
A

The Tale of the Quantifier Alternation Hierarchy of First-Order Logic
over Words

T. Place and M. Zeitoun
LaBRI, U. Bordeaux

In this survey, we present ideas developed until recently in order to understand the expressive power of
logical fragments in the quantifier alternation hierarchy of first-order logic interpreted on finite words.

1. INTRODUCTION
This paper surveys milestones, from early to recent results, on the expressiveness of
fragments of first order logic interpreted on finite words. In this context, “understanding
the expressive power of a fragment of first-order logic F” often amounts to finding an
algorithm for the following decision problem:

Input A regular language of finite words L.

Question Can L be defined by a sentence of F?
In other words, we ask whether the input language belongs to the class of languages

defined by the logic, hence the name of the problem: the F-membership problem. Having
an F-membership algorithm in hand amounts to having an effective description of all
regular properties that F can express. This is why obtaining a membership algorithm is
viewed as the goal to strive for when trying to get a precise understanding of a logic.
This problem is always difficult as it is a semantic question: whether a regular language
is definable in F may not be apparent in the syntax that defines it.

Our main objective is to outline advances that have led to membership algorithms
for logical fragments in a well-known and natural hierarchy of first order definable
languages, the quantifier alternation hierarchy. Intuitively, the notion of quantifier
alternation classifies first order logic according to the difficulty we have to define
languages. To obtain such a classification, we need a notion of hardness, i.e., a good
measure telling how complex a property is. Quantifier alternation is a natural such
measure: a language is considered complicated when we need many switches between
blocks of ∃ quantifiers and blocks of ∀ quantifiers to express it. In mathematics, usually
few such alternations are used (one quickly gets lost beyond 4 or 5). This motivates
the study of what can be expressed with a fixed number of quantifier alternations, and,
already importantly, with few of them. Observe that the notion of quantifier alternation
is, again, semantic and not syntactic: given a first order definable language, we look at
the minimum number of quantifier alternations that is needed to define the language.

The search for membership algorithms for each level in this hierarchy started in
1965 when an algorithm was found for full first-order logic [Schützenberger 1965;
McNaughton and Papert 1971]. This investigation is still ongoing work today, with
results as recent as 2015 [Place 2015; Almeida et al. 2015]. The main developments
were separated by decades. This is explained by the fact that each of them required
to add new conceptual ingredients to the mix. In this paper, we survey the story of
this quest by organizing it around three milestones, corresponding to the three main
concepts that are needed to explain the most recent results.

2. LOGICAL FRAGMENTS OF FIRST ORDER LOGIC
For the whole paper, we assume that an arbitrary alphabet A is fixed and that we
consider finite words over this alphabet. As usual, the set of all these words is denoted
by A∗. A language is simply a set of words.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

One can view a word as a logical structure made of an ordered sequence positions
carrying labels in A. For example the word abaac is made of positions 0 < 1 < 2 < 3 < 4
labeled by a, b, a, a and c, respectively. In first-order logic over words (FO(<)), one can
quantify over positions in a word and use the following predicates to test properties of
these positions:

— for each a ∈ A, a unary predicate Pa that selects positions labeled with an a.
— a binary predicate ‘<’, which is interpreted as the linear order over the positions.

Moreover, as usual, one is allowed to use boolean connectives within sentences. Each
sentence of FO(<) defines a language: the language of all words that satisfy the sentence.
For instance, the sentence “∃x (Pa(x) ∧ ∃y x < y)” defines the language of all words in
which there exists a position which carries an a and is not the rightmost one. Hence,
FO(<) defines a class of languages: the class of all languages that can be defined
using an FO(<) sentence. We also denote this class by FO(<). In particular, FO(<) is a
subclass of that of all regular languages. This follows from the well-known theorem of
Büchi, Elgot and Trakhtenbrot, which states that being regular is equivalent to being
definable in the more expressive monadic second order logic (MSO) [Büchi 1960; Elgot
1961; Trakhtenbrot 1961].

The notion of quantifier alternation is a natural way to stratify the class FO(<) as
a hierarchy. It classifies first-order sentences by counting the number of alternations
between existential and universal quantifiers inside their prenex normal form. An
important remark is that one can find two different “quantifier alternation hierarchies
of first-order logic” in the literature. They correspond to two different (but equivalent)
ways of defining first-order logic over words. We start with the hierarchy corresponding
to our definition, which we call the order hierarchy.

Order Hierarchy. As explained, one can classify first-order sentences by counting the
number of alternations between ∃ and ∀ quantifiers in the prenex normal form of the
sentence. Given n > 1, an FO(<) sentence is said to be Σn(<) (resp. Πn(<)) if its prenex
normal form has n blocs of nested quantifiers (or, equivalently, (n − 1) alternations)
and starts with an ∃ (resp. ∀) quantifier. That is, a Σn(<) sentence is a sentence whose
prenex normal form has the following shape:

∃∗∀∗∃∗ . . .︸ ︷︷ ︸
n blocks

ϕ

where ϕ is a quantifier-free FO(<) formula. It is straightforward to see that the classes
of languages corresponding to Σn(<) and Πn(<) are closed under union and intersection.
On the other hand, these classes are not closed under complement (the negation of
Σn(<) sentence is a Πn(<) sentence, and conversely). This is why one also considers the
BΣn(<) sentences, which are boolean combinations of Σn(<) and Πn(<) formulas.

Clearly, we have Σn(<) ⊂ BΣn(<) ⊂ Σn+1(<). The first natural question is whether
these inclusions are strict, and it turns out that this is the case. The hierarchy is
depicted in Figure 1, where the color indicates the status of the class with respect to
the membership problem.

Enriched Hierarchy. In FO(<), several natural predicates can be defined from the
linear order “<”. This is the case for the predicate testing that a position is the leftmost
one in the word, by the formula min(x) := ¬∃y y < x, or symmetrically the rightmost one
by a max(x) formula. Another natural predicate is the successor, which tests whether
two positions are consecutive. It is defined by +1(x, y) := (x < y) ∧ ¬∃z(x < z ∧ z < y).

It follows that one can present an alternate definition of first-order logic over words,
FO(<,+1), in which these predicates are explicitly allowed in the signature. While
the two definitions are equivalent for full first-order logic, this is not the case for

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

Σ5(<)

Π5(<)

BΣ4(<)

Σ4(<)

Π4(<)

BΣ3(<)

Σ3(<)

Π3(<)

BΣ2(<)

Σ2(<)

Π2(<)

BΣ1(<)

Σ1(<)

Π1(<)

[Simon 1975]

[Arfi 1987]
[Pin and Weil 1997]

[Place and Zeitoun 2014a]

[Place and Zeitoun 2014a] [Place 2015]

Full FO(<) [Schützenberger 1965]

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

BΣ2(<) BΣ2(<)Membership Solved Membership Open

Fig. 1. Order Quantifier Alternation Hierarchy of First-Order Logic

classes of the quantifier alternation hierarchy. Indeed, replacing the predicates min(x),
max(x) or +1(x, y) by the formulas above inside a sentence may increase its quantifier
alternation. It can be shown that this is actually unavoidable. Thus, we get a second
quantifier alternation hierarchy. We call it the enriched hierarchy and denote its classes
by Σn(<,+1), Πn(<,+1) and BΣn(<,+1).

As we will see, the investigation of the membership problem for the two hierarchies is
strongly related. In fact, the state of the art is the same for both, as depicted in Figure 1.

3. FIRST MILESTONE: SCHÜTZENBERGER’S THEOREM
We begin our survey with the milestone that started it all: Schützenberger’s Theo-
rem [Schützenberger 1965]. Naturally, before fragments in the quantifier alternation
hierarchy of first-order logic were looked at, first-order logic was investigated as a
whole. The main result in this investigation is Schützenberger’s Theorem from which
a membership algorithm for first-order logic can be easily obtained. This theorem
was historically the first one and it defined a template that is still followed nowadays.
Before we present the theorem and explain the relevance of the approach taken by
Schützenberger, let us make an important remark.

In its original statement, Schützenberger’s Theorem does not actually refer to first-
order logic: it is about the class of star-free languages. This is the smallest class of
languages containing all finite languages and closed under boolean operations (in-
cluding complement) and concatenation product. On the other hand, the class is not
closed under the Kleene star, hence the name “star-free”. Therefore, originally, what
followed from the theorem was a membership algorithm for the class of star-free
languages. The connection with first-order logic was made later by McNaughton and Pa-
pert [McNaughton and Papert 1971] who proved that the classes of first-order definable
languages and star-free languages are the same.

An important point is that while the membership algorithm for FO(<) is the conse-
quence of two results, these two results are not of the same importance: the core of the
argument is Schützenberger’s proof. Indeed, that “FO(<) = Star-Free” is proved via

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

direct rewriting of formulas (essentially, this amounts to proving that concatenation
can be simulated with existential quantification, and conversely). In other words, the
proof is mainly syntactic: if we have an FO(<) formula ϕ that defines a language L in
hand, we do not have to analyze L, we can directly rewrite ϕ into a star-free description
of L. On the other hand, proving Schützenberger’s Theorem (i.e., deciding whether a
regular language L is FO(<)-definable or star-free) requires a semantic understanding
of the input language L. In particular, given a regular language L that is first-order
definable, one cannot directly compute an FO(<) formula defining L out of any repre-
sentation of L: usually this requires to first compute a specific abstract representation
of L (its syntactic monoid) and then, to rebuild a first-order formula from this abstract
representation.

This last remark underlines the fact that Schützenberger’s Theorem is stated and
proved within a general framework. This framework is tailored to the membership
problem and is generic in the sense that it can be applied to many classes of languages
besides FO(<) itself. We start by presenting this framework and by explaining why it
is that relevant for the membership problem.

3.1. A Framework for the Membership Problem: the Syntactic Approach
Our goal is now to define a framework that is suitable for investigating the membership
problem associated to some class of languages C. Recall that in the membership problem,
we want to know whether a single input regular language is definable in C. In order to
understand Schützenberger’s approach to this problem, one has to ask the following
question: what is the advantage of having a regular input? The answer can be found in
the following result, which is the main ingredient of Schützenberger’s approach.

Main Ingredient: Myhill-Nerode Theorem. Myhill-Nerode Theorem is a well-
known characterization of regular languages, as those whose syntactic congruence
has finite index. To any language L ⊆ A∗ (not only regular ones), one can associate an
equivalence relation ∼L on the set A∗: the syntactic congruence of L. Intuitively, two
words are equivalent if they cannot be distinguished by L, even when embedded in the
same context. Formally, the definition is as follows:

u ∼L v if and only if ∀x, y ∈ A∗ xuy ∈ L⇐⇒ xvy ∈ L.

By definition, L is a union of equivalence classes of ∼L. In other words, the syntactic
congruence of L breaks down L in fundamental simpler parts. Furthermore, the set of
these fundamental parts has a structure. Indeed, as the name suggests, it is simple to
prove that the syntactic congruence is a congruence for the concatenation operation: if
u ∼L v and u′ ∼L v

′, then uu′ ∼L vv
′. This has two consequences:

(1) The set of equivalence classes of ∼L is a monoid when equipped with the con-
catenation operation: if K,K ′ are equivalence classes, then KK ′ is included in an
equivalence class. This monoid, denoted by ML, is called the syntactic monoid of L.

(2) The map αL : A∗ → ML that associates its equivalence class to each word is a
monoid morphism (for any u, v ∈ A∗, αL(uv) = αL(u)αL(v)). It is called the syntactic
morphism of L.

The syntactic morphism αL defines several languages: all languages which are
unions of equivalence classes of ∼L. We speak of the set of languages recognized by
αL. In particular, observe that both L and its complement are among these recognized
languages. From Myhill-Nerode Theorem, we know that the syntactic monoid and the
syntactic morphism of a language L become very relevant objects when L is regular.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

THEOREM 3.1 (MYHILL-NERODE THEOREM). Let L be a language. Then L is reg-
ular if and only if ∼L has finite index, i.e., if and only if the syntactic monoid of L is
finite.

Note that when ML is finite, αL can be finitely represented: as a morphism it is
defined by its restriction to letters of the alphabet. Therefore, what Myhill-Nerode
Theorem gives us is a finite canonical representation of any regular language: its
syntactic morphism αL : A∗ →ML. Moreover, the proof of the theorem is constructive:
from any representation of a regular language L, one can compute αL.

The main point of Schützenberger’s approach to the membership problem is that the
syntactic morphism is the “right” representation of a regular language when trying to
decide semantic properties. In particular, it follows from Theorem 3.2 below that this
representation is tailored to the investigation of the C-membership problem for classes
of languages C that satisfy the following conditions:

(1) C is nonempty and closed under boolean operations (including complement).
(2) C is closed under right and left quotients: for any w ∈ A∗ and L ∈ C

w−1L = {u | wu ∈ L} ∈ C and Lw−1 = {u | uw ∈ L} ∈ C.

Note that it is well-known and simple to verify that FO(<) itself fulfills these two
conditions.

THEOREM 3.2. Let C be a nonempty class of regular languages that is closed under
boolean operations and quotients. Then, for any regular language L, L belongs to C if
and only if every language recognized by αL belongs to C.

The statement of Theorem 3.2 might seem surprising as it is not entirely obvious
that we gain something from it: we reduced the problem of deciding whether a single
regular language L belongs to C to the problem of deciding whether several regular
languages belong to C. However, these languages are not any languages: combined, they
form a finitely presentable piece of syntax that defines the input language L. In view
of this, what we really obtain from Theorem 3.2 is that deciding a semantic property
of L (whether L belongs to C) can be reduced to deciding a syntactic property of the
syntactic morphism αL. Usually, such a result is called a decidable characterization
of C: one proves that membership of a regular language L in C is equivalent to an easily
decidable syntactic property of its syntactic morphism αL.

Naturally, the general approach that we have presented so far tells nothing of what
this syntactic property should be, as it is specific to C. This is where the real investi-
gation on the class C takes place: finding the syntactic property and proving that it
is equivalent to definability in C remains a hard problem for most classes C. In other
words, the syntactic morphism is a suitable and convenient framework for investigating
the membership problem associated to C:

(1) it provides an elegant way to state the algorithm and,
(2) it provides convenient tools and properties to prove its correction (we shall detail

this point below).

On the other hand, what the syntactic morphism is not is a generic solution to the
membership problem for all classes C. The best (and historically first) example of this is
Schützenberger’s Theorem itself, which we now state.

THEOREM 3.3 (SCHÜTZENBERGER-MCNAUGHTON-PAPERT). Let L be a regular
language. Then, the three following conditions are equivalent:

— L is definable in FO(<).
— L is star-free.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

— ML is aperiodic: for every s ∈ML, we have

sω = sω+1. (AP)

The symbol ω in (AP) denotes a natural number that can be computed from ML,
which satisfies the following property: for any s ∈M , sω is an idempotent (sω = sωsω).
It follows that the last item in Theorem 3.3 is a syntactic condition which can easily be
decided for ML. Therefore, Theorem 3.3 yields the desired membership algorithm.

As we shall see in the next subsection, Theorem 3.3 is not an isolated case: many
classes C were given decidable characterizations with theorems having an elegant
statement resembling that of Theorem 3.3. This illustrates Item (1) above: the syntactic
morphism provides an elegant way to state membership algorithms. However, the
relevance of the syntactic approach of Schützenberger’s Theorem does not stop at the
statement of the result: as claimed in Item (2) above, the syntactic morphism also
provides the right tools to prove such theorems. Let us explain why in more detail.

In order to prove a statement similar to Theorem 3.3 for some class C (such as FO(<)
in the case of Theorem 3.3), one has to prove that for any regular language L, we have
L ∈ C if and only if αL satisfies some syntactic property (such as ML is aperiodic in
the case of Theorem 3.3). It turns out that for all known cases, including FO(<), the
difficult direction is the “if” one: starting from an abstract representation of L satisfying
an abstract property, one has to build a formula that defines L. In particular, this makes
the proof of this direction very interesting: it yields a canonical way to construct a
formula for any language of C.

By Theorem 3.2, what one needs to prove is that any language recognized by αL

is definable in FO(<). Very roughly, this is achieved by decomposing each recognized
language as the composition (by concatenation, union, intersection or complement) of
simpler languages (i.e., recognized by a simpler syntactic morphism to which induction
can be applied). This is where the algebraic structure of the syntactic morphism is
useful: it may be used to define induction parameters and find clever ways to make
these decompositions.

3.2. After Schützenberger: First Classes of the Hierarchies
Schützenberger’s approach served as a template that was applied (and is still applied)
to many natural classes of languages. In particular, since Schützenberger’s Theorem
was about star-free languages, researchers started considering hierarchies of star-
free languages (which would later be proved to correspond to quantifier alternation
hierarchies within FO(<)).

The Enriched Hierarchy. The first hierarchy to be considered was the Dot-Depth
Hierarchy of Brzozowski and Cohen [Brzozowski and Cohen 1971] in which each level
counts the minimal number of nested alternations between concatenation and com-
plement operations that are needed to build a star-free language. This hierarchy was
proved to be strict (each level is strictly larger than the previous one) in [Brzozowski
and Knast 1978]. Note that the link between this classification method and quantifier
alternation is quite intuitive: since concatenation corresponds to existential quantifica-
tion, alternating complement and concatenation is connected to alternating quantifiers.
The formal connection was made later by Thomas [Thomas 1982], who proved that the
dot-depth hierarchy corresponds to the enriched quantifier hierarchy of first-order logic:
the languages of dot-depth i are the languages definable in BΣi(<,+1).

Remark 3.4. Observe that we did not mention the logics Σi(<,+1) and Πi(<,+1).
This is because the original definition of the dot-depth hierarchy by Brzozowski and
Cohen did not include them. They were only added later as “half-levels”: Σi(<,+1)

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

corresponds to languages of dot-depth i− 1
2 . We will detail this point in Section 4, as

treating these classes requires to generalize the syntactic approach.

Despite its early definition (1971), it was not until 1983 that a membership algorithm
for the first level of the dot-depth hierarchy was found (i.e., the level corresponding to
BΣ1(<,+1)). This result, due to Knast [Knast 1983], was presented and proved with the
syntactic approach: it states that a language is definable in BΣ1(<,+1) if and only its
syntactic morphism satisfies an easy to decide syntactic property, which can be stated
as an equation similar to (AP).

Despite this initial success, level 2 of the dot-depth hierarchy (i.e., BΣ2(<,+1)) was
not given a membership algorithm until 2014 [Place and Zeitoun 2014a]. In fact, after
Knast’s result, the focus was quickly shifted to the second hierarchy, the order hierarchy,
following a result by Straubing [Straubing 1985] suggesting that investigating BΣ2(<)
was the right approach to solving membership for BΣ2(<,+1).
The Order Hierarchy. Surprisingly, the simpler order quantifier alternation hierarchy
was not considered until much later than the dot-depth hierarchy. It was first introduced
independently by Thérien [Thérien 1981] and Straubing [Straubing 1981] as another
hierarchy of star-free languages: the Straubing-Thérien hierarchy. It was then observed
by Perrin and Pin [Perrin and Pin 1986] that it actually corresponds to the order
hierarchy.

It was proved by Straubing [Straubing 1985] (for the integer BΣi levels) and then
by Pin and Weil [Pin and Weil 2002] (for the half Σi levels) that this hierarchy is in
a sense the most fundamental of the two. More precisely, they proved that for i > 2,
the membership problem for BΣi(<,+1) (resp. Σi(<,+1)) can be effectively reduced to
the same problem for BΣi(<) (resp. Σi(<)). This explains why, after 1985, efforts have
mostly aimed at obtaining membership algorithms for levels of the order hierarchy (in
fact the result of [Place and Zeitoun 2014a] cited above for BΣ2(<,+1) is actually a
membership algorithm for BΣ2(<)).

Ironically, the first level of the Straubing-Thérien hierarchy corresponding to BΣ1(<)
was given a membership algorithm before the actual hierarchy was even defined.
Indeed, BΣ1(<) corresponds to the class of piecewise testable languages, which was first
investigated independently from the hierarchy and given a decidable characterization
by Simon in [Simon 1975]. This result is usually referred to as Simon’s Theorem (not to
be confused with Simon’s Factorization Forests Theorem [Simon 1990]) and is arguably
the second most famous result of this kind, after Schützenberger’s Theorem.

Many attempts at generalizing these results to BΣ2(<) were made over the years
(see [Pin 2011; Almeida and Klíma 2010; Pin 1998; Pin and Straubing 1985] for example).
However, until 2014, the only result that was known was partial, working only when
the alphabet has size 2 [Straubing 1988]. This can be explained by the fact that the
algorithm that was finally obtained in [Place and Zeitoun 2014a] relies on two additional
ingredients that fall outside of the syntactic approach that we presented thus far:

(1) Investigating the “half-levels” Σi(<).
(2) Considering a problem that is more general than membership for these “half-levels”:

the separation problem.

The two following sections are devoted to the presentation of these two ingredients.

4. SECOND MILESTONE: CLASSES THAT ARE NOT CLOSED UNDER COMPLEMENT
An issue with the general approach that we outlined in the previous section is that it
can only be applied to classes of languages that are closed under complement. Given a
regular language L, the set of languages that are recognized by its syntactic morphism
contains both L and its complement. Therefore, a class of languages C that satisfies

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

Theorem 3.2 (which is the basis of the syntactic approach) must be closed under
complement.

This is a problem for the classes Σi(<) and Σi(<,+1) within the quantifier alternation
hierarchies of first-order logic, as the associated classes of languages are not closed
under complement (the negation of a Σi(<) formula is a Πi(<) formula). At first, this
was not a visible issue since the dot-depth hierarchy of star-free languages did not
include the classes Σi(<,+1) in its original definition (see Remark 3.4).

For the purpose of describing languages, this omission is natural: one always prefers
to be allowed to use negation. However, one can argue that the logics Σi are the most
fundamental ones in the two hierarchies. Indeed, the logics in the hierarchy (Σi, Πi,
and BΣi) are all built directly from Σi. As we explained in the previous section, this
argument is also validated empirically as all further membership results concerning
both hierarchies are derived from the investigation of the classes Σi(<).

The first question to be asked is whether the syntactic approach of Section 3 can be
generalized to encompass classes that are not closed under complement, such as Σi(<).
This question was answered positively by Pin [Pin 1995] and the generalized approach
was then used by Pin and Weil [Pin and Weil 1997] to obtain a membership algorithm
for Σ2(<). In this section, we explain these results.

Let C be an arbitrary class of languages that satisfies the following conditions:

(1) C contains the languages ∅ and A∗ and is closed under union and intersection (but
not necessarily under complement).

(2) C is closed under right and left quotients: for any w ∈ A∗ and L ∈ C

w−1L = {u | wu ∈ L} ∈ C and Lw−1 = {u | uw ∈ L} ∈ C

Naturally, the interesting case is when C is not closed under complement, since other
cases were treated in the previous section. Let us first detail why the syntactic approach
fails in this case and outline Pin’s solution to this problem.

Essentially, the relevance of the syntactic approach is justified by Theorem 3.2. As
explained, when C is not closed under complement, we cannot hope to prove that L is
definable in C if and only if all languages recognized by its syntactic morphism are
(since these languages include the complement of L).

Pin’s solution to this problem was to relax the “all languages are definable” condition
in the theorem. He observed that the set of all recognized languages can be replaced by
a subset that still retains a lot of structure. To define this subset, one needs to add a
new ingredient to the mix: a canonical partial order that can be defined on the syntactic
monoid of the language. The main idea behind the definition is that given a class C,
whether a regular language belongs to C only depends on the syntactic morphism of the
language and on this order.

New Ingredient: The Syntactic Ordered Monoid. One can modify the definition
of the syntactic congruence of a language to define a pre-congruence (i.e., a preorder
that is compatible with concatenation):

u ≤L v if and only if ∀x, y ∈ A∗ xuy ∈ L =⇒ xvy ∈ L.

In turn, this defines a partial order ≤ on the set of equivalence classes of ∼L (i.e., the
syntactic monoid ML of L). It is also simple to verify that ≤ is compatible with the
multiplication of ML: s ≤ t and s′ ≤ t′ imply st ≤ s′t′. This means that the pair (ML,≤)
is an ordered monoid, called the syntactic ordered monoid of the language.

With our goal in mind, an important observation is that while a language L and its
complement L have the same syntactic monoid (ML = ML), they do not have the same
syntactic ordered monoid. Indeed, it can be observed from the definition of the preorder

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

≤L that the orders on ML and ML are dual:

u ≤L v if and only if ∀x, y ∈ A∗ xvy 6∈ L =⇒ xuy 6∈ L if and only if v ≤L u.

The following result proves that adding the syntactic ordered monoid makes it
possible to recover Theorem 3.2 and the syntactic approach, even when the class C is
not closed under complement. What one needs to consider is not the set of all languages
recognized by αL but only a subset that is defined from the order ≤ on ML. We say that
a language recognized by αL is upward-closed if and only if it is a union of languages
of the form ∪K≤K′K ′ for some equivalence class K of ∼L (i.e., some element K of ML).
One can verify that L itself is upward-closed.

THEOREM 4.1 (PIN). Let C be a class of languages containing ∅ and A∗ and closed
under union, intersection and quotients. Then, for any regular language L, L belongs to
C if and only if all upward-closed languages recognized by αL belong to C.

With this generalized theorem, one can hope to generalize the template established
by Theorem 3.3 to classes C that are not closed under complement: deciding a semantic
property of a regular language L (whether L belongs to C) can be reduced to deciding
a syntactic property of the syntactic morphism αL. However, this syntactic property
should depend on the newly introduced order on ML. This is illustrated by the Theorem
of Pin and Weil [Pin and Weil 1997], which gives a decidable characterization of Σ2(<).
In the theorem, given a word u ∈ A∗, we denote by alph(u) its alphabet (i.e., the set of
letters it contains).

THEOREM 4.2 (PIN-WEIL). Let L be a regular language, then the two following
conditions are equivalent:

(1) L is definable in Σ2(<).
(2) αL satisfies the following property, for every s, t ∈ML such that there exist two words

u ∈ α−1L (s) and v ∈ α−1L (t) with alph(v) ⊆ alph(u):

sω ≤ sωtsω (1)

This generalization of the syntactic approach was quite fruitful. First, by combining
Theorem 4.2 with the transfer theorem of [Pin and Weil 2002], one obtains simple
membership algorithms for Σ2(<), Π2(<), Σ2(<,+1) and Π2(<,+1).

Remark 4.3. Note that for these logics, alternate algorithms working outside of
the syntactic approach are also known. An algorithm for Σ2(<) and Π2(<) is due to
Arfi [Arfi 1987] and an algorithm for Π2(<,+1) and Π2(<,+1) is due to Glaßer and
Schmitz [Glaßer and Schmitz 2000]. However, these algorithms are ad hoc (they use
techniques that are specific to the logic they consider), and are much harder to present.

Another success of this generalization is that it allowed to obtain a new proof of
Simon’s Theorem (i.e., the decidable characterization of BΣ1(<)). While not a new result,
this new proof [Henckell and Pin 2000] is of particular interest as it suggests a link
between the investigation of Σi(<) and that of BΣi(<). However, in order to formalize
this relationship, one needs to consider a more general problem than membership. This
is the purpose of the next section.

5. THIRD MILESTONE: SEPARATION
After the membership problem was solved for Σ2(<) in [Pin and Weil 1997], the next
interesting classes, BΣ2(<) and Σ3(<), turned out to be harder to tackle. As explained,
while a partial solution for BΣ2(<) (limited to languages over alphabets containing at
most two letters) was found in [Straubing 1988], the general case remained open until

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

very recently. In [Place and Zeitoun 2014a], membership algorithms were found for
both BΣ2(<) and Σ3(<).

These two results required to add a new ingredient: a new decision problem, more
general than membership and called the separation problem. It is the investigation of
this new problem for the classes Σ2(<) and Π2(<) that made it possible to obtain the
membership algorithms for BΣ2(<) and Σ3(<). Let us start with the definition of the
separation problem.

5.1. The Separation Problem
The separation problem is a generalization of the membership problem. This time,
we are given two input regular languages rather than one. Given three languages
L1, L2,K ⊆ A∗, we say that K separates L1 from L2 when K contains L1 and is disjoint
from L2, as shown in Figure 2.

A∗

L1

L2

K

Fig. 2. K separates L1 from L2

Given an arbitrary class of languages C, the C-separation problem is defined as follows.

Input. Two regular languages L1, L2.
Question. Is L1 C-separable from L2, i.e., does there exist K ∈ C separating L1 from L2?

The separation problem is an immediate generalization of the membership problem:
one can effectively reduce the C-membership problem to the C-separation problem, since
a regular language belongs to C if and only if it is C-separable from its complement
(which is regular as well).

Note that separation is also a problem that is intuitively harder than membership.
In the membership problem, one can directly perform tests on the input language to
discover whether or not it belongs to C. In contrast, for the separation problem, we are
searching for a hypothetical language in C that is unknown at first. In fact, given a class
C, obtaining an algorithm for the C-separation problem usually requires to consider
a broader framework, more general than what we have presented so far. We do not
tackle this question and refer the reader to [Place and Zeitoun 2014a; Place and Zeitoun
2014b; Place 2015] for details, and to [Almeida 1999; Henckell 1988; Henckell et al.
2010] for a view of this problem in finite semigroup theory. Instead, we concentrate on
why considering this problem allowed to make progress on the membership problem for
Σ3(<) and BΣ2(<). For reference, the situation for the order hierarchy updated with
separation is presented in Figure 3.

The important point is that the core result in [Place and Zeitoun 2014a] is the sep-
aration algorithm for Σ2(<) and Π2(<). It is from this algorithm that membership
algorithms for Σ3(<) and BΣ2(<) are derived. We illustrate this by detailing the exam-
ple of Σ3(<), which is easier to present, and actually allows to transfer decidability in a
generic way.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

Σ5(<)

Π5(<)

BΣ4(<)

Σ4(<)

Π4(<)

BΣ3(<)

Σ3(<)

Π3(<)

BΣ2(<)

Σ2(<)

Π2(<)

BΣ1(<)

Σ1(<)

Π1(<)

[Almeida and Zeitoun 1997]
[Place et al. 2013]
[Czerwiński et al. 2013]

[Place and Zeitoun 2014a] [Place 2015]

Full FO(<) [Henckell 1988; Henckell et al. 2010; Place and Zeitoun 2014b]

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

BΣ2(<) BΣ2(<) BΣ2(<)Separation Solved Membership Solved
Separation Open

Both Open

Fig. 3. Order Quantifier Alternation Hierarchy of First-Order Logic (references are for the separation results)

Remark 5.1. Our choice of presenting Σ3(<) over BΣ2(<) is mainly practical. As
we will see, the membership algorithm for Σ3(<) stems from a true transfer result:
membership for Σi(<) can be effectively reduced to separation for Σi−1(<). This makes
it possible to present this result without having to present the techniques used for
solving Σ2(<)-separation.

On the other hand, while there is also generic connection between separation for
Σi(<) and membership for BΣi(<) (actually even separation for BΣi(<)), it is not
immediate that this connection is effective. In fact, this is open for i > 3. In particular,
this means that, effectively connecting membership for BΣ2(<) to separation for Σ2(<)
requires specific arguments, which turn out to be strongly tied to the Σ2(<)-separation
algorithm.

5.2. The Separation Problem and Σi(<)

We begin by explaining why considering the separation problem for Σi(<) (or equiva-
lently Πi(<)) is relevant when considering the membership problem for Σi+1(<). Recall
the principle of the syntactic approach as outlined by Theorem 4.1: we want to use the
fact that L is definable in Σ3(<) if and only if all upward-closed languages recognized
by αL are. By definition, the structure of a Σi(<) sentence is “layered”: the first layer
is composed of Σi(<) formulas, the second of Πi−1(<) formulas, the third of Σi−2(<)
formulas, and so on. The consequence of this is that deciding whether all upward-closed
languages recognized by αL are definable in Σ3(<) requires to first investigate some
“Πi−1(<) problem” for these languages. Naturally, this problem has to be different and
more general than membership: when L is Σi(<) but not Πi−1(<), we cannot hope to
prove that all languages definable by αL are Πi−1(<) definable.

The results of [Place and Zeitoun 2014a] state that the separation problem for Πi−1(<)
is a suitable more general problem. The Πi−1(<) layer is handled by deciding which
pairs of languages among those recognized by αL are Πi−1(<)-separable. Intuitively,
this amounts to computing the “best possible Πi−1(<)-definable approximation” of the

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

languages recognized by αL. This is illustrated by the statement of the theorem of [Place
and Zeitoun 2014a] for Σi(<) membership.

THEOREM 5.2 (PLACE-ZEITOUN). Let L be a regular language and i > 2. Then the
two following conditions are equivalent:

(1) L is definable in Σi(<).
(2) αL satisfies the following property, for every s, t ∈ ML such that α−1L (s) is not

Πi−1(<)-separable from α−1L (t):

sω ≤ sωtsω (2)

Theorem 5.2 states that for any i, the Σi(<)-membership problem can be effectively
reduced to the Πi−1(<)-separation problem. In [Place and Zeitoun 2014a], this theorem
is combined with a separation algorithm for Σ2(<) and Π2(<) which yields a mem-
bership algorithm for Σ3(<) and Π3(<) (and in turn for Σ3(<,+1) and Π3(<,+1) by
the transfer result of [Pin and Weil 2002]). Additionally, a separation algorithm was
found recently for Σ3(<) and Π3(<) [Place 2015]. In the same way this algorithm yields
membership algorithms for Σ4(<), Π4(<), Σ4(<,+1) and Π4(<,+1).

Remark 5.3. Note that Theorem 5.2 also provides a new Σ2(<)-membership al-
gorithm. However, the connection with separation was not noticed until Σ3(<) was
investigated. The main reason for this is that the Π1(<)-separation problem is quite
simple. This simplicity entails that the condition: “α−1L (s) is not Π1(<)-separable from
α−1L (t)” can be replaced by a much more elementary condition, as seen in Theorem 4.2.

6. THE FUTURE
The results of [Place and Zeitoun 2014a] seem to indicate that the membership problem
might not be a general enough framework to investigate the quantifier hierarchies of
first-order logic and that separation may be more appropriate. However, the situation
is more complicated. After Theorem 5.2 was proved, a natural question was to know
if it could be lifted to separation: can we define a problem P, such that separation
for Σi+1(<) can be effectively reduced to P for Σi(<)? Or even better, can we choose
separation as P?

This question was investigated in [Place 2015]. While no definitive answer was
found, the results of the paper suggest that the answer should be “no”. Indeed, while a
separation algorithm for Σ3(<) and Π3(<) is presented in [Place 2015], the technique
used to obtain it does not work by reduction to an independent problem for Σ2(<).
Instead, a new problem inside which the separation problems for both Σ2(<) and Σ3(<)
are tied together is considered.

In short, this most likely means that the story of the quantifier alternation hierarchy
is far from being over and could very well continue for several more decades.

REFERENCES
ALMEIDA, J. 1999. Some algorithmic problems for pseudovarieties. Publicationes Mathematicae Debrecen 54,

531–552.
ALMEIDA, J., BARTONOVA, J., KLIMA, O., AND KUNC, M. 2015. On decidability of intermediate levels

of concatenation hierarchies. In Proceedings of the 19th International Conference on Developments in
Language Theory (DLT 2015). Springer, Berlin, Heidelberg.

ALMEIDA, J. AND KLÍMA, O. 2010. New decidable upper bound of the 2nd level in the Straubing-Thérien con-
catenation hierarchy of star-free languages. Discrete Mathematics & Theoretical Computer Science 12, 4,
41–58.

ALMEIDA, J. AND ZEITOUN, M. 1997. The pseudovariety J is hyperdecidable. RAIRO Inform. Théor.
Appl. 31, 5, 457–482.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

ARFI, M. 1987. Polynomial operations on rational languages. In Proceedings of the 4th Annual Symposium
on Theoretical Aspects of Computer Science. STACS’87. Springer-Verlag, Berlin, Heidelberg, 198–206.

BRZOZOWSKI, J. A. AND COHEN, R. S. 1971. Dot-depth of star-free events. Journal of Computer and System
Sciences 5, 1, 1–16.

BRZOZOWSKI, J. A. AND KNAST, R. 1978. The dot-depth hierarchy of star-free languages is infinite. Journal
of Computer and System Sciences 16, 1, 37–55.

BÜCHI, J. R. 1960. Weak second-order arithmetic and finite automata. Mathematical Logic Quarterly 6, 1-6,
66–92.

CZERWIŃSKI, W., MARTENS, W., AND MASOPUST, T. 2013. Efficient separability of regular languages by
subsequences and suffixes. In Proceedings of the 40th International Colloquium on Automata, Languages,
and Programming. ICALP’13. Springer-Verlag, Berlin, Heidelberg, 150–161.

ELGOT, C. C. 1961. Decision problems of finite automata design and related arithmetics. Transactions of the
American Mathematical Society 98, 1, 21–51.

GLASSER, C. AND SCHMITZ, H. 2000. Languages of dot-depth 3/2. In Proceedings of the 17th Annual
Symposium on Theoretical Aspects of Computer Science. (STACS’00). Springer, Berlin, Heidelberg, 555–
566.

HENCKELL, K. 1988. Pointlike sets: the finest aperiodic cover of a finite semigroup. J. Pure Appl. Algebra 55,
85–126.

HENCKELL, K. AND PIN, J.-E. 2000. Ordered monoids and j-trivial monoids. In Algorithmic Problems in
Groups and Semigroups, J.-C. Birget, S. Margolis, J. Meakin, and M. Sapir, Eds. Trends in Mathematics.
Birkhauser, 121–137.

HENCKELL, K., RHODES, J., AND STEINBERG, B. 2010. Aperiodic pointlikes and beyond. Internat. J. Algebra
Comput. 20, 2, 287–305.

KNAST, R. 1983. A semigroup characterization of dot-depth one languages. RAIRO - Theoretical Informatics
and Applications 17, 4, 321–330.

MCNAUGHTON, R. AND PAPERT, S. A. 1971. Counter-Free Automata. MIT Press.
PERRIN, D. AND PIN, J.-E. 1986. First-order logic and star-free sets. Journal of Computer and System

Sciences 32, 3, 393–406.
PIN, J.-E. 1995. A variety theorem without complementation. Russian Mathem. (Iz. VUZ) 39, 74–83.
PIN, J.-E. 1998. Bridges for concatenation hierarchies. In Proceedings of the 25th International Colloquium

on Automata, Languages and Programming. ICALP’98. Springer-Verlag, Berlin, Heidelberg, 431–442.
PIN, J.-E. 2011. Theme and variations on the concatenation product. In Proceedings of the 4th International

Conference on Algebraic Informatics. CAI’11. Springer-Verlag, Berlin, Heidelberg, 44–64.
PIN, J.-E. AND STRAUBING, H. 1985. Monoids of upper triangular boolean matrices. In Semigroups. Structure

and Universal Algebraic Problems. Vol. 39. North-Holland, 259–272.
PIN, J.-E. AND WEIL, P. 1997. Polynomial closure and unambiguous product. Theory of Computing Sys-

tems 30, 4, 383–422.
PIN, J.-E. AND WEIL, P. 2002. The Wreath Product Principle for Ordered Semigroups. Communications in

Algebra 30, 5677–5713.
PLACE, T. 2015. Separating regular languages with two quantifier alternations. In Proceedings of the 30th

Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’15). ACM, New York, NY, USA.
PLACE, T., VAN ROOIJEN, L., AND ZEITOUN, M. 2013. Separating regular languages by piecewise testable

and unambiguous languages. In Proceedings of the 38th International Symposium on Mathematical
Foundations of Computer Science. MFCS’13. Springer-Verlag, Berlin, Heidelberg, 729–740.

PLACE, T. AND ZEITOUN, M. 2014a. Going higher in the first-order quantifier alternation hierarchy on
words. In Proceedings of the 41st International Colloquium on Automata, Languages, and Programming.
ICALP’14. Springer-Verlag, Berlin, Heidelberg, 342–353.

PLACE, T. AND ZEITOUN, M. 2014b. Separating regular languages with first-order logic. In Proceedings of the
Joint Meeting of the 23rd EACSL Annual Conference on Computer Science Logic (CSL’14) and the 29th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’14). ACM, New York, NY, USA,
75:1–75:10.

SCHÜTZENBERGER, M. P. 1965. On finite monoids having only trivial subgroups. Information and Control 8, 2,
190–194.

SIMON, I. 1975. Piecewise testable events. In Proceedings of the 2nd GI Conference on Automata Theory and
Formal Languages. Springer-Verlag, Berlin, Heidelberg, 214–222.

SIMON, I. 1990. Factorization forests of finite height. Theoritical Computer Science 72, 1, 65–94.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

STRAUBING, H. 1981. A generalization of the schützenberger product of finite monoids. Theoretical Computer
Science 13, 2, 137–150.

STRAUBING, H. 1985. Finite semigroup varieties of the form V ∗ D. Journal of Pure and Applied Algebra 36,
53–94.

STRAUBING, H. 1988. Semigroups and languages of dot-depth two. Theoretical Computer Science 58, 1-3,
361–378.

THÉRIEN, D. 1981. Classification of finite monoids: The language approach. Theoretical Computer Sci-
ence 14, 2, 195–208.

THOMAS, W. 1982. Classifying regular events in symbolic logic. Journal of Computer and System Sciences 25, 3,
360–376.

TRAKHTENBROT, B. A. 1961. Finite automata and logic of monadic predicates. Doklady Akademii Nauk
SSSR 149, 326–329. In Russian.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

	Introduction
	Logical Fragments of First Order Logic
	First Milestone: Schützenberger's Theorem
	A Framework for the Membership Problem: the Syntactic Approach
	After Schützenberger: First Classes of the Hierarchies

	Second Milestone: Classes that are not Closed under Complement
	Third Milestone: Separation
	The Separation Problem
	The Separation Problem and Sigma-i(<)

	The Future

