
Adding successor: A transfer theorem for separation and
covering

THOMAS PLACE, LaBRI, Bordeaux University and IUF, France

MARC ZEITOUN, LaBRI, Bordeaux University, France

Given a class C of word languages, the C-separation problem asks for an algorithm that, given as input two

regular languages, decides whether there exists a third language in C containing the first language, while

being disjoint from the second. Separation is usually investigated as a means to obtain a deep understanding

of the class C.

In the paper, we are mainly interested in classes defined by logical formalisms. Such classes are often built

on top of each other: given some logic, one builds a stronger one by adding new predicates to its signature.

A natural construction is to enrich a logic with the successor relation. In this paper, we present a transfer

result applying to this construction: we show that for suitable logically defined classes, separation for the logic

enriched with the successor relation reduces to separation for the original logic. Our theorem also applies to a

problem that is stronger than separation: covering. Moreover, we actually present two reductions: one for

languages of finite words and the other for languages of infinite words.

Additional Key Words and Phrases: Regular Languages, First-Order Logic, Membership Problem, Separation

Problem, Covering Problem, Decidable Characterization.

ACM Reference Format:
Thomas Place and Marc Zeitoun. 2019. Adding successor: A transfer theorem for separation and covering. 1,

1 (August 2019), 44 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Context. A central problem in formal languages theory is to characterize and understand the

expressive power of high level specification formalisms. Monadic second order logic (MSO) is

such a formalism, which is both expressive and robust. For several classes of structures, such as

words or trees, it has the same expressive power as finite automata and defines the class of regular

languages [5, 6, 11, 37, 43, 45]. In this paper, we investigate fragments of MSO over finite and

infinite words. In this context, understanding the expressive power of a fragment is often associated

to a decision problem: membership. Given a logical fragment, one may associate the class C of

all word languages that can be defined by a sentence of this fragment. When C is such a class,

the C-membership problem asks for a decision procedure that tests whether some input regular

language belongs to C. Intuitively, setting such an algorithm requires a deep understanding of C: it

involves considering all languages within C.

Membership has been solved for many natural fragments of MSO, the most prominent one being

FO(<): first-order logic equipped with a predicate “<” for the linear ordering. For finite words,
the solution was found by Schützenberger, McNaughton and Papert [18, 38]. They characterized

Authors’ addresses: Thomas Place, LaBRI, Bordeaux University and IUF, France, tplace@labri.fr; Marc Zeitoun, LaBRI,

Bordeaux University, France, mz@labri.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

XXXX-XXXX/2019/8-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Thomas Place and Marc Zeitoun

the regular languages that are definable in FO(<) by a syntactic, easily decidable property on a

canonical recognizer of this language (such as its minimal automaton or its syntactic monoid). This

result was later generalized to infinite words by Perrin [19]. It now serves as a commonly followed

template, which was used successfully to solve membership for many other logical formalisms.

Research on this topic is still ongoing and membership remains open for several fragments. A

prominent example is the quantifier alternation hierarchy of first-order logic, which classifies it into

levels Σn(<) and BΣn(<). Despite years of investigation, only the lower levels have been solved

by Simon [39], Pin and Weil [22, 24], the authors [29] and the first author [26, 27]. Furthermore,

making progress has often required moving beyond the standard approach to membership questions.

The latest results for the levels BΣ2(<), Σ3(<) and Σ4(<) are based on decision problems that are

stronger than membership: separation and covering. Given a class C, the C-separation problem asks

for a decision procedure that takes two input regular languages and tests whether there exists a

third one in C containing the first language while being disjoint from the second one. Covering,

which we defined in [32, 35] is even more general: it takes two different objects as input: a regular

language L and a finite set of regular languages L. It asks whether there exists a C-cover K of L
(i.e., a finite set of languages in C whose union includes L) such that no language K ∈ K intersects

all languages in L. Separation is just the special case when L is a singleton. Both problems are

decidable for FO(<) as we showed [30, 33], both for finite and infinite words.

Because of these results, separation and covering have quickly replacedmembership as the central

question when trying to “understand” a given class of languages. However, the main motivation

for considering separation and covering is more profound: while harder than membership, they are

also more rewarding with respect to the knowledge gained on the investigated class C. Intuitively,

a membership algorithm only yields benefits for the languages of C: we are able to detect them

and to build a description witnessing this membership. On the other hand, separation and covering

algorithms are universal: their benefits apply to all languages. An insightful point of view is to

see them as approximation problems. For example, given an input pair (L1, L2), the objective of
separation is to over-approximate L1 by a language in C while L2 is the specification of what an

acceptable approximation is.

In the paper, we investigate separation and covering for several natural fragments of FO(<).
Specifically, we consider the levels Σn(<) and BΣn(<) in the quantifier alternation hierarchy and

the two-variable fragment FO
2(<). However, we shall not work with these fragments themselves.

Instead, we are interested in stronger variants which are built from them in a natural way. A crucial

observation is that for these fragments, the drop in expressive power forbids the use of natural

relations that could be defined from the linear order in full first-order logic. The main example is

“+1”: the successor relation. While FO(<) is powerful enough to express it (“x + 1 = y” is equivalent
to “x < y ∧ ¬∃z(x < z < y)”), this is not the case for FO2(<), Σn(<) and BΣn(<). Hence, there are
two natural variants for each of these fragments: a weak one which is only equipped with the linear

ordering (denoted FO
2(<), Σn(<) and BΣn(<)) and a strong one which is equipped with additional

predicates such as successor (denoted FO
2(<,+1), Σn(<,+1) and BΣn(<,+1)). Our objective in this

paper is to investigate separation and covering problems associated to strong variants.

State of the art. Naturally, these strong logical fragments were first investigated using the mem-

bership problem. However, this proved to be unexpectedly difficult. In most cases, even when the

weak variant is known to have decidable membership, proving that this is also the case for the

strong one can be highly nontrivial. Examples include the membership proofs of BΣ1(<,+1) and
Σ2(<,+1), which involve difficult and intricate combinatorial arguments [13, 14, 16] or a wealth of

algebraic machinery [24, 25]. Another issue is that most proofs directly deal with the strong variant.

Given the jungle of such logical fragments, it is desirable to avoid such an approach, treating each

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 3

variant of the same fragment independently. Instead, a satisfying approach would be to first obtain

a solution of the decision problems for the weak variant before lifting it to the strong one via a

generic transfer result.
This idea has first been investigated by Straubing [42] for the membership problem in the setting

of finite words. He chose to formulate his approach using algebraic terminology. It is known that

any class of languages satisfying appropriate properties is characterized by some algebraic variety V:
a language is in the class if and only if its syntactic monoid belongs to V. This result is the variety
theorem of Eilenberg [10]. Straubing’s approach was to capture the intuitive connection between

weak and strong fragments using a generic operation on algebraic varieties called wreath product.
Though this is nontrivial, it has been shown that for most logical fragments (including the ones we

consider in the paper), if V is the variety corresponding to the weak variant, then the strong one

corresponds to the variety V ◦ D: the wreath product of V with D (where the D is a fixed variety).

Thus, Straubing’s approach was to show that the operation V 7→ V ◦ D preserves the decidability

of membership.

Unfortunately, this is not true in general [2]. In fact, while decidability is preserved for all

natural logical fragments, there is no generic result that captures them all. In particular, for the less

expressive fragments, one has to use completely ad hoc proofs. It turns out that in the separation

setting, this approach is more robust: it has been shown by Steinberg [41] that decidability of

separation is preserved by the operation V 7→ V ◦ D. However, this result has several downsides:

• Steinberg’s theorem is not about separation: it states a purely algebraic property of varieties of

the form V ◦D (they have “decidable pointlikes”). The connection with separation is indirect and

made with another result by Almeida [1]. Therefore, while interesting when already starting

from algebra, this approach is less satisfying from a logical point of view: it hides the logical

intuitions, while our primary goal is to understand the expressiveness of logics.

• Going from logic to algebra requires one to be acquainted with new notions and vocabulary,

as well as involved theoretical tools. One has to manipulate three objects of different nature

simultaneously: logic, classes of languages and algebraic varieties. Proofs are also often nontrivial

and require a deep understanding of complex objects, which may be scattered in the bibliography.

• Steinberg’s result only applies to classes of languages closed under complement (which excludes

the fragments Σn in the quantifier alternation hierarchy). This limitation is tied to the connection

with algebraic varieties which only holds for classes closed under complement. While this

connection may be lifted to a more general setting [23, 25], this requires introducing even more

algebraic vocabulary.

• These results are specific to finite words while we intend to investigate both finite and infinite

words.

Contributions. We present a new transfer theorem applying to all fragments presented above.

For each of them, we show that separation and covering for the strong variant reduce to the same

problem for the weak one. Our approach is generic and similar to the original one of Straubing

described formerly. However, rather than choosing algebra to formulate it, we use a pure language

theoretic point of view. Specifically, we define a product between classes of languages, called

enrichment. Given two classes C and D, it builds a new one denoted by C ◦ D: the D-enrichment

of C. As the notation suggests, this operation is adapted from the wreath product and designed as

its language theoretic counterpart. We then show the two following properties:

(1) For all fragments that we consider, if C is the class corresponding to the weak variant, then the

strong one corresponds C ◦ SU (SU is a fixed class: the suffix languages).

, Vol. 1, No. 1, Article . Publication date: August 2019.

4 Thomas Place and Marc Zeitoun

(2) Given any class C satisfying standard closure properties, covering and separation for C ◦ SU

reduce to the same problem for C.

Using such a language theoretic approach has several important benefits over the algebraic one.

Let us summarize them.

• The definition of enrichment is simple, and requires much less machinery than the wreath

product. We avoid a lot of algebraic vocabulary, which we do not need. We only work with

two objects: logic and classes of languages. The only needed piece of algebra is the elementary

definition of regular languages in terms of finite monoids.

• Our proof is self-contained and much simpler than previous ones. It only relies on basic notions

on regular languages. A consequence is that our techniques yield much more intuition on the

logical point of view.

• Enrichment makes sense for any class of language, even if it is not closed under complement.

Furthermore, closure under complement is not required for applying our reduction theorem.

Thus, contrary to [41] our results capture the Σn levels in the quantifier alternation hierarchy of

first-order logic.

• Our definitions and proofs adapt smoothly to the setting of infinite words.We have two definitions

of enrichment and two reduction theorems: the first are for classes of languages of finite words

and the second for classes of languages of infinite words.

• In both settings of finite and infinite words, our results apply to two different problems: separation

and covering.

It is already known that covering and separation are decidable for the weak variants of many

logical fragments. Thus, when combining these algorithms with our results, we shall obtain new

separation and covering procedures for several strong variants. Over words, it is known that both

problems are decidable for FO
2(<) [28, 32, 35], Σ1(<) [9, 32, 35],BΣ1(<) [9, 28, 34], Σ2(<) [29, 34, 36],

BΣ2(<) [34] and Σ3(<) [26, 27]. Thus, we obtain the decidability of separation and covering for

FO
2(<,+1), Σ1(<,+1), BΣ1(<,+1), Σ2(<,+1), BΣ2(<,+1) and Σ3(<,+1) over words. Over infinite

words the situation is more complicated: while the state of the art is roughly the same as for

finite words, many of these results are yet unpublished. It was shown in [21] that separation is

decidable for Σ2(<) and Σ3(<). Thus, we get that separation is decidable for Σ2(<,+1) and 3 over

infinite words.

Organization of the Paper. In Section 2, we set up the notation and present the separation and

covering problems. In Section 3, we define the logical fragments that we investigate in the paper.

Section 4 is devoted to our main theorem for languages of finite words: we define the enrichment

operation on classes of languages of finite words, and we show that covering and separation for

C ◦ SU reduce to the corresponding problem for C. The next two sections are devoted to applying

this result to our logical fragments: we do so for two-variable first-order logic in Section 5 and the

quantifier alternation hierarchy of first-order logic in Section 6. Finally, in Section 7, we generalize

our results to the setting of infinite words: we adapt SU-enrichment for classes of languages of

infinite words and we lift our reduction theorem to this setting.

This paper is the full version of [31]. From the conference version, the point of view has been

changed from a purely logical one to a language theoretic one with the SU-enrichment operation.

In particular, this means that while the underlying ideas are the same, the theorem presented in

this full version is more general and applies to all classes built using SU-enrichment. Additionally,

the reduction for infinite words is new.

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 5

2 PRELIMINARIES
In this section, we introduce the objects that we investigate in the paper. We first recall basic

definitions about (finite and infinite) words and regular languages. Then, we present the two

decision problems that we consider: covering and separation.

2.1 Words and classes of languages
An alphabet is a finite set A of symbols, which are called letters. We shall consider both finite and

infinite words. Given some alphabet A, we denote by A+ the set of all nonempty finite words and

by A∗
the set of all finite words over A (i.e., A∗ = A+ ∪ {ε}). Moreover, we write Aω

for the set of all

infinite words over A. Note that we shall always use the term “word” to mean a finite word (i.e., an
element of A∗

). On the other hand, we shall speak of an “ω-word” when considering an infinite

word, i.e., an element of Aω
. Finally, we let A∞ = A∗ ∪Aω

.

If u ∈ A∗
and v ∈ A∞

we write u · v ∈ A∞
or uv ∈ A∞

for the concatenation of u and v . Note
that if v ∈ A∗

, then uv ∈ A∗
and if v ∈ Aω

, then uv ∈ Aω
. We shall also consider infinite products.

Let (un)n∈N be an infinite family of words (i.e., un ∈ A∗
for all n ∈ N), then we may construct a

new word or ω-word u0u1u2u3 · · · ∈ A∞
by concatenating them all. Observe that u0u1u2u3 · · · ∈ Aω

when there are infinitely many indices n ∈ N such that un , ε . Otherwise, u0u1u2u3 · · · ∈ A∗
.

Finally, when u ∈ A∗
is a single word, we denote by uω ∈ A∞

the infinite concatenation uuuu · · · .

The length of a word u ∈ A∗
, denoted by |u |, is its number of letters. When u ∈ Aω

is an ω-word,
we let |u | = ∞. Since we consider logic, we shall often view words and ω-words as linearly ordered

sets of labeled positions: the domain of a word u ∈ A∗
is {0, . . . , |u | − 1}, while the domain of an

ω-word is simply N. In particular, we shall use the following notation. Let u be a word or anω-word
and let i, j be two integers. We let u[i, j] ∈ A∗

be the following word:

(1) If 0 ≤ i ≤ j ≤ |u | − 1, then u[i, j] is the infix of u obtained by keeping all positions from i to j in
u. For example, if u = a0 · · ·a |u |−1 is finite, we have u[i, j] = ai · · ·aj .

(2) Otherwise, u[i, j] = ε .

Languages and classes. A language over an alphabet A is a subset of A∗
. Similarly, an ω-language

is a subset of Aω
. In the paper, we investigate classes of languages and classes of ω-languages. A

class of languages C is a mapA 7→ C(A) associating a set C(A) of languages overA to each alphabet

A. Similarly, a class of ω-languages is a map A 7→ C(A) which associates a set C(A) of ω-languages
over A to each alphabet A.

Remark 2.1. For the sake of simplifying the presentation, it is usual to abuse notation by making
the alphabet implicit: when A is clear from the context, one simply writes L ∈ C for L ∈ C(A). Note
however that we shall often manipulate distinct alphabets simultaneously.

In the paper, we work with regular languages. The regular languages are those that can be equiv-

alently defined by nondeterministic finite automata (NFA), finite monoids or monadic second-order
logic (MSO) interpreted on words. Similarly, regular ω-languages are those that can be equivalently

defined by nondeterministic Büchi automata (NBA), finite ω-semigroups or MSO interpreted on

ω-words. In the paper we work with the algebraic definition of regular languages and ω-languages
in terms of monoids and ω-semigroups. We recall these notions in Sections 4 and 7 respectively.

2.2 Closure properties
In the paper, we only consider classes satisfying robust closure properties that we present now. We

define them for classes of languages (the corresponding definitions for ω-languages are analogous).

Boolean operations. We only consider lattices. A lattice of languages is a class of languages C
such that for any alphabet A, the two following properties are satisfied:

, Vol. 1, No. 1, Article . Publication date: August 2019.

6 Thomas Place and Marc Zeitoun

• Closure under union. For any L1, L2 ∈ C(A), we have L1 ∪ L2 ∈ C(A). Moreover, C(A) contains
the empty union: ∅ ∈ C(A).

• Closure under intersection. For any L1, L2 ∈ C(A), we have L1 ∩ L2 ∈ C(A). Moreover, C(A)
contains the empty intersection: A∗ ∈ C(A).

A Boolean algebra of languages is a lattice closed under complement: for any alphabetA, if L ∈ C(A)
then A∗ \ L ∈ C(A).

Remark 2.2. Note that since ω-languages are subsets ofAω , the empty intersection and complement
are interpreted over Aω for classes of ω-languages. For example, the empty intersection is Aω , for any
alphabet A.

Quotient. We shall also consider closure under right quotient (we do not need left quotient).

Consider an alphabet A. Given L ⊆ A∗
and any u ∈ A∗

, we define the right quotient Lu−1 ⊆ A∗
of L

by u as the language,

Lu−1
def

= {w ∈ A∗ | wu ∈ L}.

We say that a class of languages C is closed under right quotient when for any alphabet, any

L ∈ C(A) and any u ∈ A∗
, Lu−1 ∈ C(A). We shall not consider closure under quotient for classes of

ω-languages.

Inverse image. Finally, we also consider closure under inverse image. For the definition, we need

to introduce monoid morphisms. A semigroup is a set S equipped with an associative multiplication,

written s · t or st . A monoid is a semigroupM having a neutral element 1M , i.e., such that s · 1M =
1M · s = s for all s ∈ M . Moreover, a monoid morphism is a mapping α : M → N from a monoid to

another, which respects the algebraic structure: for all s, s ′ ∈ M , we have α(s · s ′) = α(s) · α(s ′) and
α(1M) = 1N . Observe that for any alphabet A, the sets A+ and A∗

are respectively a semigroup and

a monoid when equipped with concatenation (the neutral element of A∗
is ε). Therefore, given any

two alphabets A,B, we may define morphisms α : A∗ → B∗
.

Given a class of languages C, we say that C is closed under inverse image when for any two

alphabets A,B, any morphism α : A∗ → B∗
and any language L ∈ C(B), we have α−1(L) ∈ C(A).

We shall also consider a weaker variant of closure under inverse image: alphabetic inverse image.

We say that a morphism α : A∗ → B∗
is alphabetic when α(a) ∈ B for any letter a ∈ A (the image

of a letter is a letter). A class of languages C is closed under alphabetic inverse image when for any

two alphabets A,B, any alphabetic morphism α : A∗ → B∗
and any language L ∈ C(B), we have

α−1(L) ∈ C(A).

We finish by lifting the definition of inverse image to classes of ω-languages. Observe we may

lift any morphism α : A∗ → B∗
as a map α : A∞ → B∞

. Indeed, if w ∈ A∗
, then α(w) is already

defined and ifw = a0a1a2 · · · ∈ Aω
, then we may define,

α(w) = α(a0)α(a1)α(a2) · · · ∈ B∞.

Remark 2.3. Note that whenw ∈ Aω , α(w)may belong to either Bω or B∗. This depends on whether
there are infinitely many indices n ∈ N such that α(an) , ε . On the other hand, given an ω-language
L ⊆ Bω , its inverse image α−1(L) is necessarily an ω-language as well, i.e., a subset of Aω .

Given a class of ω-languages C, we say that C is closed under inverse image when for any two

alphabets A,B, any map α : A∞ → B∞
generated by a morphism and any ω-language L ∈ C(B), we

have α−1(L) ∈ C(A).

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 7

2.3 Decision problems
We turn to the two decision problems that we shall consider: separation and covering. Both of

them are parametrized by an arbitrary class of languages or ω-languages C and their purpose is to

serve as mathematical tools for analyzing C. We only present the definition for classes of languages

(adapting it to ω-languages is immediate).

Separation. Given three languages K, L1, L2, we say that K separates L1 from L2 if L1 ⊆ K and

K ∩ L2 = ∅. Furthermore, if C is some class of languages and L1, L2 are two languages, we say that

L1 is C-separable from L2 when there exists K ∈ C that separates L1 from L2.

Remark 2.4. Observe that when C is closed under complement, L1 is C-separable from L2 if and only
if L2 is C-separable from L1. However, this is not true for classes that are not closed under complement.

Given a class of languages C, we may now define the C-separation problem as follows:

INPUT: Two regular languages L1 and L2.

OUTPUT: Is L1 C-separable from L2?

When investigating separation for a particular class C, one usually considers two complementary

objectives: finding an algorithm that decides it and finding a generic for constructing a separator in

C when there exists one.

Remark 2.5. Separation generalizes another well-known decision problem: membership. Given a
class C, this problem asks whether an input regular language L belongs to C. This is equivalent to
asking whether it is C-separable from its complement (which is also regular). Indeed, in that case,
there is only one candidate for being a separator: L itself. In other words, C-membership reduces to
C-separation.

Covering. We now present the covering problem which, we originally introduced in [32, 35] as a

natural generalization of separation.

Remark 2.6. One of the primary motivations for introducing covering is that even if one is only
interested in separation, considering covering is required for many classes.

Given a language L, a cover of L is a finite set of languages K such that L ⊆
⋃

K ∈K K . Moreover,

given a class C, a C-cover of L is a cover K of L such that all K ∈ K belong to C. Additionally, given

a finite multiset
1
of languages L, we say that a finite set of languages K is separating for L if for any

K ∈ K, there exists L ∈ L such that K ∩ L = ∅ (i.e., no element of K intersects all languages in L).
Consider a class C. Given a language L1 and a finite multiset of languages L2, we say that the pair

(L1, L2) is C-coverable when there exists a C-cover of L1 which is separating for L2. The C-covering
problem is as follows:

INPUT: A regular language L1 and a finite multiset of regular languages L2.
OUTPUT: Is (L1, L2) is C-coverable?

As for separation, one has usually two goals when investigating C-covering: getting an algorithm

that decides it and finding a generic method for building separating C-covers when they exist. We

complete this definition by explaining why covering generalizes separation: the latter is special

case of the former when the multiset L2 is a singleton (provided that the class C is a lattice). We

state this in the following fact whose proof is easy and given in [35].

1
We speak of multiset here for the sake of allowing several copies of the same language in L. This is natural. Indeed, L is an

input of our problem: what we have in hand is a set of recognizers for the languages in L, and distinct recognizers may well

define the same language.

, Vol. 1, No. 1, Article . Publication date: August 2019.

8 Thomas Place and Marc Zeitoun

Fact 2.7. Let C be a lattice and L1, L2 two languages. Then L1 is C-separable from L2, if and only
if (L1, {L2}) is C-coverable.

2.4 Suffix languages
We finish this preliminary section by presenting a specific class of languages: the suffix languages
(SU). While simple, SU will be crucial in the paper: we use it in a generic construction which builds

new classes on top of already existing ones.

Remark 2.8. In the literature, the suffix languages are also called the definite languages (see [10]
for example). The idea to use this class in the context of the paper (adding successor to logics) is due to
Straubing [42].

We first define SU and then present a classification of the languages it contains. For any alphabet

A, SU(A) consists of all finite Boolean combinations of languages of the form A∗w for somew ∈ A∗
.

It is immediate by definition that SU is a Boolean algebra. We state this in the following proposition.

Proposition 2.9. SU is a Boolean algebra.

Remark 2.10. While we shall not need this property, SU is also closed under quotient. On the other
hand, it is not closed under inverse image.

We also consider the following classification of the languages in SU (we call it a stratification
of SU). For any k ∈ N, we define a finite class SUk (i.e., SUk (A) is a finite set for any A). Given an

alphabet A, SUk (A) consists of all finite Boolean combinations of languages having the form A∗w
for somew ∈ A∗

such that |w | ≤ k . One may verify that all strata SUk are finite Boolean algebras.

Moreover, for any alphabet A, we have:

SUk (A) ⊆ SUk+1(A) for any k ∈ N and

⋃
k ∈N

SUk (A) = SU(A).

Our motivation for introducing this stratification of SU is the canonical equivalence that one may

associate to each stratum SUk . Consider an alphabet A. For any natural number k ∈ N and any two

wordsw,w ′ ∈ A∗
, we writew ∼k w ′

if and only if the following condition holds:

For any language L ∈ SUk (A), w ∈ L ⇔ w ′ ∈ L.

By definition and since SUk is finite, ∼k is an equivalence relation of finite index. Finally, since all

strata SUk are Boolean algebras, the following lemma is immediate.

Lemma 2.11. Let k ∈ N. Then for any alphabet A, the languages in SUk (A) are exactly the unions
of ∼k -classes.

Finally, we shall need the following result which follows Lemma 2.11 and gives an alternate

definition of SU, which is sometimes simpler to manipulate. One may verify that for any k ∈ N, the
equivalence classes of ∼k are all languages of the formA∗w for |w | = k or {w} for some |w | ≤ k − 1.

Thus, we have the following lemma.

Lemma 2.12. Let A be an alphabet, let k ∈ N and let L be a language over A. Then, L ∈ SUk (A) if
and only if L is a union of languages having one of the two following forms:
(1) A∗w for somew ∈ A∗ such that |w | = k .
(2) {w} for somew ∈ A∗ such that |w | ≤ k − 1.

3 FRAGMENTS OF FIRST-ORDER LOGIC
In this section, we briefly recall the definition of first-order logic over words andω-words. Moreover,

we introduce the various fragments that we intend to investigate.

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 9

3.1 First-order logic and fragments
We first briefly define first-order logic. Consider an alphabet A. Recall that we view a wordw ∈ A∗

as a linearly ordered set of labeled positions {0, . . . , |w | − 1}. In first-order logic (FO(<)), one can
quantify over these positions and use the following predicates:

• The label predicates: for each a ∈ A, a unary predicate “a(x)” selects all positions labeled with an

a.

• Linear order : a binary predicate “x < y” interpreted as the (strict) linear order over the positions.

Each first-order sentence defines the language of all words satisfying it. For example, the sentence

“∃x∃y (x < y ∧ a(x) ∧ b(y))” defines the language A∗aA∗bA∗
. We shall freely use the name “FO(<)”

to denote both first-order logic and the class of languages that may be defined by a first-order

sentence.

Moreover, FO(<) also defines a class of ω-languages. Recall that the set of positions in an ω-word
is simply N. Thus, we may interpret FO(<) sentences on ω-words. For example, the sentence

“∃x∃y (x < y ∧ a(x) ∧ b(y))” also defines the ω-language A∗aA∗bAω
. Therefore, FO(<) defines two

classes: a class of languages and a class of ω-languages. We speak of FO(<) over words and FO(<)
over ω-words. We shall adopt a similar terminology for all fragments that we consider.

First-order logic itself is well-understood. The solution to the membership problem for FO(<)
over words is due to Schützenberger [38], McNaughton and Papert [18]. It is considered as a

seminal result for this research field. It was later lifted to ω-words by Perrin [19]. Separation and

covering were considered much later. Both problems were solved for words and ω-words by the

authors [30, 33]. However, the focus of our investigation in the present paper is not first-order logic

itself. Instead, we are interested in specific fragments of first-order logic that we define now.

Two-variable first-order logic. This fragment is denoted by FO
2(<). It restricts FO(<) sentences

to those containing at most two distinct variables. Note however that these two variables may be

reused. For example, the sentence

∃x∃y x < y ∧ a(x) ∧ b(y) ∧ (∃x y < x ∧ c(x))

is an FO
2(<) sentence defining the language A∗aA∗bA∗cA∗

and the ω-language A∗aA∗bA∗cAω
. It is

folklore and simple to verify that over words, FO
2(<) is a Boolean algebra closed under quotient and

inverse image. Similarly, over ω-words, FO2(<) is a Boolean algebra closed under inverse image.

Quantifier alternation hierarchy. We shall also consider fragments within the quantifier alter-

nation of first-order logic. It is natural to classify first-order sentences by counting the number

of alternations between ∃ and ∀ quantifiers in their prenex normal form. More precisely, given

a natural number n ≥ 1, an FO(<) sentence is Σn(<) (resp. Πn(<)) when its prenex normal form

has (n − 1) quantifier alternations (that is, n blocks of quantifiers) and starts with an ∃ (resp. a ∀)

quantifier. For example, a sentence whose prenex normal form is

∃x1∃x2∀x3∃x4 φ(x1, x2, x3, x4) (with φ quantifier-free)

is Σ3(<). Observe that the sets of Σn(<) and Πn(<) sentences are not closed under negation:

negating a Σn(<) sentence yields a Πn(<) sentence and vice versa. Thus, one also considers

BΣn(<) sentences: Boolean combinations of Σn(<) sentences. This yields hierarchies of classes of
languages and ω-languages, and both are strict [3]. The hierarchy for words is depicted in Figure 1.

Colors depict the status of each fragment: green (Σ1(<), Σ2(<), Σ3(<), BΣ1(<), BΣ2(<)) means that

covering is decidable (hence also separation and membership); blue (Π1(<), Π2(<), Π3(<)) means

that separation is decidable, while the status for covering is unknown; yellow (Σ4(<), Π4(<)) means

, Vol. 1, No. 1, Article . Publication date: August 2019.

10 Thomas Place and Marc Zeitoun

that membership is decidable for words and unknown for ω-words2, while the status for separation
and covering is unknown; finally, red means that even the status for membership is unknown

(which is also the case for BΣ4(<) and all fragments above).

Σ4(<)

Π4(<)

BΣ3(<)

Σ3(<)

Π3(<)

BΣ2(<)

Σ2(<)

Π2(<)

BΣ1(<)

Σ1(<)

Π1(<)

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

⊊

Fig. 1. Quantifier alternation hierarchy within FO(<).

It is folklore and simple to verify that over words, all levels Σn(<) (resp. BΣn(<)) are lattices
(resp. Boolean algebras) closed under quotient and inverse image. Similarly, over ω-words, all levels
Σn(<) (resp. BΣn(<)) are lattices (resp. Boolean algebras) closed under inverse image. We shall

come back to the quantifier alternation hierarchy of FO(<) in Section 6.

3.2 Enriched signatures
Observe that one may define a seemingly stronger variant FO(<,+1) of FO(<) by enriching its

signature with the following natural predicates:

• A binary predicate “x + 1 = y” interpreted as the successor relation between positions.

• A unary predicate “min(x)” which selects the leftmost position.

• A unary predicate “max(x)” which selects the rightmost position (in a finite word).

• A constant “ε” which holds for the empty word.

Remark 3.1. Naturally, “max” and “ε” are only useful when interpreting first-order sentences over
finite words: ω-words cannot have a rightmost position nor be empty.

Note however that FO(<,+1) is only stronger in the syntactic sense: it is known and simple to

verify that FO(<) and FO(<,+1) have the same expressive power, i.e., the corresponding classes of

languages (resp. of ω-languages) are the same. In other words, the four above predicates min, max,

+1 and ε may be defined from the linear order. For example x + 1 = y is defined by the formula

x < y ∧ ¬(∃z x < z ∧ z < y).

Nonetheless, this remark is crucial for the paper: we are not interested in first-order logic itself

but in its fragments. It turns out that for FO2(<) and the levels Σn(<), BΣn(<) in the quantifier

alternation hierarchy, adding the above predicates to the signature yields strictly more expressive

logics. Therefore, for each fragment, we are able to define two natural “variants”: a weak one (whose

signature consists of the linear order < and of the letter predicates a()) and a strong one (obtained

by enriching the signature of the weak one with the above predicates). We write FO
2(<,+1) for the

strong variant of FO
2(<) and Σn(<,+1),BΣn(<,+1) for the strong variants of Σn(<), BΣn(<).

Example 3.2. It is not possible to express successor in the two-variables restriction of first-order

logic (FO
2(<)). Intuitively, this is because it requires quantifying over a third variable (on the other

hand, it is simple to express “min”, “max” and“ε”).

2
Actually, for ω-words, very few results on separation and covering have been published, see Section 7.

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 11

Remark 3.3. While the predicates “min”, “max”, “ε” are not explicitly mentioned in our notation,
they are allowed in all strong variants. We omit them in the notation since they can be defined from
“<” for all fragments except for Σ1(<),Π1(<) and BΣ1(<).

Our objective in the paper is to investigate the covering and separation problems associated to

strong variants. Our main contribution is a generic reduction technique. It is designed to exploit the

intuitive relationship between weak and strong variants: we reduce covering for the latter to the

same problem for the former. We are then able to obtain covering and separation algorithms for

several strong variants as corollaries of already existing results for the corresponding weak variants.

In fact, we have two similar reduction theorems: one for finite words (presented in Section 4) and

one for ω-words (presented in Section 7).

Let us sketch our approach using the case of finite words. The reduction technique is based on

two ingredients. The first one is a generic operation that can be applied to a class of languages:

SU-enrichment (here, SU denotes the class of suffix languages defined in Section 2). Given a class

of languages C, SU-enrichment constructs a larger class denoted C ◦ SU. The key idea is that

SU-enrichment captures the intuitive relationship between weak and strong variants as a formal

and generic connection between the associated classes: if C is the class corresponding to a weak

variant, then C ◦ SU corresponds to the strong variant.

Remark 3.4. The connection between weak and strong variants is not a new result, even formalized
as a generic operation defined on classes of languages. For example, this was observed by Straubing [42]
for the quantifier alternation hierarchy. However, an important point is that in the literature, these
results are usually formulated using algebraic terminology. In contrast, in this paper, we work directly
at the level of language classes. We shall come back to this point in the next section.

The second ingredient is formulated as a generic reduction theorem. Given a lattice of languages

C closed under right quotient and inverse image, it states that (C ◦ SU)-covering reduces to

C-covering. By combining the two ingredients, we get a reduction that is generic to all logical

fragments outlined above.

4 REDUCING STRONG TOWEAK VARIANTS
In this section, we present our generic reduction for languages of finite words. First, we define

an operation which combines two class of languages C and D into a larger one C ◦ D: the “D-
enrichment of C”. This operation is crucial: as we shall prove later, when D = SU, it captures the

intuitive connection existing between weak and strong logical fragments.

Remark 4.1. Enrichment is the language theoretic counterpart of an algebraic operation defined
between varieties of semigroups: the wreath product (see [42] for words and [7] for ω-words). In fact,
we use the same notation: “◦”. We have two motivations for using a pure language theoretic point of
view here:
(1) This is much simpler: we avoid a lot of algebraic machinery.
(2) Manipulating this definition in proofs is more natural since we are only dealing with one object:

classes of languages. On the other hand, using the algebraic definition requires handling varieties
of semigroups and classes of languages simultaneously.

Our approach makes it necessary to prove the connection with logic, i.e., that SU-enrichment captures
the link between weak and strong fragments.

In this section, we first define enrichment and then present our reduction theorem: given any

class of languages C (satisfying appropriate properties), (C ◦ SU)-covering reduces to C-covering.

The remainder of the section will be devoted to proving this result.

, Vol. 1, No. 1, Article . Publication date: August 2019.

12 Thomas Place and Marc Zeitoun

4.1 The enrichment of a class of languages
We are now ready to define enrichment. We start with a preliminary notion.

P-taggings. Let A be an alphabet and let P be a finite partition of A∗
. Observe that P ×A is also a

finite set. We use it as an extended alphabet and define a canonical map τP : A∗ → (P ×A)∗. Given
an arbitrary word u ∈ A∗

, we denote by [u]P the unique language in the partition P that contains u.
Let w ∈ A∗

be a word. Consider the decomposition of w as a concatenation of letters: w =
a1 · · ·an ∈ A∗

. We let τP(w) be the word τP(w) = b1 · · ·bn ∈ (P ×A)∗ where,

b1 = ([ε]P,a1) and bi = ([a1 · · ·ai−1]P,ai) for 2 ≤ i ≤ n.

Note that when w is empty, then τP(ε) = ε . Given any w ∈ A∗
, we call τP(w) the P-tagging of w .

Observe that the P-tagging of w is simply a relabeling: each position i in w is given a new label

encoding its original label in A and the unique language in P containing the prefixw[1, i − 1].

Example 4.2. Let A = {a,b} and consider the languages Pε = {ε}, Pa = A∗a and Pb = A∗b.
Clearly, P = {Pε , Pa, Pb } is a partition of A∗

. Let w = babba ∈ A∗
, the P-tagging of w is τP(w) =

(Pε ,b)(Pb ,a)(Pa,b)(Pb ,b)(Pb ,a).

Remark 4.3. The map w 7→ τP(w) is not a morphism. Moreover, it is not surjective in general.
Indeed, there are usually compatibility constraints between consecutive positions in τP(w), as can be
observed in Example 4.2 (on the other hand, τP is injective).

While τP is not a morphism, it will often be convenient to decompose the image τP(w) of some

word w ∈ A∗
. For this, we shall use a second map δP : A∗ × A∗ → (P × A)∗. Let u,w ∈ A∗

and consider the decomposition of w as a concatenation of letters: w = a1 · · ·an ∈ A∗
. We let

δP(u,w) = b1 · · ·bn ∈ (P ×A)∗ where,

b1 = ([u]P,a1) and bi = ([ua1 · · ·ai−1]P,ai) for 2 ≤ i ≤ n.

The following lemma may be verified from the definitions of τP and δP.

Lemma 4.4. LetA be an alphabet, P a finite partition ofA∗. Then given any u ∈ A∗ and anyw ∈ A∗,
we have τP(uw) = τP(u) · δP(u,w).

Definition of enrichment. Consider two classes of languages C and D. We define a new class of

languages C ◦ D called the D-enrichment of C. Given an alphabet A, a D-partition of A∗
is a finite

partition of A∗
into languages of D.

We define C ◦D as the following class of languages. LetA be some alphabet. Given any language

L ⊆ A∗
, we have L ∈ (C ◦ D)(A) if and only if there exists a D-partition P of A∗

and languages

LP ∈ C(P ×A) for all P ∈ P such that,

L =
⋃
P ∈P

(
P ∩ τ−1P (LP)

)
.

Remark 4.5. Strictly speaking, this definition makes sense for any two classes of languages C and
D. On the other hand, one needs a few hypotheses for it to be robust. Specifically, it is natural to require
C to be closed under alphabetic inverse image: since we use C for distinct alphabets, it makes sense
to have a property connecting what C is for these distinct alphabets. Similarly, requiring D to be a
Boolean algebra is natural since we use D-partitions of A∗.
It turns out that when C is a lattice of languages closed under alphabetic inverse image and D is

a Boolean algebra of languages, C ◦ D is a lattice of languages containing both C and D (since we
never use this property, its proof is left to the reader).

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 13

Example 4.6. Consider the class AT of alphabet testable languages: for any alphabet A, AT(A)
contains all Boolean combinations of languagesA∗aA∗

for a ∈ A. We describe a language in AT◦SU.

Let A = {a,b}. We claim that A∗abA∗a belongs to (AT ◦ SU)(A). Consider the SU-partition of

Example 4.2: P = {Pε , Pa, Pb } where Pε = {ε}, Pa = A∗a and Pb = A∗b. Clearly, L = (P × A)∗ ·
(Pa,b) · (P ×A)∗ belongs to AT(P ×A). Moreover, one may verify that:

A∗abA∗a = (Pε ∩ τ−1P (∅)) ∪ (Pa ∩ τ−1P (L)) ∪ (Pb ∩ τ−1P (∅)) ∈ AT ◦ SU.

In fact, AT ◦ SU is exactly the class of locally testable languages, which is well-known in the

literature [4, 17, 47].

Remark 4.7. If the class D can be written D =
⋃

k ∈NDk , then we obtain from the definition
that C ◦ D =

⋃
k ∈N C ◦ Dk . In the case of SU-enrichment, we will use this remark with the natural

stratification (SUk)k ∈N of SU defined in Section 2.4.

As we explained, we are mainly interested in the special case of SU-enrichment as it captures the

intuitive connection between strong and weak logical fragments. Specifically, we prove in Section 5

that FO
2(<,+1) is the SU-enrichment of FO

2(<). Moreover, we show in Section 6 that for any n ≥ 1

Σn(<,+1) and BΣn(<,+1) are respectively the SU-enrichments of Σn(<) and BΣn(<).

We now turn to the main theorem of the paper (more precisely, to its variant for finite words):

given any lattice of languages C closed under right quotient and inverse image, (C ◦ SU)-covering

reduces to C-covering. The remainder of the section is devoted to presenting this reduction. Let us

start with an outline of the different steps it involves.

The reduction works with the algebraic definition of regular languages, which we recall. As we

explained, given any alphabet A, the universal language A∗
is a monoid. Given an arbitrary monoid

M and a language L ⊆ A∗
, we say that L is recognized by M if there exists a monoid morphism

α : A∗ → M and a set F ⊆ M such that L = α−1(F). It is well-know that a language is regular if and

only if it can be recognized by a finite monoid. Moreover, if L is regular, one may compute such a

morphism recognizing L from any representation of L (such as an NFA or an MSO sentence).

Consider an input pair (L, L) for the covering problem: L is a regular language and L is a finite

multiset of regular languages. Our reduction requires starting from a single monoid morphism

α : A∗ → M recognizing all languages in {L}∪L. This is mandatory, as the reduction is parametrized

by α .

Remark 4.8. This requirement is not restrictive: it is simple to build such a morphism. Assume that
{L} ∪ L = {L1, . . . , Ln}. For each i ≤ n, we may build a morphism αi : A

∗ → Mi recognizing Li . It
then suffices to use the morphism α : A∗ → M1 × · · · ×Mn defined by α(w) = (α1(w), . . . ,αn(w)),
which recognizes all languages Li .

Once we have the morphism α : A∗ → M in hand, we use it in a generic construction which

builds two objects. The first one is a new alphabet Aα : the alphabet of well-formed words. The
second one is a map L 7→ wfα (L)which associates a new regular language overAα to any language

L ⊆ A∗
recognized by α . We also extend this map to multisets.

Assume that C is a lattice of languages closed under right quotient and inverse image. The

reduction states that for any pair (L, L) such that all languages in {L} ∪ L are recognized by α , the

two following properties are equivalent:

(1) (L, L) is (C ◦ SU)-coverable.

(2) (wfα (L),wfα (L)) is C-coverable.

, Vol. 1, No. 1, Article . Publication date: August 2019.

14 Thomas Place and Marc Zeitoun

This concludes our outline. The remainder of this section is organized as follows. We first present

the construction which builds an alphabet of well-formed words from an arbitrary morphism. Then,

we state the reduction theorem and prove it.

4.2 Languages of well-formed words
We describe a generic construction which takes as input a morphism α : A∗ → M into a finite

monoid M . This construction is inspired by the work of Straubing [42]. It builds the following

objects:

(1) An alphabet Aα , called the alphabet of well-formed words associated to α .
(2) A map associating to any language L over A∗ recognized by α a regular language wfα (L) over
Aα . We call wfα (L) the language of well-formed words associated to L.
We denote by S the semigroup S = α(A+), that is, the image in M of all nonempty words.

Moreover, we write E(S) for the set of idempotent elements in S (i.e., E(S) consists of all e ∈ S such

that ee = e). We also write S1 for S ∪ {1M } (notice that it may happen that S = S1). Finally, we let
“□” be some symbol that does not belong toM . The alphabet of well-formed words associated to α ,
denoted by Aα , is defined as follows:

Aα = (E(S) ∪ {□}) × S1 × (E(S) ∪ {□}).

Note that since S depends on α , so does Aα . We are not interested in all words of A∗
α , but only in

those that are “well-formed”. Given a wordw ∈ A∗
α , we say thatw is well-formed if it is nonempty

(i.e.,w ∈ A+α) and has the following form:

w = (□, s1, f1) · (e2, s2, f2) · · · (en−1, sn−1, fn−1) · (en, sn,□)

with fi = ei+1 ∈ E(S) for all 1 ≤ i ≤ n − 1. In other words,

w = (□, s1, e2) · (e2, s2, e3) · · · (en−1, sn−1, en) · (en, sn,□).

In particular, well-formed words of length 1 are of the form (□, s,□) with s ∈ S1.

Remark 4.9. The definition requires that fi = ei+1 ∈ E(S) for all 1 ≤ i ≤ n − 1. This means that the
idempotents e2, . . . , en must be the image under α of nonempty words. This is easy to miss. However,
this property is crucial for proving the main theorem.

It is straightforward to build an automaton recognizing the language of well-formed words over

Aα . Thus, the following simple fact is immediate.

Fact 4.10. The language of all well-formed words over Aα is regular.

We now associate a new language over Aα to each language L recognized by α : we call it the
language of well-formed words associated to L. As the name suggests, it is made exclusively of

well-formed words.

One defines a canonical morphism eval : A∗
α → M by defining the image of each letter from Aα

(there are four kinds of such letters). For s ∈ S1 and e, f ∈ E(S), we let:{
eval((e, s, f)) = es f , eval((□, s, f)) = s f ,
eval((e, s,□)) = es, eval((□, s,□)) = s .

Consider a language L recognized by α . The language of well-formed words associated to L, denoted
by wfα (L), is defined as follows:

wfα (L) =
{
w ∈ A∗

α | w is well-formed and eval(w) ∈ α(L)
}
⊆ A+α .

Observe that by definition, wfα (L) is the intersection of some language recognized by eval with

the language of well-formed words. Hence, we have the following fact.

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 15

Fact 4.11. For any language L ⊆ A∗ recognized by α , wfα (L) ⊆ A
∗
α is regular.

Finally, as explained in the outline, we extend the notationwfα () tomultisets, by settingwfα (L) =
{wfα (L) | L ∈ L} for any multiset L consisting of languages recognized by α .

4.3 Main theorem: reducing (C ◦ SU)-covering to C-covering
We may now state the theorem that reduces (C ◦ SU)-covering to C-covering. It is restricted to

classes of languages C that are nontrivial: that is, there should exist some alphabet A such that

C(A) contains a language L which is neither empty nor universal (L , ∅ and L , A∗
).

Theorem 4.12 (Reduction theorem). Let α : A∗ → M be a morphism and let C be a nontrivial
lattice of languages closed under right quotient and inverse image. Moreover, let L be a language and
let L be a multiset of languages, all recognized by α . Then, the following properties are equivalent:

(1) (L, L) is (C ◦ SU)-coverable.
(2) (L, L) is (C ◦ SU2 |M |)-coverable.
(3) (wfα (L),wfα (L)) is C-coverable.

Before we prove Theorem 4.12, let us discuss its consequences. As announced, the theorem yields

a generic reduction from (C ◦ SU)-covering to C-covering for any nontrivial lattice of languages C

closed under right quotient and inverse image.

An important remark is that the proof is constructive. Since we intend to use the theorem as

a reduction, this is of particular interest for the direction (3) ⇒ (2). It is proved by exhibiting a

generic construction: given as input a separating C-cover of (wfα (L),wfα (L)), we explain how

to build a separating (C ◦ SU2 |M |)-cover of (L, L). Thus, we actually get reductions for the two

objectives associated to the covering problem: getting an algorithm that decides it, and finding a

generic construction for building separating covers.

Note that one may adapt the statement of Theorem 4.12 to accommodate natural restrictions

of covering, such as separation. Recall that this is the special case of inputs (L, L) where L is a

singleton. Thus, we have the following immediate corollary.

Corollary 4.13. Let α : A∗ → M be a morphism and C be a nontrivial lattice of languages closed
under right quotient and inverse image. Moreover, let L1, L2 be two languages recognized by α . Then,
the following properties are equivalent:

(1) L1 is (C ◦ SU)-separable from L2.
(2) L1 is (C ◦ SU2 |M |)-separable from L2.
(3) wfα (L1) is C-separable from wfα (L2).

Remark 4.14. In practice, applying Theorem 4.12 to obtain an actual covering or separation algo-
rithm for a given class of languages requires clearing the following preliminary steps:

(1) Prove that this class is the SU-enrichment C ◦ SU of some lattice of languages C closed under right
quotient and inverse image.

(2) Obtain a covering or separation algorithm for C.

The main point here is that it is usually much simpler to achieve these steps than to obtain directly a
covering algorithm for the class. For all examples we shall present, we only take care of the first item
and obtain the second from previously known results.

We shall apply Theorem 4.12 to obtain covering and separation algorithms for concrete classes

of languages in the next two sections.

, Vol. 1, No. 1, Article . Publication date: August 2019.

16 Thomas Place and Marc Zeitoun

We devote the rest of this section to proving Theorem 4.12. We keep our notation: α : A∗ → M
is a monoid morphism, S is the semigroup α(A+), and S1 = S ∪ {1M }. Recall that the associated

alphabet of well-formed words is:

Aα = (E(S) ∪ {□}) × S1 × (E(S) ∪ {□}).

Consider a nontrivial lattice of languages C closed under right quotient and inverse image. Our

objective is to show that when L and L are respectively a language and a multiset of languages

recognized by α , the following properties are equivalent:

(1) (L, L) is (C ◦ SU)-coverable.

(2) (L, L) is (C ◦ SU2 |M |)-coverable.

(3) (wfα (L),wfα (L)) is C-coverable.
We prove that (1) ⇒ (3) ⇒ (2) ⇒ (1). Observe that the direction (2) ⇒ (1) is trivial since

C ◦ SU2 |M | ⊆ C ◦ SU. Thus, we concentrate on proving that (1) ⇒ (3) and (3) ⇒ (2).

4.4 From (C ◦ SU)-covering to C-covering
We start with the implication (1) ⇒ (3) in Theorem 4.12. The argument is based on the following

proposition.

Proposition 4.15. For any k ≥ 1, there exists a map γ : A∗
α → A∗ satisfying the following two

properties:
(1) For any L ⊆ A∗ recognized by α and any well-formed wordw ∈ A+α , we havew ∈ wfα (L) if and

only if γ (w) ∈ L.
(2) For any language K ∈ (C ◦ SUk)(A), there exists HK ∈ C(Aα) such that for any well-formed word

w ∈ A+α , we havew ∈ HK if and only if γ (w) ∈ K .

Before proving Proposition 4.15, we use it to show (1) ⇒ (3) in Theorem 4.12. Consider a language

L and a multiset of languages L, all recognized by α . Assume that (L, L) is (C ◦ SU)-coverable. We

have to prove that (wfα (L),wfα (L)) is C-coverable. By hypothesis on (L, L), we have a separating
(C ◦ SU)-cover KA for (L, L). We use it together with Proposition 4.15 to construct a separating

C-cover KAα for (wfα (L),wfα (L)).
SinceKA contains finitelymany languages all belonging to C◦SU =

⋃
k ∈N C◦SUk (by Remark 4.7),

there is some k ≥ 1 such that KA ⊆ C ◦ SUk . Together with Proposition 4.15, this integer k defines

a map γ : A∗
α → A∗

. In particular, for any K ∈ KA, Item (2) of Proposition 4.15 yields a language

HK ∈ C(Aα). We define

KAα = {HK | K ∈ KA}.

To conclude the proof, we show that KAα is a separating C-cover for (wfα (L),wfα (L)).
We first prove that KAα is a C-cover of wfα (L). Letw ∈ wfα (L), we have to find H ∈ KAα such

that w ∈ H . Since w is well-formed, we know that γ (w) ∈ L by the first item in the proposition.

Since KA is a cover of L, we can find K ∈ KA such that γ (w) ∈ K . It then follows from the second

item in the proposition thatw ∈ HK , which belongs to KAα by definition. We conclude that KAα is

a cover of wfα (L). Moreover, it is a C-cover since all languages in KAα belong to C by Item (2) of

Proposition 4.15.

It remains to prove thatKAα is separating. Given anyH ∈ KAα , we have to findwfα (L
′) ∈ wfα (L)

such that H ∩ wfα (L
′) = ∅. By definition, H = HK for some K ∈ KA. Moreover, since KA is a

separating cover of (L, L), there exists L′ ∈ L such thatK∩L′ = ∅. This entails thatHK∩wfα (L
′) = ∅.

Indeed, otherwise, we would have w ∈ HK ∩wfα (L
′) which would imply that γ (w) ∈ K ∩ L′ by

the two items of Proposition 4.15, a contradiction. This terminates the proof of (1) ⇒ (3) in

Theorem 4.12.

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 17

It now remains to prove Proposition 4.15.

Proof of Proposition 4.15: definition of γ . Fix a natural number k . We start by defining the

map γ : A∗
α → A∗

and we then show that it satisfies the desired properties. It turns out that γ is a

morphism. Hence, it suffices to describe the image of letters in Aα .
To any element s ∈ α(A∗), we associate an arbitrarily chosen word ⌈s⌉ ∈ A∗

such that α(⌈s⌉) = s .
When s ∈ S = α(A+), we require ⌈s⌉ to be nonempty (note that this implies that ⌈e⌉ , ε when
e ∈ E(S), which is crucial in the proof). We are now ready to define our morphism γ : A∗

α → A∗
, by

defining the image of all four kinds of letters in Aα . Given s ∈ S and e, f ∈ E(S), we define,
γ ((e, s, f)) = ⌈e⌉k ⌈s⌉ ⌈f ⌉k ,

γ ((□, s, f)) = ⌈s⌉ ⌈f ⌉k ,

γ ((e, s,□)) = ⌈e⌉k ⌈s⌉ ,
γ ((□, s,□)) = ⌈s⌉ .

Now that we defined the morphism γ : A∗
α → A∗

, it remains to prove that it satisfies the two

properties of Proposition 4.15. We start with the first one, which is simpler.

Proof of Proposition 4.15: first item. Consider a language L ⊆ A∗
recognized by α . We have to

show thatw ∈ wfα (L) iff γ (w) ∈ L, for any well-formed wordw ∈ A+α .
Sincew is well-formed,w ∈ wfα (L) if and only if eval(w) ∈ α(L). Moreover, since α recognizes L,

γ (w) ∈ L if and only if α(γ (w)) ∈ α(L). Hence, it suffices to show eval(w) = α(γ (w)). By definition,

w = (□, s0, e1) · (e1, s1, e2) · · · (en−1, sn−1, en) · (en, sn,□),

γ (w) = ⌈s0⌉ ⌈e1⌉
2k ⌈s1⌉ ⌈e2⌉

2k · · · ⌈en−1⌉
2k ⌈sn−1⌉ ⌈en⌉

2k ⌈sn⌉ .

Hence, we have:

eval(w) = s0e1e1s1e2 · · · en−1sn−1enensn,

α(γ (w)) = s0(e1)
2ks1(e2)

2k · · · (en−1)
2ksn−1(en)

2ksn .

Since the ei ∈ E(S) are idempotents, we obtain indeed eval(w) = α(γ (w)).

Proof of Proposition 4.15: second item. For the proof, we fix some arbitrary language K ∈

(C ◦ SUk)(A). We have to build a language HK ∈ C(Aα) such that:

For any well-formed wordw ∈ A+α , w ∈ HK if and only if γ (w) ∈ K . (1)

This is more involved. Recall that by definition of C ◦ SUk , we have an SUk -partition P of A∗
and

languages LP ∈ C(P ×A) for all P ∈ P such that:

K =
⋃
P ∈P

(
P ∩ τ−1P (LP)

)
. (2)

Since C(Aα) is a lattice, it suffices to treat only two particular cases:

• K ∈ P, and
• K = τ−1P (LP) for some P ∈ P.
Indeed, if for each P ∈ P, we are able to exhibit HP ,H

′
P ∈ C(Aα) such that for any well-formed

wordw ∈ A+α , we havew ∈ HP iff γ (w) ∈ P andw ∈ H ′
P iff γ (w) ∈ τ−1P (LP), then for K given by (2),

one can choose KH =
⋃

P ∈P
(
HP ∩ H ′

P

)
. We therefore treat these two cases.

Case 1: K ∈ P. Therefore, K ∈ SUk (A), since P is an SUk -partition of A∗
. In this case, the argument

is based on the following fact, which follows from the definition of γ .

Fact 4.16. Consider two well-formed words w,w ′ ∈ A+α with the same rightmost letter. Then,
γ (w) ∈ K if and only if γ (w ′) ∈ K .

, Vol. 1, No. 1, Article . Publication date: August 2019.

18 Thomas Place and Marc Zeitoun

Proof. Since K ∈ SUk (A), it follows from the definition of SUk that given u ∈ A∗
, whether u ∈ K

depends only on the suffixes of length at most k in u. Moreover, by definition of the map γ , given a

well-formed wordw ∈ A+α , the suffixes of length at most k in γ (w) depend only on the rightmost

letter inw . The fact is then immediate. □

In view of Fact 4.16, there exist a sub-alphabet B ⊆ Aα such that for any well-formed word

w ∈ A+α , we have γ (w) ∈ K if and only if the rightmost letter inw belongs to B. Thus, it suffices to

define a language HK ∈ C(Aα) such that:

For any well-formed wordw ∈ A+α , w ∈ HK if and only ifw ∈ A∗
α · B.

It will then be immediate that this language HK satisfies (1) as desired. It remains to construct

HK ∈ C(Aα) satisfying the above property.
For ensuring the condition HK ∈ C(Aα), we use the fact that C is nontrivial. Indeed, this yields

an alphabet D such that C(D) contains some language L satisfying L , ∅ and L , D∗
. In particular,

we have two words u,v ∈ D∗
such that u ∈ L and v < L. Consider the morphism η : A∗

α → D∗

defined as follows. For any letter b ∈ Aα :

• If b is of the form (e, s,□) with s ∈ S1 and e ∈ E(S) ∪ {□} (i.e., b is used as a rightmost letter in

some well-formed word), then we define,

η(b) =

{
u if b ∈ B,
v if b < B.

• Otherwise, η(b) = ε .

We define HK = η−1(L). Clearly, HK ∈ C(Aα) since C is closed under inverse image. It remains

to show that it satisfies the desired property. Let w ∈ A+α be a well-formed word. By definition

of well-formed words,w = w ′b where b is the unique letter inw of the form (e, s,□) with s ∈ S1

and e ∈ E(S) ∪ {□}. Thus, it follows that η(w) = u ∈ L if b ∈ B and η(w) = v < L otherwise. This

exactly says thatw ∈ HK if and only ifw ∈ A∗
α · B, which concludes the proof of this case.

Case 2: K = τ−1P (LP) for some P ∈ P. In this case, the construction of HK is based on the following

lemma.

Lemma 4.17. There exists a morphism β : A∗
α → (P × A)∗ such that for any well-formed word

w ∈ A+α , we have τP(γ (w)) = β(w).

Again, Before proving Lemma 4.17, we use it to construct HK and finish the proof of Proposi-

tion 4.15. We have a language LP ∈ C(P ×A) such that K = τ−1P (LP). We define

HK = β−1(LP).

Since C is closed inverse image, it is immediate from the definition that HK ∈ C(Aα). We now

prove that HK satisfies (1): for any well-formed wordw ∈ A+α ,w ∈ HK if and only if γ (w) ∈ K . We

use Lemma 4.17. Given a well-formed wordw ∈ A+α , we havew ∈ HK if and only if β(w) ∈ LP . The
lemma then says that this is equivalent to τP(γ (w)) ∈ LP , i.e., to γ (w) ∈ K by hypothesis on K .

It remains to prove Lemma 4.17. Let us first define the morphism β : A∗
α → (P ×A)∗. We use the

map δP : A∗ ×A∗ → (P ×A)∗ that we defined at the beginning of the section.

Given any letter (e, s, f) ∈ Aα , we define its image β((e, s, f)). There are two cases depending on
whether e = □ or e ∈ E(S).

(1) If e = □, we define β((□, s, f)) = τP(γ ((□, s, f))).

(2) If e ∈ E(S), we define β((e, s, f)) = δP(⌈e⌉
k ,γ ((e, s, f))).

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 19

It remains to show that for any well-formed wordw ∈ A+α , we have τP(γ (w)) = β(w). We have

w = b1 · · ·bn with b1, . . . ,bn ∈ Aα . We show that for any ℓ ≤ n, we have:

τP(γ (b1 · · ·bℓ)) = β(b1 · · ·bℓ).

We shall argue by induction on ℓ. The case ℓ = n, will then yield the desired result. In the base case

ℓ = 1, since w is well-formed, we know that b1 = (□, s, f) for some s ∈ S1 and f ∈ E(S) ∪ {□}.

Thus, it is immediate by definition of β that we have τP(γ (b1)) = β(b1). Assume now that ℓ ≥ 2.

Since β is a morphism, we have

β(b1 · · ·bℓ) = β(b1 · · ·bℓ−1) · β(bℓ).

It then follows from the induction hypothesis that,

β(b1 · · ·bℓ) = τP(γ (b1 · · ·bℓ−1)) · β(bℓ).

Sincew is well-formed, we know that there exist f ,д ∈ E(S) ∪ {□}, s, t ∈ S1 and e ∈ E(S) such that

bℓ−1 = (д, t, e) and bℓ = (e, s, f). Hence, β(bℓ) = δP(⌈e⌉
k ,γ (bℓ)). Moreover, since bℓ−1 = (д, t, e),

it follows from the definition of γ that ⌈e⌉k is a suffix of γ (b1 · · ·bℓ−1). Thus, since P is a SUk -

partition of A∗
and ⌈e⌉k has length at least k (this is where ⌈e⌉ being nonempty is crucial), we have

[⌈e⌉k]P = [γ (b1 · · ·bℓ−1)]P. Hence,

β(bℓ) = δP(⌈e⌉
k ,γ (bℓ)) = δP(γ (b1 · · ·bℓ−1),γ (bℓ)).

Altogether, this yields,

β(b1 · · ·bℓ) = τP(γ (b1 · · ·bℓ−1)) · δP(γ (b1 · · ·bℓ−1),γ (bℓ)).

By Lemma 4.4, this says that β(b1 · · ·bℓ) = τP(γ (b1 · · ·bℓ)), which concludes the proof.

4.5 From C-covering to (C ◦ SU)-covering
We now turn to the direction (3) ⇒ (2) in Theorem 4.12. The argument is based on the following

proposition which states a generic property of the morphism α : A∗ → M .

Proposition 4.18. There exists a map η : A∗ → A∗
α such that:

(1) For any L ⊆ A∗ recognized by α , we have L = η−1(wfα (L)).
(2) For any K ∈ C(Aα), we have η−1(K) ∈ (C ◦ SU2 |M |)(A).

Before we prove Proposition 4.15, we use it to finish the proof of Theorem 4.12. Consider a lan-

guage L and a multiset of languages L, all recognized by α . Moreover, assume that (wfα (L),wfα (L))
is C-coverable. We have to show that (L, L) is (C ◦ SU2 |M |)-coverable.

By hypothesis, there exists a separating C-cover KAα of (wfα (L),wfα (L)), we use it to build a

separating (C◦SU2 |M |)-cover KA of (L, L). Consider the map η : A∗ → A∗
α given by Proposition 4.18.

We define,

KA = {η−1(K) | K ∈ KAα }.

To conclude the proof, we show that KA is a separating (C ◦ SU2 |M |)-cover of (L, L).
Let us first prove that KA is a (C ◦ SU2 |M |)-cover of L. Let w ∈ L, we first have to find H ∈ KA

such thatw ∈ H . Sincew ∈ L, we know from the first item in Proposition 4.18 that η(w) ∈ wfα (L).
Hence, since KAα is a cover ofwfα (L), there exists K ∈ KAα such that η(w) ∈ K . It now follows that

w belongs to η−1(K) ∈ KA. We conclude that KA is a cover of L. Moreover, it is a (C ◦ SU2 |M |)-cover

by Item (2) in Proposition 4.18.

We now prove that KA is separating. Let H ∈ KA, we have to find L′ ∈ L such that L′ ∩ H = ∅.

By definition H = η−1(K) for some K ∈ KAα . Since KAα is a separating for (wfα (L),wfα (L)), we

, Vol. 1, No. 1, Article . Publication date: August 2019.

20 Thomas Place and Marc Zeitoun

know that there exists L ∈ L such that K ∩wfα (L) = ∅. It is immediate that η−1(K) ∩ L = ∅ since

L = η−1(wfα (L)) by Item (1) in Proposition 4.18.

It remains to prove Proposition 4.18, to which we devote the rest of this section.

Proof of Proposition 4.18: definition of η.We begin by defining the map η : A∗ → A∗
α . Let us

point out that η is not a morphism (otherwise, since C is closed under inverse image, all η−1(K)
would belong to C(A), which is not the case in general). We start with a preliminary definition.

Given a wordw , a position x inw (i.e., x ∈ {0, 1, . . . , |w | − 1}) and a natural number k ∈ N, we
define the k-type of x as the following word of length at most k :

• If x < k , then the k-type of x is the prefixw[0, x − 1] of length x .

• If x ≥ k , then the k-type of x is the infixw[x − k, x − 1] of length k .

For the construction of η, we fix k = |M |. Moreover, we choose an arbitrary order on the set of

idempotents E(S) (recall that S = α(A+)).
Consider a nonempty wordw ∈ A+ and a position x inw . We say that x is distinguished when

there exists an idempotent e ∈ E(S) such that the k-type u of x satisfies α(u) · e = α(u). The
following fact states that distinguished positions are frequent.

Fact 4.19. Letw ∈ A+ be such that |w | ≥ k and let y ≥ k − 1 be a position inw . Then, there exists
a distinguished position x inw such that y − (k − 1) ≤ x ≤ y.

Proof. This follows from the pigeonhole principle. By definition, w[y − (k − 1),y] is a word
a1 · · ·ak of length k . For all 1 ≤ j ≤ k , we define w j = a1 · · ·aj . Moreover, we let w0 = ε . By
definition, we have k = |M |. Thus, we obtain from the pigeonhole principle that there exist

0 ≤ j1 < j2 ≤ k such that, α(w j1) = α(w j2).

We claim that the position x = y − (k − j1 − 1) inw is distinguished. Indeed, by definition, we

havew j2 = w j1aj1+1 · · ·aj2 . Therefore,

α(w j1) = α(w j2)

= α(w j1) · α(aj1+1 · · ·aj2)
= α(w j1) · (α(aj1+1 · · ·aj2))

p
for all p ∈ N.

It is standard (and easy to check) that there exists p ≥ 1 such that (α(aj1+1 · · ·aj2))
p
is an idempotent

e ∈ E(S). Therefore, sincew j1 is a suffix of the k-type of the position x = y − (k − j1 − 1), we know

that x is distinguished, as witnessed by the idempotent e . □

We are now ready to define the map η : A∗ → A∗
α . Consider a wordw ∈ A∗

. Ifw does not contain

any distinguished position, we define,

η(w) = (□,α(w),□).

Otherwise,w has n ≥ 1 distinguished positions, say x0 < · · · < xn−1. We let u0, · · · ,un−1 be their
respective k-types. Finally, let e0, . . . , en−1 ∈ E(S) be such that for all i ≥ 0, ei is the smallest

idempotent (according to the arbitrary order that we fixed over E(S)) such that α(ui) · ei = α(ui).
We define η(w) ∈ A+α as the following well-formed word:

η(w) = (□,α(w0), e0) · (e0,α(w1), e1) · · · (en−2,α(wn−1), en−1) · (en−1,α(wn),□) (3)

where w0, . . . ,wn are the unique words such that w may be decomposed as w = w0w1 · · ·wn
where for all i ≥ 0, the word wi+1 starts at position xi in w . In other terms, w0 = w[0, x0 − 1],

wi = w[xi−1, xi − 1] for 1 ≤ i ≤ n − 1 and wn = w[xn−1, |w | − 1]. Observe that for any w ∈ A∗
,

η(w) ∈ A+α is well-formed by construction.

It remains to prove that this definition satisfies the two items in Proposition 4.18.

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 21

Proof of Proposition 4.18: first item. Consider a language L ⊆ A∗
recognized by α , we have to

show that L = η−1(wfα (L)). This amounts to proving that for any w ∈ A∗
, w ∈ L if and only if

η(w) ∈ wfα (L).
Since α recognizes L, w ∈ L if and only if α(w) ∈ α(L). Moreover, since η(w) is well-formed,

by definition, η(w) ∈ wfα (L) if and only if eval(η(w)) ∈ α(L). Hence, it suffices to prove that

eval(η(w)) = α(w). This is immediate from the definition if w has no distinguished position.

Otherwise, w may be decomposed as w = w0 · · ·wn and (3) holds. By choice of the idempotents

used in the construction, we have α(w1 · · ·wi) ·ei = α(w1 · · ·wi) for all i ≥ 0. Hence, it is immediate

from a simple induction that

eval(η(w)) = α(w0) · e0 · α(w1) · e1 · α(w2) · · · · · en−1 · α(wn) = α(w1 · · ·wn) = α(w).

Proof of Proposition 4.18: second item. Given an arbitrary language K ∈ C(Aα), we have to
prove that η−1(K) belongs to (C ◦ SU2k)(A) (recall that we fixed k = |M |).

By definition of C◦SU2k , the first thing we have to do is choose some SU2k -partition ofA∗
. Recall

that ∼2k denotes the canonical equivalence associated to SU2k : givenw,w
′ ∈ A∗

, we havew ∼2k w ′

whenw ∈ L ⇔ w ′ ∈ L for any L ∈ SU2k . We denote by P the partition of A∗
into ∼2k -classes. By

Lemma 2.11, P is a SU2k -partition of A∗
. It now remains to exhibit languages LP ∈ C(P ×A) for all

P ∈ P such that

η−1(K) =
⋃
P ∈P

(
P ∩ τ−1P (LP)

)
.

We start with preliminary definitions. We know that for any wordw ∈ A∗
having n distinguished

positions, η(w) ∈ A+α has lengthn+1 and is built by decomposingw according to these distinguished

positions. We let ηp (w) ∈ A∗
α be the (possibly empty) prefix of η(w) made of the first n letters

of η(w) (ηp (w) is not well-formed: the third component of the rightmost letter is not “□”). The

argument is now based on the two following lemmas.

Lemma 4.20. Let P ∈ P. Then there exists a letter bP ∈ Aα such that for anyw ∈ P , the rightmost
letter in η(w) is bP , i.e., η(w) = ηp (w) · bP .

Lemma 4.21. There exists a morphism β : (P × A)∗ → A∗
α such that for any w ∈ A∗, β(τP(w)) =

ηp (w).

Before proving these lemmas, let us use them to finish the proof that η−1(K) belongs to (C ◦

SU2k)(A). For any P ∈ P, we letbP ∈ Aα be as defined in Lemma 4.20.Moreover, let β : (P×A)∗ → A∗
α

be the morphism described in Lemma 4.21. We claim that:

η−1(K) =
⋃
P ∈P

(
P ∩ τ−1P (β−1(K(bP)

−1))
)
.

This concludes the proof: since C is closed under right quotient and inverse image, we know that

for any P ∈ P, β−1(K(bP)−1) ∈ C(P×A). Thus, it is immediate that η−1(K) belongs to (C ◦ SU2k)(A)
by definition.

Let us prove the claim. Consider a wordw ∈ A∗
and let P be the unique language in the partition

P of A∗
such that w ∈ P . It suffices to show that w ∈ η−1(K) if and only if w ∈ τ−1P (β−1(K(bP)

−1)).

By Lemma 4.20, we know that w ∈ η−1(K) if and only if ηp (w) · bP ∈ K , i.e., ηp (w) ∈ K(bP)
−1
.

Finally, since β(τP(w)) = ηp (w) by Lemma 4.21, this is equivalent tow ∈ τ−1P (β−1(K(bP)
−1)), which

concludes the proof.

It remains to prove Lemmas 4.20 and 4.21.

Proof of Lemma 4.20. Since any P ∈ P is by definition a ∼2k -class, this amounts to proving that

givenw,w ′ ∈ A∗
such thatw ∼2k w ′

, η(w) and η(w ′) have the same rightmost letter. We consider

two possible cases.

, Vol. 1, No. 1, Article . Publication date: August 2019.

22 Thomas Place and Marc Zeitoun

Ifw has no distinguished position, then we have |w | < k by Fact 4.19, hence {w} ∈ SU2k . Since

w ∼2k w ′
, we havew ′ ∈ {w}, i.e.,w = w ′

. The result is now immediate.

Assume on the contrary that w contains at least one distinguished position. We let x be the

rightmost one, and u be the k-type of x . By definition, the rightmost letter in η(w) is (e,α(v),□)

where v = w[x, |w | − 1] and e ∈ E(S) the smallest idempotent such that α(u) · e = α(u). Note
that uv is a suffix ofw by definition. Since x is the rightmost distinguished position by definition,

it follows from Fact 4.19 that |v | ≤ k (otherwise, there would be another distinguished position

strictly to the right of x). It follows that |uv | ≤ 2k . Thus, sincew ∼2k w ′
, uv is a suffix ofw ′

as well.

It now follows from the definitions that the rightmost letter inw ′
must be (e,α(v),□) as well. This

concludes the proof of Lemma 4.20.

Proof of Lemma 4.21. Let us start with a few simple observations. Consider some wordw ∈ A∗
. By

definition, ifw has no distinguished position, then ηp (w) = ε . Otherwise,w has n ≥ 1 distinguished

positions x0 < · · · < xn−1 and,

ηp (w) = (□,α(w0), e0) · (e0,α(w1), e1) · · · (en−2,α(wn−1), en−1)

where w0 = w[0, x0 − 1], wi = w[xi−1, xi − 1] for 1 ≤ i ≤ n − 1. Note that there is a natural

bijection between the distinguished positions ofw and the positions of ηp (w), which associates to

any distinguished position xi inw the position ⌊xi ⌋ = i in ηp (w).

By definition any position x inw may also be viewed as a position of τP(w) ∈ (P ×A)∗. Because
of our choice of k as |M |, the mapw 7→ ηp (w) is designed so that for any position x inw , whether

x is distinguished and if so the label of ⌊x⌋ in ηp (w) depends only on the label of x in τP(w). Let us

state this property in the following lemma.

Lemma 4.22. For any letter (P,a) ∈ P ×A, one of the two following properties hold:
(1) For anyw ∈ A∗ and any position x inw , if x has label (P,a) in τP(w), then x is not distinguished.
(2) There is a letter c(P ,a) ∈ Aα such that for anyw ∈ A∗ and any position x inw , if x has label (P,a)

in τP(w), then x is distinguished and ⌊x⌋ has label c(P ,a) in ηp (w).

Before proving Lemma 4.22, we first use it to define the morphism β : (P ×A)∗ → A∗
α and finish

the argument for Lemma 4.21. We have to define the image of each letter in P×A. Let (P,a) ∈ P×A
be a letter.

• If (P,a) satisfies the first item Lemma 4.22, we let β((P,a)) = ε .

• If (P,a) satisfies the first second item in Lemma 4.22, we let β((P,a)) = c(P ,a).

It is now immediate from Lemma 4.22 that β satisfies the desired property: for any w ∈ A∗
,

β(τP(w)) = ηp (w).

It remains to prove Lemma 4.22. By definition of the partition P, this amounts to proving that

givenw,w ′ ∈ A∗
and x, x ′

positions inw,w ′
such thatw[0, x−1] ∼2k w ′[0, x ′−1], x is distinguished

if and only if x ′
is distinguished and in that case, ⌊x⌋ and ⌊x ′⌋ in ηp (w) and ηp (w

′) have the same

label. Ifw[0, x − 1] ∼2k w ′[0, x ′ − 1], then x and x ′
have the same k-type, and since the k-type of a

position determines whether it is distinguished or not, x and x ′
are either both distinguished, or

none of them is.

We now concentrate on the second property. Assume that x and x ′
are distinguished, we show

that the positions ⌊x⌋ and ⌊x ′⌋ in ηp (w) and ηp (w
′) carry the same label. We defineu as the common

k-type of x and x ′
and e ∈ E(S) as the smallest idempotent such that α(u) · e = α(u). We distinguish

two cases.

Assume first that x is the leftmost distinguished position inw . It follows that the label of ⌊x⌋ is
(□,α(w[0, x−1]), e). We have to show that this is also the label of ⌊x ′⌋. By hypothesis, we know that

the prefixw[0, x − 1] contains no distinguished position. Thus, Fact 4.19 yields thatw[0, x − 1] < k .

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 23

Sincew[0, x − 1] ∼2k w ′[0, x ′ − 1], it is then immediate thatw[0, x − 1] = w ′[0, x ′ − 1]. We conclude

that x ′
is also the leftmost distinguished position of w ′

and that ⌊x⌋ , ⌊x ′⌋ have the same label,

namely (□,α(w[0, x − 1]), e).
Assume now that x is not the leftmost distinguished position inw . Let y be the distinguished

position which directly precedes x inw . Furthermore, let v be the k-type of y and f ∈ E(S) be the
smallest idempotent such that α(v) · f = α(v). By definition, the label of ⌊x⌋ is (f ,α(w[y, x − 1]), e).
We have to show that this is also the label of ⌊x ′⌋. By Fact 4.19, we have |w[y, x −1]| ≤ k (otherwise,

there would be a third distinguished position in w strictly between y and x , contradicting the

definition of y). Therefore, |v ·w[y, x − 1]| ≤ 2k . Moreover, v ·w[y, x − 1] is a suffix ofw[0, x − 1]

by definition. Since w[0, x − 1] ∼2k w ′[0, x ′ − 1], we obtain that v ·w[y, x − 1] is also a suffix of

w ′[0, x ′ − 1]. This shows that ⌊x ′⌋ has label (f ,α(w[y, x − 1]), e) as well, which concludes the proof.

5 APPLICATION TO TWO-VARIABLE FIRST-ORDER LOGIC
This is the first of two sections in which we illustrate Theorem 4.12 and use it to obtain algorithms

for a particular class of languages. Here, we consider the two-variable fragment of first-order logic

over words (defined in Section 3). Specifically, we show that the covering is decidable for the strong

variant: FO
2(<,+1). Let us state this result.

Corollary 5.1 (of Theorem 4.12). Covering and separation are decidable for FO2(<,+1) over
words.

As we explained in Remark 4.14, using Theorem 4.12 to obtain Corollary 5.1 requires clearing

two preliminary steps. First, we need to show that FO
2(<,+1) is the SU-enrichment of some lattice

closed under right quotient and inverse image (namely FO
2(<) in this case). Then, we need to show

that covering and separation are decidable for FO
2(<).

Fortunately, the second step has already been achieved: it was shown in [28] and in [32, 35] that

FO
2(<)-separation and FO

2(<)-covering are decidable. Thus, we just need to show that FO
2(<,+1)

is the SU-enrichment of FO
2(<). We state this in the following proposition.

Proposition 5.2. Over words, FO2(<,+1) is the SU-enrichment of FO2(<).

Remark 5.3. It is important to point out that while the formulation is new, the underlying ideas
behind Proposition 5.2 were already known. This connection between FO

2(<) and FO
2(<,+1) was

originally presented by Thérien and Wilke [44]. However, the full proof of this result is scattered in the
literature and relies on different terminology. Thus, it makes sense to detail it here.

There are two inclusions to prove for showing Proposition 5.2. We devote a subsection to each

of them.

5.1 From enrichment to successor
We show here that any language in the SU-enrichment of FO

2(<) may be defined by an FO
2(<,+1)

sentence. For this, let us fix an alphabet A and consider a language L ∈ FO
2(<) ◦ SU over A. By

definition, there exists an SU-partition P of A∗
such that,

L =
⋃
P ∈P

(P ∩ τ−1P (LP))

where all languages LP ⊆ (P × A)∗ are definable in FO
2(<). We show that L can be defined by

an FO
2(<,+1) sentence. Since we may freely use Boolean connectives in FO

2(<,+1) sentences, it
suffices to show that for all P ∈ P, both P and τ−1P (LP) are defined by an FO

2(<,+1) sentence. We

start with the following preliminary lemma.

, Vol. 1, No. 1, Article . Publication date: August 2019.

24 Thomas Place and Marc Zeitoun

Lemma 5.4. For anyu ∈ A∗, one may construct an FO2(<,+1) formula φu (x) (with one free variable
x) such that for anyw ∈ A∗ and any position x inu, we havew |= φu (x) if and only ifw[0, x−1] ∈ A∗u.

Proof. We use induction onu to define φu (x). Ifu = ε , it suffices to define φu (x) = ⊤. Otherwise,

u = va for some v ∈ A∗
and a ∈ A and we define,

φu (x) = ∃y (y + 1 = x ∧ a(y) ∧ φv (y)).

This concludes the proof of Lemma 5.4. □

We now start the main argument. Let P ∈ P, we first show that P and τ−1P (LP) may both be

defined by an FO
2(<,+1) sentence.

Case 1: each P ∈ P may be defined by an FO
2(<,+1) sentence. By definition of P, we know that

P ∈ SU(A), whence P is a finite Boolean combination of languages of the form A∗w , withw ∈ A∗
.

Since FO
2(<,+1) is a Boolean algebra, it suffices to show that A∗w can be defined in FO

2(<,+1).
Ifw = ε , then A∗

is defined by the sentence ⊤. Otherwise,w = ua with u ∈ A∗
and a ∈ A, A∗w is

defined by ∃x max(x) ∧ a(x) ∧ φu (x).

Case 2: the language τ−1P (LP)may be defined by an FO
2(<,+1) sentence. Recall that LP ⊆ (P×A)∗ is

defined by some FO
2(<) sentence ξ . We use the following fact which is an immediate consequence

of Lemma 5.4 since all languages in P belong to SU.

Fact 5.5. Given any (P,a) ∈ P ×A, there exists a FO2(<,+1) formula ζ(P ,a)(x) (over A) with one
free variable such that for anyw ∈ A∗ and any position x inw , we have,w |= ζ(P ,a)(x) if and only if
x has label (P,a) ∈ τP(w).

It is now simple to construct an FO
2(<,+1) sentence defining τ−1P (LP) from the FO

2(<) sentence
ξ defining LP ⊆ (P×A): we replace atomic subformulas of the form (P,a)(x), for some (P,a) ∈ P×A,
by the formula ζ(P ,a)(x). This concludes the proof for this direction.

5.2 Ehrenfeucht-Fraïssé games
To prove the converse direction in Proposition 5.2, we need the Ehrenfeucht-Fraïssé games associ-

ated to FO
2(<) and FO

2(<,+1). We first define these games.

Remark 5.6. For the sake of simplifying the FO2(<,+1)-game, we shall assume that the predicates
min,max and ε are not allowed in FO

2(<,+1). This is not restrictive since min(x) is defined by
¬(∃y y < x),max(x) by ¬(∃y y > x) and ε by ∀x⊥.

The (quantifier) rank of a first-order formula φ, denoted rank(φ), is defined as the largest number

of quantifiers along a branch in the parse tree of φ. Formally, rank(φ) = 0 if φ is an atomic formula,

rank(¬φ) = rank(φ), rank(φ1 ∨ φ2) = max(rank(φ1), rank(φ2)) and rank(∃x φ) = rank(φ) + 1. For
any alphabet A, any natural number k ∈ N and any two wordsw,w ′ ∈ A∗

, we write:

• w �k w ′
whenw andw ′

satisfy the same FO
2(<) sentences of rank k .

• w �+k w ′
whenw andw ′

satisfy the same FO
2(<,+1) sentences of rank k .

It is immediate that both �k and �+k are equivalence relations over the set A∗
. Moreover, one

may verify the following standard lemma, which characterizes languages definable in FO
2(<) and

FO
2(<,+1) using these relations:

Lemma 5.7 (Folklore). Given any alphabet A, any language L ⊆ A∗ and any natural number
k ∈ N, the following properties hold:
• L may be defined by a FO2(<) sentence of rank k if and only if L is a union of �k -classes.
• L may be defined by a FO2(<,+1) sentence of rank k if and only if L is a union of �+k -classes.

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 25

We now define the Ehrenfeucht-Fraïssé games associated to FO
2(<) and FO

2(<,+1), which give

alternate definitions for the relations �k and �+k .

FO2(<) game. The board of the FO
2(<)-game consists of two wordsw andw ′

. It lasts a predefined

number k of rounds. There are two players called Spoiler and Duplicator. Moreover, there are two

pebbles and at any time during the game after the first round, one of them is placed on a position

ofw and the other on a positionw ′
, and these two positions have the same label (when the game

starts, no pebble is on the board).

In the first round, Spoiler chooses a word (eitherw orw ′
) and places a pebble on a position of

this word. Duplicator must answer by placing the other pebble on a position of the other word

having the same label. The remaining rounds are played as follows. Spoiler chooses a word (either

w or w ′
) and moves the pebble inside this word from its original position x to a new position y.

Duplicator must answer by moving the other pebble in the other word from its original position x ′

to a new position y ′
having the same label as y and such that x ′ < y ′

if and only if x < y.
Duplicator wins if she manages to play for all k rounds. Spoiler wins as soon as Duplicator is

unable to play.

FO2(<,+1) game. The FO
2(<,+1)-game is defined similarly with an additional constraint for

Duplicator when answering Spoiler’s moves. When Spoiler makes a move, Duplicator must choose

her answer y ′
so that x ′ + 1 = y ′

if and only if x + 1 = y and y ′ + 1 = x ′
if and only if y + 1 = x (in

addition to the constraints already presented for the FO
2(<) game).

We may now state the Ehrenfeucht-Fraïssé theorem for FO
2(<) and FO

2(<,+1): �k and �+k are

characterized by the FO
2(<) game and the FO

2(<,+1) game, respectively.

Theorem 5.8 (Folklore). Let A be an alphabet. Given any k ∈ N and any wordsw,w ′ ∈ A∗, the
two following properties hold:

• w �k w ′ if and only if Duplicator has a winning strategy for playing k-rounds in the FO2(<)-game
overw andw ′.

• w �+k w ′ if and only if Duplicator has a winning strategy for playing k-rounds in the FO2(<,+1)-
game overw andw ′.

5.3 From successor to enrichment
We are now ready to show the remaining direction in Proposition 5.2: any language that can be

defined by an FO
2(<,+1) sentence belongs to the SU-enrichment of FO

2(<).
We start with a preliminary definition. Recall that given any k ∈ N, ∼k denotes the canonical

equivalence defined on A∗
associated to SUk . We write Pk for the finite partition of A∗

into classes

of ∼k . Note that Pk is a SU-partition of A∗
by Lemma 2.11. In the proof, we use the SU-partitions

Pk to build languages in FO
2(<) ◦ SU. For the sake of simplifying the notation, given k ∈ N, we

shall write τk for the map τPk : A∗ → (Pk ×A)∗.

Our argument to prove FO
2(<,+1) ⊆ FO

2(<) ◦ SU is based on the following result.

Proposition 5.9. Let k ∈ N, andw,w ′ ∈ A∗. If τ2k (w) �k τ2k (w
′), thenw �+k w ′.

Before showing Proposition 5.9, we use it to conclude our argument for Proposition 5.2. Let

L ⊆ A∗
be defined by some FO

2(<,+1) sentence φ. We show that L ∈ FO
2(<) ◦ SU. By Lemma 5.7, L

is a union of �+k -classes, where k is the rank of φ. We define a language H ⊆ (P2k ×A)∗ as follows:

H = {u ∈ (P2k ×A)∗ | there existsw ∈ L such that τ2k (w) �k u}.

, Vol. 1, No. 1, Article . Publication date: August 2019.

26 Thomas Place and Marc Zeitoun

By definition, H is a union of �k -classes and can therefore be defined by some FO
2(<) sentence of

rank k (see Lemma 5.7). We show that,

L = τ−1
2k (H) =

⋃
P ∈P

2k

(P ∩ τ−1
2k (H)), (4)

an expression showing that L ∈ FO
2(<) ◦ SU (since P2k is an SU-partition of A∗

). To prove (4), we

start with the left to right inclusion. Assume thatv ∈ L. It is then immediate from the definition that

τ2k (v) ∈ H since τ2k (v) �k τ2k (v), hence we get v ∈ τ−1
2k (H), which establishes the first inclusion.

For the converse inclusion, assume that v ∈ τ−1
2k (H). We show that v ∈ L. Since v ∈ τ−1

2k (H), we

get by definition of H that there exists w ∈ L such that τ2k (w) �k τ2k (v). Thus, we obtain from

Proposition 5.9 that w �+k v . Finally, since w ∈ L and L is a union of �+k -classes, we obtain that

v ∈ L.

It remains to prove Proposition 5.9. Let k ∈ N and letw,w ′ ∈ A∗
be words such that τ2k (w) �k

τ2k (w
′). Our objective is to prove that w �+k w ′

. By Theorem 5.8, this amounts to describing a

winning strategy for Duplicator in the k-round FO
2(<,+1)-game overw andw ′

. We call this game

G. Duplicator’s strategy involves playing another “shadow” FO
2(<)-game over τ2k (w) and τ2k (w

′).

Recall that by hypothesis and Theorem 5.8, she has a winning strategy for k rounds in this shadow

game. Depending on the moves that Spoiler makes in G, Duplicator may have to simulate a move

by Spoiler in the shadow game. Her strategy in the shadow game gives her an answer to this

simulated move, which she is then able to use for computing a suitable answer in G.

Recall that for any word v ∈ A∗
(includingw andw ′

), τ2k (u) is a relabeling of u over (P ×A). In
particular, this means that any position ofw (resp.w ′

) corresponds to a position of τ2k (w) (resp.

τ2k (w
′)), and may be viewed as such, and vice versa. This will be convenient to relate the moves

performed in G to the ones played in the shadow game.

Given two positions x and z ofw and a natural number h ≤ k − 1, we say that x is h-safe for z
when all positions y in u such that |x −y | ≤ h satisfy z − 2k ≤ y ≤ z. Note that these positions inw
are all fully described by (the two components of) the label of z in τ2k (w). We extend the definition

to positions x ′, z ′ ofw ′
in the same way.

We may now describe Duplicator’s strategy in G. It involves enforcing an invariant I(j) which
has to hold after each round j. Let 1 ≤ j ≤ k . Assume that j rounds have been played in G so far

and let x, x ′
be the positions ofw,w ′

on which the pebbles are currently placed in G. Furthermore,

let z, z ′ be the positions of τ2k (w), τ2k (w
′) on which the pebbles are currently placed in the shadow

game. We say that I(j) holds when the following conditions are met.

(1) x − z = x ′ − z ′.

(2) x is (k − j)-safe for z and x ′
is (k − j)-safe for z ′.

(3) Duplicator has a wining strategy for playing k − j more rounds in the shadow game.

We now describe a strategy allowing Duplicator to play and enforce I(j) after each round j,
1 ≤ j ≤ k . Let us first explain how Duplicator may enforce I(1) after round 1.

Assume that Spoiler puts a pebble on a position x ofw (the case when Spoiler puts a pebble in

w ′
is symmetrical). Then, Duplicator simulates a moves by Spoiler in the shadow game by putting

a pebble on position z =min(|w | − 1, x + k − 1) in τ2k (w). She then obtains an answer z ′ in τ2k (w
′)

having the same label as z from her strategy. By definition, x is (k − 1)-safe for z. Since z and z ′

have the same label in τ2k (w) and τ2k (w
′), by definition of the labels in τ2k (w) and τ2k (w

′), there

must exist a position x ′
inw ′

such that z − x = z ′ − x ′
and with the same label as x . This position

x ′
is Duplicator’s answer, which is clearly correct. Moreover, I(1) is satisfied.

We now assume that j ≥ 1 rounds have already been played and that I(j) holds. Let x, x ′
be

the positions of w,w ′
on which the pebbles are currently placed in G and let z, z ′ be those in

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 27

τ2k (w), τ2k (w
′) on which the pebbles are currently placed in the shadow game. Assume that Spoiler

moves the pebble from position x inw to a new position y (as before, the other case is symmetrical).

We describe a correct answer for Duplicator which satisfies I(j + 1). There are two cases depending
on whether y is (k − j − 1)-safe for z or not.
Assume first that y is (k − j − 1)-safe for z. In that case, Duplicator does not use the shadow

game (the pebbles remain on z and z ′ for this round). Since z and z ′ have the same label in τ2k (w)

and τ2k (w
′), there must exist a position y ′

inw ′
such that z − y = z ′ − y ′

and with the same label

as y. This position y ′
is Duplicator’s answer. One may verify that it is correct and that I(j + 1) is

satisfied.

We now assume that y is not (k − j − 1)-safe for z. There are two sub-cases depending on whether

y < x or x < y. By symmetry, we only consider the case x < y. Note that by hypothesis, we have

the following properties:

a) y > x + 1 (since x is (k − j)-safe, x + 1 is (k − j − 1)-safe).

b) y > z − k + j + 1 (as y is strictly right of the rightmost (k − j − 1)-safe position for z).

c) z , |w | − 1 (otherwise, y > x would be (k − j − 1)-safe for z)

Duplicator first simulates a move by Spoiler in the shadow game: she moves the pebble in τ2k (w)

from z to z1 =min(|w |−1,y+k−j−1), i.e., to the leftmost position for whichy is (k−j−1)-safe. Note
that z1 > z. Indeed, either z1 = |w | − 1 and z < z1 by Item c) above. Otherwise, z1 = y+k − j − 1 > z
by Item b). Hence, Duplicator’s strategy in the shadow game yields an answer z ′

1
> z ′ in τ2k (w

′)

with the same label as z1.
Since z1, z

′
1
have the same label in τ2k (w), τ2k (w

′), we now obtain a position y ′
inw ′

such that

z1 − y = z ′
1
− y ′ = k − j − 1 and with the same label as y. This position y ′

is Duplicator’s answer.

Proving that it is correct and that I(j + 1) now holds amounts to showing that y ′ > x ′ + 1. Since

x ′
was (k − j)-safe for z ′, we know that x ′ ≤ z ′ − k + j. Since z ′ < z ′

1
, this yields x ′ < z ′

1
− k + j.

Finally, we have z ′
1
−y ′ = k − j − 1 by definition. Altogether, this means that x ′ + 1 < y ′

, as desired.

This concludes the proof of Proposition 5.9, and therefore of Proposition 5.2 as well.

6 APPLICATION TO QUANTIFIER ALTERNATION
In this section, we illustrate Theorem 4.12 with a second example: the quantifier alternation of

first-order logic over words. We prove the following result.

Corollary 6.1 (of Theorem 4.12). Over words, covering and separation are decidable for the
levels Σ1(<,+1), BΣ1(<,+1), Σ2(<,+1), BΣ2(<,+1) and Σ3(<,+1) in the alternation hierarchy of
first-order logic.

Note that Corollary 6.1 subsumes many difficult results from the literature. In particular, it shows

that membership is decidable for BΣ1(<,+1) and for Σ2(<,+1). Direct proofs for both of these

results are difficult [12–14].

As usual, obtaining Corollary 6.1 from Theorem 4.12 requires clearing two preliminary steps.

• First we prove that the fragments mentioned in the theorem are the SU-enrichment of lattices

closed under right quotient and inverse image. As expected, we use Σ1(<),BΣ1(<), Σ2(<),BΣ2(<)
and Σ3(<) in this case.

• Then, covering and separation are shown to be decidable for these simpler classes.

Again, the second step has already been achieved: it is known that covering and separation are

decidable for Σ1(<) [9, 34], BΣ1(<) [9, 28, 34], Σ2(<) [29, 34, 36], BΣ2(<) [34] and Σ3(<) [26, 27].
Thus, we concentrate on proving the connections with SU-enrichment. We state them in the

following proposition.

, Vol. 1, No. 1, Article . Publication date: August 2019.

28 Thomas Place and Marc Zeitoun

Proposition 6.2. Given any n ≥ 1, the following two properties hold over words:

• Σn(<,+1) is the SU-enrichment of Σn(<).
• BΣn(<,+1) is the SU-enrichment of BΣn(<).

Remark 6.3. As for two-variable first-order logic in the previous section, these properties are
essentially already known. The underlying ideas behind the connection with SU-enrichment are due to
Straubing [42].

In the rest of this section, we prove Proposition 6.2. We focus on the first item: Σn(<,+1) is the
SU-enrichment of Σn(<). The proof for the second item is similar and left to the reader. There are

two inclusions to prove, we devote one subsection to each of them.

6.1 From enrichment to successor
Let n ∈ N and consider some alphabet A. Let L ⊆ A∗

be a language belonging to Σn(<) ◦ SU. We

want to show that L is definable in Σn(<,+1). By definition, there exists an SU-partition P of A∗

such that

L =
⋃
P ∈P

(P ∩ τ−1P (LP)),

where all languages LP ⊆ (P × A)∗ are definable in Σn(<). We show that L can be defined by a

Σn(<,+1) sentence. Since we may freely use disjunction and conjunction in Σn(<,+1) sentences, it
suffices to show that for all P ∈ P, both P and τ−1P (LP) are defined by a Σn(<,+1) sentence.

Case 1. We start with the language P ∈ P. By definition P ∈ P(A). It follows from Lemma 2.12

that P is a finite union of languages {w} or A∗w where w ∈ A∗
. Since Σn(<,+1) is closed under

union, it suffices to show that these two kinds of languages may be defined in Σn(<,+1), which is

easy: ifw = ε , then {ε} and A∗
are defined by the sentences “ε” and “⊤” respectively. Otherwise,

w = a1 · · ·aℓ for a1, . . . ,aℓ ∈ A. In that case, {w} is defined by the following Σ1(<,+1) sentence:

∃x1 · · · ∃xℓ min(x1) ∧max(xℓ) ∧

(∧
1≤i≤ℓ−1

xi + 1 = xi+1

)
∧

(∧
1≤i≤ℓ

ai (xi)

)
.

Similarly, A∗w is defined by the following Σ1(<,+1) sentence:

∃x1 · · · ∃xℓ max(xℓ) ∧

(∧
1≤i≤ℓ−1

xi + 1 = xi+1

)
∧

(∧
1≤i≤ℓ

ai (xi)

)
.

Case 2.We now consider languages of the form τ−1P (LP). By hypothesis LP ⊆ (P×A)∗ is defined by
some Σn(<) sentence Ψ. We exhibit a Σn(<,+1) sentence defining τ

−1
P (LP). For this, we first make

sure that all atomic formulas of the form (Q,a)(x) occurring in Ψ are under no negation. This can be

assumed since if¬(Q,a)(x) is such an atomic formula, we have¬(Q,a)(x) =
∨

(Q ′,a′),(Q ,a)(Q
′,a′)(x).

There are now two sub-cases, depending on whether n is odd or even. If n is odd, then the

innermost block of quantifiers is an existential one. Therefore, replacing an atomic sub-formula

(Q,a)(x) which is not negated within a Σn(<,+1) sentence (and in particular within a Σn(<)
sentence such as Ψ) by some Σ1(<,+1) formula yields a Σn(<,+1) sentence again. We now use the

following simple result.

Fact 6.4. Given any (Q,a) ∈ P ×A, there exists a Σ1(<,+1) formula ζ(Q ,a)(x) over A with one free
variable such that for anyw ∈ A∗ and any position x inw , we havew |= ζ(Q ,a)(x) if and only if x has
label (Q,a) in τP(w).

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 29

The proof of Fact 6.4 is left to the reader (it is similar to that of Case 1 above). Recall that we have

a Σn(<) sentence Ψ defining LP . Consider the Σn(<,+1) sentence φ obtained from Ψ by replacing

any atomic formula of the form (Q,a)(x) (for (Q,a) ∈ P × A) by the formula ζ(Q ,a)(x) given by

Fact 6.4. Then, φ is Σn(<,+1) defining τ
−1
P (LP). This concludes the proof for this sub-case.

We now assume that n is even. In that case, replacing an atomic sub-formula under no negation

within a Σn(<,+1) sentence (and in particular within a Σn(<) sentence such asΨ) by someΠ1(<,+1)
formula yields a Σn(<,+1) sentence. We shall need the following simple result.

Fact 6.5. Given any (Q,a) ∈ P ×A, there exists a Π1(<,+1) formula ξ(Q ,a)(x) over A with one free
variable such that for anyw ∈ A∗ and any position x inw , we havew |= ξ(Q ,a)(x) if and only if x has
label (Q,a) in τP(w).

Proof. By Lemma 2.12, Q ∈ P is a finite union of languages {u} or A∗u where u ∈ A∗
. Since

Π1(<,+1) is closed under union, it suffices to consider the cases when Q is one of these two kinds

of language. If u = ε , then we let ξ({ε },a)(x) =min(x) ∧ a(x) and ξ(A∗,a)(x) = a(x).
Otherwise, there exist a1, . . . ,aℓ ∈ A such that w = a1 · · ·aℓ . Observe that for anym ∈ N we

have a Π1(<,+1) sentence χm(x) which holds when x ≥ m + 1. Indeed, we may define this formula

by induction onm. Whenm = 0, then χ0(x) = ⊤. Otherwise, χm(x) = ¬min(x) ∧ ∀y (y + 1 = x ⇒

χm−1(y)). We may now define, ξ(Q ,a)(x). If Q = {w}, we define ξ(Q ,a)(x) as the following formula:

a(x) ∧ χℓ(x) ∧ ∀x1 · · · ∀xℓ

(∧
i≤ℓ−1

xi + 1 = xi+1 ∧ xℓ + 1 = x

)
⇒

(∧
i≤ℓ

ai (xi) ∧min(x1)

)
.

Finally, if Q = A∗w , we define ξ(Q ,a)(x) as the following formula,

a(x) ∧ χℓ(x) ∧ ∀x1 · · · ∀xℓ

(∧
i≤ℓ−1

xi + 1 = xi+1 ∧ xℓ + 1 = x

)
⇒

(∧
i≤ℓ

ai (xi)

)
.

This concludes the proof of Fact 6.5. □

Recall now that we have a Σn(<) sentence Ψ defining LP . Consider the Σn(<,+1) sentence φ
obtained from Ψ by replacing any atomic formula of the form (Q,a)(x) with (Q,a) ∈ P × A (i.e.,
any label test) by the formula ξ(Q ,a)(x) given by Fact 6.4. One may verify that φ is Σn(<,+1) and
defines τ−1P (LP) which concludes the proof for this sub-case.

Remark 6.6. When n is even, an alternative proof is to first ensure that all atomic sub-formulas of
the form (Q,a)(x) (i.e., label tests) are under exactly one negation in Ψ, and to apply Fact 6.4 again.

6.2 Ehrenfeucht-Fraïssé games
Before turning to the converse direction in Proposition 6.2, let us recall the definition of the

Ehrenfeucht-Fraïssé games associated to the levels Σn . It is parameterized by an arbitrary signatureσ
(which we shall instantiate later with the signatures of Σn(<) and Σn(<,+1)).

Quantifier rank and canonical preorders. As for two variable first-order logic, the link with

Ehrenfeucht-Fraïssé games is based on the notion of quantifier rank. Recall that the rank of a

first-order sentence is the longest sequence of nested quantifiers in φ.
Using the quantifier rank, we associate a preorder relation to any level Σn(σ) in the quantifier

alternation hierarchy. Given two wordsw,w ′ ∈ A∗
and k ∈ N, we writew ≼σ

n,k w ′
when

For any Σn(σ) sentence of rank at most k : w |= φ ⇒ w ′ |= φ.

, Vol. 1, No. 1, Article . Publication date: August 2019.

30 Thomas Place and Marc Zeitoun

The next lemma is folklore and simple to verify. It characterizes with the preorder≼σ
n,k the languages

that can be defined by a Σn(σ) sentence of rank k . An upper set for≼σ
n,k is a language L ⊆ A∗

which

is upward closed under ≼σ
n,k : given anyw,w ′ ∈ A∗

, ifw ∈ L andw ≼σ
n,k w ′

, thenw ′ ∈ L.

Lemma 6.7 (Folklore). Consider two natural numbers n ≥ 1 and k ≥ 0. For any language L ⊆ A∗,
the following two properties are equivalent:

• L can be defined by a Σn(σ) sentence of rank k .
• L is an upper set for ≼σ

n,k .

We now define the Ehrenfeucht-Fraïssé game for Σn(σ) (called the Σn(σ) game). It yields an

alternate (and easier to manipulate) definition of the preorders≼σ
n,k . The board of the game consists

of two words w and w ′
in A∗

and there are two players called Spoiler and Duplicator. We speak

of the Σn(σ)-game over the pair (w,w ′), or overw andw ′
. Note that unlike in the FO

2
game, the

ordering between the two words is relevant:w is the first word andw ′
is the second. Spoiler’s goal

is to prove that the wordsw andw ′
are different (wrt. Σn(<) or Σn(<,+1)) while Duplicator must

prevent him from doing so. The game is set to last a predefined number k of rounds and when it

starts, each player owns k pebbles. Moreover, we have the two following additional parameters

that may change as the play progresses:

(1) There is a distinguished word amongw,w ′
, called the active word. Initially, the active word is

the first word, that is,w .

(2) There is a counter c called the alternation counter. Initially, c is set to 0. It can only increase, and

its maximal allowed value is n − 1. It counts the number of times the active word was changed.

A single round is played as follows. Spoiler has to place a pebble on the board (i.e., on a position

of either w or w ′
). However, there are constraints on the word that he may choose. Spoiler can

always choose the active word, in which case both c and the active word remain unchanged. On

the other hand, Spoiler may choose the word that is not active only when c < n − 1. In that case,

the active word is switched and c is incremented by 1.

Duplicator must answer by placing one of her own pebbles on some position of the other word.

This answer must yield a correct configuration. By configuration after round ℓ, we mean the set

C = {(x1, x
′
1
), . . . , (xℓ, x

′
ℓ)},

where the elements (xi , x
′
i) are the pairs of positions (xi inw and x ′

i inw
′
) holding corresponding

pebbles at rounds 1, . . . , ℓ (i.e., Spoiler placed a pebble on xi in a previous round and Duplicator

answered by putting a pebble on x ′
i , or vice versa). Such a configuration is declared correct if and

only if for any predicate P ∈ σ of aritym, given any i1, . . . , im ≤ ℓ,

P(xi1, . . . , xim) holds if and only if P(x ′
i1, . . . , x

′
im) holds.

Intuitively, a configuration is correct when it is impossible to point out a difference between the

sequences of positions x1, . . . , xℓ inw and x ′
1
, . . . , x ′

ℓ
inw ′

by using the predicates available in σ .

When the game starts, the configuration is empty. Duplicator wins if this initial configuration
is correct (while empty, the initial configuration may not be correct when σ contains constants

such as “ε”) and if she is able to answer all moves by Spoiler with a correct configuration until all k
rounds have been played. On the other hand Spoiler wins if the initial configuration is not correct

or as soon as Duplicator is unable to play. We now state the Ehrenfeucht-Fraïssé theorem for the

Σn(σ)-game. It characterizes the preorder ≼σ
n,k : two words are comparable, i.e,w ≼σ

n,k w ′
, when

Duplicator has a winning strategy for k rounds over (w,w ′).

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 31

Theorem 6.8 (Folklore). Let n ≥ 1, k ∈ N and w,w ′ ∈ A∗. Then w ≼σ
n,k w ′ if and only if

Duplicator has a winning strategy for playing k rounds in the Σn(σ) game over (w,w ′).

This concludes the definition of Ehrenfeucht-Fraïssé games. Note that while the above presen-

tation is generic to all signatures, we are only interested in two specific ones. Given n ≥ 1 and

k ∈ N, we write ≼n,k for the preorder associated to the Σn(<) sentences of rank k and ≼+n,k for the

preorder associated to the Σn(<,+1) sentence of rank k . Finally, we shall need the following simple

result about the relations ≼n,k .

Lemma 6.9. Let n ≥ 1 and let h,k ∈ N be natural numbers. Consider three words w,w ′,u ∈ A∗

such that |u | ≤ h andwu ≼n,k+h w ′u. Then, we havew ≼n,k w ′.

Proof. By hypothesis, we know than Duplicator has a winning strategy for playing k +h rounds

in the Σn(<)-game overwu andw ′u. Since |u | ≤ h, it is simple to verify that as long as there are

more than h rounds remaining after the current one, if Spoiler places a pebble in one of the prefixes

w orw ′
, then Duplicator’s strategy gives an answer inw orw ′

. Otherwise, Spoiler would be able

to win within the h following rounds (it is important here that the signature of Σn(<) includes the
linear order “<”). Therefore, it is immediate that Duplicator gets a winning strategy for playing k
rounds in the Σn(<)-game overw andw ′

. This means thatw ≼n,k w ′
, as desired. □

6.3 From successor to enrichment
We are now ready to prove the remaining direction in Proposition 6.2. For any n ≥ 1, we show that

Σn(<,+1) ⊆ Σn(<) ◦ SU.
Let us start with some preliminary definitions. Recall that for any k ∈ N, we denote by ∼k the

canonical equivalence on A∗
associated to SUk . We write Pk for the finite partition of A∗

into ∼k -

classes. Recall that Pk is an SU-partition of A∗
by Lemma 2.11. We shall only use the SU-partitions

Pk to build languages in Σn(<) ◦ SU. For the sake of simplifying the notation, given k ∈ N, we write

• τk for the map τPk : A∗ → (Pk ×A)∗.

• δk for the map δPk : A∗ ×A∗ → (Pk ×A)∗.

We now prove that Σn(<,+1) ⊆ Σn(<) ◦ SU. Our argument is based on the following proposition.

Proposition 6.10. Let k ≥ 0, n ≥ 1 and ℓ = 2
k be three integers. Assume that we havew,w ′ ∈ A∗

such that τℓ(w) ≼n,k+ℓ τℓ(w
′) andw ∼ℓ w

′. Then, we havew ≼+n,k w ′.

Before we show Proposition 6.10, let us use it to conclude this direction of the proof. Let L ⊆ A∗

be a language defined by some Σn(<,+1) sentence φ. We show that L ∈ Σn(<) ◦ SU. By Lemma 6.7,

L is an upper set for the preorder ≼+n,k , where k is the rank of φ.

Let ℓ = 2
k
. For any P ∈ Pℓ , we let HP ⊆ (Pℓ ×A)∗ be the following upper set for ≼n,k+ℓ :

HP = {u ∈ (Pℓ ×A)∗ | there existsw ∈ P ∩ L such that τℓ(w) ≼n,k+ℓ u}.

Since HP is an upper set for ≼n,k+ℓ , Lemma 6.7 entails that it can be defined by a Σn(<) sentence
(of rank k + ℓ). To conclude, we will show that

L =
⋃
P ∈Pℓ

(P ∩ τ−1ℓ (HP)). (5)

It will then be immediate that L ∈ Σn(<) ◦ SU, since Pℓ is an SU-partition of A∗
.

It remains to prove (5). We start with the left to right inclusion. Assume that v ∈ L. Since Pℓ is
a partition of A∗

, there exists some unique P ∈ Pℓ such that v ∈ P . It is then immediate from the

definition that τℓ(v) ∈ HP since τℓ(v) ≼n,k+ℓ τℓ(v). Thus, we get v ∈ P ∩ τ−1
ℓ
(HP) which concludes

the proof of this inclusion.

, Vol. 1, No. 1, Article . Publication date: August 2019.

32 Thomas Place and Marc Zeitoun

We turn to the right to left inclusion. Assume that v ∈ P ∩ τ−1
ℓ
(HP) for some P ∈ Pℓ . We want to

show that v ∈ L. Since v ∈ τ−1
ℓ
(HP), we obtain by definition of HP some wordw ∈ P ∩ L such that

τℓ(w) ≼n,k+ℓ τℓ(v). Moreover, since v andw both belong to P , we havew ∼ℓ v . Thus, since ℓ = 2
k

by definition, we obtain the relationw ≼+n,k v from Proposition 6.10. Finally, sincew ∈ L and since

L is an upper set for ≼+n,k , we get v ∈ L, as desired.

It remains to prove Proposition 6.10, to which we devote the end of the section. Let k ≥ 0, n ≥ 1

and ℓ = 2
k
. Consider two wordsw,w ′ ∈ A∗

such that τℓ(w) ≼n,k+ℓ τℓ(w
′) andw ∼ℓ w

′
. We prove

that w ≼+n,k w ′
. As expected, we use an Ehrenfeucht-Fraïssé argument and describe a winning

strategy for Duplicator in the Σn(<,+1)-game overw andw ′
. Recall that there are k rounds to play,

that the alternation counter c starts at 0 and has to remains bounded by n − 1. We use an induction

on n and k (in any order) to describe Duplicator’s winning strategy.

Assume first that k = 0, which means that ℓ = 1. In that case, there are no rounds to play and it

suffices to show that Duplicator wins automatically (i.e., thatw andw ′
satisfy the same constants

in the signature of Σn(<,+1)). There is only one constant in the signature of Σn(<,+1): “ε”. It is
immediate that w |= ε if and only if w ′ |= ε since we know that w ∼1 w ′

by hypothesis. This

concludes the case k = 0.

We now assume that k ≥ 1. We need to describe a strategy for Duplicator in order to play k
rounds in the Σn(<,+1)-game overw andw ′

. Consider a move by Spoiler in the first round. We

show that Duplicator is able to answer this move and then to win the remaining k − 1 rounds. The

argument depends on whether Spoiler plays his first move inw or inw ′
. If Spoiler plays inw ′

, we

use induction on n. In that case, the alternation counter is incremented (in particular, this may

only happen when n ≥ 2). One may verify from the definition that the game now corresponds to a

Σn−1(<,+1)-game over (w ′,w). Hence, it suffices to show that Duplicator has a winning strategy

for playing k rounds in this simpler game. This is immediate from induction on n. Indeed, we
know that τℓ(w) ≼n,k+ℓ τℓ(w

′) and w ∼ℓ w ′
by hypothesis. One may verify that this implies

τℓ(w
′) ≼n−1,k+ℓ τℓ(w) andw ′ ∼ℓ w . Hence, we obtain from induction on n thatw ′ ≼+1n−1,k w which

yields the desired strategy for Duplicator.

It remains to handle the case when Spoiler plays his first move on some position x of the wordw .

This requires more work. We may decompose w according to the position x : w = uav where

the highlighted letter a is at position x . We use the following lemma to describe an answer for

Duplicator.

Lemma 6.11. The wordw ′ has a decompositionw ′ = u ′av ′ such that u ≼+n,k−1 u
′ and v ≼+n,k−1 v’.

Lemma 6.11 provides Duplicator’s answer to Spoiler’s first move: consider the decomposition

w ′ = u ′av ′
given by the lemma and let x ′

be the position ofw ′
corresponding to the highlighted

letter a in this decomposition. We choose x ′
as Duplicator’s answer. One may verify that this

answer is correct (i.e., x and x ′
satisfy the same predicates in the signature of Σn(<,+1)).

Remark 6.12. For showing thatmin(x) holds if and only ifmin(x ′), one needs to use the fact that
u ≼+n,k−1 u

′ (which means that u = ε if and only if u ′ = ε). Symmetrically, the fact thatmax(x) holds
if and only ifmax(x ′) is based on v ≼+n,k−1 v

′.

It remains to show that Duplicator has a winning strategy for playing k − 1 more rounds in

the Σn(<,+1)-game overw = uav andw ′ = u ′av ′
from the configuration C = {(x, x ′)}. This can

be verified using our hypothesis that u ≼+n,k−1 u
′
and v ≼+n,k−1 v

′
. Indeed, by induction, we get

strategies for playing k − 1 rounds over u and u ′
, and v and v ′

respectively. These strategies are

easily combined into a single one for playing k − 1 rounds overw = uav andw ′ = u ′av ′
.

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 33

We finish with the proof of Lemma 6.11. Recall that we have w = uav where the highlighted

letter “a” is at position x . We consider two cases depending on the length of v (i.e., on whether “x”
is close to the “right border” ofw). We let h = 2

k−1
. Note that by definition, we have ℓ = 2h.

First case. Assume first |v | < h. In that case, av is a suffix of length at most h of w . Since we

know thatw ∼ℓ w
′
and ℓ = 2h by hypothesis, it follows that av is a suffix ofw ′

as well. In other

words, we obtain thatw ′
admits a decompositionw ′ = u ′av for some u ′ ∈ A∗

. It is immediate that

v ≼+n,k−1 v . It remains to show that u ≼+n,k−1 u
′
.

We prove that τh(u) ≼n,k−1+h τh(u
′) and u ∼h u ′

. It will then be immediate by induction on k
in Proposition 6.10 that we have u ≼+n,k−1 u

′
, as desired. We start with the equivalence u ∼h u ′

.

Recall that by hypothesis we have,

uav = w ∼ℓ w
′ = u ′av .

Thus, uav and u ′av have the same suffixes of length at most ℓ = 2h. Moreover, since |av | ≤ h, it is
immediate that u and u ′

have the same suffixes of length at most h, which means that u ∼h u
′
.

It remains to show that τh(u) ≼n,k−1+h τh(u
′). By hypothesis, we have, τℓ(w) ≼n,k+ℓ τℓ(w

′). Since

ℓ ≥ h, this implies τh(w) ≼n,k+ℓ τh(w
′). Moreover, we havew = uav andw ′ = u ′av . Therefore, by

Lemma 4.4:

τh(u) · δh(u,av) ≼n,k+ℓ τh(u
′) · δh(u

′,av)

We just proved thatu ∼h u
′
, which, together with the definition of δh , implies δh(u,av) = δh(u

′,av).
Altogether, this means that there exists z ∈ (Ph ×A)∗ such that |z | ≤ h and,

τh(u) · z ≼n,k+ℓ τh(u
′) · z

It now follows from Lemma 6.9 that τh(u) ≼n,k+ℓ−h τh(u
′), and since ℓ = 2h, we get in particular

τh(u) ≼n,k−1+h τh(u
′), as desired.

Second case.We now assume that |v | ≥ h. Since the highlighted “a” inw = uav is at position x , it
follows by hypothesis on v that y = x +h is also a position ofw . Hence, we may further decompose

w according to y:w = uav1bv2, where the highlighted b is at position y. In other words v = v1bv2.
Observe that by definition v1 = w[x + 1,y − 1] which means that |av1 | = h. We use the following

fact, whose proof relies on our hypothesis that τℓ(w) ≼n,k+ℓ τℓ(w
′).

Fact 6.13. There exists u ′,v ′
2
∈ A∗ such that w ′ = u ′av1bv

′
2
and the following properties are

satisfied:
• uav1 ∼ℓ u

′av1.
• τℓ(uav1) ≼n,k+ℓ−1 τℓ(u

′av1).
• δℓ(uav1b,v2) ≼n,k+ℓ−1 δℓ(u

′av1b,v
′
2
).

Proof. By definition,w and τℓ(w) share the same set of positions. Thus, we may view x and y
as positions in τℓ(w). In particular, we get from Lemma 4.4 that:

τℓ(w) = τℓ(uav1) · ([uav1]Pℓ ,b) · δℓ(uav1b,v2).

Since τℓ(w) ≼n,k+ℓ τℓ(w
′), Duplicator has a winning strategy for playing (k + ℓ) rounds in the

Σn(<)-game over τℓ(w) and τℓ(w
′). She may simulate a move by Spoiler in this game by placing a

pebble on the position y in τℓ(w). Her strategy then yields an answer y ′
in τℓ(w). Recall that we

may view y ′
as a position ofw ′

. We decomposew ′
asw ′ = z ′cv ′

2
where the highlighted letter c ∈ A

is at position y ′
. It then follows from Lemma 4.4 that,

τℓ(w
′) = τℓ(z

′) · ([z ′]Pℓ , c) · δℓ(z
′c,v ′

2
).

By definition of y ′
, we know that y and y ′

have the same label in τℓ(w) and τℓ(w
′). Thus, it is

immediate that b = c and [uav1]Pℓ = [z ′]Pℓ . Note that by definition, the latter property means that

, Vol. 1, No. 1, Article . Publication date: August 2019.

34 Thomas Place and Marc Zeitoun

uav1 ∼ℓ z
′
. In particular, since |av1 | = h ≤ ℓ, it follows that we have z ′ = u ′av1 for some u ′ ∈ A∗

.

Altogether, we have found a decompositionw ′ = u ′av1bv
′
2
with uav1 ∼ℓ u

′av1.
Moreover, we know that Duplicator has a strategy for playing k + ℓ−1more rounds in the Σn(<)-

game over τℓ(w) and τℓ(w
′) from the configuration {(y,y ′)}. It follows that τℓ(uav1) ≼n,k+ℓ−1

τℓ(u
′av1) and δℓ(uav1b,v2) ≼n,k+ℓ−1 δℓ(u

′av1b,v
′
2
) which concludes the proof. □

We may now come back to the proof of Case 2 and describe our decomposition of w ′
. We let

w ′ = u ′av1bv
′
2
be the decomposition given by Fact 6.13. Finally, we define v ′ = v1bv

′
2
. We now

have our decompositionw ′ = u ′av ′
. It remains to show that u ≼+n,k−1 u

′
and v ≼+n,k−1 v

′
.

Let us start with u ≼+n,k−1 u
′
. We prove that τh(u) ≼n,k−1+h τh(u

′) and u ∼h u ′
. It will then be

immediate from induction on k in Proposition 6.10 that u ≼+n,k−1 u
′
as desired. For the equivalence

u ∼h u
′
, we know from the first item in Fact 6.13 that,

uav1 ∼ℓ u
′av1

Thus, since |av1 | = h and ℓ ≥ 2h, it is immediate that u ∼h u
′
. We turn to τh(u) ≼n,k−1+h τh(u

′). By

the second item in Fact 6.13 we have:

τℓ(uav1) ≼n,k+ℓ−1 τℓ(u
′av1).

Since ℓ ≥ h, one may verify that this implies τh(uav1) ≼n,k+ℓ−1 τh(uav
′
1
). Using Lemma 4.4, we

obtain

τh(u) · δh(u,av1) ≼n,k+ℓ−1 τh(u
′) · δh(u

′,av1).

Moreover, since u ∼h u
′
, the definition of δh entails that δh(u,av1) = δh(u

′,av1). Let z = δh(u,av1).
By definition, we have |z | ≤ h and,

τh(u) · z ≼n,k−1+ℓ τh(u
′) · z.

Since ℓ ≥ 2h, we have k − 1 + ℓ ≥ k − 1 + h + h and it now follows from Lemma 6.9 that

τh(u) ≼n,k−1+h τh(u
′), as desired.

We finish with the inequality v ≼+n,k−1 v ′
. We reuse the same approach, by showing that

τh(v) ≼n,k−1+h τh(v
′) and v ∼h v

′
. The result will then follow by the induction on k in the proof

of Proposition 6.10. Recall that v = v1bv2 and v
′ = v1bv

′
2
.

For proving that v ∼h v
′
, recall that by hypothesis we havew ∼ℓ w

′
with ℓ = 2h. Thus, we have

w ∼h w ′
. Moreover, |v1b | = h by hypothesis. Thus, v = v1bv2 and v

′ = v1bv
′
2
are suffixes ofw and

w ′
of length larger than h. Altogether, it follows that v ∼h v

′
.

It remains to show that, τh(v) ≼n,k−1+h τh(v
′). Since v = v1bv2 and v

′ = v1bv
′
2
, we get from

Lemma 4.4 that:

τh(v1bv2) = τh(v1) · δh(v1b,v2) and τh(v1bv
′
2
) = τh(v1) · δh(v1b,v

′
2
).

It is straightforward to verify that ≼n,k−1+h is compatible with concatenation. Since clearly,

τh(v1) ≼n,k−1+h τh(v1), it suffices to show that we have δh(v1b,v2) ≼n,k−1+h δh(v1b,v
′
2
). By the

third item in Fact 6.13, we have

δℓ(uav1b,v2) ≼n,k−1+ℓ δℓ(u
′av1b,v

′
2
).

Since ℓ ≥ h, one may verify that this implies δh(uav1b,v2) ≼n,k+ℓ−1 δh(u
′av1b,v

′
2
). Moreover,

since |v1b | = h, the definition of δh gives us that δh(uav1b,v2) = δh(v1b,v2) and δh(u
′av1b,v

′
2
) =

δh(v1b,v
′
2
). Therefore, we obtain:

δh(v1b,v2) ≼n,k−1+ℓ δh(v1b,v
′
2
).

In particular, this implies δh(v1b,v2) ≼n,k−1+h δh(v1b,v
′
2
), which concludes the proof.

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 35

7 THE REDUCTION FOR ω-WORDS
In this section, we generalize our reduction to the setting of ω-languages. We follow the same

outline as the one we used for languages of finite words in Section 4. First, we adapt the definition

of enrichment to classes of ω-languages. In this setting, enrichment combines objects of different

nature: given a class of ω-languages C and a class of languages D (such as SU), we define the D-

enrichment of C (still denoted by C◦D). Then, we generalize the reduction theorem (Theorem 4.12):

given any lattice of ω-languages C closed under inverse image, (C ◦ SU)-covering reduces to C-

covering.

Remark 7.1. Our statements and proofs in this section are very similar to the ones we presented for
words in Section 4. In fact, aside from one specific technical result, our main theorem for ω-words and
its proof are both straightforward generalizations of Theorem 4.12. For this reason, we shall often leave
the proofs of technical sub-results to the reader and refer to the corresponding statement in Section 4.

7.1 Enrichment for classes of ω-languages
We generalize enrichment to classes of ω-languages. Let us first adapt P-taggings.

P-taggings. Let A be an alphabet and P a finite partition of A∗
. We define a canonical map τP :

Aω → (P × A)ω . Let w ∈ Aω
be an ω-word: w = a1a2a3 · · · with ai ∈ A for all i . We let τP(w) be

the ω-word τP(w) = b1b2b3 · · · where,

b1 = ([ε]P,a1) and bi = ([a1 · · ·ai−1]P,ai) for i ≥ 2

Enrichment. Consider a class of ω-languages C and a class of languages D (do note that D

is a class of languages and not of ω-languages). The D-enrichment of C, denoted by C ◦ D is

now defined as the following class of ω-languages. For any alphabet A, (C ◦ D)(A) contains all
ω-languages of the following form:

τ−1P (L) where P is a D-partition of A∗
and L ∈ C(P ×A).

Remark 7.2. The definition is actually simpler in this setting. Indeed, since we are dealing with
ω-languages, it makes no sense to consider intersections with elements of P, which are word languages.

As before, we are mainly interested in SU-enrichment since our theorem applies to this special

case. As for finite words, SU-enrichment for classes ofω-languages captures the intuitive connection
between strong and weak logical fragments. One may show that over ω-words as well, FO2(<,+1)
is the SU-enrichment of FO

2(<) and for any n ≥ 1 Σn(<,+1) and BΣn(<,+1) are respectively

the SU-enrichments of Σn(<) and BΣn(<). Since the proofs are essentially identical
3
to those we

presented in Sections 5 and 6 for finite words, they are left to the reader.

We now turn to the variant for ω-words of our main theorem: given any lattice C of ω-languages
which is closed under right quotient and inverse image, (C ◦ SU)-covering reduces to C-covering.

Both the reduction and its proofs are adapted from what we did for finite words in Section 4. We

start by generalizing well-formed words.

7.2 Languages of well-formed ω-words
Similar to what happened for finite words in Section 4, using our reduction for ω-words requires
working with the algebraic definition of regular ω-languages, which is based on ω-semigroups. We

first briefly recall the definition of ω-semigroups and refer the reader to the book of Perrin and

Pin [20] for more details.

3
In fact, the proofs are even simpler in this setting. Since ω-words have no “right border”, there are fewer cases to treat.

, Vol. 1, No. 1, Article . Publication date: August 2019.

36 Thomas Place and Marc Zeitoun

ω-semigroups.Anω-semigroup is a pair (S+, Sω)where S+ is a semigroup and Sω is a set. Moreover,

(S+, Sω) is equipped with two additional products: a mixed product S+ × Sω → Sω that maps s ∈ S+
and t ∈ Sω to an element denoted st ∈ Sω , and an infinite product (S+)ω → Sω that maps an infinite

sequence s1, s2, · · · ∈ (S+)
ω
to an element of Sω denoted by s1s2 · · · . We require these products

as well as the semigroup product of S+ to satisfy all possible forms of associativity (see [20] for

details). Finally, we denote by sω the element sss · · · . Clearly, (A+,Aω) is an ω-semigroup for any

alphabet A. The notion of morphism is adapted to ω-semigroups in the natural way.

An ω-semigroup is said to be finite if both S+ and Sω are finite. Note that even if an ω-semigroup

is finite, it is not obvious that a finite representation of the infinite product exists. However, it was

proven by Wilke [46] that the infinite product is fully determined by the mapping s 7→ sω , yielding
a finite representation for finite ω-semigroups.

An ω-language L ⊆ Aω
is said to be recognized by an ω-semigroup (S+, Sω) if there exist F ⊆ Sω

and a morphism α : (A+,Aω) → (S+, Sω) such that L = α−1(F). It is well known that an ω-language
is regular if and only if it is recognized by a finite ω-semigroup.

Well-formed ω-words. We may now adapt the notion of well-formed words to ω-words. To any

morphism α : (A+,Aω) → (S+, Sω) into a finite ω-semigroup, we associate a new alphabet Aα of

well-formed ω-words. Then, given any ω-language L ⊆ Aω
recognized by α , we associate a new

ω-language wfα (L) ⊆ A
ω
α .

We denote by S the semigroup S = α(A+) ⊆ S+. Moreover, we write E(S) for the set of idempotent

elements in S . Let “□” be some symbol which does not belong to S . The alphabet of well-formed
ω-words associated to α , denoted by Aα , is defined as follows:

Aα = (E(S) ∪ {□}) × S × E(S)

Remark 7.3. This definition is simpler than the one for words. We do not need letters of the form
(e, s,□) as ω-words do not have a “right border”.

The definition of well-formed ω-words is the natural one. We say that an ω-word w ∈ Aωα is

well-formed when it can be written as follows:

w = (□, s0, f0) · (e1, s1, f1) · (e2, s2, f2) · · ·

with fi = ei+1 ∈ E(S) for all i ∈ N. It is immediate by definition that the language of all well-formed

ω-words in Aωα is regular.

Fact 7.4. The language of all well-formed ω-words in Aωα is regular.

We now associate a newω-language overAα to eachω-language L recognized by α : the language
of well-formed ω-words associated to L. As the name suggests, it is made exclusively of well-formed

ω-words.
We define a canonical morphism eval : (A+α ,A

ω
α) → (S+, Sω) by giving the image of the two

kinds of letters in Aα . Let s ∈ S and e, f ∈ E(S), we define,

eval((e, s, f)) = es f eval((□, s, f)) = s f .

Consider an ω-language L recognized by α . We define wfα (L) ⊆ A
ω
α as follows:

wfα (L) =
{
w ∈ Aωα | w is well-formed and eval(w) ∈ α(L)

}
.

Clearly, wfα (L) is the intersection of the language of all well-formed ω-words with an ω-language
recognized by eval. Thus, it is regular.

Fact 7.5. For any ω-language L recognized by α , wfα (L) is regular.

Finally, we lift the definition to multisets L made of ω-languages recognized by α and write

wfα (L) for the multiset wfα (L) = {wfα (L) | L ∈ L}.

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 37

7.3 The reduction theorem for ω-words
Wemay now adapt Theorem 4.12 toω-words. We state an effective reduction from (C◦SU)-covering

to C-covering which holds for any lattice of ω-languages C closed under inverse image (note that

unlike in the setting of finite words, we do not require C to be nontrivial here).

Theorem 7.6. Let α : (A+,Aω) → (S+, Sω) be an ω-semigroup morphism and let C be a lattice
of ω-languages closed under inverse image. Moreover, let L be an ω-language and L be a multiset of
ω-languages, all recognized by α . Then, the following properties are equivalent:
(1) (L, L) is (C ◦ SU)-coverable.
(2) (L, L) is (C ◦ SUn)-coverable, where n = 2

3 |S+ |+1.
(3) (wfα (L),wfα (L)) is C-coverable.

As announced, the statement of Theorem 7.6 is a natural analogue of Theorem 4.12. Let us point

out that in this case as well, we shall present a constructive proof.

Remark 7.7. The constant used in the second item of Theorem 7.6 is much larger than the corre-
sponding one in Theorem 4.12. This is explained by technical difficulties that are specific to ω-words
and arise when proving the implication (3) ⇒ (2) of the theorem.

Finally, note that as before, we may adapt Theorem 7.6 to accommodate the simpler separation

problem.

Corollary 7.8. Let α : (A+,Aω) → (S+, Sω) be an ω-semigroup morphism and let C be a lattice
of ω-languages closed under inverse image. Moreover, let L1, L2 be two ω-languages recognized by α .
Then, the following properties are equivalent:
(1) L1 is (C ◦ SU)-separable from L2.
(2) L1 is (C ◦ SUn)-separable from L2 where n = 2

3 |S+ |+1.
(3) wfα (L1) is C-separable from wfα (L2).

While we shall not detail the applications of Theorem 7.6 as much as we did for Theorem 4.12,

let us briefly outline them. As we explained above, one may show that over ω-words, FO2(<,+1)
is the SU-enrichment of FO

2(<) and for any n ≥ 1 Σn(<,+1) and BΣn(<,+1) are respectively

the SU-enrichments of Σn(<) and BΣn(<). It was shown in [21] that over ω-words, separation is

decidable for the levels Σ2(<) and Σ3(<) of the quantifier alternation hierarchy. Thus, we obtain

from Theorem 7.6 that separation is decidable for Σ2(<,+1) and Σ3(<,+1) over ω-words.

Remark 7.9. We do not speak about covering since there are no published results for covering in
the setting of ω-words. We also do not mention separation for FO2(<,+1), Σ1(<,+1) and BΣ1(<,+1)
over ω-words for the same reason. However, let us point out that our problem here is just the lack
of bibliography. It is actually possible to generalize the existing results and show that covering and
separation are both decidable for FO2(<), Σ1(<), BΣ1(<), Σ2(<), BΣ2(<) and Σ3(<) overs ω-words.
Thus, Theorem 7.6 can be used to obtain the same results over ω-words as the ones obtained from
Theorem 4.12 over words.

The remainder of this section is devoted to proving Theorem 7.6. We fix an arbitrary morphism

α : (A+,Aω) → (S+, Sω) and we let S be the semigroup S = α(A+). Recall that the associated

alphabet of well-formed words is defined as follows:

Aα = (E(S) ∪ {□}) × S × E(S).

Let C be a lattice of ω-languages closed under inverse image. Our objective is to show that when

L and L are respectively a ω-language and a multiset of ω-languages, all recognized by α , the
following properties are equivalent:

, Vol. 1, No. 1, Article . Publication date: August 2019.

38 Thomas Place and Marc Zeitoun

(1) (L, L) is (C ◦ SU)-coverable.

(2) (L, L) is (C ◦ SUn)-coverable where n = 2
3 |S+ |+1

.

(3) (wfα (L),wfα (L)) is C-coverable.
We prove that (1) ⇒ (3) ⇒ (2) ⇒ (1). As before, observe that the direction (2) ⇒ (1) is trivial

since it is clear that C ◦ SUn ⊆ C ◦ SU. Thus, we may concentrate on (1) ⇒ (3) and (3) ⇒ (2).

The argument for the direction (1) ⇒ (3) is basically identical to the one we used when proving

the corresponding implication in Theorem 4.12. For this reason, we shall only briefly sketch it. On

the other hand, we provide more details for the proof of the implication (3) ⇒ (2), which slightly

departs from what we did for words.

7.4 From (C ◦ SU)-covering to C-covering
We start with the direction (1) ⇒ (3). As we explained above, the argument is essentially the same

as the one we presented for the corresponding direction in Theorem 4.12. In fact, it is even made

simpler by the fact that the definition of C ◦ SU is less involved for classes of ω-languages.
The argument is based on the following proposition which is adapted from the one we used to

handle the corresponding direction for words: Proposition 4.15.

Proposition 7.10. For any integer k ≥ 1, there exists a map γ : Aωα → Aω satisfying the two
following properties:

(1) For any ω-language L ⊆ Aω recognized by α and any well-formed ω-word w ∈ Aωα , we have
w ∈ wfα (L) if and only if γ (w) ∈ L.

(2) For any ω-language K ∈ (C ◦ SUk)(A), there exists HK ∈ C(Aα) such that for any well-formed
ω-wordw ∈ Aωα ,w ∈ HK if and only if γ (w) ∈ K .

One may show the direction (1) ⇒ (3) in Theorem 7.6 from this proposition using an argument

which is similar to the one used for proving the same direction in Theorem 4.12 from Proposition 4.15.

We leave this argument to the reader and prove Proposition 7.10. Let us fix k ≥ 1 for the proof.

Proof of Proposition 7.10: definition of γ .We start by defining the map γ : Aωα → Aω
and then

show that it satisfies the desired properties. We actually define a morphism γ : A+α → A+ which
we lift as a map γ : Aωα → Aω

. Hence, it suffices to describe the image of any letter in Aα .
For any element s ∈ S (recall that S = α(A+)), we associate an arbitrarily chosen nonempty

word ⌈s⌉ ∈ A+ such that α(⌈s⌉) = s (note that such a word exists by definition of S). We are now

ready to define our morphism γ : A+α → A+. Recall that there are two kinds of letters in Aα . Given
s ∈ S and e, f ∈ E(S), we define,

γ ((e, s, f)) = ⌈e⌉k ⌈s⌉ ⌈f ⌉k

γ ((□, s, f)) = ⌈s⌉ ⌈f ⌉k

Given w = b1b2 · · · ∈ A
ω
α , we now define γ (w) = γ (b1)γ (b2) · · · ∈ Aω

. It remains to prove that γ
satisfies the two properties stated in Proposition 4.15.

Proof of Proposition 7.10: first item. Consider an ω-language L ⊆ Aω
which is recognized by α .

We have to show that for any well-formed ω-wordw ∈ Aωα ,w ∈ wfα (L) if and only if γ (w) ∈ L.
Since w is well-formed, we have w ∈ wfα (L) if and only if eval(w) ∈ α(L). Moreover, since

α recognizes L, we have γ (w) ∈ L if and only if α(γ (w)) ∈ α(L). Hence, it suffices to prove that

eval(w) = α(γ (w)). By definition,

w = (□, s0, e1) · (e1, s1, e2) · (e2, s2, e3) · · ·
γ (w) = ⌈s0⌉ ⌈e1⌉

2k ⌈s1⌉ ⌈e2⌉
2k ⌈s2⌉ · ⌈e3⌉

2k · · ·

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 39

Hence, we have,

eval(w) = s0e1e1s1e2s2e3 · · ·
α(γ (w)) = s0(e1)

2ks1(e2)
2ks2(e3)

2k · · ·

Therefore, since each element ei ∈ E(S) is an idempotent, eval(w) = α(γ (w)).

Proof of Proposition 7.10: second item. Consider K ∈ (C ◦ SUk)(A), we have to build a new

ω-language HK ∈ C(Aα) satisfying the following property:

For any well-formed ω-wordw ∈ Aωα , w ∈ HK if and only if γ (w) ∈ K (6)

The argument is simpler that what we did for words since the definition of C ◦ SUk is less involved.

By definition, there exists an SUk -partition P of A∗
and L ∈ C(P ×A) such that,

K = τ−1P (L).

The construction of HK is based on the following lemma (which is adapted from Lemma 4.17 used

in the case of finite words). Recall that any morphism β : A∗
α → (P ×A)∗ may be lifted as a map

β : Aωα → (P ×A)ω .

Lemma 7.11. There exists a morphism β : A∗
α → (P ×A)∗ such that for any well-formed ω-word

w ∈ Aωα , we have τP(γ (w)) = β(w).

The proof of Lemma 7.11 is identical to the one of Lemma 4.17. It is left to the reader. Let us

use the lemma to construct HK and finish the proof of Proposition 7.10. We have an ω-language
L ∈ C(P ×A) such that K = τ−1P (L). Let us define

HK = β−1(L).

Since C is closed inverse image, we obtain that HK ∈ C(Aα). We now prove that HK satisfies (1)

using Lemma 7.11. Given a well-formed ω-wordw ∈ Aωα , we havew ∈ HK if and only if β(w) ∈ L.
The lemma then says that this is equivalent to τP(γ (w)) ∈ L, i.e., to γ (w) ∈ K by hypothesis on K .

7.5 From C-covering to C ◦ SU-covering
We now turn to the direction (3) ⇒ (2) in Theorem 4.12. While the proof remains very similar to the

one for the corresponding direction in Theorem 4.12, there is a significant technical difference. The

argument is based on the following proposition adapted from Proposition 4.18. We let n = 2
3 |S+ |+1

for the proof.

Proposition 7.12. There exists a map η : Aω → Aωα satisfying the two following properties:

(1) For any ω-language L ⊆ Aω recognized by α , we have L = η−1(wfα (L)).
(2) For any ω-language K ∈ C(Aα), the ω-language η−1(K) belongs to (C ◦ SUn)(A).

As before, one may show the direction (3) ⇒ (2) in Theorem 7.6 from this proposition using an

argument which is identical to the one used for proving the same direction in Theorem 4.12 from

Proposition 4.18. Therefore, we leave it to the reader. We concentrate on proving Proposition 7.12.

Proof of Proposition 7.12: definition of η. We begin by defining η : Aω → Aωα . While similar,

the definition is slightly different from the one we used when proving Proposition 4.18.

We first generalize the notion of k-type to ω-words. Given an ω-wordw , a position x inw and a

natural number k ∈ N, a k-type of x is the following word of length at most k :

• If x ≤ k , then the k-type of x is the prefixw[1, x − 1] of length x − 1.

• If x > k , then the k-type of x is the infixw[x − k, x − 1] of length k .

, Vol. 1, No. 1, Article . Publication date: August 2019.

40 Thomas Place and Marc Zeitoun

For the construction of η, we fix k = 2
3 |S+ |

, so that n = 2k . Moreover, we choose an arbitrary

order on the set of idempotents E(S). We now generalize the notion of distinguished position to

ω-words. The definition differs from the one we used for finite words. This change is needed to

prove the first item in Proposition 7.12 (on the other hand, it is harmless for the second item: its

proof is identical to the one for finite words). It is also the reason for using a larger constant k in

this setting.

Consider an ω-wordw and a position x inw . Moreover, let u be the k-type of x . We say that x is

distinguished when there exists a nonempty suffix v ∈ A+ of u such that α(v) ∈ E(S).

Remark 7.13. As for finite words, when x is distinguished, we have an idempotent e ∈ E(S) such
that α(u) · e = α(u) (namely, e = α(v) with v defined as above). However, in the case of ω-words, we
have a stronger property: u has a suffix whose image under α is an idempotent. We need this to prove
the first item in Proposition 7.12.

We now generalize Fact 4.19: distinguished positions occur frequently in ω-words.

Fact 7.14. Letw ∈ Aω , let k = 2
3 |S+ | and let y ≥ k − 1 be some position ofw . Then, there exists a

distinguished position x inw such that y − (k − 1) ≤ x ≤ y.

Proof. It is known that every word v ∈ A+ of length greater than k = 2
3 |S+ |

contains an infix

whose image under α is an idempotent (this is an immediate consequence of Simon’s factorization

forest theorem [8, 15, 40]). Hence, since the infix,w[y−(k−1),y] has length k , the result follows. □

We may now define the map η : Aω → Aωα . Let w ∈ Aω
. It is immediate from Fact 7.14 that w

contains infinitely many distinguished positions. Let x0 < x1 < x2 < · · · be these distinguished

positions. For all i ≥ 0, we let ui be the k-type of xi and ei ∈ E(S) be the smallest idempotent

(according to the arbitrary order that we fixed on idempotents) such that ui has a nonempty suffix

whose image under α is ei . We define η(w) ∈ Aωα as the ω-word:

η(w) = (α(w0), e0) · (e0,α(w1), e1) · (e1,α(w2), e2) · (e2,α(w3), e3) · · · ∈ A
ω
α

where w0 = w[0, x0 − 1] and for all i ≥ 1, wi = w[xi−1, xi − 1]. Note that η(w) is well-formed by

definition. It remains to show that η satisfies the two items in Proposition 7.12.

Proof of Proposition 7.12: first item. This is where the technical differences with the proof of

Proposition 4.18 occur. Consider a ω-language L ⊆ Aω
recognized by α and an ω-word w ∈ Aω

.

We have to show thatw ∈ L if and only if η(w) ∈ wfα (L).
Since α recognizes L, we have w ∈ L if and only if α(w) ∈ α(L). Moreover, since η(w) is well-

formed, by definition, η(w) ∈ wfα (L) if and only if eval(η(w)) ∈ α(L). Hence, it suffices to prove

that eval(η(w)) = α(w). This requires more work than for words. By definition, we know thatw
may be decomposed asw = w0w1w2 · · · and

η(w) = (α(w0), e0) · (e0,α(w1), e1) · (e1,α(w2), e2) · (e2,α(w3), e3) · · ·

such that for all i ≥ 0, w0 · · ·wi has a suffix of length at most k whose image under α is ei . In
particular, it is immediate by definition of eval that,

eval(η(w)) = α(w0)e0α(w1)e1α(w2)e2α(w3)e3 · · ·

Therefore, we need to show that,

α(w0)α(w1)α(w2)α(w3) · · · = α(w0)e0α(w1)e1α(w2)e2α(w3)e3 · · ·

Using a standard Ramsey argument, we obtain an infinite sequence of indices i1, i2, i3, . . . together
with s, t ∈ S and f ,д ∈ E(S) such that,

(1) s f = s and tд = t .

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 41

(2) α(w1) · · ·α(wi1) = s and α(w1)e1 · · ·α(wi1)ei1 = t .

(3) For all j > 1, α(wi j−1+1) · · ·α(wi j) = f and α(wi j−1+1)ei j−1+1 · · ·α(wi j)ei j = д.

Therefore, α(w0)α(w1)α(w2) · · · = s f
ω
and α(w0)e0α(w1)e1α(w2)e2 · · · = tдω . Hence, it suffices to

prove that s f ω = tдω . This is a consequence of the following lemma.

Lemma 7.15. We have s = t , f д = f and д f = д.

Before we prove the lemma, we show that s f ω = tдω and conclude the argument for the first

item in Proposition 7.12. Using the lemma and the fact that s f = s , we obtain,

s f ω = s(f д)ω = s f (д f)ω = s(д f)ω = tдω

It remains to prove Lemma 7.15. We prove the three equalities separately.

First Equality: s = t . By hypothesis, we know that for all i ≥ 0, w0 · · ·wi has a suffix of length

at most k whose image under α is ei . It follows that α(w0 · · ·wi) · ei = α(w0 · · ·wi). Thus, it is

immediate from a simple induction that indeed,

s = α(w1) · · ·α(wi1) = α(w1)e1 · · ·α(wi1)ei1 = t .

Second Equality: f д = f . Let j ≥ 3 be a large enough integer so that the wordwi1+1wi1+2 · · ·wi j−1
has length at least k = 2

3 |S+ |
. By definition and using the fact that f is idempotent, we have,

α(wi1+1wi1+2 · · ·wi j−1) = f ,
α(wi j−1+1) · · ·α(wi j) = f ,
α(wi j−1+1)ei j−1+1 · · ·α(wi j)ei j = д.

Therefore it suffices to show that,

α(wi1+1 · · ·wi j−1) · α(wi j−1+1) · · ·α(wi j) = α(wi1+1 · · ·wi j−1) · α(wi j−1+1)ei j−1+1 · · ·α(wi j)ei j .

By hypothesis, we know that for all i ≥ 0,w0 · · ·wi has a suffix of length at most k whose image

under α is ei . Thus, sincewi1+1wi1+2 · · ·wi j−1 has length at least k by hypothesis, it follows that for

all i ∈ {i j−1 + 1, . . . , i j }, we have,

α(wi1+1 · · ·wi) = α(wi1+1 · · ·wi) · ei .

Hence, the result follows from a simple induction.

Third Equality: д f = д. Consider the wordwi1+1 · · ·wi2 , which is mapped to f by α . By definition,

for all i1 + 1 ≤ j ≤ i2, we have a suffix vj of length at most k ofw1 · · ·w j such that α(vj) = ej . We

consider two sub-cases.

First assume that for all i1 + 1 ≤ j ≤ i2, the word vj is a suffix of wi1+1 · · ·w j . In that case, it is

immediate from as simple induction that we have,

f = α(wi1+1 · · ·wi2) = α(wi1+1)ei1+1 · · ·α(wi2)ei2 = д

Hence, we get д f = д. Otherwise, we consider the largest index j with i1 + 1 ≤ j ≤ i2 such that vj
is not a suffix ofwi1+1 · · ·w j . Observe that,

a) Since j has been chosen to be maximal, we get from a simple induction that,

α(wi1+1 · · ·w j)α(w j+1)ej+1 · · ·α(wi2)ei2 = α(wi1+1 · · ·wi2) = f . (7)

b) Since vj is by definition a suffix ofw1 · · ·w j but not ofwi1+1 · · ·w j , it follows thatwi1+1 · · ·w j
is a suffix of vj .

c) Since α(vj) = ej , we obtain from b) some r ∈ S such that r · α(wi1+1 · · ·w j) = ej .

, Vol. 1, No. 1, Article . Publication date: August 2019.

42 Thomas Place and Marc Zeitoun

Multiplying (7) by r on the left, we obtain therefore:

ejα(w j+1)ej+1 · · ·α(wi2)ei2 = r f .

We may now multiply this equality on the left by α(wi1+1)ei1+1 · · · ej−1α(w j), which yields,

α(wi1+1)ei1+1 · · ·α(wi2)ei2 = α(wi1+1)ei1+1 · · ·α(w j)r f ,

that is,

д = α(wi1+1)ei1+1 · · ·α(w j)r f .

In other words, we have found some element r ′ ∈ S such that д = r ′ f . It follows that д f = r ′ f f =
r ′ f = д, which concludes the proof.

Proof of Proposition 7.12: second item. Given an arbitrary ω-language K ∈ C(Aα), we have to
prove that η−1(K) belongs to (C ◦ SU2k)(A) (recall that we fixed n = 2k). The proof of this item is

essentially a simplified version of the corresponding argument for finite words (it is simpler since

ω-words have no right “border”).

Recall that ∼2k denotes the canonical equivalence associated to SU2k . We let P be the partition

of A∗
into ∼2k -classes. By definition of C ◦ SU2k , it suffices to exhibit an ω-language L ∈ C(P ×A)

such that η−1(K) = τ−1P (L). We use the following lemma (which is adapted from Lemma 4.21). Recall

that we may lift a morphism β : (P ×A)∗ → A∗
α as a map β : (P ×A)ω → Aωα .

Lemma 7.16. There exists a morphism β : (P ×A)∗ → A∗
α such that for any ω-wordw ∈ Aω , we

have β(τP(w)) = η(w).

The proof of Lemma 7.16 is identical to the one of Lemma 4.21 (using Fact 7.14 instead of Fact 4.19).

We leave it to the reader. It remains to finish the proof of Proposition 7.12.

Let β : (P ×A)∗ → A∗
α be the morphism defined in Lemma 7.16. We claim that

η−1(K) = τ−1P (β−1(K)).

This will conclude the proof, since β−1(K) belongs to C(P × A) by closure under inverse image.

It remains to prove the claim. Let w ∈ Aω
. By definition of β in Lemma 7.16, we have w ∈

η−1(K) if and only if β(τP(w)) ∈ K . This equivalent to τP(w) ∈ β−1(K). This exactly says that

w ∈ (P ×A)ω ∩ τ−1P (β−1(K)), as desired.

8 CONCLUSION
We presented generic reduction theorems for the SU-enrichment operation on classes of languages

and ω-languages. Given any such class C satisfying appropriate closure properties, we reduce

covering and separation for C ◦ SU to the same problem for C.

These theorems have many applications: for most logical fragments, SU-enrichment is the

language theoretic counterpart of a natural logical operation: if C is the class corresponding to

some logical fragment, it is often the case that its SU-enrichment C ◦ SU corresponds to the

stronger fragment obtained by adding the predicates “+1”, “min”, “max” and “ε” to the signature.

We showed this in the setting of finite words for the most prominent fragments of first-order

logic, namely the two-variable fragment FO
2(<) and the levels Σn(<) and BΣn(<) in the quantifier

alternation hierarchy. Combined with our reduction theorem and already known results, this shows

that covering and separation are decidable for FO
2(<,+1) and the levels Σ1(<,+1), BΣ1(<,+1),

Σ2(<,+1), BΣ2(<,+1) and Σ3(<,+1). Note that several of these results were unknown, and that

others have difficult combinatorial proofs only for membership algorithms (this is the case for

BΣ1(<,+1) [14] and for Σ2(<,+1) [12]).
An interesting follow-up to our work would be to obtain a similar reduction theorem for another

natural operation: MOD-enrichment C 7→ C ◦MOD. Here, MOD stands for the class of modulo

, Vol. 1, No. 1, Article . Publication date: August 2019.

Adding successor: A transfer theorem for separation and covering 43

languages. A language L belongs to MOD if and only if there exists a natural number d ≥ 1 such

that membership of a wordw in L depends only |w | mod d . This operation is important as it is

the language theoretic counterpart of another natural logical operation. If C corresponds to some

logical fragment, then C ◦ MOD corresponds to the stronger fragment obtained by adding the

modular predicates to the signature. Essentially, they consist in unary predicates which can be used

to test the number of a position modulo some constant.

REFERENCES
[1] Jorge Almeida. 1999. Some Algorithmic Problems for Pseudovarieties. Publicationes Mathematicae Debrecen 54 (1999),

531–552.

[2] Karl Auinger. 2010. On the Decidability of Membership in the Global of a Monoid Pseudovariety. IJAC 20, 2 (2010).

[3] Janusz A. Brzozowski and Robert Knast. 1978. The Dot-Depth Hierarchy of Star-Free Languages is Infinite. J. Comput.
System Sci. 16, 1 (1978), 37–55.

[4] Janusz A. Brzozowski and Imre Simon. 1973. Characterizations of locally testable events. Discrete Mathematics 4, 3
(1973), 243–271.

[5] Julius Richard Büchi. 1960. Weak Second-Order Arithmetic and Finite Automata. Mathematical Logic Quarterly 6, 1-6

(1960), 66–92.

[6] Julius Richard Büchi. 1962. On a decision method in restricted second order arithmetic. In Logic, Methodology and
Philosophy of Science. Stanford University Press.

[7] Olivier Carton. 2000. Wreath product and infinite words. Journal of Pure and Applied Algebra 153, 2 (2000), 129 – 150.

[8] Thomas Colcombet. 2010. Factorization Forests for Infinite Words and Applications to Countable Scattered Linear

Orderings. Theoritical Computer Science 411, 4-5 (2010), 751–764.
[9] Wojciech Czerwiński, Wim Martens, and Tomáš Masopust. 2013. Efficient Separability of Regular Languages by Subse-

quences and Suffixes. In Proceedings of the 40th International Colloquium on Automata, Languages, and Programming
(ICALP’13). Springer-Verlag, Berlin, Heidelberg, 150–161.

[10] Samuel Eilenberg. 1976. Automata, Languages, and Machines. Vol. B. Academic Press, Inc., Orlando, FL, USA.

[11] Calvin C. Elgot. 1961. Decision Problems of Finite Automata Design and Related Arithmetics. Trans. Amer. Math. Soc.
98, 1 (1961), 21–51.

[12] Christian Glaßer and Heinz Schmitz. 2000. Languages of Dot-Depth 3/2. In Proceedings of the 17th Annual Symposium
on Theoretical Aspects of Computer Science ((STACS’00)). Springer, Berlin, Heidelberg, 555–566.

[13] Christian Glaßer and Heinz Schmitz. 2007. Languages of Dot-Depth 3/2. Theory of Computing Systems 42, 2 (2007),
256–286.

[14] Robert Knast. 1983. A Semigroup Characterization of Dot-Depth One Languages. RAIRO - Theoretical Informatics and
Applications 17, 4 (1983), 321–330.

[15] Manfred Kufleitner. 2008. The Height of Factorization Forests. In Proceedings of the 33rd International Symposium on
Mathematical Foundations of Computer Science (MFCS’08). Springer-Verlag, Berlin, Heidelberg, 443–454.

[16] Manfred Kufleitner and Alexander Lauser. 2012. Around dot-Depth 1. Int. J. Found. Comp. Sci. 23, 6 (2012).
[17] Robert McNaughton. 1974. Algebraic decision procedures for local testability. Mathematical Systems Theory 8, 1 (1974),

60–76.

[18] Robert McNaughton and Seymour A. Papert. 1971. Counter-Free Automata. MIT Press.

[19] Dominique Perrin. 1984. Recent Results on Automata and Infinite Words. In Proceedings of the 9th International
Symposium on Mathematical Foundations of Computer Science (MFCS’84). Springer-Verlag, Berlin, Heidelberg, 134–148.

[20] Dominique Perrin and Jean-Éric Pin. 2004. Infinite Words. Elsevier.
[21] Théo Pierron, Thomas Place, and Marc Zeitoun. 2016. Quantifier Alternation for Infinite Words. In Foundations of

Software Science and Computation Structures - 19th International Conference, FOSSACS 2016. 234–251.
[22] Jean-Éric Pin and Pascal Weil. 1995. Polynomial Closure and Unambiguous Product. In Proceedings of the 22nd

International Colloquium on Automata, Languages and Programming (ICALP’95). Springer-Verlag, Berlin, Heidelberg,
348–359.

[23] Jean-Éric Pin. 1995. A variety theorem without complementation. Russian Mathematics (Izvestija vuzov.Matematika)
39 (1995), 80–90.

[24] Jean-Éric Pin and Pascal Weil. 1997. Polynomial Closure and Unambiguous Product. Theory of Computing Systems 30,
4 (1997), 383–422.

[25] Jean-Eric Pin and Pascal Weil. 2002. The wreath product principle for ordered semigroups. Communications in Algebra
30 (2002), 5677–5713.

[26] Thomas Place. 2015. Separating Regular Languages with Two Quantifiers Alternations. In Proceedings of the 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, (LICS’15). IEEE Computer Society, 202–213.

, Vol. 1, No. 1, Article . Publication date: August 2019.

44 Thomas Place and Marc Zeitoun

[27] Thomas Place. 2018. Separating regular languages with two quantifier alternations. Logical Methods in Computer
Science 14, 4 (2018).

[28] Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. 2013. Separating Regular Languages by Piecewise Testable and

Unambiguous Languages. In Proceedings of the 38th International Symposium on Mathematical Foundations of Computer
Science (MFCS’13). Springer-Verlag, Berlin, Heidelberg, 729–740.

[29] Thomas Place and Marc Zeitoun. 2014. Going Higher in the First-Order Quantifier Alternation Hierarchy on Words. In

Proceedings of the 41st International Colloquium on Automata, Languages, and Programming (ICALP’14). Springer-Verlag,
Berlin, Heidelberg, 342–353.

[30] Thomas Place and Marc Zeitoun. 2014. Separating Regular Languages with First-order Logic. In Proceedings of the
Joint Meeting of the 23rd EACSL Annual Conference on Computer Science Logic (CSL’14) and the 29th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS’14). ACM, New York, NY, USA, 75:1–75:10.

[31] Thomas Place and Marc Zeitoun. 2015. Separation and the Successor Relation. In 32nd International Symposium on
Theoretical Aspects of Computer Science (STACS’15). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,

Germany, 662–675.

[32] Thomas Place and Marc Zeitoun. 2016. The Covering Problem: A Unified Approach for Investigating the Expressive

Power of Logics. In Proceedings of the 41st International Symposium on Mathematical Foundations of Computer Science
(MFCS’16). 77:1–77:15.

[33] Thomas Place and Marc Zeitoun. 2016. Separating Regular Languages with First-Order Logic. Logical Methods in
Computer Science 12, 1 (2016).

[34] Thomas Place and Marc Zeitoun. 2017. Separation for Dot-depth Two. In Proceedings of the 32th Annual ACM/IEEE
Symposium on Logic in Computer Science, (LICS’17). IEEE Computer Society, 202–213.

[35] Thomas Place and Marc Zeitoun. 2018. The Covering Problem. Logical Methods in Computer Science 14, 3 (2018).
[36] Thomas Place and Marc Zeitoun. 2019. Going Higher in First-Order Quantifier Alternation Hierarchies on Words.

Journal of the ACM 66, 2 (2019), 12:1–12:65. https://doi.org/10.1145/3303991

[37] Michael O. Rabin. 1969. Decidability of Second-Order Theories And Automata on Infinite Trees. Trans. Amer. Math.
Soc. 141, 1-35 (1969), 4.

[38] Marcel Paul Schützenberger. 1965. On Finite Monoids Having Only Trivial Subgroups. Information and Control 8, 2
(1965), 190–194.

[39] Imre Simon. 1975. Piecewise Testable Events. In Proceedings of the 2nd GI Conference on Automata Theory and Formal
Languages. Springer-Verlag, Berlin, Heidelberg, 214–222.

[40] Imre Simon. 1990. Factorization Forests of Finite Height. Theoritical Computer Science 72, 1 (1990), 65–94.
[41] Benjamin Steinberg. 2001. A delay theorem for pointlikes. Semigroup Forum 63, 3 (2001), 281–304.

[42] Howard Straubing. 1985. Finite Semigroup Varieties of the Form V ∗ D. Journal of Pure and Applied Algebra 36 (1985),
53–94.

[43] James W. Thatcher and Jesse B. Wright. 1968. Generalized Finite Automata Theory with an Application to a Decision

Problem of Second-Order Logic. Mathematical Systems Theory 2, 1 (1968), 57–81.

[44] Denis Thérien and Thomas Wilke. 1998. Over Words, Two Variables Are As Powerful As One Quantifier Alternation.

In Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC’98). ACM, New York, NY, USA,

234–240.

[45] Boris A. Trakhtenbrot. 1961. Finite Automata and Logic of Monadic Predicates. Doklady Akademii Nauk SSSR 149

(1961), 326–329. In Russian.

[46] Thomas Wilke. 1991. An Eilenberg Theorem for Infinity-Languages. In Proceedings of the 18th International Colloquium
on Automata, Languages and Programming (ICALP’91). Springer-Verlag, Berlin, Heidelberg, 588–599.

[47] Yechezkel Zalcstein. 1972. Locally testable languages. J. Comput. System Sci. 6, 2 (1972), 151–167.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://doi.org/10.1145/3303991

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Words and classes of languages
	2.2 Closure properties
	2.3 Decision problems
	2.4 Suffix languages

	3 Fragments of first-order logic
	3.1 First-order logic and fragments
	3.2 Enriched signatures

	4 Reducing strong to weak variants
	4.1 The enrichment of a class of languages
	4.2 Languages of well-formed words
	4.3 Main theorem: reducing (C o SU)-covering to C-covering
	4.4 From (C o SU)-covering to C-covering
	4.5 From C-covering to (C o SU)-covering

	5 Application to two-variable first-order logic
	5.1 From enrichment to successor
	5.2 Ehrenfeucht-Fraïssé games
	5.3 From successor to enrichment

	6 Application to quantifier alternation
	6.1 From enrichment to successor
	6.2 Ehrenfeucht-Fraïssé games
	6.3 From successor to enrichment

	7 The reduction for infinite words
	7.1 Enrichment for classes of omega languages
	7.2 Languages of well-formed omega words
	7.3 The reduction theorem for -words
	7.4 From (C o SU)-covering to C-covering
	7.5 From C-covering to (C o SU)-covering

	8 Conclusion
	References

