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Abstract. We are interested in frame definability of classes of trees,
using formulas of the µ-calculus. In this set up, the proposition letters
(or in other words, the free variables) in the µ-formulas correspond to
second order variables over which universally quantify. Our main result
is a semantic characterization of the MSO definable classes of trees that
are definable by a µ-formula. We also show that it is decidable whether
a given MSO formula corresponds to a µ-formula, in the sense that they
define the same class of trees.

Basic modal logic and µ-calculus can be seen as logical languages for talking
about Kripke models and Kripke frames. On Kripke models every modal formula
is equivalent to a first order formula in one free variable and every µ-calculus
formula is equivalent to a monadic second order formula in one free first order
variable. On Kripke frames, we universally quantify over the free propositional
variables occurring in the formulas and each modal formula or µ-formula is
equivalent to a sentence of monadic second order logic. For example, the modal
formula p→ 3p corresponds locally on Kripke models to the first order formula
α(u, P ) = P (u) → ∃v(uRv ∧P (v)) (where P is a unary predicate corresponding
to p, R is the binary relation of the model and u is a point of the model). The
same modal formula corresponds globally on Kripke frames to the second order
sentence ∀P∀uα(u, P ), which happens to be equivalent to the first order sentence
∀u, uRu.

The expressive power of modal logic from both perspectives (models and
frames) has been extensively studied. For Kripke models, Johan van Benthem
characterized modal logic semantically as the bisimulation invariant fragment of
first order logic [vB76]. The problem whether a formula of first order logic in
one free variable has a modal correspondent on the level of models, is undecid-
able [vB96].

The expressive power of modal logic on Kripke frames has been studied since
the 1970s and this study gave rise to many key results in the modal logic area.
When interpreted on frames, modal logic corresponds to a fragment of monadic
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second order logic, because the definition of validity involves quantifying over all
the proposition letters in the formulas. However, most work has concentrated on
the first order aspect of modal definability.

A landmark result is the Goldblatt-Thomason Theorem [GT75] which gives
a characterization of the first order definable classes of frames that are modally
definable, in terms of semantic criteria. It is undecidable whether a given first
order sentence corresponds to a modal formula, in the sense that they define the
same class of frames.

On the level of Kripke models, the expressive power of the µ-calculus is
well understood. In [JW96], David Janin and Igor Walukiewicz showed that the
µ-calculus is the bisimulation invariant fragment of MSO. It is undecidable
whether a class of Kripke models definable in MSO is definable by a formula of
the µ-calculus. For classes of trees, the problem becomes decidable (see [JW96]).

About the expressive power of the µ-calculus on the level of Kripke frames,
nothing is known. This paper contributes to a partial solution of this question by
giving a characterization of the MSO definable classes of trees that are definable
by a µ-formula. Our main result states that an MSO definable class of trees is
definable in the µ-calculus iff it is closed for subtrees and p-morphic images. We
also show that given an MSO formula, it is decidable whether there exists a
µ-formula which defines the same class of trees as the MSO formula.

The proof is in three steps. First, we use the connection between MSO
and the graded µ-calculus proved by Igor Walukiewicz [Wal02] and establish a
correspondence between the MSO formulas that are preserved under p-morphic
images and a fragment that is between the µ-calculus and the graded µ-calculus
(the fragment with a counting 2 operator and a usual 3 operator). We call this
fragment the 2-graded µ-calculus.

The second step consists in showing that each 2-graded µ-formula ϕ can be
translated into a µ-formula ψ such that locally, the truth of ϕ (on trees seen as
Kripke models) corresponds to the validity of ψ (on trees seen as Kripke frames).
So this step is a move from the model perspective to the frame perspective. The
last step consists in shifting from the local perspective to the global one (that
is, we are interested in validity at all points, not at a given point).

1 Preliminaries

µ-calculus The set of formulas of the µ-calculus (over a set Prop of proposition
letters and a set Var of variables) is given by

ϕ ::= > | p | ¬p | x | ϕ ∨ ϕ | ϕ ∧ ϕ | 3ϕ | 2ϕ | µx.ϕ | νx.ϕ,

where p ranges over the set Prop, x ranges over the set Var .
A Kripke frame over a set Prop is a pair (W,R), where W is a set and R

a binary relation on W . A Kripke model over Prop is a triple (W,R, V ) where
(W,R) is a Kripke frame and V : Prop → P(W ) a valuation.

Given a formula ϕ, a Kripke model M = (W,R, V ) and an assignment τ :
Var → P(W ), we define a subset [[ϕ]]M,τ that is interpreted as the set of points



at which ϕ is true. We only recall that

[[µx.ϕ]]M,τ =
⋂
{U ⊆W | [[ϕ]]M,τ [x:=U ] ⊆ U},

[[νx.ϕ]]M,τ =
⋃
{U ⊆W | U ⊆ [[ϕ]]M,τ [x:=U ]},

where τ [x := U ] is the assignment τ ′ such that τ ′(x) = U and τ ′(y) = τ(y), for
all y 6= x. The set [[µx.ϕ]]M,τ is the least fixpoint of the map ϕx : P(W ) → P(W )
defined by ϕx(U) := [[ϕ]]M,τ [x:=U ], for all U ⊆W .

In case w ∈ [[ϕ]]M,τ , we write M, w 
τ ϕ and we say that ϕ is true at w. If
all the variables in ϕ are bound, we simply write M, w 
 ϕ. A formula ϕ is true
in M, notation: M 
 ϕ, if for all w ∈ W , we have M, w 
 ϕ. Two formulas
ϕ and ψ are equivalent if for all models M and for all w ∈ M, M, w 
 ϕ iff
M, w 
 ψ.

If (W,R) is a Kripke frame and w belongs to W , we say that ϕ is valid
at w if for all valuations V , ϕ is true at w in (W,R, V ). We use the notation
(W,R), w 
 ϕ. Finally, ϕ is valid in (W,R), notation: (W,R) 
 ϕ, if ϕ is valid
at w, for all w in W .

Trees Our characterizations apply only to classes of trees, not classes of arbi-
trary Kripke frames.

Let (W,R) be a Kripke frame. A point r in W is a root if for all w in W , there
is a sequence w0, . . . , wn such that w0 = r, wn = w and (wi, wi+1) belongs to R,
for all i ∈ {0, . . . , n− 1}. The frame (W,R) is a tree if it has a root, every point
distinct from the root has a unique predecessor and the root has no predecessor.
If (W,R, V ) is a Kripke model over a set Prop and (W,R) is a tree, we say that
(W,R, V ) is a tree Kripke model over Prop or simply a tree over Prop or a tree
model. Two formulas ϕ and ψ over Prop are equivalent on tree models if for all
trees t over Prop with root r, t, r 
 ϕ iff t, r 
 ψ.

If the frame (W,R) is a tree, v is child of w if (w, v) ∈ R and we write
Child(w) to denote the children of w. A subtree of a tree t is a tree consisting
of a node in t and all of its descendants in t. If t is a tree and u is a node of t,
we let t|u denote the subtree of t at position u.

A class of trees L over Prop is a regular class of trees if there exists an MSO
formula α such that for all trees t, t belongs to L iff α is valid on t. When this
happens, we say that α defines L.

2 µ-definability on trees

We are interested in characterizing the regular classes of trees (seen as Kripke
frames) that are definable using µ-formulas. The characterization we propose, is
very natural and only involves two well-known notions of modal logic: subtree
and p-morphism. We recall these notions together with the notion of definability
and state our main result (Theorem 1).

µ-definability A class of trees L is µ-definable if there exists a µ-formula ϕ
such that L is exactly the class of trees which make ϕ valid.



p-morphisms Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be two models. A
map f : W → W ′ is a p-morphism between M and M′ if the two following
conditions hold. For all w, v ∈ W such that wRv, f(w)R′f(v). For all w ∈ W
and v′ ∈ W ′ such that f(w)R′v′, there exists v ∈ W such that f(v) = v′ and
wRv.

A class L of Kripke models is closed under p-morphic images if for all Kripke
models M∈ L and and for all Kripke models M′ such that there is a surjective
p-morphism between M and M′, we have that M′ belongs to L. An MSO
formula α is preserved under p-morphic images for tree models if the class of
tree models defined by α is closed under p-morphic images.

Closure for subtrees A class of trees L is closed for subtrees if for all t ∈ L
and all u ∈ t, we have that t|u belongs to L.

Theorem 1. A regular class of trees is µ-definable iff it is closed under p-
morphic images for tree models and closed for subtrees.

The rest of this paper is devoted to the proof of Theorem 1. First we charac-
terize the class of regular classes of trees which are preserved under p-morphic
images. It corresponds to some fragment of the graded µ-calculus (roughly, the
fragment where we allow counting with the 2 operator, but not the 3 operator).
Next we prove that this fragment defines the regular classes of trees which are of
the form {t tree | for all V : Prop′ → P(t), (t, V ), r 
 ϕ}, where r is the root of
t and ϕ is a formula of the µ-calculus. Finally we show how to derive Theorem 1.

3 Graded µ-calculus: connection with MSO and
disjunctive normal form

An important tool for characterizing the class of regular tree languages which
are preserved under p-morphic images, is the connection between MSO and
graded µ-calculus. We also use fact that there is a normal form for the graded
µ-formulas (when they are expressed using a ∇-like operator).

Graded µ-calculus The set µGL of formulas of the graded µ-calculus (over a
set Prop of proposition letters and a set Var of variables) is given by

ϕ ::= > | p | x | ϕ ∨ ϕ | ϕ ∧ ϕ | 3kϕ | 2kϕ | µx.ϕ | νx.ϕ,

where p ranges over the set Prop, x ranges over the set Var and k is a natural
number. Given a formula ϕ, a model M = (W,R, V ), an assignment τ : Var →
P(W ) and w ∈W , the relation M, w 
 ϕ is defined by induction as in the case
of the µ-calculus with the extra conditions:

M, w 
τ 3kϕ if there exist successors w0, . . . , wk of w s.t. for all i 6= j,
wi 6= wj and for all i ∈ {0, . . . , k}, M, wi 
 ϕ

M, w 
τ 2kϕ if w has no successors or there exist successors w1, . . . , wk
of w s.t. for all w /∈ {w1, . . . , wk}, M, w 
 ϕ.



We define a ∇-like operator corresponding to graded µ-calculus (inspired
by [Wal02]). The ∇-formulas of the graded µ-calculus correspond exactly to the
formulas of the graded µ-calculus.

∇ operator for the graded µ-calculus Given a multiset Φ of formulas, the
multiplicity of a formula ϕ in Φ is the number of occurrences of ϕ in Φ. The
total number of elements in a multiset, including repeated memberships, is the
cardinality of the multiset. We denote by card(Φ), the cardinality of Φ. A literal
over a set Prop is a proposition letter in Prop or the negation of a proposition
letter.

The set µGL∇ of ∇-formulas of the graded µ-calculus (over a set Prop of
proposition letters and a set Var of variables) is given by:

ϕ ::= x | ϕ ∨ ϕ | ϕ ∧ ϕ | Π • ∇g(Φ;Ψ) | µx.ϕ | νx.ϕ,

where x ranges over the set Var , Π is a conjunction literals or Π = >, Φ is a
multiset of formulas and Ψ is a finite set of formulas.

Given a formula ϕ, a model M = (W,R, V ), an assignment τ : Var → P(W )
and w ∈W , the relation M, w 
τ ϕ is defined by induction as in the case of the
µ-calculus with the extra condition: M, w 
τ Π • ∇g(Φ, Ψ) iff M, w 
τ Π and
for some {wϕ successor of w | ϕ ∈ Φ}, we have

1. the size of the set {wϕ | ϕ ∈ Φ} is equal to card(Φ),
2. M, wϕ 
τ ϕ,
3. for all successors u of w such that u /∈ {wϕ | ϕ ∈ Φ}, M, u 
τ

∨
Ψ .

A map m : µGL∇ → P(R[w]) is a ∇g-marking for (Φ, Ψ) if there exists a set
{wϕ | ϕ ∈ Φ} of size card(Φ) such that wϕ ∈ m(ϕ) and for all successors u of w
such that u /∈ {wϕ | ϕ ∈ Φ}, there is ψ ∈ Ψ such that u ∈ m(ψ).

A formula in µGL∇ is in disjunctive normal form if its only subformulas of
the form ϕ0 ∧ϕ1 are such that ϕ0 and ϕ1 are literals or conjunctions of literals.

The next result is proved by a standard (although a bit tedious) induction
on the complexity of the formulas.

Proposition 1. Each formula in µGL is equivalent to a formula in µGL∇. Each
formula in µGL∇ is equivalent to a formula in µGL.

In [Wal02], Igor Walukiewicz showed that on trees, MSO is equivalent to first
order logic extended with the unary fixpoint operator. By adapting1 the proof
of Lemma 44 in [Wal02], we can obtain the following result (see also [JL03]).

Theorem 2 (from [Wal02]). For every MSO formula α, there is a graded
µ-formula ϕ such that for all trees t with root r, α is valid on t iff ϕ is true at
r. For every graded µ-formula ϕ, there is an MSO formula α such that for all
trees t with root r, ϕ is true at r iff α is valid on t.
1 This adaptation is mainly based on the following observation (which is immediate

from Proposition 1): For all formulas ϕ ∈ DBF(n) (as defined in [Wal02]), there is
ψ ∈ µGL such that for all trees t, for all nodes u in t, ψ is true at u iff the formula
obtained from ϕ by relativizing all the quantifiers to the children of u, holds.



As mentioned earlier, a key result for one of our proofs is the fact that the
graded µ-calculus has a normal form. This follows from a result proved by David
Janin in [JW95].

Theorem 3. Each formula of the graded µ-calculus is equivalent to a formula
of the graded µ-calculus in disjunctive normal form.

4 2-graded µ-calculus and preservation under p-morphic
images

We establish a correspondence between the MSO formulas that are preserved
under p-morphic images and some set of formulas, that is in between the µ-
calculus and the graded µ-calculus. We call this set the set of 2-graded formulas,
as we are only allowed to count with the 2 operator. For this set of 2-graded
formulas, we also introduce a ∇-like operator, that we write ∇′.

2-graded µ-calculus The set µGL2 of fixpoint 2-graded formulas (over a set
Prop of proposition letters and a set Var of variables) is given by

ϕ ::= > | p | x | ϕ ∨ ϕ | ϕ ∧ ϕ | 3ϕ | 2kϕ | µx.ϕ | νx.ϕ,

where p ranges over the set Prop, x ranges over the set Var and k is a natural
number. Given a formula ϕ, a model M = (W,R, V ), an assignment τ : Var →
P(W ) and w ∈W , the relation M, w 
τ ϕ is defined by induction as in the case
of the graded µ-calculus, with 3 = 30.

The set µGL∇
′
of ∇′-formulas of the graded µ-calculus are given by:

ϕ ::= x | ϕ ∨ ϕ | ϕ ∧ ϕ | Π • ∇′(Φ;Ψ) | µx.ϕ | νx.ϕ,

where x ranges over the set Var of variables, Π is a conjunction of literals or
Π = >, Φ is a multiset of formulas and Ψ is a finite set of formulas.

Given a formula ϕ, a Kripke model M = (W,R, V ), an assignment τ : Var →
P(W ) and a point w ∈ W , the relation M, w 
τ ϕ is defined by induction as
in the case of the µ-calculus with the extra condition: M, w 
τ Π •∇g(Φ, Ψ) iff
M, w 
τ Π and for some {wϕ successor of w | ϕ ∈ Φ}, we have

1. M, wϕ 
τ ϕ,
2. for all successors u of w such that u /∈ {wϕ | ϕ ∈ Φ}, M, u 
τ

∨
Ψ .

A map m : µGL∇
′
→ P(R[w]) is a ∇′-marking for (Φ, Ψ) if the set there exists

a set {wϕ | ϕ ∈ Φ} such that wϕ ∈ m(ϕ) and for all successors u of w such that
u /∈ {wϕ | ϕ ∈ Φ}, there is ψ ∈ Ψ such that u ∈ m(ψ).

The only difference between a ∇′-marking and a ∇g-marking is that the set
of successors associated to a ∇′-marking might not contain points which are
pairwise distinct (as in the case for the ∇g-marking).

A formula ϕ ∈ GL2∪µGL∇
′
is equivalent on tree models to an MSO formula

α if for all tree models t, α is valid on t iff ϕ is true at the root of t.



We also introduce a game semantic for the languages µGL∇ and µGL∇
′
. The

fact the the existence of a winning strategy for a player in the game corresponds
to the truth of a formula at a given point, is proved using classical methods (as
in the case of µ-calculus).

Game semantics Let ϕ be a formula in µGL∇∪µGL∇
′
such that each variable

in ϕ is bound. Without loss of generality, we may assume that for all x ∈ Var
which occurs in ϕ, there is a unique subformula of ϕ, which is of the form ηx.δx,
where η ∈ {µ, ν}. We also fix a model M = (W,R, V ). We define the evaluation
game E(M, ϕ) as a parity game between two players, ∀ and ∃. The rules of the
game are given in the table below.

Position Player Possible moves
(>, w) ∀ ∅
(x,w) - {(δx, w)}
(ϕ1 ∧ ϕ2, w) ∀ {(ϕ1, w), (ϕ2, w)}
(ϕ1 ∨ ϕ2, w) ∃ {(ϕ1, w), (ϕ2, w)}
(ηx.ψ,w) - {(ψ,w)}
(Π • ∇g(Φ, Ψ), w) ∃ {m : µGL∇

g

→ P(R[w]) | M, w 
 Π
and m ∇g-marking for (Φ, Ψ)}

(Π • ∇′(Φ, Ψ), w) ∃ {m : µGL∇
′
→ P(R[w]) | M, w 
 Π

and m ∇′-marking for (Φ, Ψ)}
m : µGL∇ ∪ µGL∇

′
→ P(R[w]) ∀ {(ψ, u) | u ∈ m(ψ)}

where w belongs to W , x belongs to Var , η belongs to {µ, ν}, ϕ1, ϕ2 and ψ

belongs to µGL∇ ∪µGL∇
′
, Π is a conjunction of literals or Π = >, Ψ is a finite

subset of µGL∇ ∪ µGL∇
′
, Φ is a finite multiset of formulas in µGL∇ ∪ µGL∇

′
.

If a match is finite, the player who get stuck, loses. If a match is infinite, we
let Inf be the set of variables x such that there are infinitely many positions
of the form (x,w) in the match. Let x0 be a variable in Inf such that for all
variables x ∈ Inf , δx is a subformula of δx0 . If x0 is bound by a µ-operator, then
∀ wins. Otherwise ∃ wins.

The notions of strategy and winning strategy for a player are defined as usual.
If h is a strategy for a player P , a match during which P plays according to h
is called an h-conform match.

Proposition 2. Let ϕ be a formula in µGL∇ ∪ µGL∇
′
. For all Kripke models

M = (W,R, V ) and all w ∈ W , M, w 
 ϕ iff ∃ has a winning strategy in the
game E(M, ϕ) with starting position (w,ϕ).

We are now ready to show that modulo equivalence on trees, the MSO
formulas preserved under p-morphic images are exactly the 2-graded formulas.

Proposition 3. Let α be an MSO formula. The following are equivalent:

– α is equivalent on tree models to a 2-graded formula,



– α is equivalent on tree models to a formula in µGL∇
′
,

– α is preserved under p-morphic images for tree models .

Proof. We only give details for the hardest implication which is that an MSO
formula which is preserved under p-morphic images for tree models is equivalent
on tree models to a ∇′-graded fixpoint formula. Let α be an MSO formula that
is preserved under p-morphic images for tree models. By Theorem 2, there is
a graded µ-formula χ such that for all tree models t with root r, α is valid on
t iff χ is true at r. By Proposition 3, we may assume the formula χ to be in
disjunctive normal form.

Now let δ be the formula χ in which we replace each operator ∇g by ∇′. We
show that under the assumption that α is preserved under p-morphic images for
trees, χ and δ are equivalent on tree models. It is easy to check that for all tree
models, if χ holds at a node, then δ also holds at the node.

For the other direction, let t be a tree model with root r and suppose that
δ is true at r. We have to show that χ is true at r. Since δ is true at r, ∃
has a winning strategy h in the evaluation game with starting position (r, δ).
We start by fixing some notation. We denote by N∗ the set of finite sequences
over N. The empty sequence ε belongs to N∗. If ϕ is a ∇′-formula, we write ϕg

for the formula obtained by replacing ∇′ by ∇g in ϕ. If Φ is set (multiset) of
formulas, we write Φg for the set (multiset) {ϕg | ϕ ∈ Φ}. We also let A be the
set {(u,n) | u is a node of t and n ∈ N∗)}.

The idea is to define a new tree model t′ the domain of which is a subset
of A and the child relation of which is such that for all (u1, (n1, . . . , nk)) and
(u2,m) in t′, (u2,m) is a child of (u1, (n1, . . . , nk)) iff u2 is a child of u1 in t and
there is a natural number nk+1 such that m = (n1, . . . , nk, nk+1). The depth of
a node (u1, (n1, . . . , nk)) in t′ is k+1. The tree t′ will also be such that its root is
(r, ε). Finally, we define a positional strategy h′ for the evaluation game E(t′, χ)
with starting position ((r, ε), χ) which satisfies the following conditions. For all
(u,n) ∈ t, there is exactly one match during which (u,n) occurs. Moreover, a
position of the form ((u,n), ϕg) is reached in an h′-conform match iff the position
(u, ϕ) is reached in an h-conform match.

The definitions of t′ and h′ will be by induction. More precisely, at stage i of
the induction, we specify which are the nodes of t′ of depth i and we also define
∃’s answer (according to h′) when a position of the form ((u,n), ϕg) is reached,
where the depth of (u,n) in t′ is i− 1.

For the basic case, the only node of depth 1 in t′ is the node (r, ε). For the in-
duction step, take i > 1 and suppose that we know already which are the nodes
in t′ of depth at most i and that we also have defined the strategy h′ for all
positions of the form ((u,n), ϕ), where the depth of (u,n) in t′ is at most i− 1.
We have to specify which points of the form (u, (n1, . . . , ni)) belongs to t′ and
what is the strategy for the points of depth i. Let (u,n) = (u, (n1, . . . , ni−1)) be
a node in t′ of depth i (note that if i = 1, then (n1, . . . , ni−1) is ε). Suppose that
in a (partially defined) h′-conform match π′, a position of the form ((u,n), ϕg)
is reached and if n = ε, we can assume that ϕ = δ and ϕg = χ. By induc-
tion hypothesis, such a match π′ is unique. Moreover, we know (by induction



hypothesis if i > 1 or trivially if i = 1) that the position (u, ϕ) is reached in
an h-conform match π. Now, there are different possibilities depending on the
shape of ϕ. First, suppose that ϕ is a disjunction ϕ1∨ϕ2. Then, in the h-conform
match π, the position following (u, ϕ) is of the form (u, ψ), where ψ is either ϕ1

or ϕ2. We define h′ such that the position following ((u,n), ϕg) is ((u,n), ψg).
Finally, suppose that ϕg is of the form Π • ∇g(Φg;Ψg). Then, in the h-conform
match π, the position following (u, ϕ) is a marking m : Φ ∪ Ψ → P(Child(s))
such that m is a ∇′-marking for (Φ, Ψ). In the h′-conform match π′, we first
define which are the children of (u,n) in t′ and then, we give a ∇g-marking
mg : Child(u,n) → P(Ψg ∪ Γ g) for (Φg, Ψg).

Since m is a ∇′-marking for (Φ, Ψ), there exists {uϕ | ϕ ∈ Φ} such that the
two following conditions holds. For all ϕ ∈ Φ, uϕ is a child of u and uϕ belongs to
m(ϕ). For all children v of u such that v does not belong to {uϕ | ϕ ∈ Φ}, there
exists ψ ∈ Ψ such that v belongs to m(ψ). We let u1, . . . , uk be the children of u
such that {u1, . . . , uk} = {uψ | ψ ∈ Ψ} and ui 6= uj , if i 6= j. Fix i in {1, . . . , k}.
Let Φi be the biggest submultiset of Φ such that for all ϕ in Φi, uϕ = ui. We let
k(i)+1 be the size of Φi and we fix an arbitrary bijection fi between Φi and the
set {0, . . . , k(i)}. Now, we add to t′ the set of nodes

{(ui, (n1, . . . , ni−1, j)) | i ∈ {1, . . . , k}, 0 ≤ j ≤ k(i)}∪
{(v, (n1, . . . , ni−1, 0)) | v child of u, v /∈ {u1, . . . , uk}}.

These points are the children of (u,n) in t′.
We are now going to define a ∇g-marking mg : Φg ∪Ψg → P(Child(s,n)) for

(Φg, Ψg). Fix a formula ϕg in Φg. We define mg(ϕg) as {(ui, (n1, . . . , ni−1, j))},
if ϕ belongs to Φi and fi(ϕ) = j. Next fix a formula ψg in Ψg. We define mg

such that mg(ψg) = {(v, (n1, . . . , ni−1, 0)) | v /∈ {u1, . . . , uk}, v ∈ m(ψ)}. The
proofs that mg is a ∇g-marking for (Φg, Ψg) and that the induction hypothesis
remain true are standard. This finishes the definition of t′ and h′.

It is easy to check that the strategy h′ is winning for ∃ in the evaluation
game E(t′, χ) with starting position ((r, ε), χ). Therefore, the formula χ is true
at the root of t′. Now the map which sends a node (u,n) to u is a surjective
p-morphism between t′ and t. So t is a p-morphic image of t′. Since α is preserved
under p-morphic images for trees, χ is also true at the root of t and this finishes
the proof that χ and δ are equivalent on tree models. It follows that χ and α are
also equivalent on trees.

5 µ-definability at the root and µ-definability

µ-definability at the root A tree language L over Prop is µ-definable at
the root if there are a set Prop′ of proposition letters and a µ-formula ϕ over
Prop∪Prop′ such that L is equal to {t tree | for all V : Prop′ → P(t), (t, V ), r 

ϕ}, where r is the root of t.

Proposition 4. A regular class of trees over Prop is µ-definable at the root iff
it is closed under p-morphic images for tree models.



Proof. The only difficult direction is from right to left. Let L be a regular class of
trees over Prop that is closed under p-morphic images for trees. By Proposition 3,
there is a 2-graded formula ϕ over Prop such that for all trees t over Prop with
root r, ϕ is true at r iff t belongs to L. Now we show by induction on the
complexity of ϕ that there exist a set of propositions Prop′ and a µ-formula ψ
over Prop ∪ Prop′ such that for all trees t over Prop with root r and for all
assignments τ : Var → P(t),

t, r 
τ ϕ iff for all valuations V : Prop′ → P(t), (t, V ), r 
τ ψ. (1)

When this happens, we will say that ψ is a µ-translation of ϕ. Moreover, we
prove that for all trees t over Prop and for all assignments τ : Var → P(t), there
is a valuation Vψ(τ) : Prop′ → P(t) such that for all nodes u in t,

(t, Vψ(τ)), u 
τ ψ iff for all valuations V : Prop′ → P(t), (t, V ), u 
τ ψ. (2)

When a valuation Vψ(τ) : Prop′ → P(t) satisfies condition (2), we say that Vψ(τ)
is a distinctive valuation for t, τ and ψ.

We only treat the most two difficult cases where ϕ is a formula of the form
2kϕ1 or of the form ηx.ϕ1, where η belongs to {µ, ν}.

Suppose that ϕ is of the form 2kϕ1. By induction hypothesis, there is a
set Prop′1 and there is a µ-formula ψ1 over Prop ∪ Prop′1 such that ψ1 is a µ-
translation of ϕ1. We let p0, . . . , pk be fresh proposition letters and we define
Prop′ as Prop′1 ∪ {p0, . . . , pk}. We let ψ be the formula∨

{2(¬pi ∨ ψ1) | 0 ≤ i ≤ k} ∨
∨
{3(pi ∧ pi′) | 0 ≤ i, i′ ≤ k, i 6= i′}.

Fix a tree model t and an assignment τ : Var → P(t). We define Vψ(τ). Let V0

be the assignment Vψ1(τ) and let u be a point in t. We define U = {uj | j ∈ J} as
the biggest set of successors of u such that for all j ∈ J , we have (t, V0), uj 1 ψ1.
Suppose first that the size of U is less or equal to k. So U is a set of the form
{u1, . . . , un}, where n ≤ k. Then we can fix a valuation Vu which satisfies the
following. For all i ∈ {0, . . . , k}, Vu(pi) is a set of the form {ui}, where ui ∈ U .
Moreover, for all v ∈ U , there is i ∈ {0, . . . , k} such that Vu(pi) = {v}.

Next suppose that U is infinite or U is a finite set of size strictly greater than
k. Then we can fix an arbitrary valuation Vu such that the following hold. For
all i ∈ {0, . . . , k}, Vu(pi) is a set of the form {ui}, where ui ∈ U . Moreover, for
all i, i′ ∈ {0, . . . , k}, if i 6= i′, then ui 6= ui′ . That is, for all i, i′ ∈ {0, . . . , k}, if
i 6= i′, then Vu(pi) ∩ Vu(pj) = ∅.

We are now ready to define Vψ(τ). For all propositions p′ ∈ Prop′, we have

Vψ(τ)(p′) =

{⋃
{Vu(pi) | u ∈ t} if p′ = pi for some i ∈ {0, . . . , k},

V0(p′) otherwise.

The proofs ψ is a µ-translation of ϕ and that Vψ(τ) is a distinctive valuation for
t, are left as an exercise to the reader.



Next, suppose that ϕ is a formula of the form ηx.ϕ1, where η belongs to
{µ, ν}. We will assume that η = µ, but the proof can be easily adapted to the
case where η = ν. By induction hypothesis, there is a set Prop′1 and there is a
µ-formula ψ1 over Prop ∪Prop′1 such that ψ1 is a µ-translation of ϕ1. Moreover,
for all trees t and all assignments τ : Var → P(t), there is a distinctive valuation
Vψ1(τ) for t, τ and ψ1.

Now we define ψ as µx.ψ1 and given a tree model t and an assignment
τ : Var → P(t), we define Vψ(τ) as the valuation Vψ1(τ [x 7→ U0]), where U0 :=
[[µx.ϕ1]]t,τ (= [[ϕ]]t,τ ). We have to show that Vψ(τ) is a distinctive valuation for
t, τ and ψ and that ψ is a µ-translation of ϕ. It is sufficient to prove that for all
trees t, all assignments τ : Var → P(t) and all u ∈ t, we have

t, u 
τ ϕ ⇒ for all valuations V : Prop′ → P(t), (t, V ), u 
τ ψ, (3)

(t, Vψ(τ)), u 
τ ψ ⇒ t, u 
τ ϕ. (4)

First, we show that condition (3) holds. So suppose that t, u 
τ µx.ϕ1 and
let V : Prop′ → P(t) be a valuation. We have to verify that (t, V ), u 
τ µx.ψ1.
That is, for all subsets U of t such that [[ψ1]](t,V ),τ [x7→U ] ⊆ U , we have u ∈ U .

So fix a subset U of t such that [[ψ1]](t,V ),τ [x7→U ] ⊆ U . Since ψ1 is a µ-
translation of ϕ1, we know that [[ϕ1]]t,τ [x7→U ] is a subset of [[ψ1]](t,V ),τ [x7→U ]. It
follows that [[ϕ1]]t,τ [x7→U ] is a subset of U . That is, U is a pre-fixpoint of (ϕ1)x
in t under the assignment τ . Since t, u 
τ µx.ϕ1, this implies that u belongs to
U and this finishes the proof of implication (3).

Next we show that implication (4) is true. Assume that (t, Vψ(τ)), u 
τ
µx.ψ1. We have to prove that u belongs to [[ϕ]]t,τ . That is, u belongs to U0. Since
(t, Vψ(τ)), u 
τ µx.ψ1, u belongs to all the pre-fixpoints of the map (ψ1)x in the
tree (t, Vψ(τ)) under the assignment τ . So it is sufficient to show that the set U0

is a pre-fixpoint of the map (ψ1)x in the tree (t, Vψ(τ)) under the assignment τ .
That is,

[[ψ1]](t,Vψ(τ)),τ0 ⊆ U0, (5)

where τ0 is the assignment τ [x 7→ U0]. By definition of Vψ(τ), we have that
[[ψ1]](t,Vψ(τ)),τ0 is equal to [[ψ]](t,Vψ1 (τ0)),τ0 . Recall that for all assignments τ ′ :
Var → P(t), we have that [[ψ1]](t,Vψ1 (τ ′)),τ ′ is equal to [[ϕ1]]t,τ ′ , as Vψ1(τ

′) is a
distinctive valuation for t, τ ′ and ψ1. In particular, [[ψ1]](t,Vψ1 (τ0)),τ0 is equal to
[[ϕ1]]t,τ0 . Since U0 = [[µx.ϕ1]]t,τ , we also have that [[ϕ1]]t,τ0 is equal to [[µx.ϕ1]]t,τ .
That is, [[ϕ1]]t,τ0 is equal to U0. Putting everything together, we obtain that
[[ψ1]](t,Vψ(τ)),τ0 is equal to U0. Condition (5) immediately follows.

We can now prove Theorem 1.

Proof. We concentrate on the hardest direction, which is from left to right. Let
L be a regular tree language, which is closed under p-morphic images for tree
models and closed for subtrees. It follows from Proposition 4 that there is a
µ-formula ϕ such that for all trees t, t belongs to L iff the formula ϕ is valid at
the root of t. Now we prove that for all trees t, t belongs to L iff the formula ϕ
is valid at all the nodes of t. It will immediately follow that L is µ-definable.



For the direction from right to left, let t be a tree such that ϕ is valid at all
the nodes of t. In particular, ϕ is valid at the root. Therefore, t belongs to L.

For the other direction, let t be a tree in L. We have to show that for all
nodes u in t, ϕ is valid at u. Fix a node u in t. Since t belongs to L and since
L is closed under subtrees, the tree t|u belongs to L. That is, the formula ϕ is
valid at the root of t|u. It follows that the formula ϕ is valid at u in t.

Corollary 1. It is decidable whether a regular class of trees is µ-definable.

In order to derive this corollary from Theorem 1, it is sufficient to show
that both closure for subtrees and closure under p-morphic images are decidable
properties of regular classes of trees. Given a regular class of trees L, it is possible
to find an MSO formula α such that L is closed for subtrees iff α is valid on
trees. Decidability of closure for subtrees follows then from the decidability of
MSO on trees. Decidability of closure under p-morphic images follows from a
careful inspection of the proof of Proposition 3 together with the decidability of
MSO on trees.

6 Discussion

A natural further question is to investigate the µ-definability for classes of frames,
not only classes of trees. Unlike on trees, graded µ-calculus does not have the
same expressive power as MSO on models: it corresponds to the fragment of
MSO invariant under counting bisimilation (see [JL03] and [Wal02]). Moreover,
the proof of Proposition 3 does not work for classes of frames, as it relies on the
fact that given a disjunctive formula, a strategy for ∃ in the game associated to
the formula and a tree t, there is at most one match conform to the strategy
during which a given node occurs.
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7 Appendix

7.1 Proof of Proposition 1

Proposition. Each formula of the graded µ-calculus is equivalent to a ∇-
formula of the graded µ-calculus. Each ∇-formula of the graded µ-calculus is
equivalent to a graded µ-calculus formula.

Proof. First, we show that each formula ϕ of the graded µ-calculus is equivalent
to a ∇-formula of the graded µ-calculus. The proof is by induction on the com-
plexity of ϕ. We only treat the cases when ϕ is of the form 3kψ or 2kψ (which
are the only ones not straightforward). One can check that 3kψ is equivalent to
> • ∇g({ϕ, . . . , ϕ}, {>}), where the multiplicity of ϕ is k + 1. The formula 2ψ
is equivalent to > • ∇g({>, . . . ,>}, {ψ}), where the multiplicity of > is k.

Second, we have to verify that each ∇-formula of the graded µ-calculus is
equivalent to a graded µ-calculus formula. This can be achieved by showing that
each ∇-formula of the graded µ-calculus is equivalent to an MSO formula and
using the fact that MSO and graded µ-calculus have the same expressive power
on trees (seen as Kripke models) [Wal02].

7.2 Proof of Theorem 3

Theorem. Each formula of the graded µ-calculus is equivalent to a formula of
the graded µ-calculus in disjunctive normal form.

This follows from an application of a result proved by David Janin in [Jan97].
We recall the definitions required to state the main result of [Jan97].

Fixpoint algebras A signature is a set S of function symbols equipped with an
arity function ρ : S → N. Over a signature S a fixpoint algebra is a complete lat-
tice (M,∨M ,∧M ) with bottom and top element denoted by⊥M and>M together
with, for any symbol f ∈ S, a monotonic increasing function fM ;Mρ(f) → M .
we let FS denote the set of syntactic functions one can build from signature S
and composition.

Over a signature S and a set V ar of variables, the fixpoint formulas are
defined by

ϕ ::= x | f(ϕ, . . . , ϕ) | µx.ϕ | νx.ϕ,

where x ∈ V ar and f ∈ S. The notion of truth of a formula at a point in a
fixpoint algebra M under an assignemnt τ : V ar → M and equivalence of two
formulas over a class of fixpoint algebras are defined in a standard way, similarly
to the same notions for µ-calculus (for more details, see [Jan97]).



Given a classs of fixpoint algebras C, we say that the meet operator ∧ com-
mutes with S on C when, for any finite multiset {fi | i ∈ {1, . . . , n}} of functional
symbols of S\{∧}, there exists a function G ∈ FS built without the symbol ∧
such that an equation of the form:∧

{fi(ui) | i ∈ {1, . . . , n}} = G(
∧

v1, . . . ,
∧

vm).

holds on C, where:

– uis are vectors of distinct variables of the appropriate length,
– vjs are vectors of distinct variables taken amon those appearing in uis,
–

∧
vjs denote the greastest lower bound applied to the set of all variables

occurring in vj .

Theorem 4. [Jan97] When the meet operator ∧ commutes with S on C, any
closed fixpoint formula is equivalent over C to a formula built without the symbol
∧.

Theorem 3 follows from the Theorem above together with the following
Lemma.

Lemma. Let ϕ be a formula of the form
∧
{Πi • ∇g(Φi, Ψi) | 1 ≤ i ≤ l}, where

for all i ∈ {1, . . . , n}, Πi is a conjunction of literals, Φi is a multi-set of graded
µ-formulas and Ψi is a set of graded µ-formulas. Then ϕ is equivalent to the
formula ψ defined as∧

{Πi | 1 ≤ i ≤ l} ∧
∨
{∇g(ΦR, Ψ) | R ⊆ Φ∗1 × · · · × Φ∗l and

for all i ∈ {1, . . . , n}and all ϕ ∈ Φi, ϕ appears exactly once in R},

where Ψ is the formula
∧
{
∨
Ψi | 1 ≤ i ≤ l} and ΦR is the multiset of formulas

{
∧
{ϕi | i ∈ {1, . . . , n}, ϕi 6= ∗}∧∧

{
∨
Ψi | i ∈ {1, . . . , l}, ϕi = ∗} | (ϕ1, . . . , ϕl) ∈ R}.

Proof. We only give a sketch of the proof of the hardest implication; that is, ϕ im-
plies ψ. LetM = (W,R, V ) be a Kripke model, let τ : V ar → P(W ) be an assign-
ment and let w ∈W be such that M, w 
τ ϕ. So for all i ∈ {1, . . . , l}, M, w 
τ
Πi • ∇g(Φi, Ψi). In particular, there exists a set Wi = {wiϕ successor of w | ϕ ∈
Φi} such that the size of Wi is card(Φi) and for all ϕ ∈ Φi, M, wϕ 
τ ϕ.
Moreover, for all successors u of w such that u does not belong to Wi, we have
M, u 
τ

∨
Ψi. Now, to each u ∈

⋃
{Wi | i ∈ {1, . . . , l}}, we define a l-tuple

f(u) = (ϕ1, . . . , ϕl) such that for all i ∈ {1, . . . , l}, we have ϕi = ϕ if wiϕ = u and
ϕi = ∗, if there is no ϕ such that wiϕ = u. The l-tuple f(u) is uniquely defined as
the size of Wi is card(Φi). Finally, we define the relation R by {f(u) | wRu}. Us-
ing the properties of the sets W1, . . . ,Wl, we can show that for all i ∈ {1, . . . , n}
and all ϕ ∈ Φi, ϕ appears exactly once in R. To finish the proof that ϕ implies
ψ, it is sufficient to show that M, w 
τ

∧
{Πi | 1 ≤ i ≤ l} ∧ ∇g(ΦR, Ψ). This is

left to the reader.



7.3 Details for the proof of Proposition 3

Proposition. Let α be an MSO formula. The following are equivalent:

– α is equivalent on trees to a 2-graded formula,
– α is equivalent on trees to a formula in µGL∇

′
,

– α is preserved under p-morphic images for trees.

Proof. First, we show that each 2-graded formula is equivalent on trees to a
fixpoint ∇′-formula. For, it is enough to prove that the operators 2k and 3 can
be expressed using the boolean operators and the operator ∇′. Fix a 2-graded
formula ϕ. It is routine to check that 3ϕ is equivalent to ∇′({ϕ}; {>}). If k = 0,
then 2kϕ is equivalent to ⊥. If k = 1, 2kϕ is equivalent to ∇′(∅, {ϕ}). Finally,
if k > 1, 2kϕ is equivalent to ∇′({>, . . . ,>}; {ϕ}), where the mutiplicity of >
is equal to k − 1.

Second, we prove that each fixpoint ∇′-formula is equivalent to a 2-graded
formula. It is sufficient to show that each formula ∇′(Φ;Ψ) can be expressed
using the operators 3 and 2k, the boolean operators and the formulas in Φ and
Ψ .

So let Φ = {ϕ1, . . . , ϕk} be a multi-set of formulas and let Ψ = {ψ1, . . . , ψl}
be a set of formula. We start by fixing some notations. If i is a natural number
greater or equal to 1, we denote by [i] the set {1, . . . , i}. Given a number k′ ≤ k,
a number i ≤ k′, a surjective map f : [k] → [k′] and a map g : [k′] → P[l], we
define the formula δ(i, k′, f, g) as the following formula:∧

{ϕj | f(j) = i} ∧
∧
{ψj | j ∈ g(i)}.

We also define the formula θ(k′, f, g) as the formula :∧
{3δ(i, k′, f, g) | 1 ≤ i ≤ k′}.

Finally, we define the natural number n(k′, g) as the number k′−|{j : g(j) 6= ∅}|.
Now we will prove that the formula ∇′(Φ;Ψ) is equivalent to the formula θ given
by:∨ {

θ(k′, f, g) ∧2n(k′,g)
∨
Ψ | k′ ≤ k, f : [k] → [k′] surjective, g | [k′] → P[l]

}
.

First, we show that ∇′(Φ;Ψ) implies θ. Fix a point u in a model over Prop
and suppose that ∇′(Φ;Ψ) is true at u. By definition of ∇′, there exist children
u1, . . . , uk of u such that for all i in {1, . . . , k}, we have that ϕi is true at ui and
for all children v of u such that v does not belong to {u1, . . . , un},

∨
Ψ is true

at v. We let u′1, . . . , u
′
k′ be children of u such that {u1, . . . , uk} = {u′1, . . . , u′k′}

and for all i 6= j, u′i and u′j are distinct. Now we let f : [k] → [k′] be the map
such that for all i and j, f(i) = j iff ui = u′j . We also let g : [k′] → P[l] be the
map such that for all i, g(i) = {j | ψj is true at u′i}.

With these definitions of k′, f and g, it is possible to show that θ(k′, f, g) ∧
2n(k′,g)(

∨
Ψ) is true at u. Fix i in [l]. It is routine to check that the formula



δ(i, k′, f, g) is true at the point u′i. Therefore, 3δ(i, k′, f, g) is true at u. It follows
from the definition of θ(k′, f, g) that θ(k′, f, g) is true at u. It remains to check
that 2n(k′,g)(

∨
Ψ) is true at u. That is, there are at most n(k′, g) children of

u, at which
∨
Ψ is false. We know that for all children v of u which are not in

{u′1, . . . , u′k′},
∨
Ψ is true at v. Next, for the children u′1, . . . , u

′
k′ of u, it follows

from the definition of g that
∨
Ψ is true at u′i iff g(i) 6= ∅. Putting that together

with the definition of n(k′, g), we obtain that there are exactly n(k′, g) points in
{u′1, . . . , u′k′} at which

∨
Ψ is not true and this finishes the proof that ∇′(Φ;Ψ)

implies θ.
For the other direction, suppose that θ is true at a point u in a model over

Prop. We have to show that ∇′(Φ, Ψ) is true at u. First, we prove that for
all ϕ in Φ, there is a child uϕ of r, at which ϕ is true. Fix a formula ϕ in Φ.
There is a natural number j such that ϕ = ϕj . By definition of θ, there are
k′ ≤ k, a surjective map f : [k] → [k′] and a map g : [k′] → P[l] such that∧
{3δ(i, k′, f, g) | 1 ≤ i ≤ k′} ∧ 2n(k′,g)(

∨
Ψ) is true at u. Fix i in [k′]. Since

3δ(i, k′, f, g) is true at r, there is a child vi of u at which δ(i, k′, f, g) is true. In
particular, ϕj is true at vf(j). So we can define uϕ as vf(j).

In order to prove that ∇′(Φ, Ψ) is true at u, it remains to check that for all
v children of u such that v does not belong to {uϕ | ϕ ∈ Φ},

∨
Ψ is true at v.

By definition of the uϕ’s, this is equivalent to prove that for v children of u such
that v does not belong to {vi | i ∈ [k′]},

∨
Ψ is true at v. As before, we have

that
∨
Ψ is true at vi iff g(i) 6= ∅. Putting that together with the definition of

n(k′, g), we know that there are exactly n(k′, g) points in the set {vi | i ∈ [k′]}
at which

∨
Ψ is false. Now, recall that 2n(k′,g)(

∨
Ψ) is true at u. That is, u has

at most n(k′, g) points at which
∨
Ψ is false. Gathering everything together, we

obtain that
∨
Ψ is true at all points not in {vi | i ∈ [k′]} and this finishes the

proof that each fixpoint ∇′-formula is equivalent to a 2-graded formula.
We showed earlier that an MSO formula which is preserved under p-morphic

images for tree is equivalent on trees to a ∇′-graded fixpoint formula. Moreover,
it is routine to show that a 2-graded fixpoint formula is preserved under p-
morphic image. This finishes the proof.


