
Regular Languages of Infinite Trees that are
Boolean Combinations of Open Sets

Miko laj Bojańczyk and Thomas Place?

University of Warsaw

Abstract. In this paper, we study boolean (not necessarily positive)
combinations of open sets. In other words, we study positive boolean
combinations of safety and reachability conditions. We give an algorithm,
which inputs a regular language of infinite trees, and decides if the lan-
guage is a boolean combination of open sets.

1 Introduction

In this paper, we work with infinite binary trees labeled by a finite alphabet.
The set of trees can be interpreted as a compact metric space. The distance
between two different trees is 2−n, where n is the smallest depth where the two
trees are different. In the topology induced by this distance, a set of trees L
is open if for every tree t ∈ L, there is a finite prefix of t such that changing
nodes outside the prefix does not affect membership in L. In other words, an
open set is a reachability language. We are interested in understanding finite
boolean combinations, not necessarily positive, of open sets. The main result of
this paper is:

Theorem 1.1. The following problem is EXPTIME complete. Given a nonde-
terministic parity automaton on infinite trees, decide if the recognized language
is a boolean combination of open sets.

In other words, this paper provides an effective characterization of boolean (not
necessarily positive) combinations of open sets, within the class of regular lan-
guages of infinite trees.
A similar version of the problem, where one asks if L is simply an open set, and
not a finite boolean combination of open sets, is significantly simpler. Here is the
solution to this simpler problem which is folklore to the best of our knowledge.
The key observation is that the topological closure of a tree language L is the
set

closure(L) = {t : every finite prefix of t can be extended to some tree in L}.

A language L is open if and only if its complement Lc satisfies Lc = closure(Lc).
Automata for both Lc and closure(Lc) can be computed based on the automaton
for L, and then one can test two regular languages for equality.
? Both authors supported by ERC Starting Grant “Sosna”

The difficulty in Theorem 1.1 is dealing with the boolean combinations.
Our approach to the problem uses forest algebra for infinite trees [4]. We intended
to achieve two complementary goals: use the algebra to understand boolean com-
binations of open sets; and use boolean combinations of open sets to understand
the algebra.

Goal 1: understand boolean combinations of open sets. We believe that
giving an effective characterization for a class L of regular languages can be the
most mathematically rewarding thing that one can do with L . The ostensible
goal of an effective characterization – the algorithm deciding membership in
L – is usually less interesting than the insight into the structure of L that is
needed to get the algorithm. A famous example is the theorem of Schützenberger
and McNaughton/Papert, which makes a beautiful connection between logic and
algebra: a word language is definable in first-order logic if and only if its syntactic
monoid is aperiodic [9, 7].
We believe that our study of boolean combinations of open sets achieves this
goal. We discover that this class of languages has a rich structure, which is much
more complex in the case of infinite trees than in the case of infinite words.
On our way to Theorem 1.1, we provide three conditions which are equivalent
to being a boolean combination of open sets, see Theorem 5.3. Two of these
conditions are stated in terms of games, and one is stated in terms of algebraic
equations. We believe that each of these conditions are interesting in their own
right.

Goal 2: understand algebra for infinite trees. The algebraic theory of
languages of finite words is well studied, using monoids and semigroups, see the
book by Straubing [10]. The algebraic theory of languages of infinite words is
also well understood, see the book by Perrin and Pin [8]. There has been quite a
lot of recent work on algebra for finite trees [2], but the theory is still not mature.
Finally, the algebraic theory of infinite trees is very far from being understood,
despite some work [4, 1].
We believe that our study of boolean combinations of open sets has highlighted
the kind of tools that might be important in the algebraic theory of infinite
trees. An important theme is the use of games. As mentioned previously, we
characterize boolean combinations of opens sets in terms of two games, and
a set of two identities. Even in the identities, there is a hidden game, which is
played in the algebra. We see this as evidence that the algebraic theory of infinite
trees will need to take games into account.

Organization of the paper. In Section 2 we give our first characterization
of boolean combination of open sets by the means of games. Note that this
characterization is not effective and works not only for trees but also for all
topological spaces. In Section 3, we provide the basic definitions we need for
trees and algebra. In Section 4, we make a finer analysis of the non-effective
characterization of Section 2 in the case of trees. Finally, in Section 5 we state

2

our effective characterization using algebraic identities. Due to space limitations
many proofs appear in the appendix.

2 A game characterization

We begin by studying boolean combinations of open sets in arbitrary topological
spaces. Fix a topological space. In this paper, we are interested in the topological
space of infinite trees, but the discussion in this section works for all spaces.
Let X1, . . . , Xn be arbitrary subsets of the topological space. We define a game

H (X1, . . . , Xn)

which is played by two players, called Alternator and Constrainer. The game is
played in n rounds. At the beginning of each round i ∈ {1, . . . , n}, there is an
open set Ui. Initially, U1 is the whole space. Round i of the game is played as
follows.

– Alternator chooses a point xi ∈ Ui ∩ Xi. If there is no such point xi, the
game is interrupted and player Constrainer wins immediately. Otherwise,

– Constrainer chooses an open set Ui 3 xi, and the next round is played.

If Alternator manages to survive n rounds, then he wins.
The following lemma shows that the rules of the game could be changed such
that Constrainer can only pick base open sets.

Lemma 2.1. Choose some base for the topology. If Constrainer has a winning
strategy, then he has a winning strategy which uses base open sets for U1, . . . , Un.

Suppose that X is a set and n ∈ N. We write H∈/∈(X,n) for the game where
Alternator needs to alternate n times between X and its complement, that is:

H (X1, . . . , Xn) where Xi =

{
X when i is odd
the complement of X when i is even

.

Example 2.2. Consider the space of real numbers, and let X be the rational
numbers. Then for every n, Alternator wins the game H∈/∈(X,n).

Example 2.3. In the real numbers, let X be the complement of {1/n : n ∈
N}. Alternator wins H∈/∈(X, 3). In the first round, Alternator plays 0 ∈ X. In
the second round, Alternator plays 1/n 6∈ X for some large n depending on
Constrainer’s move. In the third round, Alternator plays 1/n+ ε ∈ X, for some
small ε depending on Constrainer’s move. Constrainer wins H∈/∈(X,n) for n ≥ 4.

Proposition 2.4. The following conditions are equivalent for a set X:

– X is a finite boolean combination of open sets
– Constrainer wins the game H∈/∈(X,n) for all but finitely many n.

3

Refinement lemma. We now state a lemma, which shows that Alternator’s
winning sets can be refined in an arbitrary finite way.

Lemma 2.5. Let X1, . . . , Xn be sets. For i ∈ {1, . . . , n}, let Yi a finite family
of sets partitioning of Xi. If Alternator wins

H (X1, . . . , Xn)

then there exist Y1 ∈ Y1, . . . , Yn ∈ Yn such that Alternator wins

H (Y1, . . . , Yn).

3 Preliminaries on trees

Trees. We use possibly infinite trees where every node has zero or two children.
For a finite alphabet A, we denote by HA the set of infinite binary trees labeled
over A. Notions of node, leaf, child, root, descendant are defined as usual. We
write ’<’ the descendant relation (the smallest node being the root of the tree).
If t is a tree and x a node of t, we write t(x) the label of x in t, and t|x for the
subtree of t at x.

Multicontexts. A multicontext is a tree with some distinguished unlabeled
leaves called its ports. The number of ports is called the arity, there might be
infinitely many ports. Given a multicontext C and a valuation η which maps
ports to trees, we write C[η] for the tree obtained by replacing each port x
by the tree η(x). A tree C[η] is said to extend the multicontext C, conversely
the multicontext C is said to be a prefix of the tree C[η]. The set of all trees
extending a multicontext C is denoted by C[∗]. The following picture shows three
multicontexts, with arities 0, 1 and 2, with the ports depicted by squares.

The multicontext C0 is a tree, and C0[∗] is {C0}. The multicontext C1 is a prefix
of every tree where the root label is a, and the left child of the root is a leaf with
label a. Finally, C2 is a prefix of every tree with root label a. We are mostly
interested in finite prefixes, which are multicontexts where every path ends in a
leaf, which is either a port or a normal leaf.

Contexts. A context is a multicontext with exactly one port. We write VA the
set of contexts over A. We write C,D for contexts. Given two contexts C,D, we
write C ·D for the context obtained by replacing the port of C with D. One can
verify that · is associative, therefore, (VA, ·) is a monoid (with the empty context,
denoted by �, as neutral element). VA also acts on HA, with C · t defined as the
tree obtained by replacing the port of C with t. Finally, we write C∞ for the
infinite tree C · C · C · · · .

4

3.1 Tree languages and algebra

We are mainly concerned with regular languages of infinite trees. This is the
class of languages of infinite trees that is recognized by nondeterministic parity
automata; or equivalently recognized by alternating parity automata; or equiv-
alently can be defined in monadic second-order logic. See [6].
Recall that our goal is to decide if a given regular language L of infinite trees is
a boolean combination of open sets. It will be important for us to work with a
canonical representation of L. As our canonical representation, we use equiva-
lence classes of trees and contexts with respect to a natural Myhill-Nerode style
equivalence, see below.
The equivalence classes form a kind of algebra, which is similar to the forest
algebra for infinite trees from [4]. The similarity is that both algebras represent
infinite trees. The difference is that the algebra in [4] represents finitely branching
unranked trees, while the algebra in this paper represents binary trees. We do not
use unranked trees because for unranked finitely branching trees, the topological
space is not compact. This is because there is no converging subsequence in a
sequence of trees where the n-th tree has n children of the root.

Myhill-Nerode equivalence. Fix L a language of trees over an alphabet A.
We define two Myhill-Nerode equivalence relations: one for trees and one for
contexts.
Let C be a multicontext, possibly with infinitely many ports. For a tree t, we
write C[t] for the tree obtained by putting t in all ports of C. In the Myhill-
Nerode equivalence for trees, we say trees t and t′ are L-equivalent if

C[t] ∈ L⇔ C[t′] ∈ L for every multicontext C.

To give a similar definition for contexts, we use a variant of multicontext where
the ports can be substituted by contexts and not trees. Such a multicontext
is called a context environment. Formally speaking, a context environment is
defined like a multicontext, except that the ports have exactly one child (instead
of being leaves). Given a context environment E and a context C, we write C[E]
for the tree obtained by substituting C for every port of E, as in the following
picture:

We define two contexts C and C ′ to be L-equivalent if

E[C] ∈ L⇔ E[C ′] ∈ L for every context environment E.

5

The algebra. We write HL for the equivalence classes of trees with respect to
L, and VL for the equivalence classes of contexts with respect to L. We write:

α : (HA, VA)→ (HL, VL)

for the two-sorted function which maps trees and contexts to their L-equivalence
classes; this function is called the syntactic morphism of L. We use the name tree
type for elements of HL and context type for elements of VL. It is not difficult to
show that both HL and VL are finite when L is regular. The syntactic morphism
can be computed based on a nondeterministic tree automaton recognizing L, in
exponential time [4]. Finiteness of HL and VL is necessary but not sufficient for
regularity, for instance both HL and VL are finite for any language defined in
the logic MSO+U [3].

Lemma 3.1. The following operations respect L-equivalence.

1. For every multicontext D, the operation: t 7→ D[t].
2. For every context environment E, the operation: C 7→ E[C].
3. The composition of contexts (C1, C2) 7→ C1 · C2.
4. Substituting a tree in the port of a context: (C, t) 7→ C · t.
5. Infinite iteration of a context: C 7→ C∞.
6. For every letter a, the operations t 7→ a(t,�) and t 7→ a(�, t).

It follows that the above operations can be applied to elements of the syntactic
algebra.

Idempotents. Given any finite monoid V , there is (folklore) a number ω(V)
(denoted by ω when V is understood from the context) such that for each element
v of V , vω is an idempotent: vω = vωvω.

4 Boolean combinations of open sets of trees

As mentioned in the introduction, we use prefix topology on trees, which yields
a topology identical to that of the Cantor space. In this topology, a base open
set is defined to be any set C[∗], where C is a finite multicontext. Open sets are
defined to be arbitrary unions of base open sets. This topology is the same as
the topology generated by a distance, which says that trees are at distance 2−n

where n is the smallest depth where the two trees differ. This paper is about
finite boolean combination of open sets. Typical boolean combinations of open
sets include

– Trees over alphabet {a, b, c} which contain at least one a and no b’s.
– Trees over alphabet {a, b} which contain two or five a’s.

Languages, which are not boolean combinations of open sets include

– Trees over alphabet {a, b} with finitely many a’s.
– Trees over alphabet {a, b} with a finite and even number of a’s.

6

Let us revisit the game from Proposition 2.4 in the case of trees. In this special
case, points are trees. By Lemma 2.1, we may assume that Constrainer uses base
open sets, which are finite multicontexts. The game begins with the whole space,
which corresponds to the empty multicontext. In each round, Alternator chooses
a tree that extends the current multicontext, and then Constrainer chooses a
finite multicontext that is a prefix of the tree chosen by Alternator.

Example 4.1. Consider an alphabet {a, b} and the language L=“infinitely many
a’s”. It is not difficult to see that Alternator can win the game H∈/∈(L, n) for
every n ∈ N. This is because every finite multicontext can be extended to a tree
with finitely many a’s, or to a tree with infinitely many a’s. By Proposition 2.4,
L is not a boolean combination of open sets.

Proposition 2.4 helps us understand finite boolean combinations of open sets,
but it is not an effective characterization. To be effective, we should be able to
decide if player Alternator wins H∈/∈(L, n) for every n. The following simple
lemma shows how to decide the winner for a given n.

Lemma 4.2. Given regular tree languages L1, . . . , Ln, one can decide who wins
H (L1, . . . , Ln). In particular, given L and n, one can decide who wins H∈/∈(L, n).

Proof. The statement “Alternator wins the game H (L1, . . . , Ln)” can be for-
malized in monadic second-order logic on the complete binary tree, by a formula
which can be computed based on the languages L1, . . . , Ln. Therefore, the win-
ner can be decided using the Rabin theorem. ut

The above lemma gives a semi-algorithm for deciding if a regular language is
a finite boolean combination of open sets. For n = 1, 2, . . ., use Lemma 4.2 to
compute the winner of H∈/∈(L, n). If Constrainer wins the game for some n,
then he also wins the game for n+ 1, n+ 2, . . . and therefore the algorithm can
terminate and declare that the L is a finite boolean combination of open sets. If
the language is not a finite boolean combination of open sets, then the algorithm
does not terminate.
Observe that even when the algorithm does terminate, it does multiple calls to
Rabin’s theorem, which has non-elementary complexity.
The main contribution of this paper is a finer analysis of the problem, which
yields an algorithm (not a semi-algorithm) deciding if a tree language is a finite
boolean combination of open sets.

4.1 The infinite game

Proposition 2.4 can be rephrased as: a language L is not a finite boolean com-
bination of open sets if and only if player Alternator can win H∈/∈(L, n) for
arbitrarily large n. One could imagine a variant of the game, more difficult for
Alternator, where infinitely many rounds have to be played. Call the infinite
variant H∈/∈(L,∞). In Example 2.2, which is about rational numbers, player
Alternator can win the infinite game.

7

It is clear that if Alternator wins H∈/∈(X,∞), then he also wins H∈/∈(X,n)
for every n. We show a counterexample for the converse implication, which is
a regular tree language. This counterexample language necessarily uses trees,
because the converse implication holds for regular languages of infinite words.
The counterexample language L is the set of trees over {a, b} of the form:

...
such that n is some natural number, and for each i ∈ {1, . . . , n}, the tree ti is
either finite, or contains no b nodes. Observe that in a tree from L, the rightmost
branch is necessarily finite.

Fact 1 Alternator loses H∈/∈(L,∞), but wins H∈/∈(L, n) for every n.

5 The effective characterization

In this section, we present the main result of the paper.

The context game. So far we have worked with a game H (L1, . . . , Ln), for tree
languages L1, . . . , Ln. We define a similar game for languages of contexts. Recall
that contexts are defined as a special case of trees, with an additional port label
that appears in exactly one leaf. From the distance on trees, we get a distance
on contexts. This yields the definition of a game for a sequence K1, . . . ,Kn of
context languages. To avoid confusion between trees and contexts, we denote the
context game by V (K1, . . . ,Kn).

Games on types. Consider a language L and its syntactic morphism

αL : (HA, LA)→ (HL, VL).

Recall that by definition of the syntactic morphism, a type h ∈ HL is actually
equal to the set of trees α−1

L (h). Therefore, it makes sense to talk about the game
H (h1, . . . , hn) for a sequence of tree types. Likewise for context types. Define

HL
def= {(h1, . . . , hn) ∈ (HL)n : n ∈ N and Alternator wins H (h1, . . . , hn)}

VL
def= {(v1, . . . , vn) ∈ (VL)n : n ∈ N and Alternator wins V (v1, . . . , vn)}

A comment on notation is in order here. The sets HL and VL contain words, over
alphabets HL and VL, respectively. Usually when dealing with words, one omits

8

the brackets and commas, and writes abc instead of (a, b, c). When the alphabet
is VL, this leads to ambiguity, since the expression vwu can be interpreted as: 1)
a word with a single letter obtained by multiplying v, w, u in the context monoid
VL; or 2) a three-letter word over the alphabet VL. These two interpretations
should not be confused, so we write (v1, . . . , vn) for n-letter words over the
alphabet VL. For the sake of uniformity, we also write (h1, . . . , hn) for n-letter
words in over the alphabet HL, although there is no risk of ambiguity here.

Fact 2 Both HL and VL are regular languages of finite words.

Proof. Both languages are closed under removing letters. Every language closed
under removing letters is regular, by Higman’s lemma. ut

The above fact is amusing, but useless, because it does not say how to compute
automa for HL and VL as a function of the language L.1 If we are not interested
in efficiency, membership in HL can be decided with Lemma 4.2. The same kind
of algorithm works for VL. Later on, we give a more efficient algorithm.

(h1, . . . , hn) ∈ HL implies (C[h1], . . . , C[hn]) ∈ HL

(v1, . . . , vn) ∈ VL implies (E[v1], . . . , E[vn]) ∈ HL

(v1, . . . , vn), (w1, . . . , wn) ∈ VL implies (v1w1, . . . , vnwn) ∈ VL

(v1, . . . , vn) ∈ VL, (h1, . . . , hn) ∈ HL implies (v1h1, . . . , vnhn) ∈ HL

(v1, . . . , vn) ∈ VL implies (v∞1 , . . . , v∞n) ∈ HL

(h1, . . . , hn) ∈ HL implies (a[�, h1], . . . , a[�, hn]) ∈ VL

(h1, . . . , hn) ∈ HL implies (a[h1, �], . . . , a[hn, �]) ∈ VL

Table 1. Closure properties of HL and VL. C is a multicontext, E is a context envi-
ronment, and a is a letter.

Lemma 5.1. The sets HL and VL satisfy the closure properties in Table 1.

Notice the similarity of Table 1 with the operations in Lemma 3.1. Another way
of stating Lemma 5.1 is that for every n ∈ N, (HL,VL) restricted to sequences of
length n is a subalgebra of the the n-fold power of the syntactic algebra (HL, VL).
We define the alternation of a word to be its length, after iteratively eliminating
letters that are identical to their predecessors. The alternation of abaabbb is 4.
We say that a set of words has unbounded alternation if it contains words with
arbitrarily large alternation.

Proposition 5.2. For a regular language L of infinite trees, the following con-
ditions are equivalent.

– Alternator wins the game H∈/∈(L, n) for infinitely many n.
– The set HL has unbounded alternation.

1 To the best of our knowledge it is possible, although unlikely, that computing HL

and VL is undecidable.

9

Proof. We begin with the top-down implication. We show that if Alternator
wins the game H∈/∈(L, n), then HL contains a word of length n where every two
consecutive letters are different. Suppose then that Alternator wins H∈/∈(L, n),
which means that he wins H (L1, . . . , Ln) where Li is L for odd-numbered rounds
and its complement for even-numbered rounds. Both L and its complement can
be partitioned into tree types. By Lemma 2.5, Alternator wins H (h1, . . . , hn)
for some sequence of types, such that hi is included in L or its complement,
depending on the parity of i. In particular, the consecutive types are different.
We now do the bottom-up implication. Suppose that HL has unbounded alter-
nation. Since HL is closed under removing letters, there must be some g, h ∈ HL

such that HL contains all the words

(g, h), (g, h, g, h), (g, h, g, h, g, h), (1)

Since g and h are different elements of the syntactic algebra, it follows that there
must be some multicontext C such that the tree type C[g] is contained in L,
while the tree type C[h] is disjoint with L. By applying Lemma 5.1 to (1), we
conclude HL contains all the words(

C[g], C[h]
)
,
(
C[g], C[h], C[g], C[h]

)
,
(
C[g], C[h], C[g], C[h], C[g], C[h]

)
,

It follows that Alternator can alternate arbitrarily long between the language L
and its complement. ut

The main theorem. So far, we have proved Propositions 2.4 and 5.2, which
characterize finite boolean combinations of open sets in terms of games. Neither
of these game characterizations is effective. We now add a final characterization,
which uses identities and is effective.

Theorem 5.3 (Main Theorem). For a regular language L of infinite trees,
the following conditions are equivalent.

1. L is a finite boolean combination of open sets.
2. Constrainer wins the game H∈/∈(L, n) for all but finitely many n.
3. The set HL has bounded alternation.
4. The following identities are satisfied.

uωwwω = uωvwω = uωuwω if (u, v, w) ∈ VL or (w, v, u) ∈ VL (2)

(u2w
ω
2 v)ωu1w

∞
1 = (u2w

ω
2 v)∞ if (u1, u2) ∈ VL and (w1, w2) ∈ VL (3)

Theorem 5.3 implies Theorem 1.1 from the introduction, which says that one
can decide if the language recognized by a nondeterministic parity automaton
on infinite trees, is a boolean combination of open sets. Indeed: there are finitely
many sequences of length two and three in VL. These sequences can be computed
using Lemma 4.2. It is then sufficient to test if the identities from item 4 are
valid by checking all combinations. A more detailed proof, together with the
EXPTIME complexity, is given in the appendix.

10

In Propositions 2.4 and 5.2, we have shown that conditions 1, 2 and 3 in Theo-
rem 5.3 are equivalent. It remains to show that conditions 3 and 4 are equivalent.
The proof of the implication from 4 to 3 is the technical core of this paper, and is
in the appendix. Below we prove the much simpler converse implication, which
at least can serve to illustrate the identities.

Implication from 3 to 4. We prove the contrapositive: if one of the identi-
ties (2) or (3) is violated, then HL has unbounded alternation.
Suppose first that (2) is violated. We will show that VL has unbounded alterna-
tion. This is enough, by the following lemma.

Lemma 5.4. If VL has unbounded alternation, then so does HL.

The assumption that (2) is violated says that there are u, v, w ∈ VL such that

(u, v, w) ∈ VL or (w, v, u) ∈ VL,

but the three context types uωwwω, uωvwω and uωuwω are all equal. If the three
context types are not equal, then second one must be different from either the
first one or the third one. We only do the proof for the case when (u, v, w) ∈ V
and when uωwwω 6= uωvwω. For nonzero n ∈ N and i ∈ {1, . . . , n}, define

w(i,n) = (
2n− 2i+ 1 times︷ ︸︸ ︷

u, . . . , u , v,

2(i− 1) times︷ ︸︸ ︷
w, . . . , w) ∈ (HL)2n.

This word is obtained from (u, v, w) by duplicating some letters, and therefore
it belongs to VL. For some n, consider the words

w(1,n), . . . ,w(n,n) ∈ VL.

These are n words of length 2n. Let us multiply all these words coordinate-wise,
yielding a word w, also of length 2n, which is depicted in the following picture:

Choose some k, and take n = k ·ω+ 1, and i ∈ {ω, 2ω, . . . , (k− 1) ·ω}. Consider
letters 2i+ 1 and 2i+ 2 in the word w, which are

uiwn−i = uωwwω uivwn−i−1 = uωvwω.

11

By assumption, these letters are different, and therefore the word w has al-
ternation at least k. Because k was chosen arbitrarily, it follows that VL has
unbounded alternation.
Consider now the case when (3) is violated. This means VL contains pairs (u1, u2)
and (w1, w2) such that for some v ∈ VL,

e∞ 6= eu1w
∞
1 for e def= (u2w

ω
2 v)ω.

Lemma 5.5. Let u1, u2, w1, w2 and e be as above. If (h1, . . . , hn) ∈HL, then

(e∞, eh1, . . . , ehn) ∈HL (4)

(eu1w
∞
1 , eh1, . . . , ehn) ∈HL (5)

Using the lemma, one shows by induction that for every n, the sequence which
alternates n times between e∞ and e∞u1w

∞
1 belongs to HL. This completes the

proof of the implication from 3 to 4, and also of Theorem 5.3.

6 Conclusion

We have proved an effective characterization of boolean combination of open
sets. We hope that the characterization sheds some light on the nature of such
languages. Also, we hope that the technical tools we developed, involving both
algebra and games, will be useful in future work on regular languages of infinite
trees. One class of particular interest is Weak-MSO (i.e. MSO where set quan-
tification is restricted to finite sets). This class can be characterized by wreath
products of boolean combinations of open sets.

References

1. Achim Blumensath. An algebraic proof of Rabin’s theorem. unpublished
manuscript.

2. Miko laj Bojańczyk. Algebra for trees. In Handbook of Automata Theory. European
Mathematical Society Publishing House. To appear.

3. Miko laj Bojańczyk. A bounding quantifier. In CSL, pages 41–55, 2004.
4. Miko laj Bojańczyk and Tomasz Idziaszek. Algebra for infinite forests with an

application to the temporal logic ef. In CONCUR, pages 131–145, 2009.
5. Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard, Denis Lugiez,

Christof Löding, Sophie Tison, and Marc Tommasi. Tree Automata Techniques
and Applications. Available on http://tata.gforge.inria.fr, 2007.

6. Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics,
and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar,
February 2001], volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

7. Robert McNaughton and Seymour Papert. Counter-Free Automata. MIT Press,
1971.

8. Dominique Perrin and Jean-Éric Pin. Infinite Words. Elsevier, 2004.
9. Marcel Paul Schützenberger. On finite monoids having only trivial subgroups.

Information and Control, 8, 1965.
10. Howard Straubing. Finite Automata, Formal Languages, and Circuit Complexity.

Birkhäuser, 1994.

12

The appendix is divided in three parts. Sections A, B, C and D contain all
the proofs for the results in the paper, except for implication from 4 to 3 in
Theorem 5.3 and the complexity issues. The technical core of the paper, the
implication from 4 to 3 in Theorem 5.3 is presented in Part II. Part III is devoted
to the complexity result in Theorem 1.1, note that the notion of strategy forest
defined in Part II is reused.

A Appendix to Section 2

In Sections A.1 and A.2, we prove the two implications of Proposition 2.4. In
Section A.3, we prove of Lemma 2.5.

Proposition 2.4. The following conditions are equivalent for a set X:

– X is a finite boolean combination of open sets
– Constrainer wins the game H∈/∈(X,n) for all but finitely many n.

A.1 Top-down

Suppose that X is a finite boolean combination of open sets. It is not difficult
to show that every finite boolean combination of open sets can be written as

X = (W1 − V1) ∪ · · · ∪ (Wn − Vn),

for W1, V1, . . . ,Wn, Vn open sets. We will show that Constrainer has a winning
strategy in the game H∈/∈(X, 2n + 1). When playing the first 2n rounds, Con-
strainer’s strategy preserves the following invariant, when choosing the open sets
U1, . . . , U2n.

For k ∈ {0, . . . , n}, suppose that 2k rounds have already been played.
There exist distinct indexes ik+1, . . . , ik ∈ {1, . . . , n} such that

U2k+1 =
⋂

j∈{1,...,k}

Wij ∩ Vij

If Constrainer manages to maintain this invariant up to n = k, which means up
to round 2n, then player Alternator cannot make his move in round 2n+1. This
is because the set U2n+1 is does not contain any points from X, because it is
included in all of the sets V1, . . . , Vn.
We now show how to satisfy the invariant. When k = 0, the invariant is clearly
satisfied.
Suppose that the invariant is satisfied for k, which means that 2k rounds have
already been played. Let i1, . . . , ik be as in the invariant. We now show how
Constrainer plays in rounds 2k+ 1 and 2k+ 2 to satisfy the invariant for k+ 1.
For round 2k + 1, assume that Alternator chooses a point x2k+1 ∈ U2k+1. By
definition of the game, x must belong to X, and therefore it must belong to
Wik+1 − Vik+1 for some ik+1 ∈ {1, . . . , n}. Observe that ik+1 must be different

13

from i1, . . . , ik, since x2k+1 belongs to all of the sets Vi1 , . . . , Vik . Constrainer
plays the set U2k+1 ∩Wik+1 .
For round 2k + 2, if Alternator can still play, assume that she chooses a point
x2k+2. By definition of the game x2 /∈ X. Since x2k+2 ∈Wik+1 , this means that
x2 ∈ Vik+1 . This open set U2k+1 ∩Wik+1 ∩ Vik+1 is Constrainer’s answer, which
preserves the invariant.

A.2 Bottom-up

In the proof, for every n ∈ N we define two equivalence relations: n-point-
similarity for points of the space, and n-open-similarity for open sets. The defi-
nition is by induction:

– Every two points are 0-point-similar.
– Two open sets U0 and U1 are n-set-similar if for every i ∈ {0, 1} and xi ∈ Ui,

there is some xi−1 ∈ U1−i such that

x0 ∈ X ⇐⇒ x1 ∈ X and x0 and x1 are n-point-similar

– Two points x0 and x1 are n-point-similar if they are (n − 1)-point-similar
and for every i ∈ {0, 1} and open Ui 3 xi, there is some open Ui−1 3 x1−i
such that

U0 and U1 are (n− 1)-set-similar

Lemma A.1. For each n, both n-point-similarity and n-open-similarity have
finitely many equivalence classes.

Proof. Induction. ut

From Lemma A.1 it follows that equivalence classes of n-point-similarity are
finite boolean combinations of open sets, because an equivalence class of a point
is defined in terms of the open sets that contain it.

Lemma A.2. If x0 ∈ X and x1 6∈ X are n-point-similar then Alternator wins
H (X,n).

Proof. By induction on n, we prove a slightly stronger statement: not Alternator
wins the game, but he begins the game by playing point x0 in the first round.
We describe Alternator’s strategy. For n = 0, there is nothing to do. Otherwise,
player Alternator plays x0 in the first round. Suppose that Constrainer picks
some open set U0 3 x0. By assumption on x0 and x1 being n-point-similar,
there is some open set U1 3 x1 such that U0 and U1 are (n− 1)-open-similar.
Because U1 and U0 are (n− 1)-open-similar, and U1 contains x1 6∈ X, it follows
that there is some x2 ∈ U0 such that

x2 6∈ X and x1 and x2 are (n− 1)-point-similar.

The point x2 is Alternators response to U0. Using the induction assumption
for x1 and x2 and the complement of X, Alternator continues playing in the
remaining n− 1 rounds. ut

14

We now prove the right-to-left implication in Proposition 2.4. Suppose that Al-
ternator loses the game H (X,n) for some n. By Lemma A.2 it follows that if
two points are n-point-equivalent, then they either both belong to X, or are both
outside. It follows that X is a union of equivalence classes of n-point-equivalence.
By Lemma A.1, X is a finite boolean combination of open sets.

A.3 Proof of Lemma 2.5

Lemma 2.5. Let X1, . . . , Xn be sets. For i ∈ {1, . . . , n}, let Yi a finite family of
sets partitioning of Xi. If Alternator wins

H (X1, . . . , Xn)

then there exist Y1 ∈ Y1, . . . , Yn ∈ Yn such that Alternator wins

H (Y1, . . . , Yn).

For an open set U , consider a game HU (X1, . . . , Xn) which is played the same
way as H (X1, . . . , Xn), with the added constraint that Alternator’s first move
has to belong to U . By induction on n, we prove a slightly more refined version
of the lemma, where there is an added parameter – an open set U – and the
games are HU (X1, . . . , Xn) and HU (Y1, . . . , Yn).
The induction base is immediate, because Alternator always wins for n = 0.
Consider the first move by Alternator, where he chooses a point x ∈ U . This
point necessarily belongs to some Y1 ∈ Y1. For i ∈ N, let Ui be the open ball
around x of radius 1/i. By definition of the game, we know that Alternator wins

HUi
(X2, . . . , Xn)

for every i. By induction assumption, we know that for every i there exist Y (i)
2 ∈

Y1, . . . , Y
(i)
n ∈ Yn such that Alternator wins

HUi
(Y (i)

2 , . . . , Y (i)
n).

By the pigeon-port principle, there must be some Y2, . . . , Yn such that

(Y2, . . . , Yn) = (Y (i)
2 , . . . , Y (i)

n)

holds for infinitely many i. Since the game HV (Y2, . . . , Yn) grows more difficult
for Alternator as the open set V becomes smaller, and since every open set V 3 x
contains some Ui, we conclude that Alternator wins

HV (Y2, . . . , Yn)

for every V 3 x. By viewing V as a response of Constrainer to Alternator’s move
x ∈ Y1, we conclude that Alternator wins the game

HU (Y1, . . . , Yn).

15

B Appendix to Section 3

This section contains the proof of Lemma 3.1

Lemma 3.1. The following operations respect L-equivalence.

1. For every multicontext D, the operation: t 7→ D[t].
2. For every context environment E, the operation: C 7→ E[C].
3. The composition of contexts (C1, C2) 7→ C1 · C2.
4. Substituting a tree in the port of a context: (C, t) 7→ C · t.
5. Infinite iteration of a context: C 7→ C∞.
6. For every letter a, the operations t 7→ a(t,�) and t 7→ a(�, t).

Items 1 and 2 are by definition. We prove Items 3 to 6:

Item 3: Let C1, C2, D1, D2 be contexts such that both C1, D1 and C2, D2 are
L-equivalent. Let E be some context environment, we prove: E[C1 · C2] ∈ L ⇔
E[D1 ·D2] ∈ L. We construct from E,C1 and E,D2 respectively two new envi-
ronments EC and ED such that EC [C2] = E[C1 ·C2] and ED[D1] = E[D1 ·D2].
Using the L-equivalence, we have:

EC [C2] ∈ L ⇔ EC [D2] ∈ L
ED[D1] ∈ L⇔ ED[C1] ∈ L

Note that by definition of EC , ED, EC [D2] = ED[C1]. It follows that E[C1 ·C2] ∈
L⇔ E[D1 ·D2] ∈ L. Therefore, C1 · C2 and D1 ·D2 are L-equivalent.

Item 4: Let C,C ′ be L-equivalent contexts and t, t′ be L − equivalent trees.
Let D be a multicontext, we prove: D[C[t]] ∈ L⇔ D[C ′[t′]] ∈ L. Let D′ be the
multicontext such that D′[t] = D[C[t]] and E the context environment such that
E[C ′] = D[C ′[t]]. Using the L-equivalence we have:

D′[t] ∈ L ⇔ D′[t′] ∈ L
E[C ′] ∈ L⇔ E[C] ∈ L

By definition of E,D′ we have D′[t′] = E[C]. It follows that D[C[t]] ∈ L ⇔
D[C ′[t′]] ∈ L. Therefore, C[t] and C ′[t′] are L-equivalent.

Item 5: Let C,C ′ be L-equivalent contexts. Let D be some multicontext, we
prove that D[C∞] ∈ L ⇔ D[C ′∞] ∈ L. Consider the context environment E
constructed from D by replacing each port of D with an infinite chain of ports.
Using L-equivalence of C and C ′ we get:

E[C] ∈ L⇔ E[C ′] ∈ L

By definition of E we have E[C] = D[C∞] and E[C ′] = D[C ′∞]. it follows that
D[C∞] ∈ L⇔ D[C ′∞] ∈ L. Therefore, C∞ and C ′∞ are L-equivalent.

Item 6: We only do the proof for t 7→ a(t,�), the other operations is han-
dled symmetrically. Let t, t′ be L-equivalent trees. Let E be some context en-
vironment, we prove that E[a(t,�)] ∈ L ⇔ E[a(t′,�)] ∈ L. By inserting a

16

into the ports of E we construct a multicontext C such that for all trees s,
C[s] = E[a(s,�)]. Using L-equivalence of t and t′ we get:

C[t] ∈ L⇔ C[t′] ∈ L

Therefore, a(t,�) and a(t′,�) are L-equivalent.

C Appendix to Section 4

This appendix is devoted to the proof of Fact 1. Recall that L is the set of trees
over {a, b} of the form:

...

such that n is some natural number, and for each i ∈ {1, . . . , n}, the tree ti is
either finite, or contains no b nodes.

Fact 1. Alternator loses H∈/∈(L,∞), but wins H∈/∈(L, n) for every n.

We first prove that Alternator wins H∈/∈(L, n) for every n by giving a winning
strategy. Fix n, we provide a winning strategy for H∈/∈(L, 2n).
If t1, . . . , tn are trees (finite or infinite), we write [t1, . . . , tn] for the following tree

...

– For i ∈ {1, . . . , n} define Li to be the set of trees [t1, . . . , tn] such that the
trees t1, . . . , ti−1 are finite and the trees ti, . . . , tn are infinite with only a
nodes. Of course, Li is included in L.

– We define L̄i like Li, except that the tree ti is required to be an infinite tree
containing both a and b nodes. Of course, L̄i is disjoint from L.

Every prefix of a tree in Li can be completed into a tree in L̄i. Every prefix of a
tree in L̄i can be completed into a tree in Li+1. It follows that Alternator wins
the game

H (L1, L̄1, L2, L̄2, . . . , Ln, L̄n)

and therefore also Alternator wins H∈/∈(L, n).

17

We now show that Constrainer wins H∈/∈(L,∞). Consider the tree played by
Alternator in the first round. Since this tree belongs to L, it must be of the
form [t1, . . . , tn]. Let C1 be a finite prefix of this tree which contains the leaf at
depth n+1 on the right-most path. Constrainer uses a strategy, which preserves
preserves the following invariant.

1. All multicontexts played by Constrainer extend the multicontext C1. Conse-
quently, all trees played by Alternator are of the form [s1, . . . , sn]. Therefore,
for k ∈ {1, . . . , n}, it is meaningful to talk about the k-th coordinate of the
tree played by Alternator in a round; which refers to the tree sk.

2. Suppose that Alternator plays a tree [s1, . . . , sn] in some round i. Let Ci be
a finite prefix of this tree such that for every coordinate k ∈ {1, . . . , n}:
– If sk is finite, then Ci contains the whole subtree sk;
– If sk contains some b, then Ci contains some b in the subtree sk.

In the next round Constrainer chooses Ci. Consequently, if i < j are rounds
and k ∈ {1, . . . , n}, then
– If the k-th coordinate of Alternator’s tree in round i is finite, then also

the k-th coordinate of Alternator’s tree in round j is finite.
– If the k-th coordinate of Alternator’s tree in round i contains a b, then

also the k-th coordinate of Alternator’s tree in round j contains a b.
the index of trees played by Alternator decreases or stays the same as the
rounds progress.

In an odd-numbered round, Alternator’s tree belongs to the language, so all
coordinates with a b are finite trees. In an even-numbered round, Alternator’s
tree is outside the language, so at least one coordinate with a b is infinite.
Therefore, when going from an odd-numbered round to the next, even-numbered,
round, Alternator must change some coordinate from an infinite tree without b’s
to an infinite tree with b’s. It follows, that the number coordinate’s with b’s
increases in each even-numbered round. Since this can happen at most n times,
Alternator must lose after at most 2n rounds.

D Appendix to Section 5

This section contains proofs of the results from Section 5, with the exception
of the implication from 4 to 3 in Theorem 5.3. The implication from 4 to 3 in
Theorem 5.3 is proved in Part II of the appendix.

D.1 Proof of Lemma 5.1

Lemma 5.1. The sets HL and VL satisfy the closure properties in Table 1.

All properties are proved by composing strategies, we prove the first one. All
other properties are proved similarly. Assume that (h1, . . . , hn) ∈HL, and con-
sider some multicontext C (possibly with infinitely many ports). For all i let Li
be the set of trees that are Alternator’s first move in some winning strategy for
H (hi, . . . , hn). Note that since (h1, . . . , hn) ∈HL, Li is non-empty for all i.

18

Lemma D.1. For all i ≤ n, for all tree t obtained by plugging trees of Li in the
ports of C. Alternator has a winning strategy in H (C[hi], . . . , C[hn]) such the
tree chosen in round 1 is t.

Proof. We proceed by induction on i. For i = n this is obvious. Assume the
result holds for i we prove it for i− 1.
Let p be a prefix of t, for all subtree s plugged into a port of C, p yields some
(possibly empty) prefix ps of s. By s ∈ Li−1, therefore ps can be completed into
a tree s′ ∈ Li. It follows that p can be completed into t′ obtained by plugging
trees of Li in the ports of C. By induction hypothesis, Alternator has winning
strategy in H (C[hi], . . . , C[hn]) such the tree chosen in round 1 is t′. Finally we
conclude that Alternator has winning strategy in H (C[hi−1], . . . , C[hn]) such
the tree chosen in round 1 is t. ut

The result then follows from Lemma D.1 for i = 1.

D.2 Proof of Lemma 5.5

Recall that VL contains pairs (u1, u2) and (w1, w2) such that for some v ∈ VL,

e∞ 6= eu1w
∞
1 for e def= (u2w

ω
2 v)ω.

Lemma 5.5. Let u1, u2, w1, w2 and e be as above. If (h1, . . . , hn) ∈HL, then

(e∞, eh1, . . . , ehn) ∈HL (6)

(eu1w
∞
1 , eh1, . . . , ehn) ∈HL (7)

Let us first prove (6). Let E be some context of type e. To win the game

H (e∞, eh1, . . . , ehn),

player Alternator uses the following strategy. In the first round, he plays the
tree E∞. Suppose that Constrainer picks a finite prefix of E∞. This finite prefix
must be a prefix of En for some n. Observe that the type of En is also e, because
e is idempotent. Alternator removes the whole subtree in the port of En, and
replaces it by the tree he plays in the first move of the strategy which yields
(h1, . . . , hn) ∈ HL. He then continues playing this strategy, only substituted in
the port of En, and never changes a label that in the prefix En. It is not difficult
to see that the sequence of types seen as a result is e∞, eh1, . . . , ehn.
Let us prove (7). Let E be some context of type E. By assumption (u1, u2) ∈ VL,
Alternator has a winning strategy in the game V (u1, u2). Let U1 be the context
that Alternator chooses in the first round of this game. This context is of type
u1. Likewise, define a context W1 for (w1, w2) ∈ VL. To win the game

19

H (eu1w
∞
1 , eh1, . . . , ehn),

player Alternator uses the following strategy. He begins by playing the tree
EU1W

∞
1 . Suppose that player Constrainer chooses a prefix of this tree. This

prefix is included in EU1W
n
1 for some n. Player Alternator uses his strategies in

the games V (u1, u2) and V (w1, w2) to change the context EU1W
n
1 into a context

C of type eu2w
n
2 which has the same port, and which has the same labels on

nodes chosen by Constrainer. Observe that context C depends on Constrainer’s
move. Let k ∈ N be such that k+ n is a multiple of ω. To the context C, player
appends a context D of type wk2v, so that the resulting context CD has type e.
We then proceed as in the proof of (6): in the port of the context CD, player
Alternator plays the winning strategy in the game H (h1, . . . , hn).

20

Part II of the Appendix.

Implication from 4 to 3 in Theorem 5.3

21

This part is devoted to the proof of the implication from 4 to 3 in Theorem 5.3: if
both Identities (2) and (3) are satisfied then the set HL has bounded alternation.
This part is divided in four sections. In order to prove this property, we will need
to analyze the set HL. By definition, HL yields a set of strategies for the type
alternation game. The first section, Section E, we do a sharp analysis of these
strategies and prove that they can always be assumed to be in some normal form
that we call locally optimal strategy trees.
In Section F, we use the results of Section E to present the main structure of
the proof. Finally, Sections G and H are devoted to the proof of the two main
propositions in Section E.

E Strategy trees

Assume fixed a regular language L together with it syntactic morphism α :
(HA, Va)→ (HL, VL).

Type trees. A type tree is a tree over the alphabet HL. For a tree t over the
alphabet A, the type tree induced by t is a tree with the same nodes as t, where
the label of node x is the type of the subtree t|x. Of course if σ is the type tree
induced by t, then root label of σ is the type of t.

Global and local consistency. Let σ be a type tree, and let t be a tree over
A, both with the same nodes. We say that σ is locally consistent with t if for
every node x, whose label in t is a:

– If x is a leaf, then the σ(x) is the type of the tree a.
– If x has two children, xl and xr, then σ(x) is the type obtained by applying

the letter a to the pair of types σ(xl) and σ(xr).

It is easy to see that the type tree induced by t is locally consistent with t.

Example. Consider an alphabet A = {0, 1} and a morphism where H = V =
{0, 1} and

eval(t) =

{
1 if t has infinitely many 1’s
0 otherwise

.

Consider any tree t. Regardless of the choice of t, a tree where all nodes are
labeled by 1 is locally consistent with t. Also, a tree where all nodes are labeled
by 0 is locally consistent with t, again regardless of t. More generally, a type tree
σ is locally consistent with t if and only if the set of nodes in σ that have label
1 is a union of infinite paths.
The following lemma shows that local consistency is preserved under limits.

Lemma E.1. Let (tn)n∈N be a sequence of trees that converges to t∗ and let
(σn)n∈N be a sequence of type trees that converges to σ∗. If σn is locally consistent
with tn for every n, then σ∗ is locally consistent with t∗.

22

Strategy tree. We now introduce the key concept of this paper, which is called
a strategy tree. A strategy tree is a tuple

σ = (t, σ1, . . . , σn)

where

1. t is a tree over A, called the support of t;
2. σ1 is the type tree induced by t;
3. the type trees σ2, . . . , σn are locally consistent with t;
4. for each node x, the sequence (σ2(x), . . . , σn(x)) belongs to HL.

It follows that the trees t, σ1, . . . , σn all have the same nodes, and therefore σ
can be interpreted as a single tree over the alphabet A×Hn. The number n is
called the duration of the strategy tree. We define the root sequence of a strategy
tree to be the sequence of root labels of σ1, . . . , σn. If the duration is n, the root
sequence is in Hn.
Intuitively speaking, a strategy tree is a special kind of strategy for Alternator.
In the first round, Alternator plays the support t. However, Alternator also
declares all the types that will appear in nodes of t as the game progresses.
More specifically, he declares that for every node x ∈ nodes(t) and round k ∈
{2, . . . , n}, he has a strategy so that for the tree in round k, the subtree in node
x has type σk(x).

Proposition E.2. A sequence belongs to HL if and only if it is the root value
of some strategy tree.

The rest of Section E is devoted to proving the proposition.
In the proof, we use a more detailed variant of the game. For a multicontext C,
we define the game

HC(h1, . . . , hn)

the same way as H (h1, . . . , hn), with the added restriction that the first tree
played by alternator must extend the multicontext C. This is essentially the
same definition as in the proof of Lemma 2.5, but specialized to the case of the
topology on trees.

Lemma E.3. Let C be a finite multicontext. Consider valuations

η1, . . . , ηn : ports(C)→ H.

If (η1(x), . . . , ηn(x)) ∈HL for every port x, then Alternator wins the game

HC(C[η1], . . . , C[ηn]).

23

Proof. This is a refinement of the first property in Lemma 5.1. For every port x
of C, Alternator has a winning strategy for the game H (η1(x), . . . , ηn(x)).
We describe a winning strategy for Alternator in HC(C[η1], . . . , C[ηn]). Alter-
nator starts with a tree obtained by plugging the initial tree for his winning
strategy on H (η1(x), . . . , ηn(x)) in every port x of C. Then every prefix of this
tree, yields a prefix for each subtree plugged into a port of C, Alternator can
then use his strategies for the games H (η1(x), . . . , ηn(x)) to answer. ut

We now prove Proposition E.2. We state a more refined version of the proposition
which can be proved by induction.

Lemma E.4. For a sequence (h1, . . . , hn) ∈ H∗ and a finite multicontext C the
following conditions are equivalent:

1. Alternator wins HC(h1, . . . , hn);
2. There is a strategy tree whose support extends C, and whose root sequence

is (h1, . . . , hn).

Proof. Induction on n. The base case of the induction, when n = 0, is trivial.
We do the induction step.
Let us begin with the easier implication from 2 to 1. Suppose that

(t, σ1, . . . , σn)

is a strategy tree as in item 2. Alternator’s strategy is as follows. In the first
round, she plays the tree t, which has type h1. Suppose Constrainer chooses a
prefix D of t. Consider the valuations

η2, . . . , ηn : ports(D)→ H ηi(x) = σi(x).

For every i ∈ {2, . . . , n}, the root label of σi is the same as D[ηi], because σi is
locally consistent with t and D is a prefix of t. By Lemma E.3, Alternator wins
the game

HD(D[η2], . . . , D[ηn]).

This shows that for every choice of D, Alternator has a winning strategy in the
remaining part of the game.
The rest of this proof concerns the more difficult implication from 1 to 2.
Suppose that player Alternator wins HC(h1, . . . , hn). Let t be the tree of type
h1 that Alternator plays in the first round. This tree has prefix C. Also, for every
finite prefix D of t, player Alternator wins H (D,h2, . . . , hn). By the induction
assumption, for every finite prefix D of t, there is a strategy tree

σD = (tD, σD2, . . . , σDn)

such that tD has prefix D, and the root sequence of σD is (h2, . . . , hn).
A sequence of finite multicontexts (Di)i∈N is said to converge to t if all of the
multicontexts are prefixes of t, and for every j ∈ N, only finitely many multicon-
texts have some port at depth at most j. By compactness, there is an infinite

24

sequence of finite multicontexts (Di)i∈N which converge to the tree t and such
that all of the sequences

(tDi
)i∈N (σDi2)i∈N . . . (σDin)i∈N

are convergent. Let the limits of these sequences be

t∗ σ∗2 . . . σ∗n.

Because the sequence (Di)i∈N converges to t, it follows that t∗ = t. For each D,
the type trees

(σD2, . . . , σDn)

are locally consistent with tD. Therefore, by Lemma E.1 it follows that the limits
σ∗2, . . . , σ∗n are locally consistent with t. Finally, define σ∗1 to be the unique
type tree that is globally consistent with t. We have just proved that

(σ∗1, . . . , σ∗n)

is a strategy tree. Because root values are preserved under limits, the root value
of this strategy tree is the desired (h1, . . . , hn). ut

E.1 Locally optimal strategy trees

In the proof, we will be using a special kind of strategy trees, called locally
optimal strategy trees.

Distance. So far we have used the distance

distance(s, t) = sup{ 1
2n

: t and s differ on depth n},

which we call the prefix distance. In the definition of locally optimal strategy
trees, it will be more convenient to use a different distance, called the discounted
distance, which is defined below. Fix some enumeration x1, x2, . . . of all the nodes
of the infinite complete binary tree. For two trees s and t and a node x, we define

distance(t(x), s(x)) =

0 if t and s are undefined in x

0 if t and s are defined in x, and have the same label
1 otherwise

The discounted distance on trees is defined by

distanceλ(s, t) =
∑
n≥1

1
2n
· distance(s(xn), t(xn)),

The following lemma is a well-known result about the Cantor space.

25

Lemma E.5. Regardless of the enumeration x1, x2, . . ., the prefix and discounted
distances yield the same topology.

Proof. We prove that the discounted distance yields the prefix topology. Fix
some arbitrary enumeration x1, . . . , xn, There are two directions.

First, we prove that open sets for the prefix topology are also open sets for the
discounted distance. Let C be a finite multicontext and C[∗] be the corresponding
base open set. We show that C[∗] can be defined as an infinite union of open
balls for the discounted distance.
We set X as the set of nodes x of the infinite binary tree such that for every two
trees s, t with prefix C, distance(t(x), s(x)) = 0. Since C is finite, X must also
be finite. Let n be the largest integer such that xn ∈ X. Finally, consider the
set:

Lλ =
⋃

t∈C[∗]

{s | distanceλ(s, t) <
1
2n
}

We show that Lλ = C[∗]. By definition C[∗] ⊆ Lλ. Let s ∈ Lλ, by defi-
nition s ∈ {s | distanceλ(s, t) < 1

2n } for some t ∈ C[∗]. For all x ∈ X,
distance(t(x), s(x)) = 0 (recall that all x ∈ X are among the n first positions in
the enumeration). Therefore, s inC[∗]. We get Lλ.

For the other direction, we prove that open sets for the discounted distance are
also open sets for the prefix topology. Let Lλ = {s | distanceλ(s, t) < k} be an
open ball with t a tree and k some real number. We prove that Lλ is an infinite
union of open sets for the prefix topology. For all trees s ∈ Lλ we select one of
its prefixes. Then we prove that the open set obtained from this set of prefixes
is Lλ.
Let s ∈ Lλ and let d = distanceλ(s, t), by definition of Lλ, d < k. Let n be the
smallest integer such that: ∑

i>n

1
2n

< k − d

Let p be some prefix of s that contains all nodes of the enumeration up to xn.
Note for all trees s′ with prefix p, by definition of n distanceλ(s, s′) < k − d
and therefore distanceλ(s′, t) < k. Finally consider P , the set of all such prefixes
for all s ∈ Lλ. Let L be the open set obtained from P . By definition, Lλ ⊆ L.
Conversely, if s′ ∈ L, by definition, s′ has a prefix p ∈ P and distanceλ(s′, t) < k,
i.e. s′ ∈ Lλ. We conclude L = Lλ. ut

Locally optimal strategy trees. We now define locally optimal strategy trees.
Consider a strategy tree (t, σ1, . . . , σn) and let v ∈ V . The strategy tree is called
locally optimal for v if for every i ∈ {2, . . . , n}, and for every type tree σ′i, if σ′i
is locally consistent with t and v · val(σ′i) = v · val(σi), then

distance(σi−1, σi) ≤ distance(σi−1, σ
′
i)

26

Lemma E.6. For every strategy tree σ, for every v ∈ VL there exists a locally
optimal one for v such that

(v · val(σ1), . . . , v · val(σn)) = (v · val(σ′1), . . . , v · val(σ′n))

Proof. Suppose that (σ1, . . . , σn) is a strategy tree with support t. Consider the
set Σ2, of strategy trees that are locally consistent with t and which have the
same root value as σ2. Thanks to Lemma E.1, this is a closed set. As a closed
subset of the compact space of all trees, the set Σ2 is compact. It follows some
element of Σ2 minimizes the distance with respect to σ1. We choose this element
as the new σ2, and then proceed likewise for the remaining coordinates 3, . . . , n.

ut

When v is the neutral element, we just say locally optimal. In that case Lemma E.6
can be rephrased: for every strategy tree, there exists a locally optimal one with
the same root sequence.
Moreover notice that if a strategy tree is locally optimal for some v then it also
locally optimal for the neutral element. We state one last lemma, which repre-
sents a property of locally optimal strategy trees that will be used repeatedly.

F Proof plan

Now that locally optimal strategy trees are defined we can prove the implication
from 4 to 3 in Theorem 5.3. Note that this section contains only the outline of
the proof which is based on two very involved propositions which are proved in
the last two remaining sections.
Assume fixed L a regular language and α : (HA, VA)→ (HL, VL) the associated
syntactic morphism. Assume that L satisfies Identities (2) and (3). We need to
prove that HL has bounded alternation.
The proof involves two parameters of strategy trees that we define now:

– We define the root alternation of a strategy tree σ to be the alternation of
its root sequence.

– We define the limit alternation of σ to be the maximal number k such that
infinitely many subtrees of σ have root alternation k.

Let ΣL be the set of all locally optimal strategy trees for the language L. Observe
that by Proposition E.2 and Lemma E.6, HL has bounded alternation iff ΣL
has bounded root alternation.
This last property is a consequence of the two following lemmas that are respec-
tively consequences of Identity (2) and Identity (3):

Proposition F.1. Let Σ be a set of locally optimal strategy trees with bounded
limit alternation. Then Σ has bounded root alternation.

27

Proposition F.2. Assume there exists a set Σ of locally optimal strategy trees
with unbounded root alternation. Then there exists a set of strategy trees Σ′ with
both unbounded root alternation and bounded limit alternation.

The proofs can be found respectively in Sections H and G. We finish this sec-
tion by using them to prove that ΣL has bounded root alternation. We proceed
by contradiction, assume that ΣL has unbouned root alternation. By Proposi-
tion F.2, this means that there exists a set of locally optimal strategy trees Σ′

with both unbounded root alternation and bounded limit alternation. But his
contradicts Proposition F.1. Therefore, the root alternation of ΣL is bounded
and so is the alternation of HL.

G Limit alternation is unbounded

This section is devoted to showing Proposition F.2.

(TODO rewrite this whole section)

We proceed in two steps, using a new object called the strategy graph GL of a
language L. The strategy graph represents a subset of the strategies available
to Alternator in the game on tree types. We then show that if Proposition F.2
does not hold, then the strategy graph of L verify some special property on its
strongly connected components that violates identity (2).

Strategy Graph. We define a graph GL depending on the language L, as
follows. The nodes are VL ×HL. From a node (v, h) there is an edge to a node
(v′, h′) if there exists:

(u1, u2), (w1, w2) ∈ VL

such that

h = vu1w
∞
1 and v′ = vu2w

ω
2 .

Intuitively, there is an edge from (v, h) to (v′, h′) iff there exists a tree t of type
h such that:

– t can be decomposed as the concatenation of a context of type v and another
tree.

– Every prefix of t can be completed into a context of type v′.

Observe that if there exists nodes (v1, h1), . . . , (vn, hn) such that for all i, there
is an edge between (vi, hi) and (vi+1, hi+1), then (h1, . . . , hn) ∈ HL. In that
case, we say that (h1, . . . , hn) is represented in GL. (note that not all sequences
in HL are necessarily represented in GL).
The strategy graph is said to be recursive iff there exists a strongly connected
component that contains two nodes (v, h) and (v′, h′) with h 6= h′.

28

Lemma G.1. If GL is recursive, then identity (3) is violated.

Proof. We proceed by contradiction. Assume that identity (3) is verified and fix
two nodes (v, h) and (v′, h′) that are in the same strongly component of GL. We
prove that h = h′ and therefore that GL is not recursive.

It is not difficult to see that if there is a path from (v, h) to (v′, h′), then there
is also a single edge. This means that there are

(u1, u2), (w1, w2) ∈ VL

such that

h = vu1w
∞
1 and v′ = vu2w

ω
2 .

Likewise, there must be

(u′1, u
′
2), (w′1, w

′
2) ∈ VL

such that

h′ = v′u′1(w′1)∞ and v = v′u′2(w′2)ω.

From identity (3) it follows that

(u2(w2)ωu′2(w′2)ω)ωu1(w1)∞ = (u2(w2)ωu′2(w′2)ω)∞

(u′2(w′2)ωu2(w2)ω)ωu′1(w′1)∞ = (u′2(w′2)ωu2(w2)ω)∞

If we apply v to the first equality and v′ to the second, we get:

h = v(u2(w2)ωu′2(w′2)ω)∞

h′ = v′(u′2(w′2)ωu2(w2)ω)∞ = v(u2(w2)ωu′2(w′2)ω)∞

We conclude h = h′. ut

Given Lemma G.1, Proposition F.2 follows from the following lemma:

Lemma G.2. If Proposition F.2 does not hold, then the graph GL is recursive.

The rest of this section is devoted to the proof of Lemma G.2. We do this in
two steps, in G.1, we define the notion of context zone which allows to extract
contexts from strategy trees as well as sequences in VL. Then in G.2 we provide
the formal proof of Lemma G.2.

29

G.1 Context Zones

A context zone is a set X of nodes in a tree such that for some node x (called
the root of X) and some node y (called the port of X), the set X contains the
nodes that are in the subtree of x, but not in the subtree of y. It is not difficult
to see that when X is nonempty, the root and port of X can be uniquely defined
in terms of X. We say that context zones X1, . . . , Xn are consecutive if for each
i ∈ {1, . . . , n− 1}, the port of Xi is the root of Xi+1. The union of consecutive
context zones is a context zone.
Let σ = (t, σ1, . . . , σn) be a strategy tree, and let X be a context zone. For a
context zone X and a round i ∈ {1, . . . , n}, we define

val(σ,X, i) ∈ VL

as follows by induction on the number of ancestors of the port that are contained
in X. If there is only one such ancestor, the port of X is a child of its root. Let
a be the label of x and y ∈ X be the other child of x. We set val(σ,X, i) as
a(�, σi(y)) if y is a right child and a(σi(y),�)) if y is a left child. Otherwise, let
x be the root of X, y its port and z the child of x which is an ancestor of y. Let
X1 be the context node of root x and port z and X2 the context zone of root z
and port y. We set val(σ,X, i) as val(σ,X1, i) · val(σ,X2, i).

Fact 3 Let σ = (t, σ1, . . . , σn) be a strategy tree and X be a context zone in σ.
Then (val(σ,X, 1), . . . , val(σ,X, n)) ∈ winvl.

Proof. This is by construction and Lemma 5.1. ut

G.2 Proof of Lemma G.2

Assume Proposition F.2 does not hold, then there exists a set of locally optimal
strategy trees Σ with unbounded root alternation and all sets of locally optimal
strategy trees Σ′ with unbounded root alternation also have unbounded limit
alternation. Note that it follows from the existence of Σ and Proposition E.2
that HL has unbounded alternation.

We proceed has follows, we define a special kind of node for the graph GL and
prove that: a) by hypothesis, GL must contain such a node, b) if GL contains
such a node, then it is recursive for a strongly connected component reachable
from this node.
A node (v, h) in the graph GL is called alternating if v ·HL contains words that
begin with h and have arbitrarily high alternation.

Lemma G.3. GL contains at least one alternating node.

Proof. This is because HL has unbounded alternation. Therefore, by pigeon-
hole principle there exists some h ∈ HL such that there HL contains words that
begin with h and with arbitrarily high alternation. By definition, this means
that (1VL

, h) is alternating. ut

30

Lemma G.4. Every alternating node (v, h) in GL has an outgoing edge to some
alternating node (v′, h′) such that h 6= h′.

Before we prove the lemma, we use it together with Lemma G.3 to prove that GL
is recursive and end the proof of Lemma G.2. Combining Lemmas G.3 and G.4,
we obtain that there exists an infinite path in the graph GL

(v1, h1), (v2, h2), . . . such that hi 6= hi+1 for all i.

By pigeon-hole principle, there exists at least one node (vi, hi) which is repeated
infinitely many times in this path. By definition, this means that (vi, hi) and
(vi+1, hi+1) are in the same strongly connected component. Moreover, since hi 6=
hi+1, we conclude that GL is recursive.
The rest of this section is now devoted to the proof of Lemma G.4.

Proof. Let (v, h) be an alternating node in the graph GL. We need to construct
an alternating node (v′, h′) reachable from (v, h) and such that h 6= h′. This
is done in two steps, first we use our hypothesis to construct a special set of
strategy trees, Σv with unbounded limit alternation. In the second step, we
select a strategy tree with large enough limit alternation in this set and use it
to construct (v′, h′).

Construction of Σv. Since (v, h) is alternating, for every n ∈ N the set HL

contains a sequence h1, . . . , hn such that

– h = vh1

– the sequence vh1, . . . , vhn is alternating (for all i, vhi 6= vhi+1).

Let H(v,h) ⊆HL be the set of these sequences.

Lemma G.5. There exists a set of strategy trees Σv such that:

1. All strategy trees in Σv are locally optimal for v.
2. For all (h1, . . . , hn) ∈ H(v,h), there exists a root sequence (h′1, . . . , h

′
n) of a

strategy tree in Σv such that (vh1, . . . , vhn) = (vh′1, . . . , vh
′
n).

Proof. Σv can be constructed in two steps. First, we know from Proposition E.2
that there exists a set of strategy trees Σ such that: (h1, . . . , hn) ∈ H(v,h) iff
(h1, . . . , hn) is the root sequence of some strategy tree in Σ. Applying Lemma E.6
to Σ then yields Σv. ut

Fact 4 Σv has unbounded limit alternation.

Proof. By construction, Σv has unbounded root alternation and contains only
locally optimal trees. By hypothesis, this means that it must have unbounded
limit alternation.

31

Construction of (v′, h′). We now choose a strategy tree in Σv with large enough
limit alternation and use it to construct the desired alternating node. Let K be
the set of numbers k such that

(g, h)k ∈HL and (g, h)k+1 6∈HL for some g 6= h ∈ HL.

The set K is finite, because for every choice of g 6= h, the above condition can
hold for at most one k. Set:

l = |HL|2 · (max(K) + 1)

Finally, let σ = (t, σ1, . . . , σn) be a strategy tree in Σv with limit alternation at
least l (such a strategy tree exists because of Fact 4). We construct (v′, h′) from
σ in several steps. We begin by proving a result that we will reuse several times
in the proof in order to prove that special nodes of σ have alternation l. Then we
show that there exists an infinite path in σ such that all nodes in the path are
labeled with sequences of alternation l. We extract an infinite subset of nodes of
the path that all share the same sequence. Finally we use this last sequence to
construct (v′, h′).

Lemma G.6. Let σ = (t, σ1, . . . , σn) be a locally optimal strategy tree and x, y
two nodes of σ such that x is a descendant of y. Then for all i ≤ n:

σi(x) 6= σi+1(x)⇒ σi(y) 6= σi+1(y)

Proof. Assume that σi(x) 6= σi+1(x) and σi(y) = σi+1(y). We show that this
contradicts local optimality. Consider the type tree σ′i+1 defined as follows:

– For all descendants z of y, sigma′i+1(z) = σi(z).
– For all other nodes z, sigma′i+1(z) = σi+1(z)

By construction, σ′i+1 is locally consistent with t (this is by definition for all
nodes z 6= y, and because σi(y) = σi+1(y) for y). Note that by definition, for all
nodes z:

distance(σi(z), σ′i+1(z)) ≤ distance(σi(z), σi+1(z))

Moreover, distance(σi(x), σ′i+1(x)) = 0 and distance(σi(x), σi+1(x)) = 1. Com-
bining all this we obtain:

– distanceλ(σi, σ′i+1) < distanceλ(σi, σi+1).
– val(σ′i+1) = val(σi+1).

This contradicts local optimality of σ. ut

We can now extract the path π of σ:

32

Lemma G.7. There exists an infinite path π of σ such that for all x ∈ π,
(σ1(x), . . . , σn(x)) has alternation at least l.

Proof. Consider the set Z of nodes z that satisfy:

limitalternation(σ|z) ≥ l

By definition, the root of σ must be in Z and every node in Z must have a
child in Z. Therefore there exists an infinite path π in Z. We prove that for all
nodes x ∈ π, (σ1(x), . . . , σn(x)) has alternation l. This is by local optimality.
By definition, all x ∈ π have a descendant y that has alternation at least l.
Therefore, by Lemma G.6 x must have alternation at least l. ut

Now we extract X ⊆ π such all nodes in X are labeled with the same sequence
in HL.

Lemma G.8. There exists an infinite set of nodes X ⊆ π and (h1, . . . , hn) ∈
HL,(v1, . . . , vn) ∈ VL such that:

– For all x ∈ X, (σ1(x), . . . , σn(x)) = (h1, . . . , hn).
– For all x ∈ X, (val(σ, Y, 1), . . . , val(σ, Y, n)) = (v1, . . . , vn) (where Y is the

context zone with the root of σ as root and x as port).

Proof. There are finitely many sequences within Hn
L and V nL and π is infinite,

therefore, we can then extract an infinite subset X from π such that for all x ∈ X
the sequences

(σ1(x), . . . , σn(x))
(val(σ, x, 1), . . . , val(σ, x, n))

are independent from the choice of x. Choose, (h1, . . . , hn) and (v1, . . . , vn) as
these sequences. By definition (h1, . . . , hn) ∈HL and it follows from Fact 3 that
(v1, . . . , vn) ∈ VL. ut

We finish by constructing (v′, h′) and proving that it satisfies the required proper-
ties. Recall that l = |HL|2·(maxK+1), therefore, since alternation(h1, . . . , hn) ≥
l, it follows from a pigeon-hole principle argument that there exists g 6= g′ ∈ HL

and a set I ⊆ {1, dots, n− 1} of size at least max(K) + 1 such that:

hi = g and hi+1 = g′ for every i ∈ I.

It follows that the word (h1, . . . , hn) ∈ HL contains a subsequence which alter-
nates between g and g′ at least max(K) + 1 times. By choice of K, it follows
that:

(g, g′)k ∈HL for all k ∈ N.

33

Choose some arbitrary i ∈ I, say the first element in I and set:

u = vi
u′ = vi+1

Consider the two nodes (vu′, vu′g′) and (vu′, vu′g) in GL:

Lemma G.9. The three following Properties hold:

1. vu′g 6= vu′g′.
2. (vu′, vu′g′) and (vu′, vu′g) are both alternating.
3. G contains edges from (v, h) to both nodes.

Before proving Lemma G.9 we use it to conclude the proof of Lemma G.4.
Indeed, Item 1 means that either vu′g 6= h or vu′g′ 6= h. It follows that there
exists (v′, h′) alternating, reachable from (v, h) and such that h 6= h′.
We finish with the proof of Lemma G.9.

Proof. Item 1. Recall that by construction in Lemma G.5, σ is locally optimal
for v. Let x be any node in X, say the topmost x ∈ X. We construct a type tree
i, σ′i with root label u′g and such that:

distanceλ(σi, σ′i) < distanceλ(σi, σi+1).

Since, the root label of σi+1 is vi+1hi+1 = u′g′ it then follows by local optimality
for v of σ that u 6= u′g′.
Consider the type tree σ′i locally consistent with t and such that:

σ′i(z) = σi(z) when z is in the subtree of x
σ′i(z) = σi+1(z) when z and x are incomparable

The labels of strict ancestors of x are then obtained inductively by local consis-
tency with t. Note that by definition the root label of σ′i is val(σ, x, i+1)·σi(x) =
u′g. We now prove that:

distanceλ(σi, σ′i) < distanceλ(σi, σi+1).

This is because for every node z of σ:

distance(σi(z), σ′i(z)) ≤ distance(σi(z), σi+1(z))

This is true by definition for all nodes that are not ancestors of y. Moreover,
distance(σi(x), σi+1(x)) = 1 therefore it follows from Lemma G.6 that this is also
the case for all ancestors of x. Finally, by construction distance(σi(x), σ′i(x)) = 0.
By definition of distanceλ, it follows that:

34

distanceλ(σi, σ′i) < distanceλ(σi, σi+1).

Item 2. This is actually a consequence of Item 1. Recall that:

(g, g′)k ∈HL for all k ∈ N.

Therefore, it follows from Item 1 and Lemma 5.1 that:

(vu′g, vu′g′)k ∈HL for all k ∈ N.

And we are finished for Item 2.

Item 3. Note that by definition, the existence of an edge between (v, h) and
(v′, h′) does not depend on h′. Therefore it is sufficient to prove that there is an
edge between (v, h) and (vu′, vu′g′).
Recall from Lemma G.8 that (v1, . . . , vn) ∈ VL, therefore (v1, u′) = (v1, vi+1) ∈
VL.
Apply the Ramsey theorem to the function

f :
(
X

2

)
→ V 2

L

which maps a pair of nodes x < y in the chain X to the pair

(val(σ, Y, 1), val(σ, Y, i+ 1)) ∈ V 2
L .

where Y is the context zone with root x and port y. We know from Fact 3 that
the range of the function f is included in VL. From the Ramsey theorem we get
an infinite subset Z ⊆ X such that all pairs from Z are mapped to the same
value, call it

(w1, w
′) ∈ VL

Let x < y be two nodes in Z and Y the context zone containing nodes that are
in the subtree of x but not in the subtree of y. By Lemma G.8 we have:

v1 = val(σ, y, 1) = val(σ, x, 1) · val(σ, Y, 1) = v1 · w1

u′ = val(σ, y, i+ 1) = val(σ, x, i+ 1) · val(σ, Y, i+ 1) = u′ · w′

Because σ1 is the type tree of t, its root label is v1w∞1 . Therefore by definition
of σ ∈ Σv:

h = vv1w
∞
1 .

35

Finally, because u′w′ = u′, we have

vu′ = vu′(w′)ω.

By definition, there is an edge between (v, h) and (vu′, vu′g′).
ut

This completes the proof of Lemma G.4. ut

H Limit alternation is bounded

This section is devoted to showing Proposition F.1.
We do this in two steps, using a new object called strategy matrices as an in-
termediary. Strategy matrices represent special strategies for Alternator in the
game on tree types. In our first step, we show that if Proposition F.1 does not
hold, then there exists special strategy matrices of arbitrarily large size. Then
we show that the existence of a sufficiently large special strategy matrix violates
identity (2).

Strategy matrices. A strategy matrix is a rectangular matrix with entries from
VL such that where row belongs to VL.
Consider a strategy matrix with n rows and k columns. The idea is that the
matrix represents the evolution of k contexts in a strategy for alternator with
n rounds. The entry in the i-th row and j-th column represents the value of
the i-th context in the j-th round. Typically such a strategy matrix is produced
from a strategy tree of duration n, and k consecutive context zones.
A strategy matrix M is called parity alternating if for some n ∈ N, if it has it
has 2n columns and n rows, and

a) For every i ∈ {1, . . . , n},
• Columns 2i−1 and 2i have the same entries in all rows except for row i.
• The values of columns 2i− 1 and 2i are different.

b) Condition a) holds when the order of columns is reversed.

In case a) holds the matrix is called top-down and in case b) holds, it is called
bottom-up. The set of parity alternating matrices with n rows and 2n columns
is denoted by Pn.
Proposition F.1 follows from the following two lemmas.

Lemma H.1. If Proposition F.1 does not hold, then Pn is nonempty for all n.

Lemma H.2. If Pn is nonempty for all n, then identity (2) is violated.

The lemmas are proved in the two following sections.

36

H.1 Proof of Lemma H.1

If Proposition F.1 does not hold, then there exists an infinite set Σ of locally
optimal strategy trees such that:

sup
σ∈Σ

limitalternation(σ) < ∞

sup
σ∈Σ

rootalternation(σ) = ∞

Fix some arbitrary n ∈ N, we need to construct a strategy matrix M ∈ Pn. We
proceed as follows: first we choose a strategy tree σ ∈ Σ with big enough root
alternation. Then we split the support of σ into n consecutive context zones;
which yields a strategy matrix with n rows. By modifying that matrix a bit, and
using local optimality of σ, we get a matrix in Pn.
Let l be the maximal limit alternation among strategy trees in σ. Choose a
strategy tree σ ∈ Σ with root alternation at least l · 2n

2
and let m be the

duration of σ.

Lemma H.3. There are consecutive contexts zones X1, . . . , Xn in σ and a se-
quence of rounds i1, . . . , in ∈ {1, . . . ,m− 1} such that the sequence of rounds is
either strictly increasing or strictly decreasing, and

val(σ, ij , Xj) 6= val(σ, ij + 1, Xj) for every j ∈ {1, . . . , n}

Proof. For two infinite paths π and π′ in σ, define diverge(π, π′) to be the
deepest common node in both the paths. For a round i ∈ {1, . . . ,m− 1}, define:

changei(σ) = {x ∈ nodes(σ) : σi(x) 6= σi+1(x)}.

Lemma H.4. Let X be a context zone, and let π be an infinite path that passes
through the root of X, but not through the port. Then

π ⊆ changei(σ) ⇒ val(σ, i,X) 6= val(σ, i+ 1, X)

holds for every round i ∈ {1, . . . ,m− 1}.

Proof. This is by local optimality of σ. Assume that π ⊆ changei(σ) and
val(σ, i,X) = val(σ, i+ 1, X) for some round i. We construct a type tree that is
closer to σi than σi+1 regarding the discounted distance and with the same root
value as σi+1, contradicting local optimality.
Consider the type tree σ′i+1 defined as follows:

– For nodes x ∈ X σ′i+1(x) = σi(x). By definition:

distance(σi(x), σ′i+1(x)) = 0 ≤ distance(σi(x), σi+1(x))

– For other nodes y σ′i+1(y) = σi+1(y). By definition:

distance(σi(y), σ′i+1(y)) = distance(σi(y), σi+1(y))

37

Because π ∈ changei(σ), there exists at least one node x ∈ X such that
distance(σi(x), σi+1(x)) = 1. It follows that:

distanceλ(σi, σ′i+1) < distanceλ(σi, σi+1)

Moreover since val(σ, i,X) = val(σ, i + 1, X), we have val(σ′i+1) = val(σi+1).
This contradicts local optimality of σ. ut

Lemma H.5. There is a set Π of at least 2n
2

infinite paths, and a function

change : Π → {1, . . . ,m− 1}

such that

π ⊆ changechange(π)(σ) for every π ∈ Π.

Proof. By definition of a tree strategy, every node in changej(σ) has at least one
child in changej(σ). Therefore, each of the nonempty sets changej(σ) contains
at least one infinite path. By the assumption on the root alternation there are at
least l · 2n2

rounds j where changej(σ) is nonempty. By the assumption on limit
alternation, an infinite path can be contained in sets changej(σ) for at most l
different values of j. This proves the statement of the lemma. ut

Lemma H.6. Let Π be a set of at 2k infinite paths in a binary tree. There exist
consecutive context zones X1, . . . , Xk and paths π1, . . . , πk ∈ Π such that for
every i ∈ {1, . . . , k}, path πi passes through the ports of contexts X1, . . . , Xi−1,
but not through the port of Xi.

Proof. The proof is by induction on k. The induction base of k = 1 is obvious.
Now assume that this holds for k and consider a set Π of 2k+1 paths. Let x be
the deepest node in the tree that belongs to all paths of Π (x exists since the
root belongs to all paths of Π). Let Πr (respectively, Πl) be those paths in Π
that pass through the right child of x (respectively, the left child of x). One of
the sets Πr or Πl must have at least half of the paths, i.e. at least 2k paths. By
symmetry, assume that Πl has at least 2k paths and let y be the left child of x.
We apply the induction hypothesis to Πl and obtain paths π2, . . . , πk+1 ∈ Πl and
consecutive context zones X2, . . . , Xk+1 such that for every i ∈ {2, . . . , k + 1},
path πi passes through the ports of contexts X2, . . . , Xi−1, but not through the
port of Xi.
We slightly modify X2 be setting y as its root. Note that this does not affect
the properties of the paths π2, . . . , πk+1 ∈ Πl. Now, we define X1 as the context
zone with the root x and the root of X2 as port. Let π1 be some arbitrary path
in Pir. By definition, X1, . . . , Xk+1 are consecutive context zones. Moreover, the
paths π2, . . . , πk+1 are paths or Πl and therefore pass through y, i.e. the port
of X1. Finally be definition π1 passes through the right child of x and therefore
not through the port of X1. ut

38

Let Π and the function change be as defined in Lemma H.5. Apply Lemma H.6
to Π, yielding a sequence of paths, call it τ1, . . . , τn2 , and a sequence of context
zones, call it Y1, . . . , Yn2 . Consider the sequence

change(τ1), . . . , change(τn2) ∈ {1, . . . ,m− 1}

Like in any sequence of n2 different numbers, we can find a sequence of indexes

j1 < . . . < jn ∈ {1, . . . , n2}

such that the sequence

change(τj1), . . . , change(τjn)

is either increasing or decreasing. For i ∈ {1, . . . , n}, define πi to be τji and Xi

to be the union of the context zones Yji ∪· · ·∪Yji+1−1. By construction, we know
that the path πi passes through the ports of the context zones X1, . . . , Xi−1, but
not through the port of the zone Xi. By Lemma H.4, we know that

val(σ, choice(πi), Xi) 6= val(σ, choice(πi) + 1, Xi)

Therefore, the statement of Lemma H.3 holds if we define i1, . . . , in to be

choice(π1), . . . , choice(πn).

This ends the proof of Lemma H.3. ut

Consider a matrix M , a row j, and a column i which is not the first column.
Define a new column, denoted by

almostcopy 6=ji (M),

as follows. The new column is equal to column i of M in all rows, except for row
j, where it is equal to column i− 1 of M .
Let σ a strategy tree of duration m an X1, . . . , Xn consecutive context zones in
σ. We define a strategy matrix with n rows and m columns

M = matrix(σ,X1, . . . , Xn),

by setting M [j, i] as val(σ, i,Xj). Note that it follows from Fact 3 that every
row of M belongs to VL. Therefore, M is indeed a strategy matrix.

Lemma H.7. Let N be a strategy matrix defined by

N = matrix(σ,X1, . . . , Xn),

for some locally optimal strategy tree σ, and consecutive contexts X1, . . . , Xn.
Let j be a row and i a column, which is not the first column. If columns i and
i− 1 in N have different entries in row j, then the value of the column

almostcopy 6=ji (N),

is different than the value of column i in N .

39

Proof. This is a consequence of local optimality. Assume there exists a row i
and a column j such that almostcopy 6=ji (N) is the value of column i in N . We
construct a type tree that is closer to σi−1 than σi regarding the discounted
distance and with the same root value as σi, contradicting local optimality.
Consider the type tree σ′i defined as follows:

– For nodes x ∈ Xj σ
′
i(x) = σi−1(x). By definition:

distance(σi(x), σ′i+1(x)) = 0 ≤ distance(σi(x), σi+1(x))

– For other nodes y σ′i(y) = σi(y). By definition:

distance(σi−1(y), σ′i(y)) = distance(σi−1(y), σi(y))

Because i and i− 1 have different entries in row j, there exists at least one node
x ∈ Xj such that distance(σi−1(x), σi(x)) = 1. It follows that:

distanceλ(σi−1, σ
′
i) < distanceλ(σi−1, σi)

Moreover, val(σi) is the value of column i and val(σ′i) is the value of column
almostcopy 6=ji (N). Therefore by hypothesis, both values are equal and this con-
tradicts local optimality of σ. ut

We are now ready to prove Lemma H.1. Let X1, . . . , Xn and i1, . . . , in be as in
Lemma H.3. Consider the strategy matrix

N = matrix(σ,X1, . . . , Xn).

By Lemma H.3, we know that for every j ∈ {1, . . . , n} the entries in row j are
different in columns ij and ij + 1.
Suppose first that the sequence i1, . . . , in is strictly increasing. Define a new
matrix M , which has n rows and 2n columns as follows.

– For j ∈ {1, . . . , n}, column 2j − 1 of M is almostcopy 6=jij+1(N).
– For j ∈ {1, . . . , n}, column 2j of M is column ij + 1 of N .

To complete the proof of Lemma H.1, we will show that M belongs to Pn. The
dimensions of the matrix M are correct: it has n rows and 2n columns.
We now show that M is a strategy matrix, which means that each row belongs
to VL. For j ∈ {1, . . . , n}, let us see how the j-th row of M , call it

M [j, 1], . . . ,M [j, 2n]

depends on the j-th row of N , call it

N [j, 1], . . . , N [j,m]

By reading the definition of M , we see that the dependency is

40

– When k 6= j, then M [j, 2k − 1] = M [j, 2k] = N [j, ik + 1].
– When k = j, then M [j, 2k − 1] = N [j, ik] and M [j, 2k] = N [j, ik + 1].

It follows that the j-th row of M is obtained from the j-th row of N by elimi-
nating some letters and duplicating some other letters. Since VL is closed under
eliminating and duplicating letters, and since N was a strategy matrix, it follows
that also M is a strategy matrix.
By Lemma H.7, for every j ∈ {1, . . . , n}, the values of columns 2j−1 and 2j are
different. By construction, columns 2j − 1 and 2j have the same entries, except
for row j.
When the sequence i1, . . . , in is strictly decreasing, the matrix M is defined like
for a strictly increasing sequence, except that the columns of M are filled in not
from left to right, but from right to left. Formally speaking,

– For j ∈ {1, . . . , n}, column 2(n− j + 1)− 1 of M is almostcopy 6=jij+1(N).
– For j ∈ {1, . . . , n}, column 2(n− j + 1) of M is column ij + 1 of N .

The proof that M belongs to Pn is the same as above.

H.2 Proof of Lemma H.2

Assume that Pn is non empty for every n. We assume that there are top-down
parity alternating matrices of size for every integer n; the other case is handled
symmetrically.

Lemma H.8. There are v, w, x, y ∈ VL such that v and w are idempotents and
P4 contains the matrix

Before proving Lemma H.8 we use it to conclude the proof of Lemma H.2. Let
M be the matrix described in Lemma H.8. Let {u1, . . . , u8} be the values of
all the columns in M . The matrix is in P4, so u3 6= u4. Because v and w are
idempotent,

u3 = vxww = vxw = vvxw = u5

For the same reason, u4 = u6 This is depicted in the picture below

41

Since u3 and u4 are different, then at least one of them is different than vw.
Without loss of generality suppose that u3 6= vw. Because each row of the
matrix belongs to VL, and VL is closed under removing letters, it follows that

(w, x, v) ∈ VL.

This means that we have a violation of the identity (2), which requires that

vw = vω · v · wω = vω · x · wω = u3

We are left with the proof of Lemma H.8, which fills the rest of the section.

We define below two rewriting rules for strategy matrices, which we call safe
rules.

1. Remove a column i. The result is a matrix with one less column.
2. Merge row i with row i + 1. The result is a matrix with one less row. We

describe this operation in more detail. Let

(v11, . . . , v1n), . . . , (vk1, . . . , vkn) ∈ V nL .

be the rows in a matrix with k rows and n columns. The merge operation
removes the rows

(vi1, . . . , vin) and (v(i+1)1, . . . , v(i+1)n)

and replaces them by the row

(vi1 · v(i+1)1, . . . , vin · v(i+1)n),

which is the product of the two removed rows in the monoid V nL .

An important observation is that safe rules preserve parity alternating matrices.

Lemma H.9. For every M ∈ Pn and i ∈ {2, . . . , n− 1} applying the rules

– remove column i; and then

42

– merge row i with i+ 1 or i− 1

yields a matrix in Pn−1.

Proof. Immediate by definition of the rules. ut

The following lemma is the key part of the proof it says that by applying safe
rules to a large enough parity alternating matrix we can obtain a matrix that is
essentially the matrix M describe in Lemma H.8.

Lemma H.10. For each m ∈ N there is some n ∈ N such that for any matrix
in Pn there is a sequence of safe rules that yields a matrix in N ∈ Pm and two
idempotents e, f ∈ VL such that:

– All elements above the diagonal, but not in the first row, are equal to e.
– All elements below the diagonal, but not in the last row, are equal to f .

Proof. The proof uses the Ramsey Theorem for hypergraphs with edges of size
3. This theorem says that for every m ∈ N there exists a number f(m) such that
for any complete hypergraph with edges colored over VL, there exists a complete
sub-hypergraph of size m in which all edges share the same color. We choose
n = f(f(m)).
Fix a matrix M ∈ Pn. Consider a hypergraph where the nodes are {1, . . . , n}
and an edge {i < j < k} is colored by by the value obtained by multiplying, in
the monoid VL, the cells that appear in rows i, . . . , j − 1 of column k. By choice
of n, we can apply the Ramsey Theorem to this coloring, and get a subset of
size k = f(m):

I = {i1, . . . , ik} ⊆ {1, . . . , n}

such that all hyperedges on I have the same color, say e ∈ VL. This color must
be an idempotent, i.e. it must satisfy e = ee. This situation is illustrated below:

43

Merge the following groups of rows together:

{1, . . . , i1 − 1} {i1, . . . , i2 − 1} . . . {ik−2, . . . , ik−1 − 1} {ik−1, . . . , n}.

Then, delete all columns except for those from I−{1, i1, . . . , in, n}. The resulting
matrix has the property that all elements above the diagonal, except for the first
row, are equal to e.
We repeat the same operation below the diagonal, obtaining the desired matrix
N which is in Pm because of Lemma H.9. ut

We finish the proof of Lemma H.8. By hypothesis, we can apply Lemma H.10
for m = 6. Let N be the resulting matrix. Now consider the matrix obtained by:

– Deleting the first, second, last and before-last columns;
– Deleting the first last and last rows.

One can verify that this is the matrix described in Lemma H.8.

44

Part III of the Appendix.

Complexity

45

