled with (t`n , s1, . . . , sn−1) ∈ C2,n[α,B]. Finally, we set alph(x) = B and
val(x) = val(x1) · · · val(x2`n+1).

This terminates the definition of chain trees. The alphabet and value of a
chain tree T , alph(T) and val(T), are the alphabet and value of its root. We give
an example of a chain tree in Figure 2. Moreover, the following fact is immediate
by definition.

Fact 30 Let T be a chain tree and let x1, . . . , xm be its leaves listed from left to
right. Then val(T) = val(x1) · · · val(xm).

o

p p p p(r, s1, . . . , sn−1)
r = (st`n)`n

`n Left children `n Right children

(s
,.
..
,s

)

o

(t
,.
..
,t

)

(t
,.
..
,t

)

(t
,.
..
,t

)

(t
,.
..
,t

)

`n `n

(t`n , r1, . . . , rn−1)

(s
,.
..
,s

)

o

(t
,.
..
,t

)

(t
,.
..
,t

)

(t
,.
..
,t

)

(t
,.
..
,t

)

`n `n

(t`n , t1, . . . , tn−1)

(s
,.
..
,s

)

o

(t
,.
..
,t

)

(t
,.
..
,t

)

(t
,.
..
,t

)

(t
,.
..
,t

)

`n `n

(t`n , u1, . . . , un−1)

(s
,.
..
,s

)

o

(t
,.
..
,t

)

(t
,.
..
,t

)

(t
,.
..
,t

)

(t
,.
..
,t

)
`n `n

(t`n , v1, . . . , vn−1)

= Operation Node (no label)
= Product Node (no label)
= Initial Leaf (label written inside)
= Operation Leaf (label written inside)

o
p

Fig. 2. An example of chain tree of level n

We denote by Tn[α,B] the set of all chain trees of level n and alphabet B
associated to α and by T[α] the set of all chain trees associated to α. If S is a set
of chain trees, we define val(S) = {val(T) | T ∈ S}. We now state “correctness”
and “completeness” of chain trees, i.e., a chain is a Σ2-chain iff it is the value of
some chain tree. We prove this as a consequence of the validity of our algorithm
for computing Σ2-chains, stated in Proposition 5.

Proposition 31. C2,n[α,B] = val(Tn[α,B]).

Proof. That val(Tn[α,B]) ⊆ C2,n[α,B] is immediate by definition and Fact 2.
We concentrate on the other inclusion. Since Proposition 5 deals with sets of
compatible Σ2-chains rather than just Σ2-chains, we prove a slightly stronger
result. Two chain trees are said compatible if they have the same structure, the
same alphabet and differ only by the labels of their operation leaves. For all
T ∈ T[α], we set id(T) ⊆ T[α] as the set of all chain trees that are compatible
with T .

Lemma 32. Let B ⊆ A. Then

Sat∗n[B](C 7→ In[C]) ⊆ ↓{val(id(T)) | alph(T) = B}

By Proposition 5, if s̄ is a Σ2-chain of length n for α,B, there exists S ∈
Sat∗n[B](C 7→ In[C]) such that s̄ ∈ S. Therefore the inclusion C2,n[α,B] ⊆
val(Tn[α,B]) is an immediate consequence of Lemma 32. It remains to prove
Lemma 32.

Let T ∈ Sat∗n[B](C 7→ In[C]). We need to construct T ∈ T[α] such that T ⊆
val(id(T)). By definition, T ∈ Satjn[B](C 7→ In[C]) for some j ∈ N. We proceed
by induction on j. Assume first that j = 0. Then T = {(s, . . . , s)} ∈ In[B]. By
definition this means that T = {val(T)} where T is the chain tree composed
of a single initial leaf with label (s, . . . , s) and alphabet B. Assume now that
j > 1. For all D ⊆ A, we set TD = Satj−1

n [D](C 7→ In[C]). By definition, we
have T ∈ TB ∪MB ∪OB with

MB = ∪C∪D=B(TC · TD)
OB = {Sω · (1M , C2,n−1[α,B]) · Sω | S ∈ TB}

If T ∈ TB, the result is immediate by induction hypothesis. Assume now that
T ∈MB. By definition, this means that there exist C,D such that C ∪D = B
and TC , TD in TC ,TD such that T = TC · TB. Using our induction hypothesis,
we get TC , TD such that TC ⊆ val(id(TC)) and TD ⊆ val(id(TD)). Consider T
the chain tree whose topmost node is a product with TC , TD as children. It is
immediate by definition that T ⊆ val(id(TC)) · val(id(TD)) = val(id(T)).

It remains to treat the case when T ∈ OB . By definition, we get S ∈ TB such
that T = Sω ·(1M , C2,n−1[α,B])·Sω. Note that since S, T ∈ Sat∗n[B](C 7→ In[C]),
by Proposition 5, S, T ∈ C2,n[α,B]. We denote by s the first element common to
all chains in S. Note that since `n = ω(2Mn), the first element common to all

chains in T is s`n . Set Rs`n as the set of all Σ2-chains of length n for α,B that
have s`n as first element. By definition T ⊆ Rs`n . Moreover,

T = S`n · T · S`n ⊆ S`n · Rs`n · S`n

By induction hypothesis there exists a chain tree TS of alphabet B such that
S ⊆ val(id(TS)). Let T be the chain tree whose topmost node is an operation
node whose context children are all copies of TS and whose central child is the
operation leaf labeled with some arbitrary chosen Σ2-chain in Rs`n . Observe
that by definition, val(id(T)) = (val(id(TS)))`n · Rs`n · (val(id(TS)))`n . Therefore,
since S ⊆ val(id(TS)), we have T ⊆ val(id(T)) which terminates the proof. Note
that the tree we obtained is particular: all subtrees rooted at context children of
an operation node are identical. ut

Alternation and Recursive Alternation of a Chain Tree. The alternation
of a chain tree is the alternation of its value. We say that T[α] has unbounded
alternation if the set val(T[α]) has unbounded alternation. Note that by Proposi-
tion 31, C2[α] has unbounded alternation iff T[α] has unbounded alternation.

In the proof we will be interested in another property of chain trees: recursive
alternation. Recursive alternation corresponds to the maximal alternation of
labels of operation leaves in the tree. More precisely, if T is a chain tree, its
recursive alternation is the largest natural j such that there exists an operation
leaf in T whose label has alternation j. An important idea in the proof will
be to separate the case when we can find a set of chain trees with unbounded
alternation but bounded recursive alternation from the converse one. However,
in order to make this work, we will need to add one more condition to our trees.
Intuitively, we need to know that if a tree has high recursive alternation, this is
necessary, i.e, the tree cannot be modified into a tree that has low alternation
while keeping the same value. This is what we do with local optimality.

D.2 Locally Optimal Chain Trees
For all n,B, we define a strict subset of Tn[α,B] called the set of Locally Optimal
Chain Trees. We then prove that we can assume without loss of generality that
all chain trees we consider are locally optimal.

We first define local optimality as a property of a single node x in a chain
tree T . We will generalize the notion to a whole tree by saying that it is locally
optimal if and only if all its operation leaves are locally optimal. Given a node x,
local optimality of x depends on two parameters of x: its value val(x) and a new
parameter called its context value, cval(x), that we define now.
Context Value of a Node. Let T be a chain tree of level n and let x1, . . . , xm

be the leaves of T sorted in prefix order. Recall that by Fact 30, val(T) =
val(x1) · · · val(xm). To every node x of T , we associate a pair cval(x) ∈ (C2,n[α])2

called the context value of x. Set xi, . . . , xj as the leaves of the subtree rooted at
x (in prefix order). We set cval(x) = (val(x1) · · · val(xi−1), val(xj+1) · · · val(xm)).
Note that since for all i, val(xi) ∈ C2,n[α], cval(x) is indeed a pair in (C2,n[α])2.
By definition and Fact 30 one can verify the two following facts:

Fact 33 Let x be a node in a chain tree T and set cval(x) = (s̄, s̄′). Then
val(T) = s̄ · val(x) · s̄′.

Fact 34 Let x be an inner node in a chain tree T and set cval(x) = (s̄, s̄′). Set
z1, . . . , zk as the children of x with context values cval(zi) = (q̄i, q̄i

′). Then, for
all i, q̄i = s̄ · val(z1) · · · val(zi−1) and q̄i

′ = val(zi+1) · · · val(xk) · s̄′.

In many cases, we will work with context values that are constant, i.e. cval(x) =
((s, . . . , s), (s′, . . . , s′)). In these cases, if (t1, . . . , tn) is a chain, it will be convenient
to simply write s · (t1, . . . , tn) · s′ for (s, . . . , s) · (t1, . . . , tn) · (s′, . . . , s′).

Local Optimality. Set (s, s′) ∈M2 and T a chain tree. Let x be any node in
T , (t1, · · · , tn) = val(x) and ((s1, · · · , sn), (s′1, · · · , s′n)) = cval(x). We say that
x is locally optimal for (s, s′) if for all i < n such that ti 6= ti+1 the following
condition holds:

s · si+1 · ti · s′i+1 · s′ 6= s · si+1 · ti+1 · s′i+1 · s′

Intuitively this means that for all i, changing ti to ti+1 in the value of x is
necessary to get alternation at position i in the value of the tree (see Fact 33). We
say that a chain tree T is locally optimal for (s, s′) if all its operation leaves
are locally optimal for (s, s′). We say that T is locally optimal iff it is locally
optimal for (1M , 1M). This means that locally optimality of a chain tree only
depends on the context values and labels of operation leaves in the tree. The
following fact is immediate from the definitions:

Fact 35 Let (s, s′) ∈M2. Assume that T is locally optimal for (s, s′). Then T
is locally optimal (i.e. locally optimal for (1M , 1M)).

We finish with our main proposition, which states that for any chain tree,
there exists a locally optimal one with the same value. In particular, this means
that we will always be able to assume that our chain trees are locally optimal.

Proposition 36. Let T ∈ Tn[α,B] and (s, s′) ∈M2. There exists T ′ ∈ Tn[α,B]
which is locally optimal for (s, s′) and such that s · val(T) · s′ = s · val(T ′) · s′.

Proof. Set T ∈ Tn[α,B], we explain how to construct T ′. For all i < n, we
define the i-alternation of T as the number of operation leaves x in T such that
val(x) = (t1, · · · , tn) with ti 6= ti+1. Finally, we define the index of T as the
sequence of its i-alternations ordered with increasing i.

We can now describe the construction. Assume that T is not locally optimal
for (s, s′). We explain how to construct a second chain tree T ′ such that

1. s · val(T) · s′ = s · val(T ′) · s′.
2. T ′ has strictly smaller index than T .

It then suffices to apply this operation recursively to T until we get the desired
tree. We now explain the construction. Since T is not locally optimal for (s, s′),
there exists an operation leaf x of T that is not locally optimal for (s, s′). Let

(t1, . . . , tn) = val(x) and ((s1, . . . , sn), (s′1, . . . , s′n)) = cval(x). By choice of x,
there exists i < n such that ti 6= ti+1 and ssi+1tis

′
i+1s

′ = ssi+1ti+1s
′
i+1s

′.
We set T ′ as the chain tree obtained from T by replacing the label of x with
(t1, . . . , ti, ti, ti+2, . . . , tn). By choice of i and Fact 33, it is immediate that s ·
val(T) · s′ = s · val(T ′) · s′. Moreover, for any j < i, T, T ′ have the same j-
alternation and T ′ has by definition strictly smaller i-alternation than T . It
follows that T ′ has strictly smaller index than T which terminates the proof. ut

E Proof of Theorem 10: Characterization of BΣ2(<)

This appendix is devoted to the proof of Theorem 10, i.e., the decidable charac-
terization of BΣ2(<). We actually prove a more general theorem that includes a
second characterization in terms of alternation of C2[α], which will be needed as
an intermediary step when proving the difficult ’if’ direction of Theorem 10.

Theorem 37. Let L be a regular language and let α : A∗ →M be its syntactic
morphism. The three following properties are equivalent:

1. L is definable in BΣ2(<).
2. C2[α] has bounded alternation.
3. M satisfies the following equations:

sω
1 s

ω
3 = sω

1 s2s
ω
3

sω
3 s

ω
1 = sω

3 s2s
ω
1

for (s1, s2, s3) ∈ C2[α] (4)

(s2t2)ωs1(t′2s′2)ω = (s2t2)ωs2t1s
′
2(t′2s′2)ω

for (s1, s2, s
′
2) and (t1, t2, t′2) B-schemas for some B ⊆ A (5)

Observe that Theorem 10 is exactly the equivalence between Items 1 and 3 in
Theorem 37. Therefore it suffices to prove Theorem 37. Intuitively, Item 2 seems
harder to decide than Item 3, since it requires computing a description of the
whole set C2[α] rather than just the Σ2-chains and sets of compatible Σ2-chains
of length 2 and 3. However, it will serve as a convenient intermediary for proving
Item 3.

We now turn to the proof of Theorem 37. We prove that 1 ⇒ 3 ⇒ 2 ⇒ 1.
In this appendix, we give full proofs for the two ”easy” directions: 1 ⇒ 3 and
2 ⇒ 1. For the direction 3 ⇒ 2, we use chain trees to reduce the proof to two
propositions. We then give each proposition its own Appendix: Appendix F and
Appendix G.

E.1 1 ⇒ 3

We prove the direction 1 ⇒ 3 in Theorem 37 which is stated in the following
lemma.

Lemma 38. Let L be a regular language and α be its syntactic morphism. Assume
that L is definable in BΣ2(<), then α satisfies (4) and (5) .

The remainder of this subsection is devoted to proving Lemma 38. The proof is
an Ehrenfeucht-Fräıssé argument. We begin by defining the equivalence associated
to BΣ2(<). For any k ∈ N, we write w ∼=k

2 w′ iff w and w′ satisfy the same
BΣ2(<) formulas of quantifier rank k. Therefore, a language if definable by a
BΣ2(<) formula of rank k iff it is saturated by ∼=k

2 . One can verify that ∼=k
2 is an

equivalence and that w ∼=k
2 w
′ iff w .k

2 w
′ and w′ .k

2 w.
We can now prove the lemma. By hypothesis there exists some BΣ2(<)

formula ϕ that defines L, we set k as the quantifier rank of this formula.
Proving Equation (4). Set (s1, s2, s3) ∈ C2[α], we prove that sω

1 s
ω
3 = sω

1 s2s
ω
3

(the dual case is proved in the same way). We prove that there exist w1, w2, w3 ∈
A∗ such that α(w1) = s1, α(w2) = s2, α(w3) = s3 and for all pair of words
u, v ∈ A∗:

uw2kω
1 w2kω

3 v ∼=k
2 uw2kω

1 w2w
2kω
3 v (9)

Set N = 2kω. By definition of ∼=k
2 , (9) means that u(wN

1 w
N
3)v and u(wN

1 w2w
N
3)v

cannot be distinguished by a BΣ2(<) formula of quantifier rank k. Hence, by
definition of k, we get

u(wN
1 w

N
3)v ∈ L iff u(wN

1 w2w
N
3)v ∈ L

Therefore, by definition of w1, w2, w3, of N , and of the syntactic monoid this will
prove that sω

1 s
ω
3 = sω

1 s2s
ω
3 .

Since (s1, s2, s3) ∈ C2[α] by assumption, there exist w1, w2, w3 such that
w1 .k

2 w2 .k
2 w3 and α(w1) = s1, α(w2) = s2, α(w3) = s3. Set u, v ∈ A∗. We

need to prove that

u(wN
1 w

N
3)v .k

2 u(wN
1 w2w

N
3)v (10)

u(wN
1 w2w

N
3)v .k

2 u(wN
1 w

N
3)v (11)

By definition of w1, w2, we have w1 .k
2 w2. By Lemma 14, we obtain wN−1

1 .k
2 w

N
1 .

Therefore, using Lemma 13 we first get wN
1 .k

2 w
N
1 w2, and then that (10) holds.

The proof of (11) is similar: by definition, we have w2 .k
2 w3, and by Lemma 14

we get wN
3 .k

2 w
N−1
3 . Using Lemma 13 again, we conclude that w2w

N
3 .k

2 w
N
3 ,

and then that (11) holds.
Proving Equation (5). It remains to prove that α satisfies Equation (5). We
begin with a lemma on B-schemas.
Lemma 39. Assume that (s1, s2, s

′
2) is a B-schema. Then for all k ∈ N there

exist w1, w2, w
′
2 ∈ A∗ such that:

– alph(w1) = alph(w2) = alph(w′2) = B.
– α(w1) = s1, α(w2) = s2 and α(w′2) = s′2.
– for all u ∈ B∗, w1 .k

2 w2uw
′
2.

Proof. This is proved using Lemma 15. Fix a B-schema (s1, s2, s
′
2) and k ∈ N.

By definition, there exist T ∈ C2[α,B] and r1, r
′
1 ∈ M satisfying s1 = r1r

′
1,

(r1, s2) = (t1, t2) · (q, q2) and (r1, s
′
2) = (q, q′2) · (t′1, t′2) with (t1, t2), (t′1, t′2) ∈

C2[α,B] and (q, q2), (q, q′2) ∈ T ω = T 22kω. By definition of Σ2-chains, we obtain
words v1, v, v

′
1, w2, w

′
2 ∈ A∗ satisfying the following properties:

a) alph(v1) = alph(v) = alph(v′1) = alph(w2) = alph(w′2) = B

b) α(v1) = t1, α(v′1) = t′1, α(w2) = t2q2, α(w′2) = q′2t
′
2 and α(v22kω) = q.

c) v1v
22kω .k

2 w2 and v22kωv′1 .k
2 w
′
2.

Set w1 = v1v
22kωv22kωv′1 and observe that by item a), alph(w1) = alph(w2) =

alph(w2) = B. Moreover, by item b), α(w1) = t1qqt
′
1 = r1r

′
1 = s1, α(w2) =

t2q2 = s2 and α(w′2) = q′2t
′
2 = s′2. Finally, it is immediate using Ehrenfeucht-

Fräıssé games that for any word u ∈ B∗, u .k
1 v

2kω. Therefore it follows from
Lemma 15 that w1 .k

2 v1v
22kωuv22kωv′1. Using item c), we then conclude that

w1 .k
2 w2uw

′
2. ut

We can now use Lemma 39 to prove that α satisfies Equation (5). Let
(s1, s2, s

′
2) and (t1, t2, t′2) be B-schemas. Let w1, w2, w

′
2 ∈ A∗ of images s1, s2, s

′
2

and v1, v2, v
′
2 ∈ A∗ of images t1, t2, t′2 satisfying the conditions of Lemma 39. We

prove that for any u, v ∈ A∗:

u[(v2w2)Nv1(w′2v′2)N]v ∼=k
2 u[(v2w2)Nv2w1v

′
2(w′2v′2)N]v (12)

where again N = 2kω. By definition of the syntactic monoid and since L is
defined by a BΣ2(<) formula of rank k, Equation (5) will follow. Observe that
the words v1, v2, v

′
2 and w1, w2, w

′
2 given by Lemma 39 satisfy

v1 .k
2 v2w1v

′
2, (13)

w1 .k
2 w2v1w

′
2. (14)

Using Lemma 13, we may multiply (13) by u(v2w2)N on the left and by (w′2v′2)Nv
on the right:

u(v2w2)Nv1(w′2v′2)Nv .k
2 u(v2w2)Nv2w1v

′
2(w′2v′2)Nv.

For the converse direction, from Lemma 14, we have (v2w2)N .k
2 (v2w2)N−1 and

(w′2v′2)N .k
2 (w′2v′2)N−1. Using (14) and Lemma 13 again, we conclude that:

u(v2w2)Nv2w1v
′
2(w′2v′2)Nv .k

2 u(v2w2)N−1v2(w2v1w
′
2)v′2(w′2v′2)N−1v

i.e.,
u(v2w2)Nv2w1v

′
2(w′2v′2)Nv .k

2 u(v2w2)Nv1(w′2v′2)Nv.

E.2 2 ⇒ 1

We prove the direction 2 ⇒ 1 in Theorem 37 which is stated in the following
lemma.

Lemma 40. Let L be a regular language and α its syntactic morphism. Assume
that C2[α] has bounded alternation, then L is definable in BΣ2(<).

Proof. Assume that C2[α] has bounded alternation. We prove that there exists
k ∈ N such that for all w,w′ ∈ A∗, w ∼=k

2 w
′ ⇒ α(w) = α(w′). This proves that

L is saturated with ∼=k
2 and hence definable by a BΣ2(<) formula of quantifier

rank k.
We proceed by contradiction. Assume that for all k ∈ N there exists wk, w

′
k ∈

A∗ such that wk
∼=k

2 w
′
k and α(wk) 6= α(w′k). Notice that since there are only

finitely many pairs in M2, there must exist a pair (s, s′) ∈M2 such that s 6= s′

and there exists arbitrarily large naturals k such that α(wk) = s and α(w′k) = s′.
We prove that (s, s′)∗ ⊆ C2[α] which contradicts that C2[α] has unbounded
alternation (recall that s 6= s′). By definition for all k ∈ N there exists ` > k such
that α(w`) = s and α(w′`) = s′, since ` > k and by definition of ∼=k

2 this means
that :

w` .
k
2 w
′
` .

k
2 w` .

k
2 w
′
` .

k
2 w` .

k
2 w
′
` .

k
2 · · ·

Hence for all k, j, (s, s′)j ∈ Ck
2 [α] and therefore, for all j (s, s′)j ∈ C2[α] which

terminates the proof. ut

E.3 3 ⇒ 2

This is the most difficult direction of Theorem 37. We state it in the following
proposition.

Proposition 41. Let L be a regular language, α : A∗ →M be its syntactic mor-
phism. Assume that α satisfies (4) and (5), then C2[α] has bounded alternation.

For the remaining of the section, we assume that L,M and α are fixed as in
the statement of the proposition. We prove the contrapositive of Proposition 41:
if C2[α] has unbounded alternation, then either Equation (4) or Equation (5)
must be contradicted. We use chain trees to separate this property into two
properties that we will prove in Appendix F and Appendix G. Consider the two
following propositions

Proposition 42. Assume that there exists a set of locally optimal chain trees
S ⊆ T[α] with unbounded alternation but bounded recursive alternation. Then α
does not satisfy Equation (4).

Proposition 43. Assume that there exists a set of locally optimal chain trees
S ⊆ T[α] with unbounded alternation and that all such sets have unbounded
recursive alternation. Then α does not satisfy Equation (5).

Proposition 42 and Proposition 43 are proven in Appendix G and Appendix F.
We finish this appendix by using them to conclude the proof of Proposition 41.

If C[α] has unbounded alternation. By Proposition 36, we know that there
exists a set of locally optimal chain trees S ⊆ T[α] with unbounded alternation.
If S can be chosen with bounded recursive alternation, there is a contradiction to
Equation (4) by Proposition 42. Otherwise there is a contradiction to Equation (5)
by Proposition 43 which terminates the proof of Proposition 41.

F Proof of Proposition 43

Recall that we fixed a morphism α : A∗ →M into a finite monoid M . We prove
Proposition 43.

Proposition 43. Assume that there exists a set of locally optimal chain trees
S ⊆ T[α] with unbounded alternation and that all such sets have unbounded
recursive alternation. Then α does not satisfy Equation (5).

We define a new object that is specific to this case: the Chain Graph. The chain
graph describes a construction process for a subset of the set of Σ2-chains for α.
While this subset is potentially strict, we will prove that under the hypothesis of
Proposition 43, it is sufficient to derive a contradiction to Equation (5).

Chain Graph. We define a graph G[α] = (V,E) whose edges are labeled by
subsets of the alphabet A. We call G[α] the chain graph of α. The set V of nodes
of G[α] is the set V = M2 ×M . Let ((s, s′), u) and ((t, t′), v) be nodes of G[α]
and B ⊆ A, then E contains an edge labeled by B from ((s, s′), u) to ((t, t′), v)
iff there exists a B-schema (s1, s2, s

′
2) ∈M3 such that:

– s · s1 · s′ = u.
– s · s2 = t and s′2 · s′ = t′.

Observe that the definition does not depend on v. We say that G[α] is recursive
if it contains a cycle such that

a) all edges in the cycle are labeled by the same alphabet B ⊆ A,
b) the cycle contains two nodes ((s, s′), u), ((t, t′), v) such that u 6= v.

We now prove Proposition 43 as a consequence of the two following propositions.

Proposition 44. Assume that G[α] is recursive. Then α does not satisfy (5).

Proposition 45. Assume that there exists a set of locally optimal chain trees
S ⊆ T[α] with unbounded alternation and that all such sets have unbounded
recursive alternation. Then G[α] is recursive.

Observe that Proposition 43 is an immediate consequence of Propositions 44
and 45. Before proving them, note that the notion of chain graph is inspired from
the notion of strategy graph in [5]. This is because both notions are designed
to derive contradiction to similar equations. However, our proof remains fairly
different from the one of [5]. The reason for this is that the main difficulty here
is proving Proposition 45, i.e., going from chain trees (which are unique to our
setting) to a recursive chain graph. On the contrary, the much simpler proof of
Proposition 44 is similar to the corresponding one in [5].

F.1 Proof of Proposition 44

Proposition 44. Assume that G[α] is recursive then α does not satisfy (5).

Assume that G[α] is recursive. By definition, we get B ⊆ A, a cycle whose
edges are all labeled with B and two consecutive nodes ((s, s′), u) and ((t, t′), v)
in this cycle such that u 6= v. Since there exists an edge ((s, s′), u) B−→ ((t, t′), v),
we obtain a B-schema (s1, s2, s

′
2) such that

u = s · s1 · s′,
t = s · s2,

t′ = s′2 · s′.

Moreover, one can verify that since ((s, s′), u) and ((t, t′), v) are in the same
cycle with all edges labeled by B, there exists another B-schema (t1, t2, t′2) and
w,w′ ∈ B∗ such that

v = t · t1 · t′,
s = t · t2 · α(w),
s′ = α(w′) · t′2 · t′.

By combining all these definitions we get:

u = s(s2t2α(w))ω+1s1(α(w′)t′2s′2)ω+1s′

v = s(s2t2α(w))ω+1s2t1s
′
2(α(w′)t′2s′2)ω+1s′

Set r1 = α(w)s1α(w′), r2 = α(w)s2 and r′2 = s′2α(w′). One can verify that
since w,w′ ∈ B∗ and (s1, s2, s

′
2) is a B-schema, (r1, r2, r

′
2) is a B-schema as well.

Moreover, by reformulating the equalities above we get:

u = ss2t2(r2t2)ωr1(t′2r′2)ωt′2s
′
2s
′

v = ss2t2(r2t2)ωr2t1r
′
2(t′2r′2)ωt′2s

′
2s
′

Therefore, Equation (5) would require u = v. Since u 6= v by hypothesis, α does
not satisfy (5) and we are finished.

F.2 Proof of Proposition 45

Proposition 45. Assume that there exists a set of locally optimal chain trees
S ⊆ T[α] with unbounded alternation and that all such sets have unbounded
recursive alternation. Then G[α] is recursive.

In the remainder of the section, we assume that α satisfies the hypothesis
of Proposition 45. Set B ⊆ A and let ((s, s′), u) be a node of G[α], we say that
((s, s′), u) is B-alternating if for all n, there exists (s1, . . . , sn) ∈ C2,n[α,B] such
that the chain (ss1s

′, . . . , ssns
′) has alternation n− 1 and ss1s

′ = u.

Lemma 46. G[α] contains at least one B-alternating node for some B.

Proof. This is because S has unbounded alternation. It follows that there exists
a least one u ∈M such that there are Σ2-chains with arbitrary high alternation
and u as first element. By definition, the node ((1M , 1M), u) is then B-alternating
for some B. ut

For the remainder of the proof we define B as a minimal alphabet such that
there exists a B-alternating node in G[α]. By this we mean that for any C (B,
there exists no C-alternating node in G[α].

Lemma 47. Let ((s, s′), u) be any B-alternating node of G[α]. Then there exists
a node ((t, t′), v) such that

1. ((t, t′), v) is B-alternating.
2. ((s, s′), u) B−→ ((t, t′), v).
3. u 6= v.

By definition G[α] has finitely many nodes. Therefore, since by definition,
there exists at least one B-alternating node, it is immediate from Lemma 47
that G[α] must contain a cycle whose edges are all labeled by B. Moreover, by
Item 3 in Lemma 47, this cycle contains two nodes ((s, s′), u) and ((t, t′), v) such
that u 6= v. We conclude that G[α] is recursive which terminates the proof of
Proposition 45. It remains to prove Lemma 47.

Proof. We proceed in three steps. We first use our hypothesis to construct a
special set of chain trees U of alphabet B. Then, we choose a chain tree T in
U with large enough recursive alternation. Finally, we use T to construct the
desired node ((t, t′), v). We begin with the construction of U.

Construction of U. We construct a set U of chain trees that satisfies the
following properties:

1. For all T ∈ U, alph(T) = B.
2. All chains in s · val(U) · s′ have u as first element.
3. All trees in U are locally optimal for (s, s′).
4. U has unbounded recursive alternation.

We use the fact that ((s, s′), u) is B-alternating and the hypothesis in Proposi-
tion 45. Since ((s, s′), u) is B-alternating, we know that for any n ∈ N, there exists
(s1, . . . , sn) ∈ C2[α,B] such that the chain (ss1s

′, . . . , ssns
′) has alternation n− 1

and ss1s
′ = u. We denote by R ⊆ C2[α,B] the set of all these Σ2-chains. Observe

that by definition, R has unbounded alternation. It follows from Proposition 31
that one can construct a set of chain trees U′ whose set of values is exactly R. By
definition, U′ satisfies Items 1 and 2 and s ·val(U′) · s′ has unbounded alternation.

We now use Proposition 36 to construct U from U′ which is locally optimal
for (s, s′) and satisfies s ·val(U′) ·s′ = s ·val(U) ·s′. We now know that U satisfies
properties 1 to 3. Observe that by definition U has unbounded alternation. By

hypothesis of Proposition 45, it follows that U has also unbounded recursive
alternation and all items are satisfied.

Choosing a chain tree T ∈ U. We now select a special chain tree T in U. We
want T to have large enough recursive alternation in order to use it to construct
the node ((t, t′), v). We define the needed recursive alternation in the following
lemma.

Lemma 48. There exists K ∈ N such that for all t1, t2 ∈ M and all C ⊆ A,
(t1, t2)K ∈ C2[α,C]⇒ (t1, t2)∗ ⊆ C2[α,C].

Proof. It suffices to take K as the largest k such that there exists t1, t2 ∈M and
C ⊆ A with (t1, t2)k−1 ∈ C2[α,C] but (t1, t2)k 6∈ C2[α,C]. ut

Set m = |M |2 ·K with K as defined in Lemma 48. By hypothesis on U (see
property 4) there exists a tree T ∈ U with recursive alternation m. We set n as
the level of T .

Construction of the node ((t, t′), v). Set r as the first element in val(T). Recall
that by choice of T in U, srs′ = u. By definition of recursive alternation, T
must contain an operation leaf x whose label val(x) = (t1, . . . , tn) has alternation
m. Set ((s1, . . . , sn), (s′1, . . . , s′n)) = cval(x) and C = alph(x). Note that since
alph(T) = B, C ⊆ B. Recall that by Fact 33, we have

s · val(T) · s′ = s · (s1, . . . , sn) · (t1, . . . , tn) · (s′1, . . . , s′n) · s′

Note that (t1, . . . , tn) ∈ C2[α,C], (s1, . . . , sn) ∈ C2[α] and (s′1, . . . , s′n) ∈ C2[α]. We
know that (t1, . . . , tn) has alternation m = |M |2 ·K. It follows from a pigeon-hole
principle argument that there exists q1 6= q2 ∈ M and a set I ⊆ {1, . . . , n− 1}
of size at least K such that for all i ∈ I, ti = q1 and ti+1 = q2. Observe that by
definition, the chain (q1, q2)K is a subword of (t1, . . . , tn) and therefore a Σ2-chain
for α,C. By choice of K it follows that (q1, q2)∗ ⊆ C2[α,C]. Note that this means
that the node ((1M , 1M), q1) is C-alternating. Therefore, by minimality of B, we
have C = B. Choose some arbitrary i ∈ I, say the first element in I. Recall that
T ∈ U and therefore locally optimal for (s, s′). The following fact is immediate
by definition of local optimality:

Fact 49 ssi+1q1s
′
i+1s

′ 6= ssi+1q2s
′
i+1s

′.

We now define the node ((t, t′), v). It is immediate from Fact 49 that either
ssi+1q1s

′
i+1s

′ 6= u or ssi+1q2s
′
i+1s

′ 6= u, we set v 6= u as this element. Finally, we
set t = ssi+1 and t′ = s′i+1s

′. Observe that by Fact 49 tq1t
′ 6= tq2t

′, therefore since
(q1, q2)∗ ⊆ C2[α,B] and by choice of v, we know that ((t, t′), v) is B-alternating.
It remains to prove that ((s, s′), u) B−→ ((t, t′), v). We already know that u = srs′,
t = ssi+1 and t′ = s′i+1s

′. We need to prove that (r, si+1, s
′
i+1) is a B-schema.

Using the definition of operation nodes, we prove that r = s1s
′
1 and define

T ∈ C2,2[α,B] such that (s1, si+1) ∈ C2,2[α,B]·T ω and (s′1, s′i+1) ∈ T ω ·C2,2[α,B]

which terminates the proof. Set y as the parent of x. By definition, y is an operation
node, set x1, . . . , x2`n+1 as the children of y (x = x`n+1). By definition,

R = {val(x1), . . . , val(x`n
), val(x`n+2), . . . , val(x2`n+1)} ∈ C2,n[α,B]

Set t has the common first value of all chains in R and (q̄, q̄′) = cval(y). By
Fact 34, we have

s̄ = q̄ · val(x1) · · · val(x`n) and val(x`n+2) · · · val(x2`n+1) · q̄′ = s̄′ (15)

By Fact 33, and definition of operation nodes, r = s1t
`ns′1. It follows that

r = s1s
′
1.

Since T has alphabet B, we have q̄ ∈ C2,n[α,C] for some C ⊆ B. Using (15)
and the definition of `n as ω(2Mn), we get that s̄ ∈ C2,n[α,C] · Rω. Moreover,
since Rsω ⊆ C2,n[α,B], s̄ ∈ C2,n[α,B]. Using a symetrical argument, we get that
s̄′ ∈ Rω · C2,n[α,B].

Finally, set T as the set of chains of length 2 obtained from chains in R by
keeping only the values at component 1 and i+1. Since Σ2-chains are closed under
subwords, it is immediate from R ∈ C2,n[α,B] that T ∈ C2,2[α,B]. Moreover,
by definition, we have (s1, si+1) ∈ C2,2[α,B] · T ω and (s′1, s′i+1) ∈ T ω · C2,2[α,B].
We conclude that (r, si+1, s

′
i+1) is a B-schema which terminates the proof. ut

G Proof of Proposition 42

Recall that we fixed the morphism α : A∗ →M . We prove Proposition 42.

Proposition 42. Assume that there exists a set of locally optimal chain trees
S ⊆ T[α] with unbounded alternation but bounded recursive alternation. Then α
does not satisfy Equation (4).

As for the previous section, we will use a new object that is specific to this
case: chain matrices.
Chain Matrices. Let n ∈ N. A chain matrix of length n is a rectangular matrix
with n columns and such that rows belong to C2,n[α]. If M is a chain matrix,
we will denote by Mi,j the entry at row i (starting from the top) and column
j (starting from the left) in M. If M is a chain matrix of length n and with m
rows, we call the chain

(
(M1,1 · · ·Mm,1), . . . , (M1,n · · ·Mm,n)

)
, the value of M.

By Fact 2, the value of a chain matrix is a Σ2-chain. We give an example with 3
rows in Figure 3.

Given a chain matrix, M, the alternation of M is the alternation of its value.
Finally, the local alternation of a chain matrix, M, is the largest natural m
such that M has a row with alternation m. We now prove the two following
propositions.

Proposition 50. Assume that there exists a set of locally optimal chain trees
S ⊆ T[α] with unbounded alternation and recursive alternation bounded by K ∈
N. Then there exist chain matrices with arbitrarily large alternation and local
alternation bounded by K.

s1 s2 s3 s4 · · · sn

t1 t2 t3 t4 · · · tn

r1 r2 r3 r4 · · · rn

(s1t1r1, s2t2r2, s3t3r3, s4t4r4, . . . , sntnrn)Value

Fig. 3. Value of chain matrix with 3 rows

Proposition 51. Assume that there exist chain matrices with arbitrarily large
alternation and local alternation bounded by K ∈ N. Then α does not satisfy (5).

Proposition 42 is an immediate consequence of Proposition 50 and 51. Note
that chain matrices are reused from [5] (where they are called ”strategy matrices”).
Moreover, in this case going from chain trees to chains matrices (i.e. proving
Proposition 50) is simple and the main difficulty is proving Proposition 51.
This means that while our presentation is slightly different from that of [5], the
arguments themselves are essentially the same. We give a full proof for the sake
of completeness. We begin by proving Proposition 50.

Proof (of Proposition 50). We prove that for all n ∈ N, there exists a chain
matrix M of alternation n and local alternation bounded by K. By definition
of S there exists a tree T ∈ S whose value has alternation n and has recursive
alternation bounded by K. Set x1, . . . , xm as leaves of T listed from left to right.
By Fact 30, val(T) = val(x1) · · · val(xm). Observe that by definition, for all i,
val(xi) has alternation bounded by K. Therefore it suffices to set M as the m
rows matrix where row i is filled with val(xi). ut

It now remains to prove Proposition 51. We proceed as follows. Assuming
there exists a chain matrix M with local alternation bounded by K and very
large alternation, we refine M in several steps to ultimately obtain what we call
a contradiction matrix. There are two types of contradiction matrices, increasing
and decreasing, both are chain matrices of length 6 and with the following entries:

u1 v1 f f f f
e e u2 v2 f f
e e e e u3 v3

Increasing Contradiction Matrix

f f f f u3 v3
f f u2 v2 e e
u1 v1 e e e e

Decreasing Contradiction Matrix

such that e, f are idempotents and fu2e 6= fv2e. As the name suggests, the
existence of a contradiction matrix contradicts Equation (4). This is what we
state in the following lemma.

Lemma 52. If there exists a contradiction matrix, α does not satisfy (4).

Proof. Assume that we have an increasing contradiction matrix (the other case is
treated in a symmetrical way). Since fu2e 6= fv2e, either fu2e 6= fe or fv2e 6= fe.
By symmetry assume it is the former. Since e, f are idempotents, this means that
fωu2e

ω 6= fωeω. However by definition of chain matrices (e, u2, v2, f) ∈ C2[α] and
therefore (e, u2, f) ∈ C2[α] which contradicts Equation (4). Note that we only
used one half of Equation (4), the other half is used in the decreasing case. ut

By Lemma 52, it suffices to prove the existence of a contradiction matrix
to conclude the proof of Proposition 51. This is what we do in the remainder
of this Appendix. By hypothesis, we know that there exist chain matrices with
arbitrarily large alternation and local alternation bounded by K ∈ N. For the
remainder of the section, we assume that this hypothesis holds. We use several
steps to prove that we can choose our chain matrices with increasingly strong
properties until we get a contradiction matrix. We use two intermediaries that
we call Tame Chain Matrices and Monotonous Chain Matrices. We divide the
proof in three subsections, one for each step.

G.1 Tame Chain Matrices

Let M be a chain matrix of even length 2` and let j 6 `. The set of alternating
rows for j, denoted by alt(M, j), is the set {i |Mi,2j−1 6= Mi,2j}. Let (s1, . . . , s2`)
be the value of M. We say that M is tame if

a) for all j 6 `, s2j−1 6= s2j ,
b) for all j 6 `, alt(M, j) is a singleton and
c) if j 6= j′ then alt(M, j) 6= alt(M, j′).

We represent a tame chain matrix of length 6 in Figure 4. Observe that the
definition only considers the relationship between odd columns and the next
even column. Moreover, observe that a tame chain matrix of length 2` has by
definition alternation at least `.

s1 s2 s3 s4 s5 s6Value
6= 6= 6=

Fig. 4. A tame chain matrix of length 6

Lemma 53. There exists tame chain matrices of arbitrarily large length.

Proof. Set n ∈ N, we explain how to construct a tame chain matrix of length 2n.
By hypothesis, there exists a chain matrix M with local alternation at most K
and alternation greater than 2nK. Set m as the number of rows of M. We
explain how to modify M to obtain a matrix satisfying a), b) and c). Recall
that Σ2-chains are closed under subwords, therefore removing columns from M

yields a chain matrix. Since M has alternation 2nK, it is simple to see that by
removing columns one can obtain a chain matrix of length 2nK that satisfies a).
We denote by N this matrix. We now proceed in two steps: first, we modify the
entries in N to get a matrix P of length 2nK satisfying both a) and b). Then
we use our bound on local alternation to remove columns and enforce c) in the
resulting matrix.

Construction of P. Let j 6 nK such that alt(N, j) is of size at least 2. We
modify the matrix to reduce the size of alt(N, j) while preserving a). One can
then repeat the operation to get the desired matrix. Let i ∈ alt(N, j). Set s1 =
N1,2j−1 · · ·Ni−1,2j−1 and s2 = Ni+1,2j−1 · · ·Nm,2j−1. We distinguish two cases.

First, if s1Ni,2j−1s2 6= s1Ni,2js2, then for all i′ 6= i, we replace entry Ni′,2j

with entry Ni′,2j−1. One can verify that this yields a chain matrix of length 2nK,
local alternation bounded by K. Moreover, it still satisfies a), since s1Ni,2j−1s2 6=
s1Ni,2js2. Finally, alt(N, j) is now a singleton, namely {i}.

In the second case, we have s1Ni,2j−1s2 = s1Ni,2js2. In that case, we replace
Ni,2j−1 with Ni,2j . One can verify that this yields a chain matrix of length 2nK,
local alternation bounded by K. Moreover, it still satisfies a) since we did not
change the value on the whole. Finally, the size of alt(N, j) has decreased by 1.

Construction of the tame matrix. We now have a chain matrix P of length
2nK, with local alternation bounded by K and satisfying both a) and b). Since
a) and b) are satisfied, for all j 6 nK there exists exactly one row i such that
Ni,2j−1 6= Ni,2j . Moreover, since each row has alternation at most K, a single
row i has this property for at most K indices j. Therefore, it suffices to remove
at most n(K − 1) pairs of odd-even columns to get a matrix that satisfies c).
Since the original matrix had length 2nK, this leaves a matrix of length at least
2n and we are finished. ut

G.2 Monotonous Chain Matrices

Let M be a tame chain matrix of length 2n and let x1, . . . , xn be naturals such
that for all j, alt(M, j) = {xj}. We say that M is a monotonous chain matrix if
it has exactly n rows and 1 = x1 < x2 < · · · < xn = n (in which case the matrix
is said increasing) or n = x1 > x2 > · · · > xn = 1 (in which case we say the
matrix is decreasing). We give a representation of the increasing case in Figure 5.

Lemma 54. There exists monotonous chain matrices of arbitrarily large length.

Proof. Set n ∈ N, we explain how to construct a tame chain matrix of length 2n.
By Lemma 53, there exists a tame chain matrix M of length 2n2. Set x1, . . . , xn2

s1 s2 s3 s4 s5 s6 s7 s8Value
6= 6= 6= 6=

Fig. 5. A monotonous chain matrix (increasing)

the indices such that for all j, alt(M, j) = {xj}. Note that by tameness, xj 6= xj′

for j 6= j′. Since the sequence x1, . . . , xn2 is of length n2, we can extract, using
Erdös-Szekeres theorem, a monotonous sequence of length n, xj1 < · · · < xjn or
xj1 > · · · > xjn

with j1 < · · · < jn. By symmetry we assume it is the former and
construct an increasing chain matrix of length n.

Let P be the matrix of length 2n obtained from M, by keeping only the pairs of
columns 2j− 1, 2j for j ∈ {j1, . . . , jn}. Set x′1, . . . , x′n the indices such that for all
j, alt(P, j) = {x′j}. By definition, x′1 < · · · < x′n. We now want P to have exactly
n rows. Note that the rows that do not belong to x′1 < · · · < x′n are constant
chains. We simply merge these rows with others. For example, if row i is labeled
with the constant chain (s, . . . , s), let (s1, . . . , s2n) be the label of row i+ 1. We
remove row i and replace row i+ 1 by the Σ2-chain (ss1, . . . , ss2n). Repeating
the operation yields the desired increasing monotonous chain matrix. ut

G.3 Construction of the Contradiction Matrix

We can now use Lemma 54 to construct a contradiction matrix and end the proof
of Proposition 42. We state this in the following proposition.

Proposition 55. There exists a contradiction matrix.

The remainder of this appendix is devoted to the proof of Proposition 55.
The result follows from a Ramsey argument. We use Lemma 54 to choose a
monotonous matrix of sufficiently large length. Then, we use Ramsey’s Theorem
(for hypergraphs with edges of size 3) to extract the desired contradiction matrix.

We first define the length of the monotonous chain matrix that we need to
pick. By Ramsey’s Theorem, for every m ∈ N there exists a number ϕ(m) such
that for any complete 3-hypergraph with hyperedges colored over the monoid M ,
there exists a complete sub-hypergraph of size m in which all edges share the
same color. We choose n = ϕ(ϕ(4) + 1). By Lemma 54, there exists a monotonous
chain matrix M of length 2n. Since it is monotonous, M has n rows.

By symmetry, we assume that M is increasing and use it to construct an
increasing contradiction matrix. We use our choice of n to extract a contradiction
matrix from M. We proceed in two steps using Ramsey’s Theorem each time. In

the first step we treat all entries above the diagonal in M and in the second step
all entries below the diagonal. We state the first step in the next lemma.
Lemma 56. There exists an increasing monotonous matrix N of length 2 · ϕ(4)
such that all cells above the diagonal contain the same idempotent f ∈M .
Proof. This is proved by applying Ramsey’s Theorem to M. Consider the complete
3-hypergraph whose nodes are {0, . . . , n}. We label the hyperedge {i1, i2, i3} where
i1 < i2 < i3 by the value obtained by multiplying in the monoid M , the cells that
appear in rows i1 + 1, . . . , i2 in column 2i3 − 1. Observe that since i1 < i2 < i3,
by monotonicity, these entries are the same as in column 2i3. More formally, the
label of the hyperedge {i1, i2, i3} is therefore

Mi1+1,2i3−1 · · ·Mi2,2i3−1 = Mi1+1,2i3 · · ·Mi2,2i3 .

By choice of n, we can apply Ramsey’s Theorem to this coloring. We get a
subset of ϕ(4) + 1 vertices, say K = {k1, . . . , kϕ(4)+1} ⊆ {0, . . . , n}, such that
all hyperedges connecting nodes in K have the same color, say f ∈ M . For
i1 < i2 < i3 < i4 in K, note that the color of the hyperedge {i1, i3, i4} is by
definition the product of the colors of the hyperedges {i1, i2, i4} and {i2, i3, i4}.
Therefore, the common color f needs to be an idempotent (i.e. f = ff). We now
extract the desired matrix N from M according to the subset K. The main idea
is that the new row i in N will be the merging of rows ki + 1 to ki+1 in M and
the new pair of columns 2j − 1, 2j will correspond to the pair 2kj+1 − 1, 2kj+1 in
M.

We first merge rows. For all i > 1, we ”merge” all rows from ki + 1 to ki+1
into a single row. More precisely, this means that we replace the rows ki + 1 to
ki+1 by a single row containing the Σ2-chain

(Mki+1,1 · · ·Mki+1,1, . . . ,Mki+1,2n · · ·Mki+1,2n)
Moreover, we remove the top and bottom rows, i.e. row 1 to k1 and rows

kϕ(4)+1 to ϕ(4) + 1. Then we remove all columns from 1 to 2k2 − 2, all columns
from 2kϕ(4)+1 + 1 to 2n, and for all i > 2, all columns from 2ki + 1 to 2ki+1 − 2.
One can verify that these two operations applied together preserve monotonicity.
Observe that the resulting matrix N has exactly 2 · ϕ(4) columns. Moreover,
the cell i, 2j in the new matrix contains entry Mki+1,2kj+1 · · ·Mki+1,2kj+1 . In
particular if j > i, by definition of the set K, this entry is f , which means N

satisfies the conditions of the lemma. ut
It remains to apply Ramsey’s Theorem a second time to the matrix N obtained

from Lemma 56 to treat the cells below the diagonal and get the contradiction
matrix. We state this in the following last lemma.
Lemma 57. There exists an increasing monotonous matrix P of length 6 such
that all cells above the diagonal contain the same idempotent f ∈M and all cells
below the diagonal contain the same idempotent e ∈M (i.e. P is an increasing
contradiction matrix).
Proof. The argument is identical to the one of Lemma 56. This time we apply it
to the matrix N of length 2 · ϕ(4) for the cells below the diagonal. ut

	Going higher in the First-order Quantifier Alternation Hierarchy on Words

