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Abstract
We investigate two problems for a class C of regular word languages. The C-membership problem
asks for an algorithm to decide whether an input language belongs to C. The C-separation
problem asks for an algorithm that, given as input two regular languages, decides whether there
exists a third language in C containing the first language, while being disjoint from the second.
These problems are considered as means to obtain a deep understanding of the class C.

It is usual for such classes to be defined by logical formalisms. Logics are often built on top
of each other, by adding new predicates. A natural construction is to enrich a logic with the
successor relation. In this paper, we obtain simple self-contained proofs of two transfer results:
we show that for suitable logically defined classes, the membership, resp. the separation problem
for a class enriched with the successor relation reduces to the same problem for the original class.

Our reductions work both for languages of finite words and infinite words. The proofs are
mostly self-contained, and only require a basic background on regular languages. This paper
therefore gives new, simple proofs of results that were considered as difficult, such as the decid-
ability of the membership problem for the levels 1, 3/2, 2 and 5/2 of the dot-depth hierarchy.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Separation Problem, Regular Word Languages, Logics, Decidable Char-
acterizations, Semidirect Product

1 Introduction

Context. A central problem in the theory of formal languages is to characterize and
understand the expressive power of high level specification formalisms. Monadic second order
logic (MSO) is such a formalism, which is both expressive and robust. For several classes of
structures, such as words or trees, it has the same expressive power as finite automata and
defines the class of regular languages. In this paper, we investigate fragments of MSO over
words. In this context, understanding the expressive power of a fragment is associated to
two decision problems: the membership problem and the separation problem.

For a fixed logical fragment F , the F-membership problem asks for a decision procedure
that tests whether some input regular language can be expressed by a formula from F . To
obtain such an algorithm, one has to consider and understand all properties that can be
expressed within F , which requires a deep understanding of the fragment F . On the other
hand, the F-separation problem is more general. It asks for a decision procedure that tests
whether given two input regular languages, there exists a third one in F containing the first
language while being disjoint from the second one. Since regular languages are closed under
complement, membership reduces to separation: a language is in F iff it can be separated
from its complement. Usually, the separation problem is more difficult than the membership
problem but also more rewarding wrt. the knowledge gained on the investigated fragment F .

These two problems have been considered and solved for many natural fragments of
MSO. Among these, the most prominent one is first-order logic FO(<) equipped with a

∗ Supported by ANR 2010 BLAN 0202 01 FREC

© Thomas Place and Marc Zeitoun;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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predicate < for the linear ordering. The solution to the membership problem, known as the
McNaughton-Papert-Schützenberger Theorem [22, 12], has been revisited until recently [6].
The theorem states that a regular language is definable in FO(<) if and only if its syntactic
semigroup is aperiodic. The syntactic semigroup is a finite algebraic object that can be
computed from any regular language. Since aperiodicity can be defined as an equation that
needs to be satisfied by all of its elements, this yields decidability of FO(<)-definability. This
result now serves as a template, which is commonly followed in this line of research.

The separation problem has also been successfully solved for first-order logic [8]. Actually,
the problem was first addressed in a purely algebraic framework, and was later identified as
equivalent to our separation problem [2]. As for membership, this problem is still revisited
today and a new self-contained and combinatorial proof was obtained in [19].

Motivation. We are interested in natural fragments of FO(<) obtained by restricting either
the number of variables or the number of quantifier alternations allowed in formulas. Such
restrictions in general give rise to several variants of the same fragment. Indeed, in most
cases, the drop in expressive power forbids the use of natural relations that could be defined
from the linear order in FO(<). The main example considered in this paper is +1, the
successor relation, together with predicates min and max for the first and last positions
in a word. This means that one can define two distinct variants of the same fragment
depending on whether we decide to explicitly add these predicates in the signature or not.
An example is the fragment Σn, which consists of first-order formulas whose prenex normal
form has at most (n− 1) quantifier alternations and starts with an existential block. Since
defining +1 requires an additional quantifier alternation, Σn(<,+1,min,max) has indeed
stronger expressiveness than Σn(<). The motivation of this paper is to obtain decidability
results for such enriched fragments.

State of the Art. Even when the weak fragment is known to have decidable membership,
proving that the enriched one has the same property can be nontrivial. Examples include the
membership proofs of BΣ1(<,+1,min,max) (Boolean combinations of Σ1(<,+1,min,max)
formulas) and Σ2(<,+1), which require difficult and intricate combinatorial arguments [9, 7,
10] or a wealth of algebraic machinery [14, 16]. Another issue is that most proofs directly
deal with the enriched fragment. Given the jungle of such logical fragments, it is desirable to
avoid such an approach, treating each variant of the same fragment independently. Instead,
a satisfying approach is to first obtain a solution of the membership and separation problems
for the less expressive variant and then to lift it to other variants via a generic transfer result.

This approach has first been investigated by Straubing for the membership problem [26]
in an algebraic framework, and later adapted to be able to treat classes not closed under
complement [16]. Transferring the logical problem to this algebraic framework requires
preliminary steps, still specific to the investigated class, to prove that: (1) a language is
definable in the fragment iff its syntactic semigroup belongs to a specific algebraic variety V
(e.g., the variety of aperiodic monoids for FO(<)), and (2) membership to V is decidable.
Next, though this is not immediate, for most fragments of FO(<), it has been proved that
(3) when the weaker variant corresponds to a variety V, the variant with successor corresponds
to the variety V ∗ D, built generically from V. Hence, Straubing’s approach was to prove
that (4) the operator V 7→ V ∗ D preserves decidability. Unfortunately, this is not true in
general [3]. Actually, while decidability is preserved for all known logical fragments, there
is no generic result that captures them all. In particular, for the less expressive fragments,
one has to use completely ad hoc proofs. In the separation setting, things behave well: it
has been shown that decidability of separation is preserved by the operation V 7→ V ∗ D [24].
While interesting when already starting from algebra, this approach has several downsides:



Thomas Place and Marc Zeitoun 3

Dealing with algebra hides the logical intuitions, while our primary goal is to understand
the expressiveness of logics.
Going from logic to algebra requires to be acquainted with new notions and vocabulary,
as well as involved theoretical tools. Proofs are also often nontrivial and require a deep
understanding of complex objects, which may be scattered in the bibliography.
Despite step (4) which is generic to some extent, arguments specific to the investigated
class are pushed to steps (1)–(3), and they are often nontrivial.

Contributions. We give a new proof that decidability of separation can be transferred from
a weak to an enriched fragment. We present the result in two different forms.

The first one is non-algebraic: we work directly with the logical fragments, without using
varieties. The transfer result is generic and its proof mostly is: the only specific argument
is an Ehrenfeucht-Fraïssé game that can be adapted to all natural fragments with minimal
difficulty (we prove it in the long version for all considered fragments). The benefits are that:
(1) this new proof is self-contained and much simpler than previous ones. It only relies on
two basic, well-known notions: recognizability by semigroups and Ehrenfeucht-Fraïssé games;
(2) it works with classes which are not closed under complement, contrary to [24]. This
allows us to capture the Σ and Π levels in the quantifier alternation hierarchy of first-order
logic; (3) under an additional hypothesis on the logical fragment, which is met for most
fragments we investigate, the decidability result of the separation problem also extends to
the membership problem; and (4) the proof adapts smoothly to infinite words using the
notion of ω-semigroups, as shown in the long version of this paper.

The second form is algebraic and generic: we work with varieties and prove that V 7→ V∗D
preserves the decidability of separation, hence giving an elementary proof of a result of [24].
Even in this algebraic form, we completely bypass involved constructions or notions, such as
pointlike sets for categories developed in [24], thus making the proof accessible.

As corollaries, since BΣ1(<) and Σ2(<) both enjoy decidable separation [5, 21, 18], we
obtain that this is also the case for the fragments BΣ1(<,+1,min,max) and Σ2(<,+1),
known as levels 1 and 3/2 of the dot-depth hierarchy. These new results strengthen the
previous ones [9, 7] that showed decidability of membership and were considered as difficult.
We actually obtain that separation for Σn(<,+1,min,max) reduces to separation for Σn(<).
Since we also transfer decidability of the membership problem, and since the fragments BΣ2(<)
of Boolean combinations of Σ2(<) formulas and Σ3(<) have decidable membership [18] we
deduce that the same holds for BΣ2(<,+1) and Σ3(<,+1), known as levels 2 and 5/2 of the
dot-depth hierarchy.
Organization of the Paper. In Section 2, we set up the notation and we present the
separation problem and the main logics we deal with. Section 3 is devoted to our main tool:
languages of well-formed words. In Section 4, we use it to prove our transfer results for all
fragments from the logical perspective, and in Section 5, we show that decidability of the
separation problem for the variety V entails the same for V ∗ D.

2 Preliminaries

In this section we provide preliminary definitions on regular languages and separation.
Words, Languages. We fix a finite alphabet A. Let A+ be the set of all nonempty finite
words and A∗ be the set of all finite words over A. If u, v are words, we denote by u · v or by
uv the word obtained by concatenating u and v. For convenience, we only consider wlog.
languages that do not contain the empty word. That is, a language is a subset of A+. We work
with regular languages, i.e., languages definable by nondeterministic finite automata (NFA).
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Separation. Given three languages K,L,L′, we say that K separates L from L′ if

L ⊆ K and K ∩ L′ = ∅.

If C is a class of languages, we say that L is C-separable from L′ if there exists K ∈ C that
separates L from L′. Note that if C is closed under complement, L is C-separable from L′ iff
L′ is C-separable from L. However, this is not true for a class C not closed under complement,
such as the classes Σn(<) of the quantifier alternation hierarchy, which we shall consider.

Given a class C, the C-separation problem asks for an algorithm which, given as input two
regular languages L,L′, decides whether L is C-separable from L′. The C-membership problem,
which asks whether an input regular language belongs to C, reduces to the C-separation
problem, as a regular language belongs to C iff it is C-separable from its complement.
Logics. We investigate several fragments of first-order logic on finite words. We view a finite
word as a logical structure made of a sequence of positions labeled over A. We work with
first-order logic FO(<) using a unary predicate Pa for each a ∈ A, which selects positions
labeled with an a, as well as binary predicates ’=’ for equality and ’<’ for the linear order.
Such a formula defines the regular language of all words that satisfy it. We will freely use
the name of a logical fragment of FO(<) to denote the class of languages definable in this
fragment. Observe that FO(<) is powerful enough to express the following logical relations:

First position, min(x): ∀y ¬(y < x).
Last position, max(x): ∀y ¬(x < y).
Successor, y = x+ 1: x < y ∧ ¬(∃z x < z ∧ z < y).

However, for most fragments of FO(<) this is not the case. For example, in the two-
variables restriction FO2(<) of FO(<), it is not possible to express successor, as it requires
quantifying over a third variable. For these fragments F , adding the predicates min, max
and +1 yields a strictly more powerful logic F+. Our goal is to prove a transfer result
for such fragments: given a fragment, if the separation problem is decidable for the weak
variant F , then it is decidable as well for the strong variant F+ obtained by enriching F with
the above relations. The technique is generic, meaning that it is not bound to a particular
logic. In particular, our transfer result applies to the following well-known logical fragments:

FO(=), the restriction of FO(<) in which the linear order cannot be used, and only
equality between two positions can be tested. The enriched fragment FO(=,+1) (min
and max can be defined in the logic) defines locally threshold testable languages [30].
All levels in the quantifier alternation hierarchy of first-order logic. A first-order formula
is Σi(<) (resp. Πi(<)) if its prenex normal form contains at most (i − 1) quantifier
alternations and starts with an ∃ (resp. a ∀) quantifier block. Finally, a BΣi(<) formula
is a boolean combination of Σi(<) and Πi(<) formulas.
Since for all fragments above Σ2(<), a formula involving min and max can be expressed
without these predicates in the same logic, we shall denote the enriched fragments by
Σ1(<,+1,min,max), BΣ1(<,+1,min,max), and then by Σ2(<,+1), BΣ2(<,+1), . . .
FO2(<), the restriction of FO(<) using only two reusable variables. The corresponding
enriched fragment is FO2(<,+1), since min and max can again be expressed in the logic.

Figure 1 summarizes all fragments the technique applies to. We prove the following theorem:

I Theorem 1. Let F and F+ be respectively the weak and strong variants of one of the logical
fragments in Figure 1. Then F+-separability can be effectively reduced to F-separability.
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Weak variant FO(=) FO2(<) Σi(<) BΣi(<)
Strong variant FO(=, +1) FO2(<, +1) Σi(<, +1, min, max) BΣi(<, +1, min, max)

Figure 1 Logical fragments to which the technique applies

All these logical fragments have a rich history and have been extensively studied in
the literature. In particular, the separation problem is known to be decidable for the
following fragments: FO(=), FO2(<), Σ1(<), BΣ1(<), Σ2(<) [5, 21, 18]. This means
that, from our results, we obtain decidability of separation for FO(=,+1), FO2(<,+1),
Σ1(<,+1,min,max), BΣ1(<,+1,min,max) and Σ2(<,+1). Note that for FO(=,+1),
FO2(<,+1) and BΣ1(<,+1,min,max), the results could already be obtained as corollaries
of algebraic theorems of Steinberg [24] and Almeida [2]. As explained in the introduction,
an issue with this approach is that the proof of Steinberg’s result relies on deep algebraic
arguments and is not tailored to separation (the connection with separation is made by
Almeida [2]). For Σ1(<,+1,min,max) and Σ2(<,+1), the result is new, as Steinberg’s result
does not apply to classes of languages that are not closed under complement.

3 Tools: Semigroups and Morphism of Well-Formed Words

In this section, we define the main tools used in the paper. First, we recall the well-known
semigroup based definition of regular languages: a language is regular if and only if it can
be recognized by a finite semigroup. Our second tool, well-formed words, is specific to our
problem and plays a key role in our transfer result.

3.1 Semigroups and Monoids

We work with the algebraic representation of regular languages in terms of semigroups. A
semigroup is a set S equipped with an associative product, written s · t or st. A monoid is a
semigroup S having a neutral element 1S , i.e., such that s · 1S = 1S · s = s for all s ∈ S. If S
is a semigroup, then S1 denotes the monoid S ∪ {1S} where 1S /∈ S is a new element, acting
as neutral element. Note that we add such a new identity even if S is already a monoid.

An element e ∈ S is idempotent if e · e = e. We denote by E(S) the set of idempotents
of S. Given a finite semigroup S, it is folklore and easy to see that there is an integer ω(S)
(denoted by ω when S is understood) such that for all s of S, sω is idempotent: sω = sωsω.

Note that A+ and A∗ equipped with concatenation are respectively a semigroup and a
monoid called the free semigroup over A and the free monoid over A. Let L ⊆ A+ be a
language and S be a semigroup (resp. monoid). We say that L is recognized by S if there
exist a morphism α : A+ → S (resp. α : A∗ → S) and a set F ⊆ S such that L = α−1(F ).

Semigroups and Separation. The separation problem takes as input two regular languages
L,L′. It is convenient to work with a single object recognizing both of them, rather than
having to deal with two. Let S, S′ be semigroups recognizing L,L′ together with the
associated morphisms α, α′, respectively. Clearly, L and L′ are both recognized by S × S′
with the morphism α × α′ : A+ → S × S′ mapping w to (α(w), α′(w)). From now on, we
work with such a single semigroup recognizing both languages. Replacing S × S′ with its
image under α× α′, one can also assume that this morphism is surjective. To sum up, we
assume from now on, wlog., that L and L′ are recognized by a single surjective morphism.
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3.2 Well-Formed Words
In this section, we define our main tool for this paper. Assume that F is the weak variant of
one of the logical fragments of Figure 1 and let F+ be the corresponding strong variant. To
any semigroup morphism α : A+ → S into a finite semigroup S, we associate a new alphabet
Aα called the alphabet of well-formed words. The main intuition behind this notion is that
the F+-separation problem for any two regular languages recognized by α can be reduced to
the F-separation problem for two regular languages over Aα.
The alphabet Aα, called alphabet of well-formed words of α, is defined from α : A+ → S by:

Aα = (E(S)× S × E(S)) ∪ (S × E(S)) ∪ (E(S)× S) ∪ S.

We will not be interested in all words of A+
α , but only in those that are well-formed. A word

w ∈ A+
α is said to be well-formed if one of the following two properties holds:

w is a single letter s ∈ S,
w has length > 2 and is of the form

(s0, f0)·(e1, s1, f1) · · · (en, sn, fn)·(en+1, sn+1) ∈ (S×E(S))·(E(S)×S×E(S))∗·(E(S)×S)

with fi = ei+1 for 0 6 i 6 n.

I Fact 2. The set of well-formed words of A+
α is a regular language.

We now define a morphism β : A+
α → S as follows. If s ∈ S, we set β(s) = s, if

(e, s) ∈ E(S) × S, we set β((e, s)) = es, if (s, e) ∈ S × E(S), we set β((s, e)) = se and if
(e, s, f) ∈ E(S)× S × E(S), we set β((e, s, f)) = esf .
Associated Language of Well-formed Words. To any language L ⊆ A+ that is recog-
nized by α, one associates a language of well-formed words L ⊆ A+

α :

L =
{
w ∈ A+

α | w is well-formed and β(w) ∈ α(L)
}
.

By definition, the language L ⊆ A+
α is the intersection of the language of well-formed words

with β−1(α(L)). Therefore, it is immediate by Fact 2 that it is regular, more precisely:

I Fact 3. Let L ⊆ A+ that is recognized by α. Then the associated language of well-formed
words L ⊆ A+

α is a regular language that one can effectively compute from a recognizer of L.

4 Logical Approach

In this section, we prove Theorem 1 from a logical perspective. We begin with presenting our
‘separation’ theorem, which will entail the ‘membership’ theorem as a simple consequence.

I Theorem 4. Let F and F+ be respectively the weak and strong variants of one of the
logical fragments in Figure 1.

Let L,L′ be two languages recognized by a morphism α : A+ → S into a finite semigroup S.
Let L,L′ ⊆ A+

α be the languages of well-formed words associated with L,L′, respectively.
Then L is F+-separable from L′ iff L is F-separable from L′.

Theorem 4 reduces F+-separation to F-separation. The latter was already known to
be decidable for several weak variants in Figure 1, namely for FO(=) [17], FO2(<) [21],
Σ1(<) [5], BΣ1(<) [5, 21] and Σ2(<) [18]. Hence, we get the following corollary.
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I Corollary 5. Let L,L′ be regular languages. Then the following problems are decidable:
whether L is FO(=,+1)-separable from L′.
whether L is FO2(<,+1)-separable from L′.
whether L is Σ1(<,+1,min,max)-separable from L′.
whether L is BΣ1(<,+1,min,max)-separable from L′.
whether L is Σ2(<,+1)-separable from L′.

Notice that since the membership problem reduces to the separation problem, this also
gives a new proof that all these fragments have a decidable membership problem. This is
of particular interest for FO2(<,+1), BΣ1(<,+1,min,max) and Σ2(<,+1) for which the
previous proofs [26, 1, 20], [9], [7, 16, 14] are known to be quite involved. It turns out that for
Σ2(<,+1), we can do even better and entirely avoid separation. Indeed, when F is expressive
enough, Theorem 4 can be used to prove a similar theorem for the membership problem.

I Theorem 6. Let F and F+ be respectively the weak and strong variants of one of the
logical fragments in Figure 1. Moreover, assume that for any alphabet of well-formed words,
the set of well-formed words over this alphabet is definable in F .

Let L be a language recognized by a morphism α : A+ → S into a finite semigroup S. Let
L ⊆ A+

α be the language of well-formed words associated with L. Then L is definable in F+

iff L is definable in F .

Proof. Set K = A+ \ L and let K be the associated language of well-formed words. Observe
that by definition, K ∪ L is the set of all well-formed words.

If L is definable in F , then L is F-separable from K, hence by Theorem 4, L is F+-
separable from K, and so L is definable in F+. Conversely, if L is definable in F+, then L is
F+-separable from K and by Theorem 4, L is F -separable from K. Since K ∪ L is the set of
all well-formed words, L is the intersection of the separator with the set of all well-formed
words, which by hypothesis is also definable in F . Therefore, L is definable in F . J

Observe that being well-formed can be expressed in Π2(<): essentially, a word is well-
formed if for all pairs of positions, either there is a third one in-between, or the labels of the
two positions are “compatible”. Hence, among the fragments of Figure 1, Theorem 6 applies
to all fragments including and above Π2(<) in the quantifier alternation hierarchy. While
such a transfer result was previously known [26, 16], the presentation and the proof are new.
In particular, since membership is known to be decidable for Π2(<) [14], BΣ2(<) [18] and
Σ3(<) [18], we obtain new and simpler proofs of following results.

I Corollary 7. Given a regular language L, one can decide whether

L is definable by a Σ2(<,+1) (resp. Π2(<,+1)) formula.
L is definable by a BΣ2(<,+1) formula.
L is definable by a Σ3(<,+1) (resp. Π3(<,+1)) formula.

It remains to prove Theorem 4. We devote the rest of the section to this proof. An
important remark is that the proof of the right to left direction is constructive: we start with
an F formula that separates L from L′ and use it to construct an F+ formula that separates
L from L′. Note that the argument is generic for all fragments we consider.

On the other hand, the other direction, namely Proposition 9 below, requires a specific
argument tailored to each fragment, which is a straightforward but tedious Ehrenfeucht-
Fraïssé argument. Due to lack of space, we provide proofs of this proposition for each
fragment in the long version of this paper.
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4.1 From F+-separation to F-separation

We prove that if L is F+-separable from L′, then L is F-separable from L′. We actually
prove the contrapositive: if L is not F -separable from L′, then L is not F+-separable from L′.
We rely on a construction which, to any well-formed word u ∈ A+

α and any integer i > 0,
associates a canonical word duei ∈ A+.

Canonical Word Associated to a Well-formed Word. To any s ∈ S, we associate an
arbitrarily chosen nonempty word dse ∈ A+, such that α(dse) = s (which is possible since
α has been chosen surjective). Let i > 0. From a well-formed word u ∈ A+

α , we build a
word duei ∈ A+ as follows. If u = s ∈ S, then duei = dse for all i. Otherwise, we have by
definition

u = (s0, e1)(e1, s1, e2) · · · (en−1sn−1en)(en, sn).

For a natural i > 0, we set

duei = ds0e de1ei ds1e de2ei · · · den−1ei dsn−1e denei dsne .

Recall that β is the morphism β : A+
α → S mapping u to s0e1s1 · · · sn−1ensn. Since ej ∈ E(S)

for all j, it is immediate that α(duei) = β(u), hence we get the following fact:

I Fact 8. For all i > 0 and all well-formed u ∈ A+
α , we have u ∈ L (resp. ∈ L′) if and only

if duei ∈ L (resp ∈ L′).

We now proceed with the proof. We use the classical preorders associated to fragments
of first-order logic. The (quantifier) rank of a first-order formula ϕ is the largest number of
quantifiers along a branch in the parse tree of ϕ. Given u, v ∈ A+, we write u �+1

k v if any
F+ formula of rank k that is satisfied by u is satisfied by v as well. Similarly, for u,v ∈ A+

α ,
we write u �k v if any F formula of rank k that is satisfied by u is satisfied by v as well.
One can verify that �k and �+1

k are preorders, as well as the following standard fact:

L ⊂ A+ is definable by an F+-formula of rank k iff L = {u′ | ∃u ∈ L st. u �+1
k u′}

L ⊂ A+
α is definable by an F-formula of rank k iff L = {u′ | ∃u ∈ L st. u �k u′}.

(1)

Note that when F and F+ are closed under complement, then �k and �+1
k are actually

equivalence relations. We can now state the main proposition of this direction:

I Proposition 9. For any k ∈ N, there exists k′ ∈ N and i ∈ N such that for any well-formed
words u,u′ ∈ A+

α satisfying u �k′ u′, we have duei �
+1
k du′ei.

For all fragments of Figure 1, Proposition 9 is proved using classical Ehrenfeucht-Fraïssé
arguments. While each proof is specific, the underlying ideas are similar. We present all
these proofs in the long version of this paper. We finish the subsection by explaining how
Proposition 9 can be used to terminate the proof of the first direction of Theorem 4.

Assume that L is not F -separable from L′. By definition this means that no language defin-
able in F separates L from L′. In particular for any k′, the language {u′ | ∃u ∈ L st. u �k′ u′}
which is definable in F by (1), cannot be a separator. Note that this language contains L.
Hence, for all k′ ∈ N, there exist u ∈ L and u′ ∈ L′ such that u �k′ u′. We deduce from
Proposition 9 and Fact 8 that for all k ∈ N, there exist u ∈ L and u′ ∈ L′ such that u �+1

k u′.
It follows, again by (1), that L is not F+-separable from L′, which terminates the proof.
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4.2 From F-separation to F+-separation
We now prove that if L is F -separable from L′, then L is F+-separable from L′, by building
an F+-definable separator. We rely on a construction that is dual to the one used previously:
to any word w ∈ A+, we associate a canonical well-formed word bwc ∈ A+

α .
Canonical Well-formed Word Associated to a Word. To any word w of A+, we
associate a canonical well-formed word bwc ∈ A+

α such that α(w) = β(bwc). This construction
is adapted from [20] and is originally inspired by [26]. Fix an arbitrary order on the set E(S).

For a position x of w, let ux ∈ A+ be the infix of w obtained by keeping only positions
x− (|S| − 1) to x. If position x− (|S| − 1) does not exist, ux is just the prefix of w ending
at x. A position x is said distinguished if there exists an idempotent e ∈ E(S) such that
α(ux) · e = α(ux). Additionally, we always define the rightmost position as distinguished,
even if it does not satisfy the property. Set x1 < · · · < xn+1 as the distinguished positions
in w, so that xn+1 is the rightmost position. Let e1, . . . , en ∈ E(S) be such that for all i, ei
is the smallest idempotent such that α(uxi) · ei = α(uxi).

If n = 0, i.e., if the only distinguished position is the rightmost one, set bwc = α(w) ∈ Aα.
Otherwise, we define bwc ∈ A+

α as the word:

bwc = (α(w0), e1) · (e1, α(w1), e2) · · · (en−1, α(wn−1), en) · (en, α(wn)) (2)

where w0 is the prefix of w ending at position x1, for all 1 6 i 6 n− 1, wi is the infix of w
obtained by keeping positions xi + 1 to xi+1, and wn is the suffix of w starting at position
xn + 1. Note that bwc is well-formed. The next fact follows from the definitions.

I Fact 10. For all w ∈ A+, α(w) = β(bwc). Hence, w ∈ L iff bwc ∈ L and w ∈ L′ iff ∈ L′.

To any distinguished position xi in w, we associate position bxc = i in bwc. Our main
motivation for using this construction is its local canonicity, stated in the following lemma.

I Lemma 11. Let w ∈ A+. Then we have the following properties:

(a) whether a position x is distinguished in w, and if so the label of position bxc in bwc only
depends on the infix of w of length 2|S| ending at position x. That is, if the infixes of
length 2|S| ending at x and y are equal, then x is distinguished iff so is y, and in that
case, the labels of bxc and byc in bwc are equal.

(b) the label of the last position of bwc only depends on the suffix of length 2|S| of w.

Proof. It is immediate that whether x is distinguished and if so the associated idempotent
only depends on the infix ux of length at most |S| ending at x. Therefore, to prove (a),
it suffices to show that all infixes wi in (2) are of size at most |S|, or in other words, that
among |S|+ 1 consecutive positions, at least one is distinguished. So let us consider an infix
a1 · · · a|S|+1 of w of length |S|+ 1. It is immediate from the pigeonhole principle that there
exist i < j such that α(a1 · · · ai) = α(a1 · · · aj) = α(a1 · · · ai) · (α(ai+1 · · · aj))ω. Hence, the
position corresponding to ai is distinguished. The proof of the second assertion is similar. J

L is F+-separable from L′. We can now construct our separator. The construction follows
from the next proposition.

I Proposition 12. Let K ⊆ A+
α that can be defined using an F formula ϕ. Then there exists

an F+ formula Ψ over alphabet A such that for every word w ∈ A+:

w |= Ψ if and only if bwc |= ϕ.
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Proof. Proposition 12 follows from the following simple consequence of Lemma 11.

I Claim 13. For any a ∈ Aα there exists a formula γa(x) of F+ with a free variable x, such
that for any w ∈ A+ and any position x of w, we have w |= γa(x) iff x is distinguished and
bxc has label a in bwc.

This claim holds since by Lemma 11, formula γa(x) only needs to explore the neighborhood
of size 2|S| of x, which is trivially possible for all fragments F+ we consider.

To conclude the proof of Proposition 12, it suffices to define Ψ as the formula constructed
from ϕ by restricting all quantifiers to positions that are distinguished and to replace all
tests Pa(x) by γa(x). J

We can now finish the proof of Theorem 4. Assume that L is F-separable from L′ and
let ϕ be an F formula defining a separator. We denote by Ψ the F+ formula obtained from
ϕ as defined in Proposition 12. We prove that Ψ defines a language separating L from L′.

We first prove that L ⊆ {w | w |= Ψ}. When w ∈ L, by Fact 10, we have bwc ∈ L. Hence,
bwc |= ϕ and so w |= Ψ by definition of Ψ. The proof that L′ ⊆ {w | w 6|= Ψ} is identical: if
w ∈ L′, we have bwc ∈ L′ by Fact 10. Hence, bwc 6|= ϕ and w 6|= Ψ by definition of Ψ. J

5 Algebraic Approach

We now present an algebraic version of Theorem 4: the operator V 7→ V ∗ D preserves
decidability of separation. We would like to emphasize again that the ideas behind this
theorem are essentially the same as for Theorem 4. In particular, proofs presented in the long
version of this paper only rely on elementary notions, thus bypassing complex constructions
usually used to prove this kind of result, even if the statement itself requires some additional
algebraic vocabulary.

The section is organized in three parts. We first briefly recall how classes of languages
corresponding to our logical fragments are given an algebraic definition: for each fragment, an
associated class of finite semigroups (or monoids) V, a variety, has already been characterized,
such that the class of languages definable in the fragment is exactly the class of languages that
are recognized by a semigroup (or monoid) of V. In the second part, we define what “adding
the successor relation” means in this context. Given a variety V, this generally corresponds
to considering a new variety built on top of V via an operation called the semidirect product.
This new variety is denoted V ∗ D. Finally, in the last part, we state our main theorem: for
any variety V, separability for the variety V ∗ D reduces to separability for the variety V.

5.1 Varieties
A variety of semigroups (resp. monoids) is a class of finite semigroups (resp. monoids) closed
under three natural operations: finite direct product, subsemigroup (or submonoid), and
homomorphic image. A variety V defines a class of languages, also noted V, namely the class
of all of languages recognized by semigroups (resp. monoids) in V. There is an issue however:
all classes of languages defined in this way have to be closed under complement, since the
set of languages recognized by any semigroup is closed under complement. This prevents
us from capturing logical fragments that are not closed under complement, such as Σ2(<).
This problem has been solved in [13] with the notions of ordered semigroups and monoids.
Intuitively, such a semigroup is parametrized by a partial order and the set of languages it
recognizes is then restricted with respect to this partial order. These classical constructions
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will be recalled in the long version of this paper, as well as varieties corresponding to all
fragments we deal with.

Logical fragments presented in Sec. 2 correspond to varieties that have been fully identified.
For each fragment, its non-enriched variant corresponds to a variety V of (ordered) monoids
and its enriched version to the variety of (ordered) semigroups V ∗ D built from V. For
example, FO2(<) corresponds to the variety of monoids DA and FO2(<,+1) to the variety
of semigroups DA ∗ D [29] (see the long version for a bibliography with all correspondences).

5.2 Semidirect Product

The Variety D. The variety D consists of all finite ordered semigroups S such that for
all s ∈ S and all e ∈ E(S), we have se = e. From a language perspective, a language L is
recognized by a semigroup in D iff there exists k ∈ N such that membership of a word w
to L only depends on the suffix of length k of w.
Semidirect Product. Let M be an ordered monoid and T be an ordered semigroup. A
semidirect product of M and T is an operation which is parametrized by an action of T on M
and outputs a new ordered semigroup, whose base set is M × T . Therefore, one can obtain
different semidirect products out of the same M and T , depending on the chosen action (we
recall the construction in the long version). One can next lift this product at the level of
varieties.

We are interested in the semidirect products of the form V ∗ D, the variety of ordered
semigroups generated by all semidirect products of an ordered monoid of V by an ordered
semigroup of D. The reason why we introduce such semidirect products is the following
theorem, which gathers several nontrivial results from the literature (see the long version).

I Theorem 14. Let V be a variety corresponding to a fragment F from the ones presented
in Figure 1. Then, the variety corresponding to the fragment F+ is V ∗ D.

5.3 Main Theorem
We have now the machinery needed to state our main theorem. For any variety of ordered
monoids V, we reduce (V ∗ D)-separability to V-separability.

I Theorem 15. Let V be a non-trivial variety of ordered monoids. Let L and L′ be two
languages both recognized by the same morphism α : A+ → S into a finite semigroup S.
Set L,L′ ⊆ A+

α as the languages of well-formed words associated to L,L′. Then L is
(V ∗ D)-separable from L′ if and only if L is V-separable from L′.

The proof of Theorem 15 is presented in the long version of this paper. As it was the
case for Theorem 4, the proof is both elementary and constructive: if there exists a separator
for L and L′ in V, we use it to construct a separator for L and L′ in V ∗ D.

In view of Theorem 14, Theorem 15 applies to all fragments we introduced. This means
that Theorem 4 can be given an alternate indirect proof within this algebraic framework by
combining Theorem 15 and Theorem 14. Hence, this also yields another proof of Corollary 5.

6 Conclusion

We proved that separation is decidable over finite words for the following logical fragments:
FO(=,+1), Σ1(<,+1,min,max), BΣ1(<,+1,min,max), Σ2(<,+1) and FO2(<,+1). To
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achieve this, we presented a simple reduction to the same problem for the weaker fragments
FO(=), Σ1(<), BΣ1(<), Σ2(<) and FO2(<).

The reduction itself is entirely generic to all fragments and its proof is elementary, and
also mostly generic. In particular, the technique can be used to prove that the reduction
works for other natural fragments of first-order logic. An interesting example to which
these results apply is the quantifier alternation hierarchy within FO2(<) (known as the
Trotter-Weil hierarchy, and which is decidable [11]). However, the separation problem for
classes in this hierarchy has yet to be investigated. We also obtained direct proofs that
membership is decidable for BΣ2(<,+1) and Σ3(<,+1).

Finally, we presented an algebraic formulation of this reduction, which recovers a previously
known result by Steinberg [24], while having a much simpler proof. One can expect extending
these results to other fragments, such as enrichment with modulo predicates. Another
advantage of this technique is that it can be extended in a straightforward way to the same
logical fragments over words of infinite length. This yields identical transfer results. We
leave the presentation of these results for further work.
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A Varieties and Logical Fragments

In this appendix, we look at each logical fragment that we consider in the paper and present
a state of the art.

We proceed as follows. First we define ordered semigroups and monoids. Then we give
the definition of varieties of finite ordered semigroups. Note that for technical reasons we
will need to consider both varieties of semigroups and monoids (non-enriched fragments
correspond to varieties of monoids while enriched ones correspond to varieties of semigroups).
For the sake of simplifying the presentation, we only give the definitions for semigroups.
Ordered monoids and varieties of ordered monoids are defined in a similar way. One should
actually have in mind that there is:

1. a generic theorem, called Eilenberg’s theorem, which establishes a correspondence between
varieties and classes of languages (indexed by alphabets) having certain closure properties.
It was first obtained by S. Eilenberg for classes closed under complement, and generalized
by J.E Pin [13] when this assumption does not necessarily hold. We shall not state this
theorem.

2. specific theorems, one for each class, relating a class of languages with a corresponding
variety of ordered semigroups or monoids. We will recall these connections for all logically
defined fragments presented in Section 2.

Ordered Semigroups. An ordered semigroup is a pair (S,6) where S is a semigroup and
6 is a partial order on S, which is compatible with multiplication: s 6 t and s′ 6 t′ imply
ss′ 6 tt′. To simplify the notation, we will often omit the partial order 6 when it is clear
from the context and simply speak of an ordered semigroup S. Observe that any semigroup
endowed with equality as the partial order is an ordered semigroup. In particular we view
A+ as an ordered semigroup with equality as the partial order.

If (S,6S) and (T,6T ) are ordered semigroups, an ordered semigroup morphism is a
mapping α : S → T which is a semigroup morphism and preserves the partial order, i.e., for
all s, s′ ∈ S, s 6S s′ ⇒ α(s) 6T α(s′). Let L ⊆ A+ and (S,6) be an ordered semigroup.
Then, L is said to be recognized by (S,6) if there exist an ordered semigroup morphism
α : A+ → S and F ⊆ S, such that L = α−1(F ) and F is upward closed, that is:

s ∈ F and s 6 t⇒ t ∈ F.

When 6 is trivial, this is exactly the classical notion of recognizability by semigroups (see
above). However, when 6 is nontrivial, the set of recognized languages gets restricted because
of the additional condition on the recognizing set F . In particular it may happen that a
language is recognized by (S,6), while its complement is not.
Varieties of Ordered Semigroups. A variety of finite ordered semigroups is a class V of
finite ordered semigroups that satisfies the following properties:

1. V is closed under ordered subsemigroup: if (S,6) ∈ V, then (T,6) ∈ V when T is a
subsemigroup of S and the order on T is the restriction of the order on S.

2. V is closed under ordered quotient: if (S,6) ∈ V and α : (S,6)→ (T,6) is a surjective
ordered semigroup morphism, then (T,6) ∈ V.

3. V is closed under Cartesian direct product: if (S1,61), (S2,62) ∈ V, then (S1×S2,6) ∈ V,
where the semigroup S1 × S2 is equipped with the componentwise multiplication and
(s1, s2) 6 (t1, t2) if s1 61 t1 and s2 62 t2.
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Varieties of finite ordered monoids, of finite semigroups and of finite monoids are defined
analogously.

As explained above, we use varieties to define classes of languages. To a variety V, we
associate the class of all languages that can be recognized by an ordered semigroup (resp.
ordered monoid) in V. As for logics, for the sake of simplifying the presentation, we may
abuse notation and use V to denote both a variety and the class of languages it defines.

Note that the bibliography presented here is needed to formally prove Theorem 14
and therefore for obtaining an alternate proof of Theorem 4 in the algebraic framework
of Section 5. Namely, for each fragment F in Figure 1, we present references solving the
following questions:

1. Connecting the weak variant F to a variety of monoids V.
2. Connecting the strong variant F+ to the variety of semigroups V ∗ D.
3. Solving the separation problem for F .

First-order with Equality. FO(=) is the restriction of FO(<) in which the linear order
cannot be used, and only equality between two positions can be tested. It is folklore that
FO(=)-definable languages are exactly those that can be defined using a monoid in the
variety of monoids ACom of aperiodic and commutative monoids. The enriched fragment
FO(=,+1) (min and max can be defined in the logic) defines locally threshold testable
languages [30]. In [28], it was proven that FO(=,+1)-definable languages are exactly those
that can be defined in ACom∗D. In particular this was used to solve the membership problem
for FO(=,+1).

That separation is decidable for FO(=) is simple (essentially the problem can be reduced
to the decision of Presburger logic, see [17]). Hence Theorem 4 and Theorem 15 yield two
different proofs of the following corollary.

I Corollary 16. Let L,L′ be regular languages. It is decidable to test whether L is FO(=,+1)-
separable from L′.

As we explained in Section 2, while the proof of Corollary 16 is new, the result itself
is not. A specific proof was presented in [17] and the result can also be obtained through
indirect means by combining results from [2, 24].
Quantifier Alternation Hierarchy. One can classify first-order formulas by counting the
number of alternations between ∃ and ∀ quantifiers in the prenex normal form of the formula.
Set i ∈ N, a formula is said to be Σi(<) (resp. Πi(<)) if its prenex normal form has (i− 1)
quantifier alternations (i.e., i blocks of quantifiers) and starts with an ∃ (resp. ∀) quantifier.
For example, a formula whose prenex normal form is

∃x1∃x2∀x3∃x4 ϕ(x1, x2, x3, x4) (with ϕ quantifier-free)

is Σ3(<). Observe that a Πi(<) formula is by definition the negation of a Σi(<) formula.
Finally, a BΣi(<) formula is a boolean combination of Σi(<) formulas.

Both this hierarchy and the enriched variant are known to be strict. In particular, they
correspond to well-known hierarchies of classes of languages. The non-enriched hierarchy
corresponds to the Straubing-Thérien hierarchy [25, 27]. The enriched hierarchy corresponds
to the dot-depth hierarchy [4]. Note that for all fragments above Σ2(<), the predicates
min and max can be expressed in the logic. Hence, we denote the enriched fragments by
Σ1(<,+1,min,max), BΣ1(<,+1,min,max), Σ2(<,+1), . . .

Solving the membership problem for all levels in both hierarchies has been an open
problem for a long time. As of today, only the lower levels are known to be decidable.
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Historically, BΣ1(<) and BΣ1(<,+1,min,max) have been investigated first. It is known
from [23] that BΣ1(<) has decidable membership and corresponds to the variety of monoids J.
For BΣ1(<,+1,min,max), decidability was proven in [9], as well as the correspondence with
the variety of semigroups J ∗ D in [26].

The fragments Σ1(<) and Σ2(<) were proved to have decidable membership in [14].
Moreover, the authors also prove that each of these two fragments correspond to varieties of
ordered monoids and that Σ1(<,+1,min,max) and Σ2(<,+1) correspond to the varieties
of semigroups obtained by taking the semidirect product with D. From this correspondence,
they obtain decidability of Σ1(<,+1,min,max). This is more involved for Σ2(<,+1) and
was proven later in [7].

Recently, membership has been shown to be decidable for both BΣ2(<) and Σ3(<) [18].
These results can be transferred to BΣ2(<,+1) and Σ3(<,+1) using a result by Straubing [26],
or Theorem 6 in this paper. For all levels above, the membership problem is open.

Separation is known to be decidable for Σ1(<) [5], BΣ1(<) [21, 5] and Σ2(<) [18]. Hence
Theorem 4 and Theorem 15 yield two different proofs of the following corollary.

I Corollary 17. Let L,L′ be regular languages, then the following problems are decidable:

whether L is Σ1(<,+1,min,max)-separable from L′.
whether L is BΣ1(<,+1,min,max)-separable from L′.
whether L is Σ2(<,+1)-separable from L′.

As we explained in Section 2, the result for BΣ1(<,+1,min,max) as it can also be
obtained through indirect means by combining results from [2, 24]. On the other hand, the
results are new for both Σ1(<,+1,min,max) and Σ2(<,+1).

Two-Variable First-Order Logic. FO2(<) is the restriction of FO(<) using only two
(reusable) variables. The corresponding enriched fragment is FO2(<,+1) (min and max can
be expressed in the logic).

In [29], it was proven that FO2(<) and FO2(<,+1) correspond respectively to the
varieties DA and DA ∗ D. This immediately yields decidability of membership for FO2(<).
For FO2(<,+1), this additionally requires a deep algebraic result by Almeida [1] (a simpler
self-contained proof also exists [20]). The separation problem has been proved to be decidable
for FO2(<) in [21]. Hence Theorem 4 and Theorem 15 yield two different proofs of the
following corollary.

I Corollary 18. Let L,L′ be regular languages. It is decidable to test whether L is FO2(<,+1)-
separable from L′.

As we explained in Section 2, while the proof is new, the result itself is not. It can also
be obtained through indirect means, again by combining results from [2, 24].

B Appendix to Section 4: Proof of Proposition 9

In this appendix, we prove Proposition 9. As explained in the main paper, this requires a
specific proof for each fragment we consider. Here, we consider two main cases, F = FO2(<)
and F = Σn(<) for some n. Note that we will obtain the case F = BΣn(<) as a simple
consequence of the Σn(<) case. Finally, we leave out the case F = FO(=), as the argument
is essentially a copy and paste of the Σn(<) argument.
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B.1 FO2(<) and FO2(<, +1)
Observe that since FO2(<) and FO2(<,+1) are both closed under complement, the preorders
�k and �+1

k are actually equivalence relations. To avoid confusion with other fragments, we
denote by ≡k and ≡+1

k , these two equivalences. We prove the following proposition, which
clearly entails Proposition 9.

I Proposition 19. For any k ∈ N, given u,u′ ∈ A+
α we have the following implication:

u ≡k u′ ⇒ due2k ≡
+1
k du

′e2k

This is proved using an Ehrenfeucht-Fraïssé argument. We first define the Ehrenfeucht-
Fraïssé game associated to FO2(<) (i.e., corresponding to ≡k) and then explain how to
adapt it to ≡+1

k .
Ehrenfeucht-Fraïssé Game. The board of the FO2(<)-game consists of two words and
lasts a predefined number k of rounds. There are two players called Spoiler and Duplicator.
At any time during the game there is one pebble placed on a position of one word and one
pebble placed on a position of the other word, and both positions have the same label. When
the game starts, both pebbles are placed on the first position of each words. Each round
starts with Spoiler choosing one of the pebbles, and moving it inside its word from its original
position x to a new position y. Duplicator must answer by moving the other pebble in the
other word from its original position x′ to a new position y′. Moreover, x′ and y′ must satisfy
the same relations as x and y among ’<’ and the label predicates.

Duplicator wins if she manages to play for all k rounds. Spoiler wins as soon as Duplicator
is unable to play.

The FO2(<,+1)-game is defined similarly with additional constraints for Duplicator.
When Spoiler makes a move, Duplicator’s must choose is answer y′ so that x′ and y′ satisfy
the same relations as x and y among +1, < and the label predicates.

I Lemma 20 (Folklore). For any integer k and any words v, v′, we have the following facts:

v ≡k v′ iff Duplicator has a winning strategy in the k-round FO2(<)-game on v and v′.
v ≡+1

k v′ iff Duplicator has a winning strategy in the k-round FO2(<,+1)-game on v

and v′.

Set u = due2k and u′ = du′e2k, with the notation of Lemma 20. In view of Lemma 20,
we may prove that u ≡+1

k u′ by giving a winning strategy in the k-round FO2(<,+1)-game
played on u and u′. We call G this game. The strategy involves playing a shadow FO2(<)-
game S on u and u′. Observe that by hypothesis and Lemma 20, Duplicator has a winning
strategy for k rounds in the game S. We begin by setting up some notation to help us define
Duplicator’s strategy.
Notation. Assuming that u �k u′, we need to prove that u �+1

k u′. If u ∈ S or u′ ∈ S,
then u = u

′ = s ∈ S (since the only well-formed word that contains letter s ∈ S is s itself)
and the result is immediate.

Otherwise, by hypothesis, the words u and u′ are of the form

u = (s0, e1)(e1, s1, e2) · · · (em, sm)
u
′ = (s′0, e′1)(e′1, s′1, e′2) · · · (e′m′ , s′m′)

In particular, observe that since u �k u′ and the labels of the leftmost and rightmost
positions are unique in u and u′, we have s0 = s′0, e1 = e′1, em = e′m′ and sm = s′m′ . For the
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sake of simplifying the presentation, we assume that for all i 6 m, we have dsie = ai ∈ A
and deie = bi ∈ A (this does not harm the generality of the proof). Similarly, for all i 6 m′,
we assume that ds′ie = a′i ∈ A and de′ie = b′i ∈ A. By definition, we have

u = due2k = a0(b1)2ka1(b2)2k · · · (bm)2kam
u′ = du′e2k = a′0(b′1)2ka′1(b′2)2k · · · (b′m′)2ka′m′

Winning Strategy. We define an invariant I(`) (` is the number of remaining rounds) that
Duplicator has to satisfy when playing. Assume that the pebbles in u, u′ are at positions
x, x′ in G and that the pebbles in u,u′ are at positions i, i′ in S. Then, I(`) holds when so
do all following properties:

1. Duplicator has a winning strategy for playing ` rounds in S. In particular this means
that i, i′ have the same label and that bi = b′i′ , ai = a′i′ and bi+1 = b′i′+1.

2. x and x′ are inside the identical factors (bi)2kai(bi+1)2k and (b′i′)2ka′i′(b′i′+1)2k, and at
the same relative position.

3. there are at least ` copies of bi (resp b′i′) to the left of x (resp. x′) and ` copies of bi+1
(resp. b′i′+1) to the right of x resp. x′).

It is clear that I(k) holds at the beggining of the game. Assume now that I(`+ 1) holds
and that there are `+ 1 rounds left to play. We explain how Duplicator can answer a move
by Spoiler while enforcing I(`). Assume that Spoiler moves the pebble in u to a new position
y (the dual case, when Spoiler plays in u′, is treated similarly). There are two distinct cases.

If y remains in the factor (bi)2kai(bi+1)2k and satifies Item 3 of I(`), then Duplicator
simply copies Spoiler’s move in (b′i′)2ka′i′(b′i′+1)2k. The positions i and i′ remain unchanged
and I(`) is clearly satisfied.
Otherwise, let j 6= i such that x belongs to (bj)2kaj(bj+1)2k, has at least ` copies of
bj to its left and ` copies of bj+1 to its right. To get an answer, Duplicator simulates
a move by Spoiler in S by moving the pebble from position i to position j. From her
winning strategy in S, she obtains a position j′ in u′. This gives her a position y′ in
(b′j′)2ka′j′(b′j′+1)2k which satisfies I(`). This terminates the proof.

B.2 Σn(<) and Σn(<, +1, min, max)
We fix some n ∈ N. We keep using the symbols �k and �+1

k to denote the preorders
associated to Σn(<) and Σn(<,+1,min,max). Furthermore, we denote by ∼=k and ∼=+1

k

the equivalence relations associated to BΣn(<) and BΣn(<,+1,min,max). We prove the
following proposition, which again yields Proposition 9 with k′ = k and i = 2k+1.

I Proposition 21. For any k ∈ N, given u,u′ ∈ A+
α we have the following implications:

u �k u′ ⇒ due2k+1 �+1
k du′e2k+1

u
∼=k u

′ ⇒ due2k+1
∼=+1
k du′e2k+1 .

Observe first that the second implication is an immediate consequence of the first one.
Indeed, since BΣn formulas are boolean combinations of Σn formulas, we have

v �k v′ and v′ �k v if and only if v ∼=k v
′

v �+1
k v′ and v′ �+1

k v if and only if v ∼=+1
k v′.
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Therefore, we concentrate on the first implication. As for FO2(<), this an Ehrenfeucht-
Fraïssé argument. We first define the Ehrenfeucht-Fraïssé game associated to Σn(<) (i.e.,
corresponding to �k) and then explain how to adapt it to �+1

k .
Ehrenfeucht-Fraïssé Game. The board of the Σn(<)-game consists of two words v, v′
and there are two players called Spoiler and Duplicator. Moreover, initially, there exists
a distinguished word among v, v′ that we call the active word (this word may change as
the game progresses). The game is set to last a predefined number k of rounds. When the
game starts, both players have k pebbles. Finally, there is a parameter that gets updated
during the game, a counter c called the alternation counter. Initially, c is set to 0. It may be
incremented, but it has to remain bounded by n− 1.

At the start of each round j, Spoiler chooses a word, either v or v′. Spoiler can always
choose the active word, in which case both c and the active word remain unchanged. However,
Spoiler can only choose the word that is not active when c < n− 1, in which case the active
word is switched and c is incremented by 1 (in particular, this may happen at most n− 1
times). If Spoiler chooses v (resp. v′), he puts a pebble on a position xj in v (resp. x′j in v′).

Duplicator must answer by putting a pebble at a position x′j in v′ (resp. xj in v).
Moreover, Duplicator must ensure that all pebbles that have been placed up to this point
verify the following condition: for all `1, `2 6 j, the labels at positions x`1 , x

′
`1

are the same,
and x`1 < x`2 if and only if x′`1

< x′`2
.

Duplicator wins if she manages to play for all k rounds, and Spoiler wins as soon as
Duplicator is unable to play.

The Σn(<,+1,min,max)-game is defined similarly with the following additional con-
straint for Duplicator: at any time, for all `1, `2, x`1 = x`2 + 1 if and only if x′`1

= x′`2
+ 1,

min(x`1) if and only if min(x′`1
) and max(x`1) if and only if max(x′`1

).

I Lemma 22 (Folklore). For all k ∈ N and v, v′, we have the following facts:

v �k v′ iff Duplicator has a winning strategy in the k-round Σn(<)-game on v and v′
with v as initial active word.
v �+1

k v′ iff Duplicator has a winning strategy in the k-round Σn(<,+1,min,max)-game
on v and v′ with v as initial active word.

In view of Lemma 22, we prove that due2k+1 �+1
k du′e2k+1 by giving a winning strategy

for Duplicator in the corresponding k-round Σn(<,+1,min,max)-game. We call G this
game. Duplicator’s strategy involves playing a second shadow Σn(<)-game S on u and u′,
on which, by hypothesis and Lemma 20, she has a winning strategy in k rounds. We begin
by setting up some notation that will help us define Duplicator’s strategy.
Notation. Set u = due2k+1 and u′ = du′e2k+1 . Assuming that u �k u′, we need to prove
that u �+1

k u′. If u ∈ S or u′ ∈ S, then u = u
′ = s ∈ S (again, the only well-formed word

that contains the letter s ∈ S is s) and the result is immediate.
Otherwise, by hypothesis, the words u and u′ are of the form

u = (s0, e1)(e1, s1, e2) · · · (em, sm)
u
′ = (s′0, e′1)(e′1, s′1, e′2) · · · (e′m′ , s′m′)

In particular, observe that since u �k u′ and the labels of the leftmost and rightmost
positions are unique in u and u′, we have s0 = s′0, e1 = e′1, em = e′m′ and sm = s′m′ . For the
sake of simplifying the presentation, we assume that for all i 6 m, we have dsie = ai ∈ A
and deie = bi ∈ A (this does not harm the generality of the proof). Similarly, for all i 6 m′,



20 Separation and the Successor Relation

we assume that ds′ie = a′i ∈ A and de′ie = b′i ∈ A. By definition, we have

u = due2k+1 = a0(b1)2k+1
a1(b2)2k+1 · · · (bm)2k+1

am

u′ = du′e2k+1 = a′0(b′1)2k+1
a′1(b′2)2k+1 · · · (b′m′)2k+1

a′m′ .

Winning Strategy. We define an invariant I(`) (` is the number of remaining rounds in
the main game) that Duplicator has to satisfy when playing.

As she plays, Duplicator associates to each position i ∈ u, (resp. i′ ∈ u′) a set of positions
in u (resp. u′) called the set of marked positions of i (resp. i′). All marked positions for i
(resp. i′) must belong to the bi, ai or bi+1 (resp. b′i′ , a′i′ or bi′+1) positions in u (resp. u′).
Initially, all ai (resp. a′i′) are marked for i (resp. i′). Duplicator may define more positions
as marked as the game progresses. All these new marked positions will be positions holding
pebbles in G.

Assume that there are ` rounds left to play and that pebbles have already been placed
on u, u′ in the main game G and on u,u′ in S in a way that satisfies the conditions of
both Ehrenfeucht-Fraïssé games. We denote by cG the alternation counter of the main
game G and by cS that of the shadow game S. For all i ∈ u (resp. i′ ∈ u′) we denote by
x1(i) < · · · < xmi

(i) (resp. x′1(i′) < · · · < x′mi′
(i′)) the marked positions of i (resp. i′). Then

I(`) holds if the following properties hold:

1. Duplicator has a winning strategy for playing at least ` more rounds in S. Furthermore,
either cS > cG , or cS = cG and the active words in S and G are either u and u, or u′
and u′.

2. Any position x ∈ u (x′ ∈ u′) that holds a pebble in G is marked for some i ∈ u (resp.
i′ ∈ u′) holding a pebble in S. Conversely, any position that is marked for i ∈ u, (resp.
i′ ∈ u′) is either ai (resp. a′i′) or a position holding a pebble in G.

3. Let i, i′ be positions of u,u′ on which there are corresponding pebbles in S. Observe that
since i, i′ have the same label, ai = a′i′ , bi = b′i′ and bi+1 = b′i′+1.
In that case, mi = mi′ and for all j 6 mi, xj(i) is the ai = a′i′ position iff x′j(i′) is the
ai = a′i′ position and xj(i) holds a pebble of G iff x′j(i′) holds the corresponding pebble.
Finally, given j < mi, let d and d′ be the number of positions that are strictly between
xj(i) and xj+1(i) (resp. x′j(i′) and x′j+1(i′)). Note that by the condition above these
positions are all labeled by bi = b′i′ , or all labeled by bi+1 = b′i′+1. We require that either
d = d′, or d > 2` and d′ > 2`.

4. For all i ∈ u (resp. i′ ∈ u′), we have xmi
(i) < x1(i + 1) (resp. x′mi′

(i′) < x′1(i′ + 1)).
Moreover, there are more than 2`+1 copies of bi+1 (resp. b′i′+1) that are strictly between
these two positions.

It is clear that I(k) holds before the initial round. Assume now that there are ` + 1
rounds left to play and that I(`+ 1) holds. We explain how Duplicator can play in order to
enforce I(`). Assume that Spoiler puts a pebble at a position x ∈ u in G (the case when
Spoiler plays in u′ is symmetric). We distinguish two cases depending on the position x.
There exists i ∈ u such that x1(i) 6 x 6 xmi(i). If there is already a pebble on i in S,
then we set i′ as the position holding the corresponding pebble in u′. Otherwise, Duplicator
simulates a move by Spoiler in S by putting a pebble on position i. We set i′ as the answer
she obtains from her strategy in S. Note that by hypothesis all pebbles in u,u′ (including
i, i′) satisfy the conditions of the Σn(<)-game.

If x is already a marked position xj(i) of i, then Duplicator answer by putting a corre-
sponding pebble on x′j(i′). Note that this answer is correct by hypothesis on i, i′ for the
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Σn(<)-game and by hypothesis on the marked positions of i, i′ as stated in Item 2 of I(`+ 1).
Since both positions were already marked for i, i′, it is then simple to verify that I(`) holds.

Assume now that x is not yet marked. Then x is a bi or a bi+1 position (ai positions
are aways marked). Assume that x is a bi position (the case bi+1 is similar). Recall that
mi = m′i′ by Item 2 in I(`+ 1). Let j such that xj(i) < x < xj+1(i). By Item 3 of I(`+ 1) it
is immediate than one can find an answer x′ ∈ u′ such that x′j(i′) < x′ < x′j+1(i′) and Item 3
of I(`) remains satisfied with x, x′ as new marked positions of i, i′. Again this answer is
correct by hypothesis on i, i′ for the Σn(<)-game and by hypothesis on the marked positions
of i, i′ as stated in Item 2 of I(`+ 1). It is then simple to verify that I(`) remains satisfied.
There exists i ∈ u such that xmi−1(i− 1) < x < x1(i). From Item 4 in I(`+ 1), we know
that there are at least 2`+2 copies of bi between xmi−1(i− 1) and x1(i). It follows, that there
are either at least 2`+1 copies of bi between xmi−1(i− 1) and x or at least 2`+1 copies of bi
between x and x1(i). Since both cases are symmetric, assume that we are in the first case:
there are at least 2`+1 copies of bi between xmi−1(i− 1) and x.

If there is already a pebble on i in S, then we set i′ as the position holding the corresponding
pebble in u′. Otherwise, Duplicator simulates a move by Spoiler in S by putting a pebble
on position i. We set i′ as the answer she obtains from her strategy in S. Note that by
hypothesis all pebbles in u,u′ (including i, i′) satisfy the condition of the Σn(<)-game.

Set d as the number of copies of bi between x and x1(i), i.e., x = x1(i) − (d + 1). If
d < 2`, we set x′ ∈ u′ as the position x′ = x1(i′)− (d+ 1). Otherwise we set x′ ∈ u′ as the
position x′ = x1(i)− (2` + 1). In both cases, x′ is Duplicator’s answer and we set x, x′ as
new marked positions of i, i′. Note that this answer is correct by hypothesis on i, i′ for the
Σn(<)-game. It is immediate that Item 1 is satisfied in I(`). Item 2, 3 and 4 of I(`) are
satisfied by choice of x′.

C Proof of Theorem 15

This section is divided in three parts. In the first one, we recall the formal definition of the
semidirect product operation. In the next two ones, we prove both directions of Theorem 15.

C.1 The semidirect product
Let M be an ordered monoid and T be an ordered semigroup. A semidirect product of
M and T is an operation which is parametrized by an action of T on M and outputs a
new ordered semigroup, whose base set is M × T . In particular, one can obtain different
semidirect products out of the same M and T , depending on the chosen action.

Let ’+’ and ’·’ be the operations of M and T respectively. Note that we choose to denote
the operation on M additively. This is for the sake of simplifying the presentation. However,
this does not mean that we assume M to be commutative. An action ’·’ of T on M is a
mapping (t, s) 7→ t · s from T 1 ×M to M such that, for all s, s′ ∈M and all t, t′ ∈ T :

1. t · (t′ · s) = (t · t′) · s.
2. t · (s+ s′) = t · s+ t · s′.
3. 1T · s = s.

4. if s 6 s′, then t · s 6 t · s′.
5. if t 6 t′, then t · s 6 t′ · s.
6. t · 1M = 1M .

Given a fixed action ’·’ of T on M , the semidirect product M ∗T of M and T with respect
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to the action ’·’ is the set M × T equipped with the following operation:

(s, t) · (s′, t′) = (s+ t · s′, t · t′)

and the product order: (s, t) 6 (s′, t′) if s 6 s′ and t 6 t′. One can verify that this does
yield an ordered semigroup [15].

We will only use the semidirect product with semigroups T ∈ D. In particular, if V is a
variety of ordered monoids, we denote by V ∗ D the variety of ordered semigroups generated
by all semidirect products M ∗ T , for some M ∈ V and some T ∈ D.

We are now ready to prove Theorem 15. Recall that we have a non-trivial variety V
of ordered monoids, two languages L and L′ recognized by a morphism α : A+ → S, and
L,L′ ⊆ A+

α the associated languages of well-formed words.
We prove that L is (V ∗ D)-separable from L′ if and only if L is V-separable from L′. We

prove each direction in its own subsection.

C.2 From (V ∗ D)-separability to V-separability
We prove that if L is (V ∗D)-separable from L′, then L is V-separable from L′. Note that we
reuse the construction which associates a canonical word dwei ∈ A+ to every word w ∈ A+

α

and natural i > 1 (see Section 4.1 for details).
Assume that L is (V ∗ D)-separable from L′. This means that there exists an element of

(V ∗ D) separating L and L′. By [15, Prop. 3.5], such an ordered semigroup is an ordered
quotient of an ordered subsemigroup of a semidirect product M ∗ T , with M ∈ V and T ∈ D.
Therefore, M ∗ T itself separates L and L′. Hence, there is some upward closed F ⊆M ∗ T
and a morphism δ : A+ →M ∗ T such that δ−1(F ) separates L from L′.

We construct a separator in V for L and L′. Set T = {t1, . . . , tn} and observe that since
V is non-trivial, it contains an ordered monoid N containing at least n distinct elements.
We choose n such elements t′1, . . . , t′n of N . The choice is essentially arbitrary, but we ask
t′1, . . . , t

′
n to be pairwise incomparable with respect to the partial order 6. We prove that L

can be separated from L′ using the ordered monoid M = M ×N ∈ V (recall that a variety is
closed under cartesian product). For an element t = ti of T , we denote by t′ the element t′i
of N .

We define a morphism γ : A+
α →M as follows. Let ω be the idempotent power ω(M ∗ T )

of M ∗ T . Set a = (e, s, f) ∈ Aα, so that daeω = wωe wsw
ω
f . Let δ(wωe ) = (me, te) ∈ M ∗ T

and δ(daeω) = (m, t). We define γ(a) ∈M ×N as follows:

γ(a) =
{

(te ·m, t′) when f = 1S ,
(te ·m, 1N ) otherwise.

This defines a morphism γ : Aα → M × N ∈ V. It remains to prove that γ recognizes a
separator of L and L′. This is a consequence of the next lemma.

I Lemma 23. Let w ∈ A+
α be well-formed, and set (m, ti) = δ(dweω). Then γ(w) = (m, t′i).

Before proving the lemma, we use it to conclude the proof. Define F ⊆M by F = {(m, t′i) |
(m, ti) ∈ F}}. One can verify that F is upward closed. We claim that γ−1(F) separates L
from L′.

Assume first that w ∈ L. By Fact 8, dweω ∈ L, hence δ(dweω) ∈ F . It then follows from
Lemma 23 that γ(w) ∈ F. Conversely if w ∈ L′, we have δ(dweω) 6∈ F . It then follows from
Lemma 23 that γ(w) 6∈ F which terminates the proof. We now prove Lemma 23.
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Proof of Lemma 23. We first show that the first component in M of δ(dweω) and of
γ(w) are equal. The proof consists in a straightforward but tedious computation. Set
w = a1 · · ·ap ∈ A+

α that is well-formed. Set ai = (ei−1, si, ei) and recall that, in view of the
definition of dwei given in Section 4.1, we have chosen words wei and wsi such that:

daieω = wωei−1
· wsi

· wωei

For each idempotent e = ei, set δ(wωe ) = (me, te) ∈M ∗ T and for each element s = si, let
δ(ws) = (ms, ts) ∈M∗T . Note that by definition of ω, the element (me, te) = δ(wωe ) = δ(we)ω
is idempotent, so (me, te) = (me + te ·me, t

2
e). In particular, te is idempotent in T . Further,

we have for all i:

mei + tei ·mei = mei . (3)

To lighten the notation, from now on, let us write the action of T on M as tm instead of
t ·m. For each ai = (ei−1, si, ei), we then have

δ(daieω) = δ(wωei−1
)δ(wsi)δ(wei)ω

= (mei−1 , tei−1)(msi
, tsi

)(mei
, tei

)

=
(
mei−1 + tei−1msi

+ tei−1tsi
mei

, tei

)
(4)

where, for computing the 2nd component, we used the fact that tei
is idempotent in T ∈ D.

Similarly, by definition we have dweω = (we0)ωws1(we1)ω · · · (wep−1)ωwsp(wep)ω, and

δ(dweω) = δ(wωe0
)δ(ws1)δ(we1)ωw · · · δ(wep−1)ωδ(wsp

)wsp
(wep

)ω

= (me0 , te0)(ms1 , ts1)(me1 , te1) · · · (mep−1 , tep−1)(msp
, tsp

)(mep
, tep

)

=
(
me0 + (te0ms1 + te0ts1me1) + · · ·+ (tep−1msp

+ tep−1tsp
mep

), tep

)
. (5)

Again, for the last equality, we used the definition of the semidirect product and the fact
that each tei

is an idempotent in T , which implies, since T ∈ D, that t · tei
= tei

for all t ∈ T .
Using (3) for each i, one can replace mei in (5) by mei + teimei . Taking into account

that tei
is idempotent in T , this yields for this first component of δ(dweω) the value

me0 + te0me0 + (te0ms1 + te0ts1me1 + te1me1) + · · ·+ (tep−1msp
+ tep−1tsp

mep
+ tep

mep
)

Observe that since w is well-formed, e0 = 1S , hence me0 = 1M , which is the neutral
element for the ’+’ operation on M . In the same way, ep = 1S , hence mep

= 1M , and
therefore, using the last axiom of an action, we deduce that tep

mep
= 1M . Hence, these two

elements can be removed from the expression of the first component of δ(dweω). Therefore,
this first component can be rewritten, using associativity, as:

(te0me0 + te0ms1 + te0ts1me1) + · · ·+ (tep−1mep−1 + tep−1msp + tep−1tspmep). (6)

On the other hand, in view of (4) and by definition of γ, the first component of γ(ai) ∈
M ×N is

(tei−1 · (mei−1 + tei−1msi + tei−1tsimei) = (tei−1mei−1 + tei−1msi + tei−1tsimei). (7)

Therefore, one can compute the first component of γ(w) = γ(a1 · · ·ap) = γ(a1) · · · γ(ap) by
summing the values (7) for i = 1, . . . , p (recall that the operation on M is noted additively),
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which gives the value computed in (6). Hence we have shown that the first component in M
of δ(dweω) and of γ(w) are equal.

It remains to check that when the second component of δ(dweω) is equal to some t ∈ T ,
then the second component of γ(w) is the corresponding element t′ ∈ N . This is simpler: by
definition of a well-formed word, we have ei 6= 1S for i < p, and ep = 1S . By definition of γ,
it follows that the second component of γ(w) is the second component of γ(ap), namely t′p.
Now, since T ∈ D, the second component of δ(daeω) is tp, which concludes the proof. J

C.3 From V-separability to (V ∗ D)-separability
We prove that if L is V-separable from L′, then L is (V ∗D)-separable from L′. Note that we
reuse the construction which associates to every word w ∈ A+ a canonical word bwc ∈ A+

α

(see Section 4.2 for details).
Assume that L is V-separable from L′. This means that we have a morphism γ : A∗α →M

with M an ordered monoid in V and F ⊆ M upward-closed such that γ−1(F) separates L
from L′. We need to construct a separator in V ∗ D for L and L′. The main idea is to define
a morphism, which given w ∈ A+, computes γ(bwc). This is slightly technical however as
the morphism needs some machinery to make this computation.

We begin with some notations. To every word w ∈ A+, we associate an element
lab(w) ∈ M. Let x be the last position in w and consider the construction of bwc. If x is
distinguished, we set lab(w) = γ(a) with a the label of bxc in bwc. Otherwise, we simply set
lab(w) = 1M. We can now start the construction of our separator. We have to define the
following objects:

An ordered semigroup T ∈ D.
An ordered monoid M ∈ V.
An action of T on M yielding a semidirect product M ∗ T .
A morphism δ : A+ →M ∗ T which recognizes the desired separator.

Definition of T . We set T as the set {w ∈ A+ | |w| 6 2|S|} equipped with the following
operation. If w,w′ ∈ T , we set w · w′ as the suffix of length 2|S| of the word ww′ when
ww′ has length > 2|S| and as ww′ otherwise. One can verify that this operation is indeed
associative and that T ∈ D. We use equality as the partial order on T .

Observe that we have a natural morphism ρ : A+ → T such that ρ(w) is w if |w| 6 2|S|,
and ρ(w) is the suffix of length 2|S| of w otherwise. Observe that by Lemma 11, we have the
following fact.

I Fact 24. For every w ∈ A+, lab(w) = lab(ρ(w)).

Definition of M . We set M ∈ V as the cartesian product MT 1 (recall that as a variety of
ordered monoids, V is closed under cartesian product).
I Remark. Since we intend to take a semidirect product of M and T , we will denote the
semigroup operations of both M and M additively in order to clarify the presentation.

Definition of M ∗ T . If w ∈ T and f ∈M (i.e., f is a mapping f : T 1 →M), we set w · f
as the mapping g : T 1 →M such that g(u) = f(u ·w). One can verify that ’·’ is an action of
T on M . In the remainder of the proof, we denote by M ∗ T the semidirect product of M
and T with respect to this action.
Definition of δ. Set fId : T 1 →M defined as follows. We set fId(1T ) = 1M and fId(w) =
lab(w) when w ∈ T . We can now define δ : A+ → M ∗ T . Let a ∈ A+, we set δ(a) as the
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pair (fa, a) where fa = a · fId, i.e., the mapping fa : w 7→ fId(wa). It now remains to prove
that δ does recognize a separator of L from L′. This is a consequence of the following lemma.

I Lemma 25. Let w ∈ A+, (f, u) = δ(w) and end(u) as the label of the last position in buc.
Then,

γ(bwc) = f(1T ) · γ(end(u)).

We first use the lemma to conclude the proof. Set F ⊆M ∗ T as the set

F = {(f, u) | f(1T ) · γ(end(u)) ∈ F}.

One can verify that F is upward closed (this is essentially because F is upward-closed). It is
immediate from Lemma 25 that δ(w) ∈ F iff γ(bwc) ∈ F. We claim that δ−1(F ) separates L
from L′.

Assume first that w ∈ L, we need to prove that w ∈ δ−1(F ). By Fact 10, we have
bwc ∈ L, hence γ(bwc) ∈ F and δ(w) ∈ F . Similarly, if w ∈ L′, bwc ∈ L′, hence γ(bwc) 6∈ F
and δ(w) 6∈ F which terminates the proof. It finally remains to prove Lemma 25.

Proof of Lemma 25. Set w = a1 · · · an and bwc = a1 · · ·am. By definition, we have:

f = ρ(a1) · fId + ρ(a1a2) · fId + · · ·+ ρ(a1 · · · an) · fId

By definition of fId and by Fact 24 this means that:

f(1T ) = lab(a1) + lab(a1a2) + · · ·+ lab(a1 · · · an)

It is then immediate from the definition of bwc that f(1T ) = γ(a1 · · ·am−1). Hence γ(bwc) =
f(1T ) · γ(end(w)). This finishes the proof since u is the suffix of length 2|S| of w, and
therefore end(u) = end(w) by Lemma 11. J
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