
Characterization of Logics Over Ranked Tree

Languages

Thomas Place

LSV, ENS-Cachan, CNRS, INRIA
place@lsv.ens-cachan.fr

Abstract. We study the expressive power of the logics EF + F
−1, ∆2

and boolean combinations of Σ1 over ranked trees. In particular, we
provide effective characterizations of those three logics using algebraic
identities. Characterizations had already been obtained for those logics
over unranked trees, but both the algebra and the proofs were dependant
on the properties of the unranked structure and the problem remained
open for ranked trees.

1 Introduction

Understanding the expressive power of logics over labeled trees is an important
problem that can be found in many areas of Computer Science. In particular,
a logic is said to have a decidable characterization if there exists a decision
procedure for the following problem: given a regular language defined by its
finite automaton, decide if it can be defined by a formula of the logic.

This type of problem is well known and has been extensively studied for word
languages. Many word logics have been proven to have decidable characteriza-
tions using algebraic tools. Perhaps the most famous result is the characterization
of FO[<], the first-order logic with the order relation, which says that given a
regular language L the three following properties are equivalent, L is definable
by a first-order formula, L is star-free [8], the syntactic monoid of L is aperi-
odic [9]. Since the syntactic monoid of a regular language is a computable notion
and aperiodicity a decidable property of monoids, the last property is actually
a decidable characterization. This result demonstrates the importance and the
relevance of the algebraic approach to obtain decidable characterizations. Most
common word logics have been proven to have decidable characterizations using
this approach.

Much less results are known for tree languages, while it has been known for
a long time that regular tree languages are the languages definable in monadic
second order logic with the ancestor relation, until recently very few results of
this type were known. For example, giving a decidable characterization for the
first-order logic with the ancestor relation remains an open problem. Decidable
characterizations have been issued by Walukiewicz and Bojańczyk on ranked and
unranked trees for some temporal logic in [4,5], on ranked and unranked trees by
Benedikt and Segoufin for the first order logic with the successor relation in [1]
and on ranked trees by Wilke for frontier testable languages in [11].

Recently, an algebraic formalism called Forest Algebras [5] was proposed
for unranked trees. Using this formalism, decidable characterizations for several
logics have been obtained. In [2], Bojańczyk, presents a characterization for
EF + F−1, the temporal logic with the ancestor and descendant modalities,
in [7], Bojańczyk, Segoufin and Straubing present a characterization for boolean
combinations of Σ1, the logic of boolean combinations of purely existential first-
order formulas, and in [3], Bojańczyk and Segoufin present a characterization
for ∆2, the languages definable by boolean combination of first order formulas
with only one quantifier alternation.

Our aim in this paper is to present decidable characterizations for EF +F−1,
∆2 and Σ1 over ranked trees using an algebraic formalism that is close to both
Forest Algebras and the formalism used by Wilke in [11]. Both the statements
and the proofs of the characterizations for unranked trees rely on the specific
structure of unranked trees and have no obvious extension on ranked trees. For
example, languages definable in EF + F−1 are closed under bisimulation, the
characterization of [2] reflects this property with an identity stating that those
languages are closed under the action of duplicating a subtree within a tree,
this property obviously does not make sense for ranked trees since each node
has a fixed arity. Another simple example is the proof of the characterization of
Σ1, which uses the fact that there is a natural way to supress a node from an
unranked tree to form a new unranked tree, once again the fixed arity of nodes
on ranked trees makes this operation more delicate and technical. Therefore,
since the arity of nodes cannot be expressed in those logics, giving a decidable
characterization for ranked tree languages definable in them remained an open
problem.

2 Notations

In this paper, we work with binary trees. Classic binary trees only have nodes
of arity two or zero, meaning that every node has either zero or two sons, in
the model we use, we also allow nodes of arity one (nodes that have exactly one
son). Our motivation is that structures of arity one play a central role in our
characterizations. However, this assumption is by no means restrictive since we
can always suppose that the set of labels of arity one is empty.

Trees are defined over a finite alphabet (A,B,C), where A is a set of leaves
symbols, B a set of unary symbols and C a set of binary symbols. The notion of
tree is defined inductively as follows: Any a ∈ A is a tree, if t is a tree bt is tree
if b ∈ B and if t and t′ are trees, c(t, t′) is tree for c ∈ C. The notion of nodes
of a tree is defined in the usual way. A tree t′ is a subtree of a tree t if there is
a node x of t such that t′ is the tree we get by keeping only the nodes of t that
are below x.

A set of trees L over an alphabet (A,B,C) is called a tree language. As usual
a regular language is a language recognized by a finite bottom-up automata, all
the languages we consider in this paper are regular.

A context over an alphabet (A,B,C) is a tree that has exactly one leaf
labeled by a special symbol ∗ that we call the hole. Notice that there exists a
natural composition operation on contexts, if we take two contexts p, q, we get a
new context pq by replacing ∗ in p by q. Another natural operation is to attach
a tree t to replace ∗, forming a new tree pt.

We also consider objects that we call bi-contexts, which are trees with a
special subtree c(∗, ∗) with c ∈ C. Notice that we also have natural operations
with this type of object, we can attach a bi-context below a context to get a new
bi-context, or attach a tree to replace the left or right ∗ in a bi-context to get a
context.

We are interested in three tree logics called EF + F−1, ∆2 and Σ1. We see
a tree as a logical structure, we take the set of its nodes as domain and consider
unary predicates Pd for d ∈ A,B,C, which hold true in x if x is labeled by d,
and a binary predicate for the ancestor relation <.

A formula ϕ of EF + F−1 over an alphabet (A,B,C) is defined by the
following grammar:

ϕ = Pd d ∈ A,B,C | EFϕ | F−1ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ

Given a tree t and a node x of t, we say that t, x |= ϕ if and only if:

– ϕ = Pd and x is labeled by d
– ϕ = EFϕ′ and x has a proper descendant x′ such that t, x′ |= ϕ′

– ϕ = F−1ϕ′ and x has a proper ancestor x′ such that t, x′ |= ϕ′

– The semantics of the boolean operators are defined in the usual way

We say that t |= ϕ if t, x |= ϕ with x the root of t. A formula ϕ defines a tree
language over (A,B,C) which is the set of trees t such that t |= ϕ.

∆2 is a restriction of the first-order logic on trees. A formula of Σ2 is a first-
order formula that can be written as the disjunctive and conjunctive combination
of formulas of the form ∃x1...∃xn∀y1...∀ymϕ(x1, ..., xn, y1, ..., ym) with ϕ quan-
tifier free. A Π2 formula is the negation of a Σ2 formula. We say a language is
in ∆2 if it is definable by both a Σ2 and a Π2 formula.

Σ1 is another restriction of the first-order logic on trees. We consider formulas
that are boolean combinations of formulas of the form ∃x1...∃xnϕ(x1, ..., xn) with
ϕ quantifier free. A language is in Σ1 if it is definable by such a formula.

Our main goal is to give a decidable characterization for those three logics
on binary trees. More formaly, given L a tree logic, we want to be able to decide
the following problem:

INPUT: A regular tree language L
PROBLEM: Can we define L with a formula of L

Notice that the two logics EF + F−1 and ∆2 are related. On words they
have the same expressive power [6, 10]. This result no longer holds on trees, for
example if we fix a a ∈ A and consider L the language of trees which two different
leaves labeled by a, L is definable in ∆2 but not in EF + F−1. However, we will
see they remain closely related.

For both words and unranked trees the characterizations of those logics are
stated and proven using an algebraic formalism, we also define our own algebraic
formalism. Our definition is intended to be close to the definition of Forest Al-
gebras, the formalism used for unranked trees, in order to be able to follow and
compare the ranked and unranked cases.

3 Binary Algebras

We defined three types of objects, trees, contexts and bi-contexts, our algebra
reflects that by being constitued of three sets. The set corresponding to trees is
actually very close to the set of states of an automaton and the set correspond-
ing to bi-context very close to a transition function. However, we see them as
algerbaic objets in order to stay close to the notions introduced for the charac-
terizations over unranked trees.

We first give the formal definition of Binary Algebras, then move on with
the definitions of morphisms of Binary Algebras, recognition of a language by a
Binary Algebra and syntactic Binary Algebra of a language.

A Binary Algebra is a tuple (H,V,W) where H and W are sets and V is
a monoid, we note · its operation. The idea is that each set represents one of
the three objects we defined, H represents trees, V contexts and W bi-contexts.
Several operations are defined on this tuple, each one reflecting an operation
we described on trees, contexts and bi-contexts. The operations of contexts over
trees and bi-contexts are reflected by actions of V on H and W . An action of a
monoid V on H is function f : V ×H → H such that f(v ·v′, h) = f(v, f(v′, h)).
We abusively write both actions · (f(v, h) = v ·h), we also want those actions to
be faithful, meaning that for each v the function h → f(v, h) must be different.
Finally, we reflect the bi-context tree operations by having two operations ⋄l and
⋄r, from W ×H onto V , such that (w ⋄l h) ·h′ = (w ⋄r h′) ·h (the order in which
we attach trees under bi-contexts is not important). Given this property we will
sometimes write w(h, h′) instead of (w ⋄l h) · h′.

We use the usual notion of morphism: A morphism of binary algebras α :
(H1, V1,W1) → (H2, V2,W2) is actually composed of three applications β : H1 →
H2, γ : V1 → V2 and δ : W1 → W2, such that γ is a morphism and γ(v)β(h) =
β(vh), γ(v)δ(h) = δ(vh), δ(w) ⋄l β(h) = γ(v ⋄l h) and δ(w) ⋄r β(h) = γ(v ⋄r h).

Given an alphabet (A,B,C), the Free Binary Algebra (A,B,C)∆ is the bi-
nary algebra (H∆, V∆,W∆) such that H∆ is the set of trees that can be built
using (A,B,C), V∆ is the set of contexts that can be built using (A,B,C) and
W∆ is the set of bi-contexts that can be built using (A,B,C). The operation ·
is the natural context operation. w ⋄l h (w ⋄r h) is the context obtained by filling
the left (right) hole of w with h.

We say a tree language L is recognized by a Binary Algebra (H,V,W) if and
only if there is a morphism α : (A,B,C)∆ → (H,V,W) and a subset G of H
such that L = α−1(G). It is simple to show that a tree language is regular if and
only if it is recognized by a finite binary algebra.

Given a tree language we define an equivalence relation on H∆ as follows
t ∼L t′ if and only if for all context p ∈ V∆, pt is in L if and only if pt′ is in L.
We extend this equivalence on V∆ as follows p ∼L p′ if and only if for all trees
t ∈ H∆, pt is in L if and only if p′t is in L. Finally we extend it on W∆ as follows
q ∼L q′ if and only if for all pairs of trees t, t′ ∈ H∆, q(t, t′) is in L if and only if
q′(t, t′) is in L. Those relations define a congruence over (A,B,C)∆ and we call
the quotient, the syntactic binary algebra of L. The syntactic binary algebra of
a regular language is a finite object that we can compute from the automata of
the language.

In this paper we only consider finite binary algebras. Given any finite monoid
V there is a computable number ω(V) such that for every element v of V , vω

is an idempotent (vω = vωvω). We write this number ω when V is understood
from the context.

4 Links between ∆2 and EF + F
−1

Recall that we said that over words the logics F + F−1 and ∆2 have the same
expressive power and that while this property is no longer true on trees, both
the statements and proofs of the characterizations remained closely related. In
this section we describe a subclass of regular languages that contains both the
languages definable in EF +F−1 and ∆2, and verifies those common properties.

Definition 1. We say a Binary Algebra (H,V,W) belongs to TDA if it verifies
the following identities:

∀u, v ∈ V (uv)ω = (uv)ωu(uv)ω (1)

∀h ∈ H ∀w ∈ W w ⋄l h = w ⋄r h (2)

∀w,w′ ∈ W ∀h, h′ ∈ H and for e = ((w ⋄l h)(w′ ⋄l h′))ω

e = e(w ⋄l h′)(w′ ⋄l h)e
(3)

Notice that over words, the languages definable in F + F−1 are exactly the
languages whose syntactic monoid verifies Equation (1) (called the DA equa-
tion), therefore, this definition is indeed an extension of the word case. Also
notice that while (1) and (2) are equations that have clear equivalents on For-
est Algebras that are stated in the characterizations of ∆2 and EF + F−1 over
unranked trees, (3) is a new equation. Over unranked trees, the properties of
Forest Algebras would allow us to derive a similar result from (1), in our case,
its statement is needed in order to prove properties that are not consequences
of (1). Finally (2) means that ⋄r = ⋄l, therefore, from now on, we only write ⋄.

We will prove our characterizations by induction on orders on binary algebras
that are significant because of the properties of TDA, we define them here and
state those properties. We define two orders, one on H and one on V , we begin
with the order on H.

Given a binary algebra (H,V,W) and h, h′ ∈ H, we say that h ⊑ h′ if and
only if there exists v ∈ V such that h = vh′. We write h ∼ h′ if and only if

h ⊑ h′ and h′ ⊑ h. We show that ∼-classes of a binary algebra of TDA verify
useful properties.

Definition 2. Given h ∈ H we call stab(h) a tuple of three sets:

stabH(h) = {g ∈ H | ∃w ∈ W w(h, g) ∼ h} stabV (h) = {v ∈ V | vh ∼ h}
stabW (h) = {w ∈ W | ∃g ∈ H w(h, g) ∼ h}

The following proposition shows that in Binary Algebras of TDA, stab(h)
depends only on the ∼-class of h. Therefore, we will sometimes write stab(G) if
G is a ∼-class. This result makes ⊑ a relevant order to use for the inductions in
the proofs of our characterizations.

Proposition 1. If (H,V,W) verifies the TDA identities, the following proper-
ties hold:

– h ∼ h′ ⇒ stab(h) = stab(h′).
– stabV (h) is a submonoid of V .
– stabW (h) ⋄ stabH(h) ⊆ stabV (h)
– stabV (h)stabW (h) ⊆ stabW (h)

This proposition is proven using classical algebraic techniques. Notice that
Equation (3) is used in order to prove the third item.

The order ⊑ has a second property that we will use in our proofs, there is a
single minimal class of ∼ relatively to ⊑. We call it Hmin.

Lemma 1. Given (H,V,W) a Binary Algebra, there is a minimal ∼-class in H
relatively to ⊑ and if (H,V,W) ∈ TDA, for all minimal h, there exists uh ∈ V
such that ∀h′ ∈ H uhh′ = h.

Proof. Let g ∈ Hmin. We write H = {h1, ..., hn}. We take w ∈ W . Consider:

hmin = ((w ⋄ h1)...(w ⋄ hn)ωg

hmin ∈ Hmin, hence, we have g = vhmin. We take:

ug = v((w ⋄ h1)...(w ⋄ hn)ωw(∗, ((w ⋄ h1)...(w ⋄ hn))ωg)

Thanks to equation (1) we have ∀h ugh = g. ⊓⊔

Over V we use the classic Green relation R on monoids, v ≤R v′ if and only
if ∃u ∈ V | v = v′u. R-classes verify properties that are very similar to the ones
verified by ∼-classes, if (H,V,W) belongs to TDA.

Definition 3. Given v ∈ V we call stab(v) a tuple of three sets:

stabH(v) = {g ∈ H | ∃w ∈ W v(w ⋄ g) R v} stabV (v) = {u ∈ V | vu R v}
stabW (v) = {w ∈ W | ∃g ∈ H v(w ⋄ g) R v}

Again, we show in the following proposition that in Binary Algebras of TDA,
stab(v) depends only on the R-class of v. Therefore, we will sometimes write
stab(U) if U is a R-class. The order ≤R is also relevant to be used for the
inductions in the proofs of our characterizations.

Proposition 2. If (H,V,W) verifies the TDA identities, the following proper-
ties hold:

– v R v′ ⇒ stab(v) = stab(v′).
– stabV (v) is a submonoid of V .
– stabW (v) ⋄ stabH(v) ⊆ stabV (v)
– stabV (v)stabW (v) ⊆ stabW (v)

5 Characterization of EF + F
−1

In this section we give a decidable characterization for EF + F−1. One of the
identities we state in our characterization uses a relation over V . This relation
can be seen as a more powerful binary variant of a relation used in [2] over Forest
Algebras. In [2], the relation compared two contexts, from a context a smaller
context can be built by suppressing subtrees that are off the path from the root
to the hole. This notion does not have any obvious extension to binary trees
since we cannot supress subtrees in a binary tree without changing the arity of a
node. We use an alternate relation, instead of suppressing subtrees, we ask that
all the subtrees that are off the path from the root to the hole in the smaller
context can be found in the same path in the bigger context.

Definition 4. Given u, v ∈ V , we say that u ⊣ v if and only if we can write:

– u = (u0 ⋄ h0)...(un ⋄ hn)
– v = (u0 ⋄ g0)...(un ⋄ gn)
– {h0, ..., hn} ⊆ {g0, ..., gn}

With u0, ..., un ∈ W and g0, ..., gn ∈ H.

Theorem 1. Let L be a regular tree language on an alphabet (A,B,C), L is
definable in EF +F−1 if and only if its syntactic binary algebra belongs to TDA
and verifies the two following identities:

∀w ∈ W ∀h, g ∈ H
(w ⋄ h)ωg = (w ⋄ h)ωw((w ⋄ h)ωg, (w ⋄ h)ωg)

(4)

∀u1, u2, v1, v2 ∈ V such that u1 ⊣ u2 and v1 ⊣ v2

(u1v1)
ω(u2v2)

ω = (u1v1)
ωv2(u2v2)

ω (5)

Notice that identities (2), (3), (4) and (5) are sufficient, and that identity (1)
is redundant since it a consequence of (5) when u1 = u2 and v1 = v2.

The characterization proposed in [2] for unranked tree languages shares some
similarities with our definition. This characterization can be seen as divided in

two parts, an horizontal one and a vertical one. Horizontally, it states closure
under bisimulation, while we still state commutativity with (2), as we said closure
under duplication of subtrees has no sense on binary trees, we replace it with
(4). We will use (4) to solve in an alternate way the cases where closure under
duplication of subtrees is used on unranked trees.

Vertically, the characterization of [2] used two identities, the classic DA equa-
tion (1), and another equation similar to our equation (5). Since (1) is a conse-
quence of (5), (5) replaces those two equations and plays a similar role in the
proof. Recall however, that we had to redifine the relation ⊣, which will lead
to differents uses of this equation. Finally, we need to state a last equation (3)
which is used for proving the propreties of the stab sets in the TDA section. This
equation is needed in order to solve problems related to the lack of malleability
of the binary tree structure.

Before we prove this proposition, we prove that it fulfills our decidability goal,
given a regular language we compute it syntactic binary algebra and then, since
the ⊣ relation is computable via a fix point algorithm, we can decide whether it
satisifes the identities or not, which decides our problem.

We proceed with the proof, we prove both directions using an Ehrenfeucht
Fraïssé approach. A k rounds Ehrenfeucht Fraïssé game on two trees t and t′ is
played as follows. There are two players called Spoiler and Duplicator with two
pebbles each, when the game begins, each player has a pebble on the root of t or
t′. A round is played as follows, with a pebble at position x1 on t and at position
x2 on t′:

– Spoiler chooses one of the two trees, say t, and he chooses a node y1 which
is either a proper descendant or a proper ancestor of x1 and puts his pebble
on it.

– Duplicator chooses y2 in t′ with the same label as y1 and which is a proper
descendant of x2 if y1 was a proper descendant of x1 and a proper ancestor
of x2 if y1 was a proper ancestor of x1. If she can’t play Spoiler wins.

– Both players take back their pebble in x1, x2 and they move on to the next
round with y1, y2 playing the role of x1, x2.

If Duplicator can survive k rounds she is declared the winner and we write
t ∼=k t′. We state a Lemma that links the notion of definability in EF + F−1

with the notion of game we just defined, this Lemma is proven using classical
Ehrenfeucht Fraïssé techniques. The rank of a formula is its nesting depth of
modalities.

Lemma 2. We have t ∼=k t′ if and only if t and t′ satisfy the same EF + F−1

formulas of rank k.

The easier direction of Theorem 1 is proven using classic Ehrenfeucht Fraïssé
techniques, if a language L is definable in EF +F−1, the syntactic binary algebra
of L must verify the identities of Theorem 1.

We prove the hardest direction of Theorem 1, if L is a language whose syn-
tactic algebra verifies (2), (3), (4) and (5), it is definable in EF + F−1. Let

(H,V,W) be the syntactic binary algebra of L and α the corresponding mor-
phism, we suppose that ∀h ∈ H ∃a ∈ A such that α(a) = h (notice that this
assumption is not restrictive as we will not consider the size of A in the proof).
Given a subset X of H we say that a tree t is X-trimmed if and only if the only
subtrees of t that have their image under α in X are leaves. Instead of directly
proving the proposition we prove a slightly more general Proposition.

Proposition 3. Let X be a union of ∼-classes of H and v ∈ V . There exists
k ∈ N such that for all X-trimmed trees t and t′, we have:

t ∼=k t′ ⇒ vα(t) = vα(t′)

This proposition is very similar to the one proved in [2], the main difference
in the statement being our usage of Ehrenfeucht Fraïssé games. We also use a
similar proof structure to prove it, the inner proofs however, are different because
of our new equations and of the constraints related to the ranked tree structure.

We first show that Theorem 1 is a consequence of this Proposition 3. Take
X = ∅ and v = 1V (the neutral element of V) we get:

∃k such that ∀t, t′ t ∼=k t′ ⇒ α(t) = α(t′)

It means that for some k, L is the union of classes of the Ehrenfeucht Fraïssé
game. Since the classes of the Ehrenfeucht Fraïssé game are definable in EF +
F−1 (see Lemma 2), it follows that L is definable in EF + F−1. The rest of this
section is devoted to the proof of Proposition 3. We show that it holds for:

k ≥ (22(|B|+|C|)(22dp(v))(4 × 22|H−X|)((22|V |)|H|+1)(3 × 22|H|)

We proceed by induction on the four following parameters:

1. |H|
2. The number of ∼-classes left in H − X
3. |B| + |C|
4. The number of R-classes left below v

We consider three cases. First, we suppose that there are at least two ∼-classes in
H − X, we will decrease the first and second induction parameters to conclude
by induction. In the second case, we suppose that there are still labels in t
and t′ that decrease the R-class of v and we will decrease the third and fourth
parameters to conclude by induction. The third case is the complement of the
two first cases, we will show that if neither of the assumptions we state in those
cases hold, we are able to conclude the proof using our identities.

5.1 First Case

In this case we suppose than there is more one ∼-class left in H − X, we will
conclude by induction, adding one ∼-class to X. We take G = {g1, ..., gn}, a
maximal ∼-class in H − X relatively to ⊑, let a1, ..., an be leaf representatives
for the g1, ..., gn (α(ai) = gi). We say a tree is a twig if its only node which is
not a leaf is its root.

Definition 5. From t and t′, we construct new trees:

1. s and s′ by replacing all twigs of type gi by ai, for all i.
2. r and r′ by replacing all maximal subtrees of s and s′ with type gi ∈ G

(maximal in the sense that they are not subtrees of bigger subtrees of type in
G) with the leaf ai. Notice that r and r′ are X ∪ G trimmed.

Notice that by construction, we have vα(t) = vα(s) = vα(r) and vα(t′) =
vα(s′) = vα(r′). The following Lemma, which is the central point of this case, is
a consequence of the assumption we made about H − X containing more than
one ∼-class and abour G being a maximal one.

Lemma 3. r ∼= k

2
−4 r′

Before we prove it, we show how it can be used to conclude this case. We have:

1. r ∼= k

2
−4 r′

2. r and r′ are X ∪ G trimmed
3. k

2 − 4 ≥ (4 × 22|H−X∪G|)K, since k ≥ (4 × 22|H−X|)K

Therefore using the induction hypothesis vα(r) = vα(r′) and by construction,
it follows that vα(t) = vα(t′).

We prove Lemma 3 in two steps, the first one is that we can detect subtrees
of type in G under α in the game. The second one is that we can then detect
precisely their type in G. The first step is mainly a consequence of the properties
of stab described in Section 4. This step uses bisimulation in the unranked case,
since we do not have bisimulation we use Equation (4) instead. Notice that this
first step, because it relies on the results of Section 4, is also using Equations (1)
and (3).

Claim. Let f be a subtree of s and f ′ a subtree of s′ such that α(f) ∈ G and
α(f ′) /∈ G. Spoiler wins the two rounds game on f and f ′.

Proof. We claim that an X-Trimmed tree t has type outside G if and only if one
the following conditions holds:

1. t is a leaf and it has type outside G
2. t has a twig subtree with type outside G
3. t has non-twig unary node with label b such that α(b) /∈ stabV (G)
4. t has non-twig binary node with label c such that α(c) /∈ stabW (G)
5. t has an inner node with a leaf of label a as brother such that α(a) /∈

stabH(G)

As G is a maximal ∼-class in H − X, it follows from the properties of stab
that the conditions are sufficient. We prove that they are necessary.

In the unranked case, closure under bisimulation entails that G ⊆ stabH(G),
this no longer true in our case. However, (4) entails a weaker result that is
sufficient in order to prove that the conditions are necessary.

Claim. If stabH(G) 6= ∅, G ⊆ stabH(G)

Proof. Because there exists an h ∈ stabH(G), ∃w such that w ⋄ h ∈ stabV (G).
We have (w ⋄ h)ω ∈ stabV (G) (recall that stabV (G) is a submonoid), therefore:

(w ⋄ h)ωg = g′ ∈ G

Using Equation (4) we get:

(w ⋄ h)ωw(g′, g′) = g′

Therefore g′ ∈ stabH(G), hence w(g, g′) ∼ g, which also means that g ∈
stabH(G). ⊓⊔

We say that (t1, t2) is a good pair if it belongs to stabH(G)×G or G×stabH(G)
(notice that if stabH(G) = ∅, there is no good pair). Let t be a tree of type outside
G, if t is a leaf (1) holds, otherwise let t′ be a minimal subtree of t of type outside
G if it is a twig (2) holds, otherwise we are in one of the three following cases:

– t′ = b(t1), t1 has type in G so α(b) /∈ stabV (G), (3) holds
– t′ = c(t1, t2) and (t1, t2) is a good pair. Then, we have α(t1) ∈ stabH(G) and

α(t2) ∈ G. Then, since t′ has type outside G, α(c) ⋄α(t1) /∈ stabV (G), which
implies that α(c) /∈ stabW (G) (recall that stabW (G)⋄stabH(G) ⊆ stabV (G)),
(4) holds.

– t′ = c(t1, t2) and (t1, t2) is not a good pair, we consdier two cases. If
stabH(G) = ∅, we have by definition stabW (G) = ∅, therefore (4) holds.
Otherwise, we have G ⊆ stabH(G), since (t1, t2) is not a good pair, t1 or t2
is outside stabH(G) and it is necessarly a leaf since it cannot have type in
G, (5) holds.

So f verifies none of the conditions and f ′ verifies at least one. It is clear
that the four first conditions are detectable in two rounds, the fifth is because
f is a subtree of s of type in G so by construction of s it has no leaf with type
outside stabH(G) in twigs. ⊓⊔

The second step is proven using the induction hypothesis. We prove that if
Duplicator can win the game on two X-trimmed trees of type in G, they have
the same type. This is done by building a smaller algebra than (H,V,W) from
stab which coincides with (H,V,W) on X-trimmed trees of type in G and using
the induction hypothesis on that smaller algebra. Aside from technical details,
this proof is similar to the one used in the unranked case. Using these two steps,
we are able to derive a winning strategy for Duplicator on r and r′ from her
winning strategy on t and t′, proving Lemma 3.

5.2 Second Case

In this case we suppose that there is a b in B such that α(b) /∈ stabV (v) or a
c ∈ C such that α(c) /∈ stabW (v). Let B↓ = {b1, ..., bn} be the set of all such

b ∈ B and C↓ = {c1, ..., cm} be the set of all such c ∈ C. We reduce the size of
the alphabet by suppressing all such b and c. For two trees s, s′, we write:

s ≡ s′ when ∀u <R v uα(s) = uα(s′)

Notice that ≡ is an equivalence relation of finite index. Let L1, ..., Lι be the
classes of this equivalence relation and a1, ..., aι be leaf representatives of those
classes. We write ai,l the leaves that have the same type as the trees bl(ai) and
ai,j,l leaves that have the same type as the trees cl(ai, aj). We modify t and t′

in two steps:

1. First we consider each minimal subtree of t which has its root labeled by a
bl ∈ B↓ (minimal in the sense that it is not subtree of a tree of root in B↓ or
C↓). We look at the subtree rooted in bl, we compute its class Li of ≡, and
we replace it by ai. We do the same with the minimal subtrees that have
their root labeled by cl ∈ C↓. We look at the two subtrees that are rooted to
the node and we compute their class Li and Lj of ≡, and we replace them
by ai and aj . We obtain a new tree s. We modify t′ the same way and we
obtain s′.

2. Finally we replace the subtrees bl(ai) by ai,l and cl(ai, aj) by ai,j,l. We have
now a pair of trees that we call r and r′.

We state two lemmas that are central to this case. The first one is a conse-
quence of the definition of the relation ≡ and of the sets B↓ and C↓.

Lemma 4. vα(t) = vα(s) = vα(r) and vα(t′) = vα(s′) = vα(r′)

Lemma 5. r̄ ∼= k

2
−1 r̄′

Before proving those results, we use them to conclude this case. We have:

1. No node of label in B↓ or C↓ is present in r and r′ so the size of the node
alphabets have decreased in r and r′.

2. k
2 − 1 ≥ 22(|B|+|C|−1)K because k ≥ 22(|B|+|C|)K.

Therefore using Lemma 5 by induction we get vα(r) = vα(r′), using Lemma 4
we conclude vα(t) = vα(t′).

Lemma 5 is proven in two steps. The first step is that Spoiler can detect in t
and t′ the subtrees that are to be deleted in order to build r and r′. The second
step is that he is able to detect for each of those subtrees the label of the leaf
that will be used in order to replace it in r and r′. The first step is a consequence
of the fact that those subtrees are rooted with nodes whose label do not appear
above. The second steps is a consequence of the fact that if Duplicator wins the
EF game on two trees it means that they have the same type under all contexts
that are strictly smaller than v relatively to ≤R (induction hypothesis), which
means that by definition they are equivalent under ≡. Given these two steps,
we are able to derive a winning strategy for Duplicator on r and r′ from her
strategy on t and t′. While technically more difficult those proofs are similar in
spirit to the unranked case.

5.3 Third case

We suppose that we are not in one of the two previous cases, meaning that for
all b ∈ B, α(b) ∈ stabV (v), for all c ∈ C, α(c) ∈ stabW (v) and H − X = Hmin.
If t is a leaf, so is t′ and vice versa. Therefore we can suppose that t and t′ are
not leaves. In this case, t and t′ have their types in Hmin (they are X-trimmed).
We prove that for all h, g ∈ Hmin vg = vh, in particular vα(t) = vα(t′) which
concludes this case.

Let uh and ug be as defined in the Lemma 1. We assume that:

uh = α(c1 ⋄ a1)...(cn ⋄ an)

ug = α(cn+1 ⋄ an+1)...(cm ⋄ am)

We supposed that there were no unary symbols in order to simplify the
expressions, this does not affect the proof. We also supposed that all subtrees
off the main path were leaves, this is not restrictive since we supposed that all
types were reachable with a leaf. By hypothesis, ∀i ci ∈ stabW (v), so we have
an a′

i such that α(ci ⋄ a′
i) ∈ stabV (v). We write:

wh = α(c1 ⋄ a′
1)...(cn ⋄ a′

n)

wg = α(cn+1 ⋄ a′
n+1)...(cm ⋄ a′

m)

By construction of wg and wh:

vwhwhwgwg R v
vwhwhwgwgv

′ = v for some v’
v(whwhwgwgv

′)ω = v

Hence by definition of uh:

v(whwhwgwgv
′)ω(uhwhugwgv

′)ωg = vh

Notice that we have wgwg ⊣ ugwg and whwh ⊣ uhwh, which allows us to use
Equation (5):

vh = v(whwhwgwgv
′)ωugwgv

′(uhwhugwgv
′)ωg

vh = v(whwhwgwgv
′)ωg (by definition ∀g′ ugg

′ = g)

vh = vg

This completes the proof.

6 Characterization of ∆2

In this section we give a decidable characterization of ∆2. Like the character-
ization for unranked trees in [3], our characterization use the piece relation.
However, our definition of piece is more restrictive than the one used in [3], a
piece of a tree is obtained by supressing some nodes and attaching the remaning
nodes such that the ancestor relation is preserved. With this definition, every
piece of an unranked tree is an unranked tree, but a piece of a binary tree need
not be a binary tree. Therefore, our piece relation only considers binary pieces.

Definition 6. Over an alphabet (A,B,C), we say that a tree t is a piece of a
tree s if and only if there is an injective morphism of the nodes of t to the nodes
of s that preserves labels and the ancestor relation, we write s � t. This relation
is naturaly extended on contexts (recall that a context is a tree with a special
node ∗).

Given u, v ∈ V we say that u is a piece of v and write u � v if and only if
there is some morphism α : (A,B,C)∆ → (H,V,W) with α(p) = u and α(q) = v
such that p � q.

Theorem 2. A binary tree language L is definable in ∆2 if and only if it belongs
to TDA and verifies the following identity:

uω = uωvuω ∀u, v ∈ V such that v � u (6)

Notice that it is sufficient to consider only identities (2) and (6), since iden-
tities (1) and (3) of TDA are direct consequences of (6).

Those identities are almost identical to the ones stated in the unranked char-
acterization given in [3], the only difference being the restriction we made by
considering only binary pieces in our piece relation �. The impact of this restric-
tion on the proof remains minimal in this case. However, technical differences
related to the ranked tree structures do appear in the proof. Of the three logics
we consider in this paper, ∆2 is the one whose characterization has the closest
proof to its unranked variant. The main differences reside in the common part
with the EF +F−1 logic in which we defined the stab sets and proved their prop-
erties. The ranked tree structure actually makes the rest of the proof technically
simpler in this case.

Since the identities are almost identical to the ones of the unranked case, the
proof of the easy direction of the Theorem is exactly the same as in the unranked
case.

7 Characterization of Boolean Combinations of Σ1

In this section we give a decidable characterization of boolean combinations of
Σ1. We use the notion of piece we defined when we stated the characterization
of ∆2.

Theorem 3. A binary tree language L is definable in Σ1 if and only if its syn-
tactic binary algebra verifies the following properties:

uωv = uω = vuω v � u (7)

for all u, v ∈ V .

Notice that once again the identity is very close to the one used in the
characterization over unranked trees. Like the characterization of ∆2, the only
difference in the statement, is the restriction to binary pieces. However, while
this restriction was anecdotic in ∆2, it leads to many problems for this logic. An

example is that for unranked trees, if you take a piece of a tree and split the tree
into a context and another tree, the piece is also naturaly splited into a piece of
the context and a piece of the new tree. This property which is extensively used
in the proof of the unranked characterization is not true on ranked trees, which
forces us to be careful when we split trees.

Since, the identity is similar to the one stated in [7] for unranked trees, the
easy direction of Theorem 3 is identical, if a language is definable by a boolean
combination of Σ1 formulas, its syntactic algebra verifies (7).

8 Discussion

The statements of our characterizations for EF + F−1, ∆2 and Boolean Com-
binations of Σ1 were limited to trees of rank two. However, these results could
easily be extended to trees of rank k for a fixed k by extending the algebraic
framework. For example, trees of rank three would be characterized by adding
an other set representing tri-contexts, (contexts with three holes which are all
siblings).

A relevant question would be to consider extensions of these logics. The
only relation we considered is the order <, but what about other relations? We
could add an order between siblings or a vertical successor relation, which is not
definable from < with the expressive power of the logics we considered.

References

1. M. Benedikt and L. Segoufin. Regular tree languages definable in FO. In 22nd

Annual Symposium on Theoretical Aspects of Computer Science, volume 3404 of
Lecture Notes in Computer Science, pages 327–339, 2005.

2. M. Bojańczyk. Two-way unary temporal logic over trees. In 22nd IEEE Symposium

on Logic in Computer Science, pages 121–130, 2007.
3. M. Bojańczyk and L. Segoufin. Tree languages defined in first-order logic with one

quantifier alternation. 2008.
4. M. Bojańczyk and I. Walukiewicz. Characterizing EF and EX tree logics. Theo-

ritical Compututer Science, 358(2-3):255–272, 2006.
5. M. Bojańczyk and I. Walukiewicz. Forest algebras. In Automata and Logic: History

and Perspectives, pages 107–132. Amsterdam University Press, 2007.
6. M. Y. Vardi K. Etessami and T. Wilke. First-order logic with two variables and

unary temporal logic. In 12th IEEE Symposium on Logic in Computer Science,
pages 228–235, 1997.

7. L. Segoufin M. Bojańczyk and H. Straubing. Piecewise testable tree languages.
2008.

8. R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, 1971.
9. M. P. Schützenberger. On finite monoids having only trivial subgroups. Informa-

tion and Control, 8:190–194, 1965.
10. D. Thérien and T. Wilke. Over words, two variables are as powerful as one quanti-

fier alternation. In 30th ACM Symposium on Theory of Computing, pages 234–240,
1998.

11. T. Wilke. An algebraic characterization of frontier testable tree languages. Theo-

retical Computer Science, 154(1):85–106, 1996.

