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Abstract

We prove that it is decidable whether a regular unranked
tree language is definable inFO2(<h, <v). ByFO2(<h, <v

) we refer to the two variable fragment of first order logic
built from the descendant and following sibling predicates.
In terms of expressive power it corresponds to a fragment of
the navigational core of XPath that contains modalities for
going up to some ancestor, down to some descendant, left to
some preceding sibling, and right to some following sibling.

We also investigate definability in some other fragments
of XPath.

1 Introduction

This paper is part of a general program trying to under-
stand the expressive power of first-order logic over trees.
We say that a class of regular tree languages has a decid-
able characterization if the following problem is decidable:
given as input a finite tree automaton, decide if the recog-
nized language belongs to the class in question. Usually a
decision algorithm requires a solid understanding of the ex-
pressive power of the corresponding class and is therefore
useful in any context where a precise boundary of this ex-
pressive power is crucial. The main open problem in this
area is to find a decidable characterization of the tree lan-
guages definable in FO(<v), the first-order logic using a bi-
nary predicate<v for the ancestor relation.

In this paper we work with unranked ordered trees and
by FO(<h, <v) we actually refer to the logic that has two
binary predicates, one for the descendant relation, one for
the following sibling relation.

We investigate an important fragment of FO(<h, <v),
its two variable restriction denoted FO2(<h, <v). This is
a robust formalism that, in term of expressive power, has
an equivalent counterpart in temporal logic. This tempo-
ral counterpart can be seen as the fragment of the nav-
igational core of XPath that does not use the successor
axis [11]. More precisely, it corresponds to the temporal
logic EF+F−1(Fh, F−1

h
) that navigates in the tree using two

“vertical” modalities, one for going to some ancestor node

(F−1) and one for going to some descendant node (EF), and
two “horizontal” modalities for going to some following
sibling (Fh) or some preceding sibling (F−1

h
).

We provide a decidable characterization of FO2(<h, <v

), or equivalently EF+F−1(Fh, F−1
h

), over unranked ordered
trees. Note that for anyk, FO2(<h, <v) can express the fact
that a tree has rankk, hence our result also apply for ranked
trees.

Our characterizations are expressed in term of closure
properties corresponding partly to identities in the syntac-
tic forest algebra of the language as defined by Bojańczyk
and Walukiewicz [8], and partly via closure under a satu-
ration mechanism. A forest algebra is essentially a pair of
monoids, the “horizontal” monoid for forest types and the
“vertical” monoid for context types together with an action
of contexts over types. It was introduced in [8] and was
used successfully for obtaining decidable characterizations
for the classes of tree languages definable in EF+EX [7],
EF+F−1 [3], BC-Σ1(<v) [5], ∆2(<v) [4].

Over words, the induced logics:∆2(<), FO2(<) and
EF+F−1, have exactly the same expressive power [10, 14].
But over trees this is no longer the case. For instance
EF+F−1 is closed under bisimulation while the other two
are not. While decidable characterizations were obtained
for ∆2(<v) and EF+F−1 [3, 4], the important case of
FO2(<h, <v) was still missing and is solved in this paper.

Over words, a regular language is definable in FO2(<)
iff its syntactic monoid belongs to a variety of monoids
known asDA, a decidable property [14]. Not surprisingly
our first set of identities require that the horizontal and ver-
tical monoids of the syntactic forest algebra belong toDA.

Our extra property is more complex and mixes at the
same time the vertical and horizontal behavior of FO2(<h

, <v). We call it closure under saturationand we do not
know yet whether it is implied by the previous identities or
not.

It is immediate from the word case that being defin-
able in FO2(<h, <v) implies that the vertical and horizontal
monoids of the syntactic forest algebra belong toDA. That
closure under saturation is also necessary is proved via a
classical, but tedious, Ehrenfeucht-Fraı̈sśe game argument.
The main difficulty is to show that the closure conditions are



sufficient. In order to do so, as it is standard when dealing
with FO2(<h, <v) (see e.g. [3, 4, 14]), we introduce Green-
like relations for comparing elements of the syntactic alge-
bra. However, in our case, we parametrize these relations
with a set of forbidden patterns: the contexts authorized for
going from one type to another type cannot use any of the
forbidden pattern. We are then able to perform an induction
using this set of forbidden patterns, thus refining compari-
son relations more and more until they become trivial.

Our proof has many similarities with the one of
Bojańczyk that provides a decidable characterization for the
logic EF+F−1 [3] and we reuse several ideas developed this
paper. However it departs from it in many essential ways.
First of all the closure under bisimulation of EF+F−1 was
used in an essential way in order to compute a subalgebra
and perform inductions on the size of the algebra. More-
over, because EF+F−1 does not have horizontal navigation,
Bojańczyk was able to isolate certain labels and then per-
form an induction on the size of the alphabet. It is the com-
bination of the induction on the size of the alphabet and
on the size of the algebra that gave an elegant proof of the
correctness of the identities for EF+F−1 given in [3]. Our
logic FO2(<h, <v) is no longer closed under bisimulation
and we were not able to perform an induction on the alge-
bra. Moreover because our logic has horizontal navigation,
it is no longer possible to isolate the label of a node from
the labels of its siblings, hence it is no longer possible to
perform an induction on the alphabet. In order to overcome
these problems our proof replace the inductions used in [3]
by an induction on the set of forbidden patterns. This make
the two proofs technically fairly different.

It turns out that our proof technique applies for vari-
ous horizontal modalities. In the final section of the pa-
per we show how to adapt the characterization obtained
for FO2(<h, <v) in order to obtain decidable character-
izations for EF+F−1(Xh, Fh, X−1

h
, F−1

h
), EF+F−1(S) and

EF+F−1(S+), where Xh, X−1
h

, S and S+ are horizontal nav-
igational modalities moving respectively to the next sibling,
previous sibling, an arbitrary sibling or an arbitrary different
sibling.

Related work Our characterization is essentially given
using forest algebras. There exist several other formalisms
that were used for providing characterizations of logical
fragments of MSO (see e.g. [2, 13, 15, 9]). It is not clear
however how to use these formalisms for FO2(<h, <v).

There exists decidable characterizations of EF+EX and
∆2(<v) over ranked trees [12]. But, as these logics cannot
express the fact that a tree is binary, these characterizations
are different over ranked trees than over unranked trees. As
mentioned above, we don’t have this problem with FO2(<h

, <v).

Organization of the paper. We first provide the neces-
sary definitions and state our characterization in Section 2.
We give the proof that our characterization for FO2(<h, <v)
is sufficient in Section 3. In Section 4 we show how the
proof can be adapted for handling several other horizontal
navigation modalities. We only briefly discuss the complex-
ity of our characterization and provide additional remarksin
Section 5. Due to lack of space some proofs are omitted or
only sketched.

2 Preliminaries

Trees and forests. We work with finite unranked ordered
trees and forests whose nodes are labeled using a finite al-
phabet. More formally ifA is a finite alphabet then our
trees and forests are generated by the following rules: For
all a ∈ A, a is a tree, furthermore ifa ∈ A ands is a forest
thena(s) is a tree, ift1, · · · , tk are trees thent1 + · · · + tk
is a forest. A set of forests is called a forest language.

We use standard terminology for forests defining nodes,
ancestors, descendant, following and preceding siblings.A
context is a forest with a designated leaf that has no label
and no sibling and which is calledthe portof the context.
This definition is not standard as usually contexts are de-
fined without the sibling restriction for ports but it is im-
portant here to work with this non-standard definition. A
contextc can be composed with another contextc′ or with
a forests in the obvious way. The corresponding notations
are respectivelycc′ andcs.

If x is a node of a forest then thesubtree ofx is the tree
rooted atx. Thesubforest atx is the forests consisting of
all the subtrees of all the children ofx.

Logic. Each forest is viewed as a relational structure
whose domain is its set of nodes. The signature contains
a unary predicatePa for each symbola of A plus a binary
predicate for the ancestor relation<v and a binary predi-
cate for the following sibling relation<h. By FO2(<h, <v)
we denote the two variable restriction of first order logic
over the relational signature as described above. In terms
of expressive power, FO2(<h, <v) is equivalent to the tem-
poral logic EF+F−1(Fh, F−1

h
) that we describe below [11].

EF+F−1(Fh, F−1
h

) is essentially the restriction of the navi-
gational core of XPath without theCHILD, PARENT, NEXT-
SIBLING andPREVIOUS-SIBLING predicates. It is defined
using the following grammar:

ϕ :: A | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | EFϕ | F−1ϕ | Fhϕ | F−1
h

ϕ

We use the classical semantics for this logic which defines
when a formula holds at a nodex of a forests. In particular,
EFϕ holds atx if there is a strict descendant ofx where
ϕ holds, F−1ϕ holds atx if there is a strict ancestor ofx



whereϕ holds, Fhϕ holds atx if ϕ holds at some strict
following sibling of x, and so on. . . Each closed formula
ϕ of EF+F−1(Fh, F−1

h
) or of FO2(<h, <v) defines a forest

languageLϕ: Those forestss whereϕ holds at the root
of the first tree ofs. Note that FO2(<h, <v) is expressive
enough to test whether a forest is a tree. Hence any result
concerning forest languages definable in FO2(<h, <v) also
applies for tree languages definable in FO2(<h, <v).

We aim at providing a decidable characterization of reg-
ular forest languages definable in FO2(<h, <v). We shall
mostly use formulas from FO2(<h, <v). However, the
EF+F−1(Fh, F−1

h
) point of view will be useful when con-

sidering other horizontal modalities as in Section 4 or when
making comparisons with the decision algorithm obtained
for EF+F−1 in [3].

Antichain Composition Principle. We shall make use
of the following composition lemma, essentially taken
from [3]. We reuse notations from [3].

A formula of FO2(<h, <v) with one free variable is
calledantichain if in every forest, the set of nodes where
it holds forms an antichain, i.e. a set (not necessarily max-
imal) of nodes pairwise incomparable with respect to the
descendant relation. This is a semantic property, and may
not be apparent just by looking at the syntax of the formula.

We fix (i) an antichain formulaϕ, (ii) disjoint tree lan-
guagesL1, · · · , Ln and (iii) leaves of labela1, · · · , an.
Given a forests, we define the forests[(L1, ϕ) →
a1, · · · , (Ln, ϕ) → an] as follows. For each nodex of s
such thats, x |= ϕ(x), we determine the uniquei such the
tree languageLi contains the subtree ofx. If such ani ex-
ists, we remove the subtree ofx (includingx), and replace
x by a leaf labeled withai. Sinceϕ is antichain, this can
be done simultaneously for allx. Note that the formulaϕ
may also depend on ancestors ofx, while the languagesLi

only talk about the subtree ofx. A simple argument, similar
to the one given in [3] for EF+F−1, omitted in this abstract,
shows:

Lemma 2.1 [Antichain Composition Lemma] Letϕ,
L1, · · · , Ln and a1, · · · , an be as above. IfL1, · · · , Ln

and K are languages definable inFO2(<h, <v), then so
is {t | t[(L1, ϕ) → a1, · · · , (Ln, ϕ) → an] ∈ K}.

Forest algebras. Forest algebraswere introduced by
Bojańczyk and Walukiewicz as an algebraic formalism for
studying regular forest languages [8]. We work with the
following variant of forest algebra: the hole of each con-
text has no sibling and we work with semigroups instead of
monoids. These restrictions are necessary as, without them,
the languages definable in FO2(<h, <v) would not form a
variety.

We give a brief summary of the definition of forest alge-
bras and of their important properties. More details can be
found in [8]. A forest algebra consists of a pair(H,V ) of
finite semigroups, subject to some additional requirements,
which we describe below. We write the operation inV mul-
tiplicatively and the operation inH additively, althoughH
is not assumed to be commutative.

We require thatV acts on the left ofH. That is, there
is a map(h, v) 7→ vh ∈ H such thatw(vh) = (wv)h for
all h ∈ H andv, w ∈ V. We further require that for every
g ∈ H andv ∈ V , V contains elements(v + g) and(g + v)
such that(v + g)h = vh + g, (g + v)h = g + vh for all
h ∈ H. The free forest algebra, denoted byA∆, is the pair
of semigroups(HA, VA) whereHA is the set of forests over
the alphabetA andVA the set of contexts, together with the
natural actions.

A morphismα : (H1, V1) → (H2, V2) of forest algebras
is actually a pair(γ, δ) of semigroup morphismsγ : H1 →
H2, δ : V1 → V2 such thatγ(vh) = δ(v)γ(h) for all h ∈
H, v ∈ V. However, we will abuse notation slightly and
denote both component maps byα. We say that a forest
algebra(H,V ) recognizesa forest languageL if there is a
morphismα : A∆ → (H,V ) and a subsetX of H such that
L = α−1(X). We also say that the morphismα recognizes
L. It is easy to show that a forest language is regular if and
only if it is recognized by a finite forest algebra. Moreover,
given a tree automaton, a minimal forest algebra, also called
syntactic forest algebra, recognizing the same language can
be computed.

Given any finite semigroupS, there is (folklore) a num-
berω(S) (denoted byω whenS is understood from the con-
text) such that for each elementx of S, xω is an idempotent:
xω = xωxω. Therefore for any forest algebra(H,V ) and
any elementu ∈ V andg ∈ H we will write uω andωg for
the corresponding idempotents.

Horizontal behavior. As mentioned in the introduction
we will constantly be working with sequences of sibling
nodes. For technical reasons, we also include the label of
a subtree if this one is a leaf. We now make this notion
more precise. We assume fixed a languageL recognized by
a forest algebra(H,V ) via the morphismα.

A multicontext is defined as for context but has several
ports. Thearity of a multicontext is the number of its ports.
A multicontext is said to beshallow if each of its trees is
either a single leafa, a single node with a port belowb(2)
or, a tree of the formb(a) whereb is a node anda a leaf.
Given a multicontextc of arity n and a sequenceT of n
forests,c[T ] denotes the forest obtained after placing each
tree inT at the corresponding port ofc. A multicontextc
occursin a forestt if t = ∆c[T ] for some context∆ and
sequence of forestT .

As expected we will only manipulate



shallow multicontexts modulo FO2(<h, <v) definabil-
ity. Intuitively, FO2(<h, <v) treats a shallow multicontext
as a string whose letters are eithera, b(a), or b(2). For
each positive integerk and any two shallow multicontexts
p andp′, we writep ≡k p′ the fact thatp andp′ agree on all
sentences of FO2(<h, <v) of quantifier rankk. We denote
by k-MTypes the equivalence classes of this relation.

Let P be a set ofk-MTypes - this set will play the role
of forbidden patterns in our proof - a forestt is said to be
P -valid if no element ofP occur int. Similarly we define
the notion ofP -valid multicontext.

Consider a setX ⊆ H, X will later be a parameter in
our induction. We define a logic FOX2 (<h, <v) for denoting
positions on shallow multicontexts. Intuitively, FOX

2 (<h

, <v) is like FO2(<h, <v) on shallow multicontexts but it
cannot distinguish the symbolb(2) from the symbolb(a)
wheneverα(a) 6∈ X. More formally, when it tests a la-
bel, FOX

2 (<h, <v) can usePb(a) when α(a) ∈ X, or
Pb(2) ∨ Pb(a) whenα(a) 6∈ X.

Let x be a node of a treet. Let x1, · · · , xl be the
sequence of siblings ofx, including x. Let t1, · · · , tl
be the subtrees oft rooted at those nodes. The
shallow multicontext oft at x is the sequencep1, · · · , pl

such thatpi := a if ti = a, pi := b(a) if ti = b(a),
pi := b(a) if ti = b(s) with α(s) = α(a) ∈ X and,
pi := b(2) otherwise. Given two nodesx and x′ of t
we write x ∼=k,X x′ if the shallow multicontext ofx and
the shallow multicontext ofx′ satisfy the same formulas of
FOX

2 (<h, <v) of quantifier depth at mostk, with one free
variable denoting respectively the positionx andx′. We de-
note by(X, k)-PTypes the equivalence classes of this rela-
tion and we only consider(X, k)-PTypes such thatPb(2)(x)
holds for someb.

Given a(X, k)-PTypeδ and ak-MType τ , we say that
δ is compatible withτ if all shallow multicontextsp ∈ τ
contain a positionx ∈ δ.

Saturation. As before,P denotes a set ofk-MTypes for
somek. A type h ∈ H is said to beP -reachable from the
type h′ if there exists aP -valid contextu such thath =
α(u)h′. Two types areP -equivalent if they are mutually
P -reachable.

In the case where allP -valid shallow multicontexts have
arity 1 we will see that we are in a setting similar to the word
case and we use a specific argument. In the case where there
is at least oneP -valid shallow multicontext of arity two we
have the following important property:P -reachability con-
tains a unique maximalP -equivalence class (see Claim 3.2
below). We then denote byHP the unique maximalP -
equivalence class and bȳHP the types ofH not in HP . In
this case we say thatP is good.

Finally, we are able to define the notion ofsaturation
which is part of our characterization. Intuitively a context

is saturated if it isP -valid and contains one representative
for eachk-MType τ 6∈ P and compatible(H̄P , k)-PType.
More formally, letP be a good set ofk-MTypes. A con-
text ∆ is said to beP -saturated if (i) it is P -valid and
(ii) for eachP -valid k-MType τ , and each each compatible
(H̄P , k)-PTypeδ, there exists a nodex occurring in∆ on
the path from the root of∆ to its port such thatx ∈ δ and
the shallow multicontext of∆ atx is in τ .

We say that a tree languageL is closed underk-
saturationif for all good setP of k-MTypes, for all context
∆ that isP -saturated, for allP -valid treet, for all P -valid
shallow multicontextp, for all positionx of p and for all
sequenceT of P -valid forests whose types are inHP , we
have:

α(∆)ωα(t) = α(∆)ωα(p[T, x])α(∆)ωα(t) (1)

werep[T, x] is the context formed fromp by placing the
forests ofT at the corresponding holes ofp except for the
hole at positionx. A language is closed under saturation if
it is closed underk-saturation for somek.

The main result.

Theorem 2.2 A regular forest languageL recognized by
the forest algebra(H,V ) is definable inFO2(<h, <v) iff

a) H verifies the equation

ω(f + g + h) + g + ω(f + g + h) = ω(f + g + h) (2)

b) V verifies the equation

(uvw)ω

v(uvw)ω = (uvw)ω (3)

c) L is closed under saturation.

It turns out that (2) and (3) above are exactly the identi-
ties characterizing membership in the variety of semigroups
known asDA [14]. Hence (2) and (3) could be equivalently
rephrased asH ∈ DA andV ∈ DA.

Recall that FO2(<h, <v) can express the fact that a for-
est is a tree and, for eachk, that a tree has rankk, hence
Theorem 2.2 also apply for regular ranked tree languages.

It is simple to see that Equations (2) and (3) are neces-
sary. That saturation is necessary is proved using a classi-
cal, but tedious, Ehrenfeucht-Fraı̈sśe argument whose proof
is omitted in this abstract:

Lemma 2.3 A forest language definable inFO2(<h, <v) is
closed under saturation.

The most difficult part of the proof of Theorem 2.2 is
to show that the conditions imply definability in the corre-
sponding logic. Section 3 is devoted to the proof of this
implication. In Section 4 we discuss how the argument can
be modified in order to cope with other horizontal modali-
ties.



3 Sufficientness of the properties

In all this section we fix a regular forest languageL that
is recognized by the forest algebra(H,V ) via the morphism
α. We assume thatL is closed underk′-saturation and that
H andV verify Equations (2) and (3). We will show thatL
is definable in FO2(<h, <v).

Let k′′ be the number such that wheneverp andp′ have
the samek′′-MType then for all forests we haveα(p[s̄]) =
α(p′[s̄]), wherep[s̄] is the forest constructed fromp by plac-
ing s at each hole ofp. Such ak′′ exists because we are
essentially in the string case and (2) guarantees definability
in FO2(<) in the string case as proved in [14], and taking
k′′ as the quantifier rank of the resulting formula yields the
desired result. We omit the details in this abstract.

We now takek as the maximum betweenk′ andk′′. No-
tice thatL remains closed underk-saturation.

Given a forests, its type is its image inH by α. We
assume that for each typeh ∈ H there is a tree consisting of
a single leaf node that hash for type viaα. This simplifies
the notations in the proof with no harm in the generality of
the result.

The proof of Theorem 2.2 is done by induction using an
inductive hypothesis that is stated in the proposition below.
One of the parameters is a subsetX of H. The following
definition is taken from [3]. A forests is said to beX-
trimmed if the only nodes ofs that are of type inX are
leaves. We say that a forest languageL is definable modulo
X if there is a definable forest languageL′ that agrees with
L overX-trimmed forests. For eachh ∈ H andv ∈ V , let
LP

v,h = {t | v · α(t) = h andt is P -valid}.
Our goal in this section is to show that:

Proposition 3.1 ∀h ∈ H, v ∈ V andX ⊆ H, andP a set
of k-MTypes,LP

v,h is definable inFO2(<h, <v) moduloX.

We can then complete the proof of Theorem 2.2 by ap-
plying Proposition 3.1 for allh ∈ α(L) with v the empty
context, andP,X empty sets.

In the rest of this section we only care aboutP -valid
forests and hence we implicitly ignore the typesh ∈ H
such thatα−1(h) contains noP -valid forests.

Recall the notion ofP -reachability for two typesf andg
of H. Similarly given two contextsu, v ∈ V we say thatv
is P -reachablefrom u whenever there is a contextc which
is P -valid such thatv = u · α(c). The P -depthof v is
then the distance relative toP -reachability betweenv and
the empty context.

We now define an order on sets ofk-MTypes. For each
k-MType τ , its X-numberis the number of(X, k)-PTypes
compatible withτ . For each setP of k-MTypes then-index
of P is the number ofk-MTypes ofP of X-numbern. The
index ofP is then the sequence of itsn-indexes ordered by
decreasingn. We writeP1 < P2 if the index ofP1 is strictly

smaller than the index ofP2 (notice that the notion of index
depends onX).

In the rest of this section we prove Proposition 3.1 by
induction on the three following parameters, given below in
their order of importance:

• |X|

• the index ofP
• theP -depth ofv

We consider three main cases: In the first case we suppose
that all shallow multicontexts that are not inP have arity
0 or 1. In this case we show that we can treat our forests
as words and Proposition 3.1 follows from known results
over words. The reason why we distinguish this case is that
when we have at least one shallow multicontext of arity at
least 2 outside ofP thenP -reachability for forests contains
a unique maximal class as the following claim shows:

Claim 3.2 If there is a shallow multicontext of arity at least
2 outside ofP then there is a unique maximal class regard-
ing P -reachability.

Proof. Take p outside ofP and of arityn ≥ 2. Given
h, h′ ∈ H, considert andt′ be twoP -valid trees such that
α(t) = h andα(t′) = h′. Consider the ordered setT of
n P -valid forests containing copies oft andt′, with at least
one copy oft and one copy oft′. Nowα(pT ) isP -reachable
from bothh andh′. 2

Therefore as soon as we are not in the first case we
denote byHP the unique maximal class relative toP -
reachability as guaranteed by Claim 3.2. Our second case
assumes that there exists aP -valid forest whose type is nei-
ther inX nor inHP . In this case we can conclude by induc-
tion by either adding types inX or a forbidden pattern inP ,
hence increasing its index. In the remaining case,H \ X is
reduced toHP on P -valid forests. We then show that we
can increase the index ofP , or increase theP -depth ofv
or make use of closure under saturation ofL to show thatv
must be constant and henceLP

v,h is trivially definable.

3.1 Case 1: All k-MTypes outside of P
have arity 0 or 1

We show that in this case we can treat our forests as
words and use the known results on words. AnyP -valid
forestt that is not a collection of trees is of the form:

c1 · · · cks

where thec1, · · · , ck areP -valid shallow multicontexts of
arity 1 ands a P -valid shallow multicontext of arity0. For
eachu ∈ V andg ∈ H, consider the languages:

Mu,g = {t | t = c1 · · · cks is P -valid,

α(c1...ck) = u, andα(s) = g}



Notice thatLP
v,h is the union of those languages where

vug = h. We show that for anyu andg, Mu,g is defin-
able in FO2(<h, <v) moduloX. This will conclude this
case.

Let {τ1, ..., τn} be the set ofk-MTypes not inP of ar-
ity 1. As H is in DA, all contexts of typeτi have the same
image inV by α. Let {v1, ..., vn} be those types. Let
Γ = {d1, ..., dn} be a word alphabet and define a morphism
β : Γ∗ → V by β(di) = vi.

Since V is also in DA, for eachv ∈ V there is a
FO2(<h, <v) formula ϕv such that the words ofΓ∗ satis-
fying ϕv are the words of typev underβ [14, 10]. From
each such formulaϕv we construct an FO2(<h, <v) for-
mula Ψv by replacing each symboldi with a formula that
tests if thek-MType at the current position isτi (recall that
this is expressible in FO2(<h, <v)). Since we can also eas-
ily express in FO2(<h, <v) that α(s) = g, by putting all
this together we get thatMu,g is definable in FO2(<h, <v)
moduloX.

This proves Proposition 3.1 for this case. In the rest of
this section we assume the existence of ak-MType of arity 2
outside ofP and therefore, by Claim 3.2, the existence of a
unique maximalP -reachable classHP .

3.2 Case 2: There exists a P -valid forest
whose type is neither in X nor in HP .

Let t be such aP -valid tree. FixG as a class of mutu-
ally P -reachable types such that the type oft is reachable
from any type ofG, G 6⊆ X, andG is P -minimal with the
previous two properties. In other wordsG is just aboveX
according toP -reachability, and is not inHP by hypothesis.

Our agenda for this case is as follows. First, we show
that being a forest whose type is inG can be detected in
FO2(<h, <v) as it only depends on the presence or absence
of certaink-MTypes. Note that our hypothesis then guaran-
tees that there exists at least onek-MType whose presence
forces that the corresponding forest has a type outsideG.

Then, intuitively, we can addG in X and use our in-
duction hypothesis in order to get an FO2(<h, <v) formula
describing the part of the tree which is above all subtrees of
type inG. We can also add toP thek-MTypes that are for-
bidden for having a type inG and use again our induction
hypothesis in order to get an FO2(<h, <v) formula giving
the precise type inG of a forest inG. We then conclude
using the antichain composition principle, see Figure 1.

We first show that membership inG can be detected in
FO2(<h, <v).

Lemma 3.3 There is a formulaϕ(x) ∈ FO2(<h, <v) such
that for anyP -valid andX-trimmed treet the set of nodes
x such that the subtree ofx or the subforest atx has type in
G is exactly the set of nodes at whichϕ holds.

Proof. This lemma is proved using membership ofH and
V in DA. We show that a subforest has a type inG iff it does
not contain certaink-MTypes. Since we can detect those
forbiddenk-MTypes using a formula of FO2(<h, <v), the
result will follow. The proof relies on the following claim:

Claim 3.4 Take a shallow multicontextp of arityn and take
two sequencesT andT ′ of n P -valid forests of type inG.
We have:

α(p[T ]) ∈ G ⇔ α(p[T ′]) ∈ G

Proof. We use Equation (3) to prove this claim. We
write T = {t1, ..., tn} andT ′ = {t′1, ..., t

′
n}. For i ∈ [1, n]

we writeci the context obtained fromp[T ′] by replacingt′i
by a hole andt′j by tj for j > i. Notice that by hypothesis
on p, T andT ′, ci is P -valid. We writeui = α(ci), and
show that:

uiα(ti) ∈ G ⇔ uiα(t′i) ∈ G (4)

Let g = α(ti) andg′ = α(t′i) and suppose thatuig ∈ G, we
show thatuig

′ ∈ G. By symmetry this will prove (4). By
definition we always haveuig

′ P -reachable fromg′. There-
fore it remains to show thatg′ is P -reachable fromuig

′.
From uig ∈ G we get thatg′ is P -reachable fromuig.
As g andg′ are both inG they are mutuallyP -reachable.
Therefore we have twoP -valid contextsc andc′ such that
g′ = α(c)uig andg = α(c′)g′. A little bit of algebra and
Equation (3) yields:

g′ = α(c)uiα(c′)g′

g′ = (α(c)uiα(c′))ωg′

g′ = (α(c)uiα(c′))ωui(α(c)uiα(c′))ωg′ using Equation (3)

g′ = (α(c)uiα(c′))ωuig
′

g′ = (α(ccic
′))ωuig

′

asccic
′ is P -valid, g′ is P -reachable fromuig

′ and (4) is
proved.

For concluding the proof of the claim, notice that by con-
structionα(p[T ]) = u1α(t1). From Equation (4) we ob-
tain uiα(ti) ∈ G iff uiα(t′i) ∈ G. Notice thatuiα(t′i) =
ui+1α(t′i+1). Now, again from Equation (4), we have
ui+1α(ti+1) ∈ G iff ui+1α(t′i+1) ∈ G. Altogether this
givesuiα(ti) ∈ G iff ui+1α(ti+1) ∈ G. Finally by con-
struction we also haveunα(t′n) = α(p[T ′]). By putting all
this together we obtainα(p[T ]) ∈ G iff α(p[T ′]) ∈ G as
desired. 2

A shallow multicontextp of arity n is said to beH-good
if for some sequenceT of n P -valid forests of type inG
we haveα(p[T ]) ∈ G. From the previous claim we know
that this definition does not depend on the choice ofT . A
shallow multicontextp that is notH-good is said to beH-
bad. It turns out that this distinction between good and bad
shallow multicontexts characterizes membership inG.



Claim 3.5 Let t be a P -valid X-trimmed forest. Then
we have α(t) ∈ G iff t contains only H-good
shallow multicontexts.

Proof. Suppose thatα(t) /∈ G, we show thatt con-
tains anH-bad shallow multicontext. Lets be a subfor-
est of t such thatα(s) /∈ G and s = p[T ] wherep is a
shallow multicontext andT a sequence of forests of type in
G (possibly empty ifp is of arity 0). The existence of such
a subforests is ensured by the fact thatα(t) /∈ G, thatG is
P -minimal and thatt is X-trimmed. By Claim 3.4p is an
H-bad shallow multicontext and it is contained int. 2

It follows from this claim that in order to check whether
a subforest is of type inG, it is sufficient to check whether it
contains anH-bad shallow multicontexts or not. It remains
to show that this can be expressed in FO2(<h, <v). For this
we show that the set ofH-good shallow multicontexts is a
union ofk-MTypes.

Claim 3.6 Letp andp′ be two shallow multicontexts of the
samek-MType. Then we havep is H-good iffp′ is H-good.

Proof. Suppose thatp is H-good and of arityn. We
show thatp′ is H-good. Let n′ be the arity ofp′, by
Claim 3.4 it is sufficient to prove that there exists a sequence
of n′ forestsT ′ of type inG such thatα(p′[T ′]) ∈ G. Let
t be a forest such thatα(t) ∈ G andT be the sequence
of n copies oft andT ′ the sequence ofn′ copies oft. As
p ≡k p′, becausek ≥ k′′, we getα(p′[T ′]) = α(p[T ]).
Sincep is H-good,α(p[T ]) ∈ G, thereforeα(p′[T ′]) ∈ G.
2

This last claim concluded the proof of Lemma 3.3.2

We now aim at applying Lemma 2.1, the antichain for-
mula being essentially the one given by Lemma 3.3. The
next two lemmas show that the appropriate languages are
definable in FO2(<h, <v).

Lemma 3.7 LP
v,h is definable inFO2(<h, <v) moduloX ∪

G.

Proof. By induction on|X| in Proposition 3.1 we get that
L∅

v,h is definable moduloX ∪ G. But as the language of
P -valid forests is definable moduloX it is also definable
moduloX ∪ G. By combining the two we get thatLP

v,h is
definable in FO2(<h, <v) moduloX ∪ G. 2

Lemma 3.8 For any g ∈ G, LP
v,g is definable inFO2(<h

, <v) moduloX.

Proof. Let P ′ be the set ofH-badk-MTypes described
in the proof of Lemma 3.3. BecauseG is not HP , there
exists at least aH-badk-MType and henceP ′ is not empty.
We also know from the proof of Lemma 3.3 that forests
that have a type inG do not contain anyk-MTypes inP ′.

Therefore for anyg ∈ G, LP
v,g = L

(P∪P ′)
v,g . Notice that

No k-MTypes inP ∪ P ′

(X ∪ G)-trimmed

Figure 1. Illustration of the Antichain Compo-
sition Lemma for Case 2. The marked nodes
are the topmost nodes in G.

the index ofP ∪ P ′ is strictly higher than the index ofP .
Hence, by induction on the index ofP in Proposition 3.1,

L
(P∪P ′)
v,g is definable in FO2(<h, <v). 2

We are now ready to give the final argument which is de-
picted in Figure 1. Letϕ be the formula which holds at a
nodex of a treet iff x is in LG and there is no node between
the root oft andx in LG. From Lemma 3.3,ϕ is defin-
able in FO2(<h, <v) and by definition it is an antichain for-
mula. By Lemma 3.7, there exists a languageK definable
in FO2(<h, <v) that agrees withLP

v,h on (X ∪G)-trimmed
forests. AssumeG = {g1, · · · , gl}. For anyi ≤ l, let ai

be a leaf node such thatα(ai) = gi. By Lemma 3.8 for any
i ≤ l, there exists a languageLi definable in FO2(<h, <v)
that agrees withLP

v,gi
overX-trimmed forests. Hence from

the Antichain Composition Lemma, Lemma 2.1, we have
thatK ′ = {t | t[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak] ∈ K}
is also definable in FO2(<h, <v). By definition ofK and
theLi, K ′ agrees withLP

v,h onX-trimmed and henceLP
v,h

is definable in FO2(<h, <v) moduloX. This concludes the
proof of Proposition 3.1 for this case.

3.3 Case 3: H \ X is reduced to HP on P -
valid forests

An elementu ∈ V P -preservesv if v is P -reachable
from vu. A contextc P -preservesv if α(c) preservesv.

We then distinguish two subcases. In the first subcase
we assume that there is ak-MType τ not in P and a com-
patible(X, k)-PTypeδ such that no matter what forests we
place in the shallow multicontexts ofτ , leaving a hole at a
position inδ, the resulting context does notP -preservev.
In this subcase, we conclude using the composition prin-
ciple lemma, after increasing the index ofP for showing
definability of one piece and increasing theP -depth ofv
for showing definability of the other pieces.



In the remaining subcase, we will use closure under sat-
uration to conclude thatLP

v,h is trivial.
Formally, we say that ak-MType τ is P -bad for v if

τ 6∈ P and there exist a compatible(X, k)-PTypeδ such
that for any shallow multicontextp ∈ τ and any positionx
of p in δ, all the contextsp[T, x] do notP -preservev.

We distinguish two subcases.

Subcase 1: There exists ak-MTypeτ which isP -bad forv.
We fix aτ 6∈ P of maximalX-number that isP -bad for

a (X, k)-PTypeδ. Let p ∈ τ andx a position inp of typeδ.
The following lemma is immediate from the definitions.

Lemma 3.9 There is a formulaϕ(y) ∈ FO2(<h, <v) that
holds on anyP -valid X-trimmed treet at exactly the nodes
y of (X, k)-PTypeδ and such that the shallow multicontext
of t at y is in τ .

Given two elementsh andh′ of H, we say thath is v+-
equivalent toh′ if for all u P -reachable fromv such thatv is
not P -reachable fromu (hence theP -depth ofu is strictly
higher that theP -depth ofv) we haveuh = uh′.

Lemma 3.10 Each v+-equivalence class is definable in
FO2(<h, <v) moduloX.

Proof. This is immediate by induction on theP -depth ofv
in Proposition 3.1.2

Intuitively, we want to approximate the subtree below a
v-bad position by itsv+-equivalence class. When doing this
we may reintroduce shallow multicontexts that were forbid-
den byP . But fortunately the index ofP will increase when
doing so.

Let p ∈ τ . Let x1, · · · , xl be all the positions ofp of
(X, k)-PTypeδ. Let b(2) be the label of all thexi in p. Let
P+ be the set of all the shallow multicontexts constructed
from p by replacing at all the positionsxi, b(2) by b(ai),
for some arbitrary choice ofai 6∈ X. Let ∆ be the set of
k-MTypesτ ′ of all the shallow multicontexts inP+. LetP ′

be(P ∪ {τ}) \ ∆.

Lemma 3.11 The setLP ′

v,h is definable inFO2(<h, <v)
moduloX.

Proof. We show thatP ′ > P , the result follows by induc-
tion on the index ofP in Proposition 3.1.

More precisely, we show that anyτ ′ ∈ ∆ is of X-
number strictly smaller than theX-number ofτ . This gives
the desired result.

By definition of∆ there existsp ∈ τ andp′ ∈ τ ′ such
thatp′ can be obtained fromp by replacing symbols some
b(2) with subtrees of the formb(a) with α(a) 6∈ X. Con-
sider a positionx′ of p′ of label b′(2). By construction
the corresponding positionx of p has the same label. By
the definition of the logic used for defining(X, k)-PTypes,

v

v+-equivalence classes definable in FO2(<h, <v) by Lemma 3.10

No k-MTypes inP ′ > P

Figure 2. Illustration of the Antichain Com-
position Lemma for Subcase 1. The marked
nodes are the topmost nodes of type τ .

x and x′ must have the same(X, k)-PType. Hence any
(X, k)-PType compatible withτ ′ is also compatible withτ .
Moreover, by construction of∆, δ is no longer compatible
with τ ′. Hasτ had a maximalX-number,P ′ > P . 2

Based on the above lemmas, we conclude this case of
Proposition 3.1 as follows. Consider the property that
holds at a nodey of a tree t if the k-MType of the
shallow multicontext aty is in τ and its(X, k)-PType in
δ and there is no node between the root oft andy satisfying
this property. By Lemma 3.9 this property is expressible by
a formulaϕ(y) of FO2(<h, <v) and it is antichain by defi-
nition. We also know that each such positiony has the same
label, sayb.

Let γ1, · · · , γk be all the equivalence classes of thev-
equivalence relation. For each such classγi, consider the
set of trees{b · t | t ∈ γi}. Thanks to Lemma 3.10, for
each such set there existsLi definable in FO2(<h, <v) that
agrees with it onX-trimmed trees. For anyi = 1, · · · , k,
let hi be an arbitrarily chosen forest type in the classγi, and
let ai be a leaf label whose type ishi.

By Lemma 3.11, there existsK definable in FO2(<h, <v

) that agrees withLP ′

v,h on X-trimmed trees. Hence we can
apply the Antichain Composition Lemma (see Figure 2) and
have that{t | t[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak] ∈ K} is
definable in FO2(<h, <v).

We conclude by showing thatLP
v,h = {t | t[(L1, ϕ) →

a1, · · · , (Lk, ϕ) → ak] ∈ K} over X-trimmed trees. It
follows thatLP

v,h is definable moduloX. This is a simple
consequence of the following two lemmas.

Lemma 3.12 For any P -valid X-trimmed tree t,
t[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak] is P ′-valid.

Proof. This follows from the construction ofP ′ and the
definition ofϕ. 2



Lemma 3.13 For any X-trimmed tree t, vα(t) =
vα(t[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak]).

Proof. The proof goes by induction on the number
of occurrences ofτ in t and the number of nodesy of
(X, k)-PTypeδ in each occurrencep of τ . If there is no
occurrence ofτ , this is immediate as the substitution does
nothing.

Consider a nodey of a shallow multicontextp such that
p ∈ τ andy is in δ and no node abovey satisfies that prop-
erty. Let s be the subforest belowy in t and i such that
α(s) ∈ γi. Let c be the context formed fromt by placing
a hole aty. Let d the context formed fromc by removing
all the strict ancestors ofy. By choice ofy, αd does not
P -preservev. We writet′ the tree constructed fromt by re-
placing the subforest undery with the leafai. By construc-
tion t′[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak] is cai[(L1, ϕ) →
a1, · · · , (Lk, ϕ) → ak]. By induction hypothesis we have
that vα(t′) = vα(t′[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak]).
Therefore it remains to show thatvα(t′) = vα(cs). We
first claim thatv is not P -reachable fromvα(cd). This
is a consequence of Equation (3), suppose thatv is P -
reachable fromvα(cd), then there exists aP -valid u such
that v = vα(cd)u. From there we get the following se-
quence of equalities:

v = vα(cd)u

v = v(α(c)α(d)u)ω

v = v(α(c)α(d)u)ωα(d)(α(c)α(d)u)ω using (3)

v = vα(d)(α(c)α(d)u)ω

This implies thatα(d) P -preservesv, which we know to be
false. Let thenu = vα(cd). From the abovev is not P -
reachable fromu but, ast is P -valid,u is P -reachable from
v. Henceuα(s) = uα(ai) by definition ofv+-equivalence.
This implies the desired result.2

Subcase 2: There is nok-MType τ which isP -bad forv.
Using closure under saturation, we show that in this case,

v is P -preserved by a context that is constant overP -valid
trees. This implies thatLP

v,h contains noP -valid trees or all
of them and is therefore definable in FO2(<h, <v).

By hypothesis, for eachτ 6∈ P and each compatible
(X, k)-PTypeδ, there exists a shallow multicontextp ∈ τ
and a positionx ∈ δ of p such that there exists a sequenceT
of P -valid X-trimmed forests such that the contextp[T, x],
P -preservesv. For each pair(τ, δ), we fix such a context
p[T, x]. Let ∆ be the context defined as the concatenation
of all those contexts. By construction,∆ω is P -valid and
P -preservesv. By construction∆ω is also saturated.

Using closure under saturation we show that∆ω is con-
stant onP -valid trees. Leth1 andh2 be two elements of
HP . We want to show thatα(∆)ωh1 = α(∆)ωh2.

Consider aP -valid shallow multicontextp of arity at
least 2, and two positionsx, y of p and a sequenceT of
P -valid forests. LetT be an arbitrary sequence ofP -valid
forests with types inHP . Let p[T, x, y] be the multicon-
text of arity 2 constructed fromp by placing the two holes
in x andy and placing the forests ofT for the other holes.
Let p+[T, x] be the context constructed fromp[T, x, y] by
placing∆ωh2 at the hole denoted byy. Let p+[T, y] be the
context constructed fromp[T, x, y] by placing∆ωh1 at the
hole denoted byx.

Then we have:

α(∆)ωh1 = α(∆)ωα(p+[T, x])α(∆)ωh1 using (1)

= α(∆)ωα(p+[T, y])α(∆)ωh2

= α(∆)ωh2 using (1)

And we are done with the last case.

4 Other logics

Using the same proof structure we can obtain the
decidability of several other logics that differ with
EF+F−1(Fh, F−1

h
) only in the horizontal modalities.

We illustrate this with the predicates S+, S, Xh and X−1
h

but we believe that other modalities could be considered, as-
suming the induced logic over words has a decidable char-
acterization.

The predicate S+ϕ holds atx if ϕ holds at some sibling
of x (it is a shorthand for Fhϕ ∨ F−1

h
ϕ), and the predicate

Sϕ as a shorthand forϕ ∨ Sϕ. The predicates Xh and X−1
h

are the usual next sibling and previous sibling modalities.
In the sequel, O is either {S}, {S+} or

{Xh, Fh, X−1
h

, F−1
h

} and we denote by EF+F−1(O)
the corresponding logics over forests. When considering
only their horizontal behavior, these logics correspond over
words to a fragment of LTL denoted by LTL(O).

We first recall the known characterizations over words,
the first two being folklore while the last one is taken
from [14]. A regular languageL is definable in LTL(S+) iff
its syntactic monoid satisfies3h = 2h andf + g = g + f .
It is definable in LTL(S) iff its syntactic monoid satis-
fies 2h = h and f + g = g + f . It is definable in
LTL(Xh, Fh, X−1

h
, F−1

h
) iff its syntactic monoid is in a vari-

ety known asDA*D , a decidable property as shown in [1].
The characterizations of EF+F−1(S), EF+F−1(S+) and

EF+F−1(Xh, Fh, X−1
h

, F−1
h

) require thatV is in DA as be-
fore, thatH satisfy the known characterization of the frag-
ment of LTL induced by the horizontal modalities, together
with a notion of saturation modified in order to use a notion
k-MType and(X, k)-PType appropriate to the new horizon-
tal expressive power.

For instance in the case of EF+F−1(S) ak-MType is now
completely specified by the presence or absence of certain



trees in the shallow multicontexts up to threshold 2. In par-
ticular it does not depend onk. Similarly, in the case of
EF+F−1(Xh, Fh, X−1

h
, F−1

h
), k-MTypes correspond to de-

finability in LTL(Xh, Fh, X−1
h

, F−1
h

).
For a given set of horizontal axisO, we then say thatL

is closed under saturation relative toO if it is closed under
saturation as defined in Section 2 using a specification of
k-MTypes and of(X, k)-PTypes based on LTL(O).

Theorem 4.1 LetO be either S, S+ or {Xh, Fh, X−1
h

, F−1
h

}.
A regular languageL is definable inEF+F−1(O) iff

1. H satisfies3h = 2h andf + g = g + f , in the case of
O = S+

1’. H satisfies2h = h andf + g = g + f , in the case of
O = S

1”. H is in DA*D , in the case ofO = {Xh, Fh, X−1
h

, F−1
h

}

2. V is in DA

3. L is closed under saturation relative toO.

The proof of Theorem 4.1 follows the same outline as the
proof of Theorem 2.2. Note also that besides forO = {S},
EF+F−1(O) is equivalent in expressive power to FO2(<v

,O). The details are omitted in this abstract.

5 Discussion

Recall that the syntactic forest algebra(H,V ) of a reg-
ular languageL can be computed from any automaton rec-
ognizingL. Then, by testing all possible combinations, it
is decidable whetherH andV satisfy (2) and (3). When
k is fixed, given a tree automaton recognizingL, it is not
too hard to see that it is decidable whetherL is closed un-
derk-saturation. This is becauseL is regular and hence the
pumping lemma shows that it is enough to consider only
finitely many forests. Then, a brute force approach testing
all possibilities yields the decidability.

By using the regularity ofL it is also possible to show
(details omitted in this abstract) thatL is closed underk-
saturation for somek iff L is closed underk-saturation for
ak computable from any tree automaton recognizingL.

Altogether, we get the following corollary of Theo-
rem 2.2 and Theorem 4.1:

Corollary 5.1 It is decidable, given an automaton for
L, whetherL is definable inFO2(<h, <v), EF+F−1(S),
EF+F−1(S+), EF+F−1(Xh, Fh, X−1

h
, F−1

h
).

Note that the pumping argument combined with the brute
force algorithm described above yields an awful complexity
with several nested exponential for the decision problem.
We don’t know yet whether this can be improved.

It would be interesting to incorporate the vertical suc-
cessor and obtain a decidable characterization for the
navigational core of XPath or, equivalently FO2(<h, <v

,+h1,+v1), over trees. But this seems to require new ideas.
It would also be interesting to obtain an equivalent de-

cidable characterization of FO2(<h, <v) without using the
cumbersome notion of saturation. For instance it is not clear
whether the notion of confusion introduced in [6] can be
used as a replacement. We leave this as an open problem.

Our proof technique requires that the logic can at least
express the fact that two nodes are siblings. In particular it
does not apply to FO2(<v). We leave as an open problem
to find a decidable characterization for FO2(<v).
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[4] M. Bojańczyk and L. Segoufin. Tree languages defined in
first-order logic with one quantifier alternation. InIntl. Coll.
on Automata, Languages and Programming (ICALP), 2008.
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A Necessity of saturation: Game argument

The goal of this section is to prove Lemma 2.3, i.e. that
saturation is a necessary condition.

AssumeL is definable in EF+F−1(Fh, F−1
h

) and is rec-
ognized by the tree algebra(H,V ) via some morphismα.
Let k be the quantifier rank of a formula recognizingL, we
show thatL is closed underk-saturation.

The proof is an Ehrenfeucht Fraı̈sśe argument and
we adopt the EF+F−1(Fh, F−1

h
) point of view instead

of FO2(<h, <v) as the corresponding game is slightly
simpler. The definition of the game corresponding to
EF+F−1(Fh, F−1

h
) is standard. There are two players, Du-

plicator and Spoiler, the board consists in two forests and
both players agree on the number of moves in advance. At
any time there is one pebble placed on a node of each of
the two forests and the corresponding nodes have the same
label. At the beginning of the game the two pebbles are
placed on the root of the leftmost tree of each forests. At
each step Spoiler moves one of the pebble, either to some
ancestor of its current position, or to some descendant or to
some left or right sibling. Duplicator must respond by mov-
ing the other pebble in the same direction to a node of the
same label. If Duplicator cannot move then Spoiler wins.

Given P , ∆, p, x, t and T as in the definition ofk-
saturation, letu = α(∆), h = α(t) andv = α(p[T, x]).

We exhibit two forestsT andT ′ such thatα(T ) = uωh
andα(T ′) = uωvuωh and such that the Duplicator has a
winning strategy for thek-move game above.

A classical argument then shows that this implies that no
formula of EF+F−1(Fh, F−1

h
) of quantifier depthk can dis-

tinguish the two forests. This implies thatuωh = uωvuωh
as desired.

Our agenda is as follows. In Section A.1 we define the
two trees on which we will play. Finally in Section A.2
we give the winning strategy for Duplicator for thek-move
game on the two trees.

A.1 Definition of the trees.

Let HP = {h1, · · · , hl} be the maximalP -equivalence
class. Leth = α(t) ∈ Hp andh′ = uω. Because mutualP -
reachability has only one equivalence class, for eachi there
exists aP -valid contextUi such thathi = α(Ui)h

′. Recall
that by definition ofk-saturation, for each simple multicon-
text p occurring inUi there exists ap′ occurring in∆ such
that(p, x) ∼=k (p′, x′) wherex andx′ mark the position in
p andp′ of the skeletons of the corresponding context.

We now construct by induction onj contexts∆j andUi,j

for all i, such thatα(∆j) = u andα(Ui,j) = ui.
SetUi,0 := Ui and∆0 := ∆. Let m := 2k. For j >

0 Ui,j and ∆j are formed from theUi,j−1 and ∆j−1 by
replacing each maximal subforest of typehi by Ui,j−1∆

m
j t.

The following claim will be useful later. It follows by
a simple adaptation of the winning strategy of then-move
game over the strings1d and1d′

with d, d′ ≥ n.

Claim A.1 For all n and all d, d′ ≥ n, Duplicator has a
winning strategy in then-move game on∆d and∆d′ .

Let Pm be the context formed fromp by replacing all
subforests of typehi by Ui,m∆m

mt andTm be the sequence
of forests constructed fromT by replacing each forests of
typehi by Ui,m∆m

mt.
Finally let:

T := ∆m
m Pm[Tm, x] ∆m

m t

T ′ := ∆m
m ∆m

m t
(5)

The following claim then conclude the proof of
Lemma 2.3.

Claim A.2 Duplicator has a winning strategy for thek-
move game betweenT andT ′.

A.2 The winning strategy

Proof sketch of Claim A.2. We give a winning strategy
for Duplicator in this game. In order to be able to formulate
this strategy we need further definitions.

Given two nodesx andy and a numbern we denote by
x ≡H

n y the fact that Duplicator has a winning strategy in
the n-move game played on the sequence of siblings ofx
andy, starting from positionsx, y.

Given a nodex, thesubforest ofx is the forest formed by
all the subtrees of all the siblings ofx.

Thenesting levelof a nodex of T or T ′ is the minimal
numberl suchx belongs to a context∆l or Ui,l.

The skeletonof T (or of T ′) is the longest path ofT
containing all the nodes of nesting levelm. i.e. the path
that goes from the root ofT to the port of each of the∆m.

The upward levelof a nodex ∈ T (or x ∈ T ′) is the
number of occurrences of∆m abovex in the skeleton.

Notice that given a nodex of nesting levell, eitherx has
a child of nesting levell or x has exactly one sibling with
such a child. This sibling is denoted as thel-sibling ofx.

Thedownward levelof a nodex ∈ T (or x ∈ T ′) is the
number of copies of∆l that are below thel-sibling of x,
wherel is the level ofx.

Given a nodex of nesting levell, for all l′ > l, its key
ancestor at levell′ is the first (starting fromx) ancestory of
x that has nesting levell′.

Given an integern we say thatx has an-ancestorif it
has a key ancestor of downward level smaller thann. If
this is the case then-ancestor ofx is the node of maximal
nesting level satisfying this property.

We now state a propertyP(n) that depends on an integer
n, two nodesx ∈ T andy ∈ T ′ and possibly two nodes



x̂ ∈ T andŷ ∈ T ′ that are ancestors of respectivelyx and
y.

We then show that whenP(n) holds on a game starting
at x, y, then Duplicator can play one move while enforcing
P(n − 1). As it is easy to see thatP(k) holds for the roots
of T andT ′, this will conclude the proof of Claim A.2.

P(n) states that̂x is defined iffŷ is defined and, when-
ever they are defined, both have nesting level greater than
n, upward level greater thann and non-ancestor.

Moreover it requires the disjunction of the following
three cases:

1. x̂ andŷ are defined. In this case Duplicator has a win-
ning strategy in then-move game played on the subfor-
est ofx̂ and the subforest of̂y, and starting at positions
x andy.

2. x̂ and ŷ are undefined and the upward level ofx is
smaller thann. In this casex andy are at the same
position in the tree (recall that by constructionT and
T ′ are isomorphic up tom copies of∆m).

3. x̂ andŷ are undefined, the upward level ofx is greater
thann. In this casex andy have non-ancestor and are
of nesting level greater thann, moreoverx ≡H

n y.

Assume we are in a situation whereP(n + 1) holds. We
sketch how Duplicator can play while enforcingP(n). The
strategy depends on whyP(n + 1) holds.

Case 1: x̂, and therefore alsôy, are defined.
If Spoiler moves to a node beloŵx then Duplicator sim-

ply use the strategy provided by item one ofP(n + 1). x̂
andŷ remain unchanged.

We now assume that Spoiler moves to a nodex′ above
x̂.

If the upward level ofx′ is less thann, then Duplicator
can easily answer while satisfying item two ofP(n). In this
casex̂ andŷ now become undefined.

If the upward level ofx′ is > n. By saturation of∆m,
there is a nodez in ∆m such thatx′ ≡H

n z. By hypothesis
the upward level ofy is larger than the upward level of̂y
which is larger thann + 1. Hence we can find abovey an
occurrence of∆m of upward level larger thann. Duplicator
answer by the copy ofz in this occurrence of∆m and item
three ofP(n) is satisfied. In this casêx andŷ now become
undefined.

Case 2: The upward level ofx is smaller thann + 1.
If Spoiler moves up or horizontally, Duplicator simply

copy Spoiler’s move and item two ofP(n) is true if we end
up with an upward level≤ n otherwise item three trivially
hold. Assume now that Spoiler moves to some descendant
x′ of x.

If x′ has a key ancestor of nesting leveln that has non-
ancestor. Then we setx̂ to this key ancestor. As the nesting
level ofy must be greater thann +1 (byP(n + 1) the nest-
ing level ofy is equal to the nesting level ofx), the subtree
at y contains a copy of all the subforests occurring at nest-
ing leveln. Hence we can find a descendantŷ of y whose
subforest is isomorphic to the subforest ofx̂. Duplicator
then pick the copy ofx′ in the subforest of̂y and item one
of P(n) is satisfied.

If x′ has an-ancestor of nesting level greater thann.
Then we set̂x to thisn-ancestor and lets be the subforest
of x̂. As the nesting level ofy must be greater thann+1 (by
P(n + 1) the nesting level ofy is equql to the nesting level
of x), there is belowy an occurrence of∆n. We set̂y to the
copy ofx̂ in the skeleton of this occurrence of∆n. Lets′ be
the subforest of̂y. Notice thats ands′ only differ by their
nesting imbrication but those are bigger thann. Hence by
Claim A.1 Duplicator has a winning strategy when playing
n-moves ons ands′. Item one ofP(n) is satisfied.

If x′ has nesting level greater thann and non-ancestor.
By saturation of∆m, there is a nodez in ∆m such that
x′ ≡H

n z. By hypothesis the nesting level ofy is larger
thann + 1. Hence we can find belowy an occurrence of
∆j with j ≥ n. Duplicator answer by the copy ofz in this
occurrence of∆j and item three ofP(n) is satisfied. In this
casex̂ andŷ remain undefined.

Case 3: The upward level ofx is greater thann+1 andx
does not have a(n + 1)-ancestor.

• If Spoiler moves horizontally, Duplicator moves ac-
cording to its winning strategy given by≡H

(n+1).
• If Spoiler moves up to some nodex′.
If the upward level ofx′ is less thann, then Duplicator

can easily answer while satisfying item two ofP(n). In this
casex̂ andŷ remain undefined.

If the upward level ofx′ is > n. By saturation of∆m,
there is a nodez in ∆m such thatx′ ≡H

n z. By hypothesis
the upward level ofy is larger thann+1. Hence we can find
abovey an occurrence of∆m of upward level larger thann.
Duplicator answer by the copy ofz in this occurrence of
∆m and item three ofP(n) is satisfied. In this casêx andŷ
remain undefined.

• If Spoiler moves down to some nodex′.
If x′ has a key ancestor of nesting leveln that has non-

ancestor. Then we setx̂ to this key ancestor. As the nesting
level ofy must be greater thann + 1 because ofP(n + 1),
the subtree aty contains a copy of all the subforests occur-
ring at nesting depthn. Hence we can find a descendant
ŷ of y whose subforest is isomorphic to the subforest ofx̂.
Duplicator then pick the copy ofx′ in the subforest of̂y and
item one ofP(n) is satisfied.

If x′ has an-ancestor of nesting level greater thann.
Then we set̂x to thisn-ancestor and lets be the subforest



of x̂. As the nesting level ofy must be greater thann + 1
because ofP(n + 1), hence belowy there is an occurrence
of ∆n. We setŷ to the copy ofx̂ in the skeleton of this
occurrence of∆n. Let s′ be the subforest of̂y. Notice that
s ands′ only differ by their nesting imbrication but those
are bigger thann. Hence by Claim A.1 Duplicator has a
winning strategy when playingn-moves ons ands′. Item
one ofP(n) is satisfied.

If x′ has nesting level greater thann and non-ancestor.
By saturation of∆m, there is a nodez in ∆m such that
x′ ≡H

n z. By hypothesis the nesting level ofy is larger
thann + 1. Hence we can find belowy an occurrence of
∆j with j ≥ n. Duplicator answer by the copy ofz in this
occurrence of∆j and item three ofP(n) is satisfied. In this
casex̂ andŷ remain undefined.

This conclude the proof of Claim A.2 and the proof of
Lemma 2.3.


