
Decidable Characterizations for
Tree Logics

Author:

Thomas Place

Defended in front of:

Denis Lugiez Examiner

Jean-Éric Pin Reviewer
Luc Segoufin Advisor
Howard Straubing Reviewer
Igor Walukiewicz Examiner
Marc Zeitoun Examiner

2

Thank you!

Before doing some science, I want to thank all the people who made this thesis
a reality. The first person that comes to mind is my supervisor Luc Segoufin, he
has been the best advisor I could have dreamed of for these three years. I also
really need to thank all the people of the LSV as a whole, this lab was a wonderful
place to work in. Especially, I thank all my fellow PhD students friends. Many
thanks, to Camille, Diego, Étienne, Hilal, Jean-Loup, Pierre and all the others!

I am also very grateful to Jean-Éric Pin and Howard Straubing who accepted
to review my thesis as well as to the other members of my Jury: Denis Lugiez,
Igor Walukiewicz and Marc Zeitoun.

Finally I want to thank all my non-scientists friends as well as my family!

3

4

Contents

Introduction 7

I Words 17

1 Notations and Algebra for Words 19

1.1 Words . 19

1.2 Regular Languages . 20

1.3 Algebra . 21

2 Fragments of First Order Logic over Words 23

2.1 Monadic Second-order Logic and First-Order Logic 23

2.2 First-Order Logic Using Only Two Variables 27

2.3 Boolean Combinations of Existential First-Order Formulas 32

2.4 Locally Testable Languages . 32

3 First-Order Logic With Only Two Variables over Words 35

3.1 Definitions . 36

3.2 FO2(<) . 37

3.3 FO2(<,Succ) . 44

4 Locally Testable Languages over Words 51

4.1 Tame Languages . 51

4.2 Decidable Characterization . 52

4.3 Discussion . 59

II Trees 61

5 Notations and Algebra for Trees 63

5.1 Unranked Trees and Forests . 63

5.2 Trees of Bounded Rank . 66

5

CONTENTS

5.3 Regular Languages of Unranked Trees and Forests 67

5.4 Regular Languages of Trees of Bounded Rank 67

5.5 Forest Algebras . 68

5.6 Algebra for Trees of Bounded Rank 69

6 Fragments of First Order Logic over Trees 73

6.1 Monadic Second-order Logic and First-Order Logic 75

6.2 First Order Logic Using Only Two Variables 77

6.3 Unary Temporal Logic . 78

6.4 First-Order Logic Using Only One Quantifier Alternation 82

6.5 Boolean Combination of Existential First Order Formulas 86

6.6 Locally Testable Languages . 86

7 One Quantifier Alternation over Trees of Bounded Rank 91

7.1 Characterization of ∆2(<v) . 92

7.2 Proof of Proposition 7.6 . 95

8 Unary Temporal Logic over Trees of Bounded Rank 105

8.1 Characterization of EF + F−1 . 106

8.2 Necessity of the Equations . 109

8.3 Sufficiency of the Equations . 112

9 Boolean Combination of Existential First Order Formulas over
Trees of Bounded Rank 125

9.1 Characterization of BC-Σ1(<v) Over Trees of Rank 2 126

9.2 Piecewise Testable Languages . 129

9.3 The Identities Are Sufficient . 130

9.4 Discussion . 149

10 First Order Logic with Two Variables over Unranked Trees 151

10.1 Preliminaries . 153

10.2 Characterization of FO2(<h, <v) 157

10.3 Correctness of the Properties . 158

10.4 Sufficientness of the Properties . 167

10.5 Other Logics . 177

10.6 Discussion . 183

11 Locally Testable Languages over Trees of Bounded Rank and Un-
ranked Trees 185

11.1 Tame Languages of Binary Trees 187

11.2 Deciding LT for Binary Trees . 190

11.3 Unranked Unordered Trees . 201

6

CONTENTS

11.4 Tameness is not sufficient . 211
11.5 Discussion . 212

Conclusion 213

7

CONTENTS

8

Introduction

In this thesis we investigate the expressive power of several logics over finite trees.
In particular we want to understand precisely the expressive power of first-order
logic over finite trees. Because we study many logics, we proceed by comparison
to a logic that subsumes them all and serves as a yardstick: monadic second-
order logic. Each logic we consider is a fragment of monadic second-order logic
(MSO). MSO is linked to the theory of formal languages. To each logical formula
corresponds a tree language, which is the language of trees satisfying this formula.
Furthermore, given a logic we can associate a class of tree languages: the class
of languages definable by a formula of this logic. In the setting of finite trees
MSO corresponds exactly to the class of regular tree languages ([TW68]). Given
a logic, we actually look for a decidable characterization of the class of languages
defined in this logic. By decidable characterization, we mean an algorithm for
solving the following problem: given as input a finite tree automaton, decide if the
recognized language belongs to the class in question. We will actually obtain our
decidable characterizations by exhibiting for each class a set of closure properties
such that a language is in the class under investigation if and only if it satisfies
these closure properties. Each such closure property is then shown to be decidable.
Stating and proving such closure properties usually yields a solid understanding
of the expressive power of the corresponding logic. The main open problem in
this research area is to obtain a decidable characterization for the class of tree
languages that are definable in first-order logic (FO).

Before we study the general case of trees, we present a natural subcase: the
setting of words. A word structure is a natural restriction of a tree structure. The
problem of obtaining decidable characterizations of classes of regular word lan-
guages has been extensively studied and is now well understood. Using algebraic
techniques, decidable characterizations were provided for many classes of regular
word languages. The closure properties involved in each of these characterizations
are expressed using identities on the syntactic semigroup or the syntactic monoid
of the regular language. The syntactic monoid (resp. syntactic semigroup) of a
regular language is the transition monoid (resp. semigroup) of its minimal deter-

9

DECIDABLE CHARACTERIZATIONS FOR TREE LOGICS

ministic automaton. Since in the case of regular languages these objects are finite
and computable from the automaton recognizing the language, the identities are
easily verified. In particular, a decidable characterization was provided for the
class of languages definable in FO(<). By FO(<) we mean first-order logic over
words using a binary relation representing the left to right order of positions on
the words. The decidable characterization of FO(<), which is perhaps the most
celebrated one in this area, states that a word language is definable in FO(<) iff
its syntactic monoid is aperiodic [Sch65]. Aperiodicity corresponds to the identity
xω = xω+1. This means that a monoid is aperiodic if and only if all elements x of
the monoid verify xω = xω+1 where ω is the size of the monoid. This identity is
easily verified on the syntactic monoid. Hence this yields a decision algorithm for
testing definability in FO(<) of a word language. Many other classes have been
studied in the setting of words. We present some of them here.

The first one is the class of languages definable in first-order logic using only
two variables (FO2). There are actually two interesting logics corresponding to
FO2. The first one is FO2(<) using the order predicate and the second one is
FO2(<,Succ) which moreover uses the successor predicate. Both logics were given
a decidable characterization in [TW98] using identities on the syntactic monoid
for FO2(<) and the syntactic semigroup for FO2(<,Succ). Another related logic
is ∆2. A language is definable in ∆2(<) if and only if it is definable by a formula
of FO(<) with a quantifier prefix ∃∗∀∗ and simultaneously by a first-order formula
with a quantifier prefix ∀∗∃∗. Decidable characterizations were provided for ∆2(<)
and ∆2(<,Succ) in [PW97]. Since these characterizations are identical to the
ones of [TW98] for FO2(<) and FO2(<,Succ) this proves that the two logics are
equivalent in terms of expressive power. Note that this was apriori not obvious at
all and that there is yet no known direct way to translate FO2 into ∆2 and vice
versa.

Another interesting setting is the class of piecewise testable languages or equiv-
alently the class of languages definable by a boolean combination of existential
first-order formulas (BC-Σ1(<)). In [Sim75], a decidable characterization for this
class of languages is provided using again identities on the syntactic monoid.

The last class we consider in this thesis is LT. LT denotes the class of regular
languages called locally testable. A language L is in LT if membership in L depends
only on the presence or absence of neighborhoods of a certain fixed size in the word.
LT is also closely related to the locally threshold testable languages (LTT) which
are exactly the languages definable in FO(Succ), first-order logic using only the
successor relation. Membership in such languages is obtained by counting the
number of neighborhoods of a certain size up to some threshold. The class LT
is the special case where no counting is done. In [BS73, McN74, BP89, TW85],
both classes are given decidable characterizations using identities on the syntactic
semigroup.

10

DECIDABLE CHARACTERIZATIONS FOR TREE LOGICS

All these results demonstrate how successful monoids and semigroups were
for providing decidable characterizations in the word setting. This usefulness is
actually reflected in two ways. First, monoids and semigroups were useful in order
to state characterizations as identities. Monoids and semigroups are also crucial
in the proofs of these characterizations: the algebraic techniques and tools that
were developed for monoids and semigroups provided induction mechanisms that
are crucial in these proofs.

Over trees, the situation is more complicated. A first problem is that there are
many possible definitions of trees. In this thesis we consider three kinds of trees:
unranked trees, forests and trees of bounded rank. Unranked trees are trees for
which there exists no bound on the number of children of each node. A forest is
an ordered sequence of trees. And finally a tree of rank k for some fixed integer
k is a tree for which all nodes have at most k children. For expressive logics, like
FO, that can express the fact that a forest is actually a tree of rank k for some
fixed k, this distinction is unimportant. However, for weaker logics, like FO2,
that are not expressive enough to express such properties this leads to different
characterizations.

A second problem that makes the situation more complicated in the tree setting
is that we have many more natural predicates to consider. In the word setting,
the relations that were natural to consider were the successor relation Succ and its
transitive closure <. In this thesis we consider two principal orders on trees, the
first one, denoted<v, corresponds to the ancestor relation and can be viewed as the
generalization of < on words. We also consider a second order, denoted <h, which
correspond to the order on siblings. But these are not the only natural orders that
could be considered, one example is the lexicographic order, denoted <lex, that
was considered in [BS08]. For this reason, we get a much bigger zoology of logics
to consider. For example, first-order logic can refer to at least two different logics,
the first one is FO(<v) which uses only the vertical order <v, and the second one
is FO(<h, <v) which uses both the vertical and horizontal orders.

The third problem is finding a formalism for stating and proving the charac-
terizations. Unlike for words there is no commonly accepted formalism. Several
such formalisms were introduced in the setting of trees but none has been suc-
cessful in expressing all the characterizations obtained in the literature. Among
these formalisms, perhaps the most successful so far are forest algebras. Forest
algebras were introduced in [BW07] and can be used for characterizing classes
of languages of forests. However it is specific to the setting of forests. Another
example of such formalism would be the preclones as introduced in [ÉW05] which
were successful for proving characterizations of some logics but unsuccessful so
far for getting decidable characterizations. Finally a specific formalism is intro-

11

DECIDABLE CHARACTERIZATIONS FOR TREE LOGICS

duced in [BS09, PS09] for giving the characterizations of local classes such as LT
and LTT. So far, all these algebraic formalisms remain unsuccessful for providing
decidable characterizations for the classes of languages definable in FO(<v) and
FO(<h, <v). For now, the classes for which we have decidable characterizations
correspond to logics that are all fragments of FO obtained by restricting either
the quantifications or the number of variables that can be used.

Our Results. In this thesis we provide decidable characterizations for several
fragments of FO. First we provide three decidable characterizations for classes of
regular languages of trees of bounded rank. The three classes are characterized
using an algebraic formalism that we call k-algebra (where k stands for the bound
that exists on the rank of the trees). This formalism can be seen as an adaptation
of forests algebra in the setting of trees of rank k. The first class we consider
is the class of languages definable in the temporal logic EF + F−1. EF + F−1

essentially navigates the trees using two modalities, EF which is used to go to a
descendant node and F−1 which is used to go to an ancestor node. The second
class we consider is the class of trees of bounded rank definable using one quantifier
alternation, ∆2(<v). Note, that in the setting of words the logics F + F−1 and
∆2(<) have the same expressibility as FO2(<). We will see that this is no longer
true over trees. The last class, is the class of languages definable using a boolean
combination of existential first order formulas (BC-Σ1(<v)).

In the setting of forests, we investigate the class of languages definable in first-
order logic using only two variables and the predicates <h and <v: FO2(<h, <v

). This logic has an equivalent counterpart in temporal logic ([Mar05]). More
precisely, it corresponds to the temporal logic EF + F−1(Fh,F

−1
h

) that navigates
in the tree using two “vertical” modalities, one for going to some ancestor node
(F−1) and one for going to some descendant node (EF), and two “horizontal”
modalities for going to some following sibling (Fh) or some preceding sibling (F−1

h
).

We provide a characterization for this logic. Note that FO2(<h, <v) can express
that a forest is a tree and that for any fix number k, the fact that a tree has rank
k, hence this result also apply for languages of unranked trees and languages of
trees of bounded rank.

The last class for which we provide a decidable characterization is the class of
locally testable language (LT). A language L is in LT if membership in L depends
only on the presence or absence of neighborhoods of a certain fixed size in the
tree. We define notions of LT for both unranked trees and trees of bounded rank
by adapting the definition of neighborhood to each setting. Then we provide a
decidable characterization for both notions of LT.

12

DECIDABLE CHARACTERIZATIONS FOR TREE LOGICS

For each of our results, we use a specific technique in order to state and prove
our characterization. For trees of bounded rank, the three logics we investigate,
EF+F−1, ∆2(<v) and BC-Σ1(<v), were already given decidable characterizations
for unranked trees and forests using forest algebras in [Boj07b, BSS08, BS08].
However, since these three logics cannot express that a tree is of bounded rank, new
characterizations are required for the bounded rank setting. Our characterization
will naturally share similarities with their unranked counterpart. However we will
see that we need to introduce new identities compared to the unranked setting in
order to capture the expressive power of these logics in the bounded rank setting.
Furthermore, all proofs of these characterizations involve inductions that construct
new trees. Because of the restriction on the number of children of nodes, these
constructions become more complicated in the ranked case than in the unranked
case. A simple example of this would be the languages definable in EF + F−1

which are closed under bisimulation. The characterization of [Boj07b] reflects this
property with an identity stating that the duplication of subtrees does not affect
membership in the language. For trees of bounded rank, this property obviously
does not make sense since such an operation would affect the number of children
of a node. Therefore this operation becomes unavailable in the proof.

Our characterization of FO2(<h, <v) over forests is expressed in term of closure
properties corresponding partly to identities in the syntactic forest algebra of
the language as defined in [BW07], and partly via closure under a saturation
mechanism designed specifically for this logic. Even though EF+F−1 and FO2(<h

, <v) do not have the same expressive power, our proof has many similarities with
the one of [Boj07b] for his characterization of EF + F−1 and we reuse several
ideas developed in this paper. However it departs from it in many essential ways.
First of all the closure under bisimulation of EF + F−1 was used in an essential
way in order to compute a subalgebra and perform inductions on the size of the
algebra. Moreover, because EF + F−1 does not have horizontal navigation, it
was possible to isolate certain labels and then perform an induction on the size of
the alphabet. It is the combination of the induction on the size of the alphabet
and on the size of the algebra that gave an elegant proof of the correctness of the
identities for EF + F−1 given in [Boj07b]. The logic FO2(<h, <v) is no longer
closed under bisimulation and we were not able to perform an induction on the
algebra. Moreover because our logic has horizontal navigation, it is no longer
possible to isolate the label of a node from the labels of its siblings, hence it is
no longer possible to perform an induction on the alphabet. In order to overcome
these problems our proof replace the inductions used in [Boj07b] by an induction
on the set of forbidden patterns. This make the two proofs fairly different.

Finally, we were not able to obtain a reasonable set of identities for LT either
by using forest algebra or the formalism used for characterizing locally threshold
testable languages (LTT) in [BS09]. Our approach is slightly different. There

13

DECIDABLE CHARACTERIZATIONS FOR TREE LOGICS

is another technique that was used on words for deciding the class LT. It is
based on the “delay theorem” [Str85, Til87] for computing the expected size of
the neighborhoods: Given an automaton recognizing the language L, a number
k can be computed from that automaton such that if L is in LT then it is in LT
by investigating the neighborhoods of size k. Once this k is available, deciding
whether L is indeed in LT or not is a simple exercise. On words, a decision
algorithm for LT (and also for LTT) has been obtained successfully using this
approach [Boj07a]. Unfortunately all efforts to prove a similar delay theorem on
trees have failed so far. We obtain a decidable characterization of LT by combining
the two approaches mentioned above. We first exhibit a set of necessary conditions
for a regular tree language to be in LT. Those conditions are expressed using the
formalism introduced for characterizing LTT. We then show that for languages
satisfying such conditions one can compute the expected size of the neighborhoods.
Using this technique we obtain a characterization of LT for ranked trees and for
unranked unordered trees.

Relations with Other Known Results. Several other decidable characteriza-
tions were proved both for classes of regular word and tree languages. In the setting
of words we already mentioned FO(<) [Sch65],FO2(<) [TW98], LT [BS73, McN74]
and LTT [BP89, TW85]. Another important example is the quantifier alternation
hierarchy. We already mentioned logics in this hierarchy with BC-Σ1(<v) [Sim75]
and ∆2(<) [PW97]. A Σn(<) formula is a FO(<) formula that has n − 1 quan-
tifier alternations starting with ∃. Symmetrically a Πn(<) formula is a FO(<)
that has n − 1 quantifier alternations starting with ∀. Finally a language is de-
finable in ∆n(<) iff it is definable by both a Σn(<) and a Πn(<) formula. As
we mentioned earlier decidable characterizations were introduced for logics that
are low in this hierarchy: BC-Σ1(<v) and ∆2(<). Decidable characterizations
were also obtained for Σ2(<) and Π2(<) [PW97]. However obtaining decidable
characterization remains an open problem for logics that are higher in this hierar-
chy. For example we do not possess yet decidable characterization for the class of
languages definable with a boolean combination of Σ2(<) formula or the class of
languages definable in ∆3(<). More details about all these results can be found
in [Pin96, DG08, DGK08].

In the setting of forests and unranked trees we already mentioned, EF +
F−1 [Boj07b], ∆2(<v) [BS08] and BC-Σ1(<v) [BSS08]. These three characteriza-
tions use forest algebras. Recall that the three logics cannot express that a tree is
of rank for some integer k. Therefore, as we already said, new characterizations
are necessary for trees of bounded rank. Note that ∆2(<v) is highest logic in the
quantification hierarchy for which we have a decidable characterization in the tree
setting. Getting a decidable characterization for Σ2(<v) remains an open problem

14

DECIDABLE CHARACTERIZATIONS FOR TREE LOGICS

over trees. Decidable characterizations were also provided for the temporal logics
EF and EF +EX [BW06]. The modality EF is used to navigate to some descen-
dant and the modality EX to navigate to some child. Several characterizations for
temporal logics were presented in [Ési06, ÉI08a, ÉI08b]. In particular, an alter-
native decidable characterization for EF was presented in [ÉI08a]. However the
characterizations provided for more expressive logics are not decidable. We also
mention the locally threshold testable languages (LTT) which were given a de-
cidable characterization in [BS09]. This characterization use a specific formalism
that is partially used in our decidable characterization of LT. Another example of
known decidable characterization would be the class of frontier testable languages
which is a class of trees of bounded rank ([Wil96]). Note that the class of frontier
testable languages is incomparable with all the classes we investigate in this thesis.
In [Str10] a formalization of the concept of a “delay theorem” on trees is presented
for some logics. In particular it uses this concept to give a new presentation of
the characterization of LT over unranked trees that we will present in this thesis.

Organization. We divide the thesis in two parts. The first part is devoted to
words and the second part to trees. The word part serves as an introduction
to the difficult proofs we will present in the tree part. Note that some of the
theorems we prove in the word part are used as black boxes in the tree part.
Also note that while some proofs are just new presentations of ideas that were
developed for the original proof of the characterization (for example the proof of
the characterization of FO2(<)), some other proofs use new ideas (for example
the proof of the characterization of FO2(<,Succ)).

Both parts follow the same outline. In the first chapters we give the definitions
and notations relative to the setting under investigation. Then we have a chapter
dedicated to the definition of all the formalisms we consider. Finally we devote a
chapter for each characterization we prove.

15

DECIDABLE CHARACTERIZATIONS FOR TREE LOGICS

16

Part I

Words

17

Chapter 1

Notations and Algebra for

Words

In this chapter we introduce the various notions related to the word setting that
we use in this first part. In particular, we define the notion of word as well
as the notion of regular word language. In Section 1.1 we introduce the notion
of word and give a few definitions that we use in the following chapters. The
rest of the chapter is devoted to the class of regular word languages (REG). In
Section 1.2, we give a first definition of REG using automata. In Section 1.3 we
give the algebraic definition of REG using monoids and semigroups. Note that
we postpone the logical definition of REG to the next chapter which we devote
to logic.

1.1 Words

In this section we fix some notations that we will use in this whole part for words.
An alphabet A is just a finite set. We call labels or letters its elements. Fix some
alphabet A, a word over A is a finite sequence of letters of A. More formally, there
exists a special word that we call the empty word, ǫ, and if w is a word, for any
a ∈ A, wa is a word. Given some word w, its length is its number of letters, we
write it |w|.

We use standard terminology for the notion of position in a word. We view
a word a1 · · · an of length n over A as a sequence of n positions that we write
1, . . . , n. These positions are labeled over A (i has label ai). The notions of
next position, previous position, following position and preceding position are also
defined using standard terminology (See Figure 1.1). Given a word w of length n
the next position of ik is ik+1 and its preceding position ik−1. For any k′ > k, i′k

19

CHAPTER 1. NOTATIONS AND ALGEBRA FOR WORDS

is a following position of ik and for any k′′ < k, ik′′ is a preceding position of ik.
If w is a word, x is the position ik in some word w and k′ some integer, we write
x+ k′ the position ik+k′ .

abcbbbcaacaac

Position x

Next Position

Previous Position

Following PositionPreceding Position

Figure 1.1: Definitions on Words

Factors of words. Given a word w, w′ is a factor of w iff there exists two words
w1, w2 such that w = w1w

′w2. When w′ is a factor of w, we say that w′ is a prefix
iff w1 is the empty word and that it is a suffix iff w2 is the empty word. Given
a word w and two positions x, y in w such that y is a following position of x, the
factor of w between x and y is the word w′ such that w = w1w

′w2 and x is the
leftmost position of w′ and y the leftmost position of w2 (in particular, this means
that y is not in w′). We write this factor w[x, y]. Given some word w we call prefix
at x the prefix of w whose rightmost position is x and suffix at x the suffix of w
whose leftmost position is x. All these definitions are illustrated in Figure 1.2.

abcbbbcaacaac

Position x

Position y

}w[x, y]

abcbbbcaacaac

} {Prefix at x

Suffix at x

Position x

Figure 1.2: Illustration of the notions of factor, prefix and suffix over words

1.2 Regular Languages

Languages of words. Fix some alphabet A, a language over A is a set of words
over A. For all alphabet A, we write A∗ the language of all words over A including
the empty word and A+ the language of all words over A excluding the empty
word.

20

CHAPTER 1. NOTATIONS AND ALGEBRA FOR WORDS

Regular Languages. All classes of word languages we investigate are fragments
of the class of regular word languages (REG). A word language is regular iff it is
definable using a finite word automaton. We briefly recall the definition of finite
automata. An automaton A is a tuple (A,Q, δ, qi, Qf) with:

• A an alphabet,

• Q a set of states,

• qi ∈ Q an initial state,

• Qf ⊆ Q a set of final states,

• δ : Q×A→ Q a transition function.

Given a word w = a1 . . . an, we say that w is accepted by A iff there exists a
sequence of n + 1 states q0 . . . qn such that q0 = qi and for all j, δ(qj−1, aj) = qj .
The language L accepted by A is the set of words accepted by A. We give an
example of regular language below:

Example 1.1. Le = {w ∈ A∗ | |w| = 0 mod 2}, the language of words of even
length. Le is accepted by the automaton A = (A,Q, δ, qi, Qf) with:

• Q = {qe, qo},

• qi = qe,

• Qf = {qi},

• ∀a ∈ A

[
δ(qi, a) = qe
δ(qe, a) = qi

.

Recall thatREG can equivalently be defined using MSO logic or finite monoids.
We come back to monoids in the next section and postpone the definition of MSO
to Chapter 2. From now on, all the word languages we consider are regular.

1.3 Algebra

We introduce here the minimal algebraic notions necessary for this thesis. More
details can be found in [Pin96].

A semigroup is a pair (S, ·) where S is a set and · an associative operation over
S. A monoid is a semigroup (M, ·) such that M contains some neutral element
1M for the operation ·. When the operation is evident from the context we will
just write S or M for a semigroup or a monoid.

Given some semigroup S, we write S1 the following monoid: if S is a monoid,
S1 = S, otherwise S1 = S ∪ {1S} where 1S acts as a neutral element for the
operation ·.

21

CHAPTER 1. NOTATIONS AND ALGEBRA FOR WORDS

Recognition of a language. Take some word alphabet A. Notice that the pair
(A+, ·), where · is the concatenation operation, is a semigroup and that (A∗, ·) is
a monoid with the empty word as the neutral element. Given some semigroup S,
we say that a language L ⊆ A+ is recognized by S iff there exists a morphism
α : A+ → S and a subset F ⊆ S such that L = α−1(F). Similarly, given some
monoid M , we say that a language L ⊆ A∗ is recognized by M iff there exists a
morphism α : A∗ →M and a subset F ⊆M such that L = α−1(F).

A very well known result is that regular languages corresponds exactly to
recognition by finite semigroups and monoids.

Proposition 1.1. Fix L ⊆ A∗ a language over some alphabet A, the following
properties are equivalent:

1. L is regular.

2. L ∩A+ is recognized by a finite semigroup.

3. L is recognized by a finite monoid.

Syntactic semigroup, syntactic monoid. We define the notion of syntactic
semigroup of a given language L. This notion corresponds to the notion of minimal
deterministic automaton is the automata view of regular languages. Fix some
language L over an alphabet A. Given two words w,w′ in A+ we say that w ∼L w

′

iff for all words x, y in A∗, xwy ∈ L iff xw′y ∈ L. The relation ∼L is a congruence,
meaning that it is compatible with the concatenation operation ·. We call SL the
quotient of A+ by this equivalence. The resulting semigroup recognizes L and is
finite iff L is regular, it is called the syntactic semigroup of L. Similarly we can
define a notion of syntactic monoid of L, ML, using the same equivalence over the
words of A∗.

Example 1.2. Consider Le the language of words of even length. We have w ∼Le

w′ iff |w| = |w′| mod 2. It follows that there are two elements in the syntactic
monoid, Me, of Le, one corresponding to the words of even length and one to the
words of odd length. We have MLe

= {ue, ui} with ue as neutral element and
ui · ui = ue.

Idempotents. Given some semigroup (S, ·), we say that e ∈ S is idempotent iff
e2 = e. It is folklore that for any finite semigroup S, there exists a number ω(S)
(denoted by ω when S is understood from the context) such that for each element
s of S, sω is an idempotent.

22

Chapter 2

Fragments of First Order Logic

over Words

All the logics we consider are actually fragments of first-order logic in terms of
expressive power. We regroup their definitions in this chapter. An overview of
these fragments that depicts the relations between them can be found in Figure 2.1
(all classes that are not linked in the figure are incomparable). Each logic that
we investigate is given its own section. In Section 2.1 we introduce the definitions
and notations of the logical point of view of regular languages. In particular
we define first-order logic (FO) and monadic second-order logic (MSO) which
characterizes regular languages. We also quote the decidable characterization of
FO. The second section, Section 2.2, is devoted to the fragment of first-order logic
using only two variables. We give the definitions of FO2 as well as the definitions
of the other fragments of FO that are equivalent to FO2 in terms of expressive
power. We do not state the decidable characterization of FO2 in this section.
We will study this characterization in depth, therefore we give it its own chapter,
Chapter 3. In Section 2.3, we introduce the class of languages definable by a
boolean combination of existential first-order formulas (BC − Σ1(<)) and quote
the associated decidable characterization. Finally in Section 2.4 we introduce
the class of locally testable languages (LT). Again, we will study the decidable
characterization of LT extensively, therefore we give it its own chapter, Chapter 4.

2.1 Monadic Second-order Logic and First-Order Logic

We view each word as a relational structure whose domain is its set of positions.
The signature contains several predicates. For every label a in the alphabet A,
we have a unary predicate Pa. We have two binary relations: < for the following
position relation and Succ for the next position relation.

23

CHAPTER 2. FRAGMENTS OF FIRST ORDER LOGIC OVER WORDS

MSO(<)

FO(<)

FO2(<,Succ)

F + F−1 +X +X−1

∆2(<,Succ)

=

FO2(<)

F + F−1

∆2(<)

=

BC-Σ1(<)

(
(

(
(

LT

)

Figure 2.1: Overview of the Classes Under Investigation in the Word Part

FO. First-order logic, denoted FO(<), uses first order variables that we will
write x, y, z, A first order-formula is defined by the following grammar (x, y
are first-order variables):

ϕ =
Pa(x) for a ∈ A | x < y | Succ(x, y) | x = y | ∃x ϕ | ∀x ϕ |
ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ϕ⇒ ϕ

Given a first-order formula ϕ we call the set of its free variables the set of
variables that are not under the scope of some quantifier ∀ or ∃. If ϕ has no free
variables we say that it is closed. Notice that variables may be reused in the same
formulas. For example the following formula is a valid first-order formula:

∀x(Pa(x) ∨ ∃y(y < x ∧ Pb(y) ∧ ∃x(x < y ∧ Pa(x))))

Fix a first-order formula ϕ with n free variables x1, . . . , xn. We say that a word

24

CHAPTER 2. FRAGMENTS OF FIRST ORDER LOGIC OVER WORDS

w together with n positions i1, . . . , in in w satisfy ϕ and write w, i1, . . . , in |= ϕ
iff:

• ϕ = Pa(xk) and ik is labeled with the letter a.

• ϕ = xk = xl and il = ik.

• ϕ = xk < xl and il is a following position of ik.

• ϕ = Succ(xk, xl) and il is the next position of ik.

• ϕ = ϕ1 ∧ ϕ2 and w, i1, . . . , in |= ϕ1 and w, i1, . . . , in |= ϕ2.

• ϕ = ϕ1 ∨ ϕ2 and w, i1, . . . , in |= ϕ1 or w, i1, . . . , in |= ϕ2.

• ϕ = ¬ϕ′ and w, i1, . . . , in |= ϕ′ is false.

• ϕ = ϕ1 ⇒ ϕ2 and w, i1, . . . , in |= ¬ϕ1 ∨ ϕ2.

• ϕ = ∃xn+1 ϕ
′ and there exists a position in+1 in w such that:

w, i1, . . . , in, in+1 |= ϕ′.

• ϕ = ∀xn+1 ϕ
′ and for all positions in+1 in w we have:

w, i1, . . . , in, in+1 |= ϕ′.

We say a closed first-order formula ϕ defines a language L iff L = {w | w |= ϕ}.
Notice that the successor relation is expressed by the following formula:

Succ(x, y) = x < y ∧ ¬∃z(x < z ∧ z < y)

We quote below the decidable characterization of the class of word languages
definable in FO(<).

Theorem 2.1. ([Sch65]) Fix L some regular word language and M its syntactic
monoid. L is definable in FO(<) iff ∀u ∈M :

uω = uω+1 (2.1)

Since the syntactic monoid of a regular language is a finite object and ω a
computable number it is simple to check if the syntactic monoid of a regular
language verifies (2.1). Therefore we get the following corollary:

Corollary 2.2. It is decidable whether a regular word language is definable in
FO(<).

25

CHAPTER 2. FRAGMENTS OF FIRST ORDER LOGIC OVER WORDS

Example 2.1. The language Le of words of even length is not definable in FO(<).
Indeed the syntactic monoid of Le, MLe

= {ue, ui} is defined with the following
operation:

· ue ui
ue ue ui
ui ui ue

It is simple to see that for all integer k, uωi = u2ωi = ue and u
ω+1
i = u2ω+1

i = ui.
It follows that MLe

does not verify (2.1).

MSO. We view monadic second-order as an extension of first-order logic. We
add a set of second-order variables that we write X,Y, Z, These variables
represent sets of positions. The grammar of FO is now extended by the following
rules (with X a second-order variable and x a first-order variable):

ϕ = ∃X ϕ | ∀X ϕ | x ∈ X

Fix a monadic second-order formula ϕ with n free first-order variables x1, . . . , xn
and m free second-order variables X1, . . . , Xm. We extend the semantic of FO
in the following way: given n positions i1, . . . , in in w and m sets of positions
I1, . . . , In we say that they satisfy ϕ and we write w, i1, . . . , in, I1, . . . , In |= ϕ iff:

• ϕ = ∃ Xn+1ϕ
′ and there exists a set of positions In+1 of w such that:

w, i1, . . . , in, I1, . . . , In, In+1 |= ϕ′.

• ϕ = ∀ Xn+1ϕ
′ and for all sets of positions In+1 of w we have:

w, i1, . . . , in, I1, . . . , In, In+1 |= ϕ′.

• ϕ = xk ∈ Xlϕ
′ and ik ∈ Il.

We say a closed MSO formula ϕ defines a language L iff L = {w | w |= ϕ}.
A very well known result is that regular languages are exactly the languages that
are definable in MSO(<):

Theorem 2.3. ([Bü60]) A language L is definable in MSO(<) iff it is regular.

Example 2.2. The language Le of words of even length is defined by the following
MSO(<) formula (with 1 and n respectively the leftmost and rightmost positions
in the word, both are easily defined in MSO(<)):

∃X 1 ∈ X ∧ n /∈ X ∧ ∀x (x ∈ X ∧ (∀y(¬Succ(x, y) ∨ y /∈ X))
∨ (x /∈ X ∧ (∀y(¬Succ(x, y) ∨ y ∈ X))

26

CHAPTER 2. FRAGMENTS OF FIRST ORDER LOGIC OVER WORDS

2.2 First-Order Logic Using Only Two Variables

This section is devoted to first-order logic using only two variables. We begin with
the definition of the logics FO2(<) and FO2(<,Succ) which are the two fragments
we investigate in this section. Then we consider other fragments of FO that have
the same expressive power as these two logics. The first one is unary temporal
logic (UTL) and the second one is the restriction of FO to only one quantifier
alternation (∆2).

FO2(<). FO2(<) is the two variables restriction of FO(<) using only the < and
= predicates. This means that the formulas can only use two distinct variables.
However these variables may be reused. For example the following formula is a
formula of FO2(<):

∀x (Pa(x) ∨ ∃y(y < x ∧ Pb(y) ∧ ∃x(x < y ∧ Pa(x))))

Example 2.3. The language of words such that the leftmost position labeled with
a is to the right of the leftmost position labeled with b is defined by the following
FO2(<) formula:

∀x (Pa(x) ∧ ¬(∃y (Pa(y) ∧ y < x)) ⇒ ∃y (y < x ∧ Pb(y))

FO2(<,Succ). Recall that it is possible to express the successor relation, Succ,
using only the relation < and three variables. However three variables are needed.
Therefore, this is not possible in FO2(<). We call FO2(<,Succ) the extension of
FO2(<) with the predicate Succ.

Example 2.4. The language L of words such that the leftmost factor ab is to
the right of the leftmost factor ac is definable in FO2(<,Succ). Consider the two
formulas below:

ϕab(x) = Pa(x) ∧ ∃y Succ(x, y) ∧ Pb(y)
ϕac(x) = Pa(x) ∧ ∃y Succ(x, y) ∧ Pc(y)

L is defined by the following formula:

∀x (ϕab(x) ∧ ¬(∃y (ϕab(y) ∧ y < x)) ⇒ ∃y (y < x ∧ ϕac(y))

Decidable characterizations for both FO2(<) and FO2(<,Succ) were proved
in [TW98]. We will investigate these two characterizations in depth in Chapter 3.

We turn to the definitions of other fragments of FO(<) that have the same
expressive power as FO2(<) and FO2(<,Succ). We begin with unary temporal
logic (UTL).

27

CHAPTER 2. FRAGMENTS OF FIRST ORDER LOGIC OVER WORDS

2.2.1 Unary Temporal Logic

We define two temporal logics, F + F−1 and F + F−1 +X +X−1, corresponding
respectively to FO2(<) and FO2(<,Succ) in terms of expressive power. Note
that these two logics are usually introduced with the names LTL(F, F−1) and
LTL(F, F−1, X,X−1). We choose to use different names in order to preserve
symmetry with the notations we use in the next part on trees.

An F + F−1 + X + X−1 formula ϕ over an an alphabet A is defined by the
following grammar:

ϕ = a ∈ A | Fϕ | F−1ϕ | Xϕ | X−1ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ϕ⇒ ϕ

An F + F−1 formula is an F + F−1 + X + X−1 formula that does not use
X and X−1. Given a word w, a position x in w and some F + F−1 + X + X−1

formula ϕ, we say that w satisfies ϕ at position x and we write w, x |= ϕ iff:

• ϕ = a ∈ A and the position x in w is labeled by a.

• ϕ = Fϕ′ and there exists a position x′ > x such that w, x′ |= ϕ′.

• ϕ = F−1ϕ′ and there exists a position x′ < x such that w, x′ |= ϕ′.

• ϕ = Xϕ′ and if x′ is the position next to x, w, x′ |= ϕ′.

• ϕ = X−1ϕ′ and if x is the position next to x′, w, x′ |= ϕ′.

• ϕ = ϕ1 ∧ ϕ2 and w, x |= ϕ1 and w, x |= ϕ2

• ϕ = ϕ1 ∨ ϕ2 and w, x |= ϕ1 or w, x |= ϕ2

• ϕ = ¬ϕ1 and w, x do not satisfy ϕ1.

• ϕ = ϕ1 ⇒ ϕ2 and w, x |= ¬ϕ1 ∨ ϕ2.

If x is the leftmost position of the word w, we just say that w satisfies ϕ and
we write w |= ϕ. We say that a language L over A is defined by a formula ϕ of
F + F−1 or F + F−1 +X +X−1 iff w ∈ L⇔ w |= ϕ.

Nesting Depth. Given a formula of UTL we call its nesting depth the maximal
number of nested modalities F, F−1, X,X−1 in the formula.

28

CHAPTER 2. FRAGMENTS OF FIRST ORDER LOGIC OVER WORDS

It turns out that the expressive power of F + F−1 and F + F−1 + X + X−1

corresponds exactly to the expressive power of respectively FO2(<) and FO2(<
,Succ). This result is taken from [EVW02]. We state it below and devote the rest
of this section to its proof:

Theorem 2.4. ([EVW02]) Fix L a regular language. We have the following two
properties:

• L is definable in FO2(<) iff L is definable in F + F−1.

• L is definable in FO2(<,Succ) iff L is definable in F + F−1 +X +X−1.

As this result is important for this thesis, we provide its proof below:

Proof. We concentrate on the direction from first order logic to temporal logic as
the other direction is straightforward.

We show that for every FO2(<) or FO2(<,Succ) formula ϕ with one free
variable x there exists an UTL formula [ϕ] such that for every word w and every
position i in w w, i |= ϕ iff w, i |= [ϕ]. We proceed by induction on the size of the
formula ϕ.

The base case is when ϕ = Pa(x) for some a ∈ A. We naturally set [ϕ] = a.
Boolean operators ∧, ∨ and ¬ are treated in a straightforward manner. The only
interesting case corresponds to quantification over a second variable y. Since ∀ as
the same semantic as ¬∃¬ we can suppose that this quantification is existential.
This means ϕ is of the form:

ϕ(x) = ∃y Ψ(x, y)

We first show that there exists a FO2 formula that is equivalent to ϕ and is in
a normal form. Intuitively, we want to delete all atomic formulas in Ψ that involve
the variable x. This way we obtain a new formula with only one free variable y
that can be translated into UTL by induction. It turns out that ϕ is equivalent
to a disjunction of formulas of the following form:

∃y Ψ1(x, y) ∧ Pa(x) ∧ Ψ2(y)

With Ψ1 a conjunction of two atomic formulas that fixes the truth values of
x = y and x < y (in the case of FO2(<,Succ) there is a third atomic formula fixing
the truth value of Succ(x, y)). Ψ2 is the formula obtained from Ψ by replacing
the atomic formulas involving x by their truth value fixed as by Ψ1. therefore Ψ2

has only one free variable and is of the same size as Ψ. Ψ is equivalent to the
disjunction of all such formulas for all possible Ψ1 and all possible labels a. Let
[Ψ2] be the translation of Ψ2 obtained by induction we show how to translate the

29

CHAPTER 2. FRAGMENTS OF FIRST ORDER LOGIC OVER WORDS

whole formula into UTL depending on Ψ1 (we do this for all possible formulas Ψ1

that are coherent). We first do this for FO2(<):

Ψ1(x, y) F + F−1 formula

x = y a ∧ [Ψ2]

x < y a ∧ F [Ψ2]

y < x a ∧ F−1[Ψ2]

And for FO2(<,Succ):

Ψ1(x, y) F + F−1 +X +X−1 formula

x = y a ∧ [Ψ2]

Succ(x, y) a ∧X[Ψ2]

Succ(y, x) a ∧X−1[Ψ2]

x < y ∧ ¬Succ(x, y) a ∧XF [Ψ2]

y < x ∧ ¬Succ(y, x) a ∧X−1F−1[Ψ2]

2.2.2 Quantifier Alternation

We define two logics, ∆2(<) and ∆2(<,Succ). They are fragments of FO(<)
and they have the same expressive power as FO2(<) and FO2(<,Succ). This
is a difficult result that relies on the decidable characterizations of FO2(<) and
FO2(<,Succ) that we will present in Chapter 3.

∆2(<). We say that a language is definable in ∆2(<) iff it is definable by two
fragments of FO(<). A Σ2(<) formula is a FO(<) formula of the form:

∃x1...∃xn ∀y1...∀ym ϕ(x1, ..., xn, y1, ..., ym)

Where ϕ is a FO(<) quantifier free formula using only = and <. A Π2(<)
formula is the negation of a Σ2(<) formula, meaning a formula of the form:

∀x1...∀xn ∃y1...∃ym ϕ(x1, ..., xn, y1, ..., ym)

Where ϕ is a FO(<) quantifier free formula using only = and <. We say a
language is definable in ∆2(<) if it is definable by both a Σ2(<) formula and a
Π2(<) formula.

30

CHAPTER 2. FRAGMENTS OF FIRST ORDER LOGIC OVER WORDS

∆2(<,Succ). Similarly we define Π2(<,Succ) and Σ2(<,Succ) by adding the
successor predicate, Succ to Π2(<) and Σ2(<). A language is then definable in
∆2(<,Succ) iff its is definable by both a Σ2(<,Succ) formula and a Π2(<,Succ)
formula.

Example 2.5. The language of words such that the leftmost position labeled with
a is to the right of the leftmost position labeled with b is defined by the following
Σ2(<) and Π2(<) formulas:

∃x∀y(Pb(x) ∧ (Pa(y) ⇒ x < y))
∀x∃y(Pa(x) ⇒ (x < y ∧ Pb(x)))

It turns out that these formalisms are equivalent to FO2(<) and FO2(<,Succ)
in terms of expressive power:

Theorem 2.5. ([PW97, TW98]) Fix L a regular language.

• L is definable in FO2(<) iff L is definable in ∆2(<).

• L is definable in FO2(<,Succ) iff L is definable in ∆2(<,Succ).

This result is proved using the decidable characterizations of FO2(<) and
FO2(<,Succ) that we will present in Chapter 3 and the decidable characteri-
zations of ∆2(<) and ∆2(<,Succ) presented in [PW97]. It turns out that the
characterizations for FO2(<) and FO2(<,Succ) are the same as the characteri-
zations for ∆2(<) and ∆2(<,Succ). This implies the equality of their expressive
power. We quote the characterizations of ∆2(<) and ∆2(<,Succ) below:

Theorem 2.6. ([PW97, Alm96]) Fix L a regular language. Then L is definable
in ∆2(<) iff its syntactic monoid M verifies for all u, v ∈M :

(uv)ω = (uv)ωv(uv)ω (2.2)

L is definable in ∆2(<,Succ) iff its syntactic semigroup S verifies for all u, v, e ∈ S
with e idempotent:

(eueve)ω = (eueve)ωv(eueve)ω (2.3)

A simple corollary of Theorem 2.6 is that definability in ∆2(<) and ∆2(<
,Succ) are decidable properties:

Corollary 2.7. It is decidable whether a regular word language is definable in
∆2(<). It is decidable whether a regular word language is definable in ∆2(<,Succ).

31

CHAPTER 2. FRAGMENTS OF FIRST ORDER LOGIC OVER WORDS

2.3 Boolean Combinations of Existential First-Order

Formulas

Boolean combinations of existential first order formulas (BC-Σ1(<)) is another
restriction of FO(<). A Σ1(<) is a first order formula of the form:

∃x1 . . . ∃xnϕ(x1, ..., xn)

With ϕ a quantifier free formula FO(<) formula using only < and =. A
language is definable in BC-Σ1(<) iff it is definable by a boolean combination of
such formulas.

Example 2.6. Consider the language L of words that contain a label a to the
right of a label b but no c to the right of a label a. L is defined by the following
BC-Σ1(<) formula:

(∃x∃y x < y ∧ Pb(x) ∧ Pa(y)) ∧ ¬(∃x∃y x < y ∧ Pa(x) ∧ Pc(y))

We quote the decidable characterization of BC-Σ1(<) below. This is a result
from [Sim75].

Theorem 2.8. ([Sim75]) Fix L a regular language. Then L is definable in BC-
Σ1(<) iff its syntactic monoid M verifies for all u, v ∈M :

(uv)ω = (uv)ωu = v(uv)ω (2.4)

A simple corollary of Theorem 2.8 is that definability in BC-Σ1(<) is a decid-
able property:

Corollary 2.9. It is decidable whether a regular word language is definable in
BC-Σ1(<).

2.4 Locally Testable Languages

We define the class of locally testable languages (LT). Locally testable languages
are languages whose membership for a word depends only on the presence or
absence of some fixed set of neighborhoods.

Types. We begin by making the notion of neighborhoods more precise. Fix
some integer k. Let w be a word and x be a position in w, let ws be the suffix at
x of w, the k-type of x is the prefix of length k of ws if ws is of length at least k
and ws otherwise. When k will be clear from the context we will simply say type.
A k-type τ occur in a word w if there exists a position of w of type τ . If w′ is a

32

CHAPTER 2. FRAGMENTS OF FIRST ORDER LOGIC OVER WORDS

factor t[x, y] of some word w and some positions x, y of w, then the k-type of a
position of w′ is the k-type of the corresponding position in w. Notice that the
k-type of a position of w′ may depend on w.

Given two words w and w′ we denote by w 4k w
′ the fact that all k-types

that occur in w also occur in w′. We denote by w ≃k w
′ the property that the

leftmost positions of w and w′ have the same k-type and w and w′ agree on their
k-types: w 4k w

′ and w′ 4k w . Note that when k is fixed the number of k-types
is finite and hence the equivalence relation ≃k has a finite number of equivalence
classes.

A language L is said to be κ-locally testable if L is a union of equivalence
classes of ≃κ. A language is said to be locally testable (is in LT) if there is a κ
such that it is κ-locally testable. In words this says that in order to test whether
a word w belongs to L it is enough to check for the presence or absence of κ-types
in w, for some big enough κ. An simple example of language that is in LT would
be the language of words that contain the factor aba iff they contain the factor
ccb.

There exists a decidable characterization of the class LT given in [BS73]
and [McN74]. However, we will study this characterization in details and give
it its own chapter. Therefore, as we did for FO2 we postpone its statement to
Chapter 4.

Logical characterization There exists a logical characterization of the class
LT. It corresponds to the languages definable by a temporal logic defined on the
following grammar:

ϕ = a ∈ A | Xϕ | Gϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ

Intuitively, G stands for “everywhere in the word” while X stands for “next
position.” Formally this gives the following semantic: Given a word w and a
position x in w we say that w satisfies a formula ϕ and we write w, x |= ϕ iff:

• ϕ = a ∈ A and the position x in w is labeled by a.

• ϕ = Gϕ′ and for all positions x′ in w, w, x′ |= ϕ′.

• ϕ = Xϕ′ and if x′ is the position next to x, w, x′ |= ϕ′.

• ϕ = ϕ1 ∧ ϕ2 and w, x |= ϕ1 and w, x |= ϕ2

• ϕ = ϕ1 ∨ ϕ2 and w, x |= ϕ1 or w, x |= ϕ2

• ϕ = ¬ϕ1 and w, x do not satisfy ϕ1.

33

CHAPTER 2. FRAGMENTS OF FIRST ORDER LOGIC OVER WORDS

34

Chapter 3

First-Order Logic With Only

Two Variables over Words

In this chapter we investigate the logics FO2(<) and FO2(<,Succ). Recall that
these two logics are restriction of FO(<) to only two variables that may be reused.
More details can be found in Chapter 2. This chapter is devoted to achieving the
following goals:

• Obtain a decidable characterization for FO2(<).

• Obtain a decidable characterization for FO2(<,Succ).

These two goals were originally achieved in [TW98] using algebraic character-
izations. In this chapter, we present the characterizations of [TW98] and provide
new proofs for them. We do this for two main reasons. First, we use both char-
acterizations as blackboxes in the second part on trees. Second, the techniques
involved in these proofs can be seen as a restriction to the setting of words of the
techniques we will use in the setting of trees.

Note that the proof we provide for the characterization of FO2(<) is simply a
new presentation of the ideas used in [TW98]. However, the proof of the charac-
terization of FO2(<,Succ) is somewhat different. The proof of [TW98] relied on
a difficult result of [Alm96], while our proof is direct.

Note that there are many more characterizations of FO2(<) that are a priori
not decidable. For example the languages definable in FO2(<) are exactly the lan-
guages accepted by a partially ordered two-way finite automaton. A presentation
of all these characterizations can be found in [TT02].

The chapter is organized as follows. In Section 3.1 we define tools that will be
crucial in our proofs. Section 3.2 is devoted to FO2(<) and Section 3.3 is devoted
to FO2(<,Succ).

35

CHAPTER 3. FO2 OVER WORDS

3.1 Definitions

In this section we define two notions that are pivotal to the proofs of the char-
acterizations. First we define Ehrenfeucht-Fräıssé games. Ehrenfeucht-Fräıssé
games characterize the expressive power of a logic. Then we define two orders on
semigroups and monoids that will play a key role in the inductions used in the
proofs.

Ehrenfeucht-Fräıssé games. Based on Theorem 2.4, we use an F + F−1,F +
F−1 +X +X−1 point of view and define two games corresponding intuitively to
these two logics. We first define the Ehrenfeucht-Fräıssé game for F +F−1. There
are two players, Duplicator and Spoiler, the board consists in two words and the
players agree on the number of moves in advance. At any time there is one pebble
placed on a position of each of the two words and the corresponding positions have
the same label in A. At the beginning of the game the two pebbles are placed on
the leftmost position of each word. At each step Spoiler moves one of the pebbles
to another positions in the word. Duplicator must respond by moving the other
pebble in the same direction to a node of the same label. For example if Spoiler
moved the pebble on a node to the right and labeled with a, then Duplicator must
also move the pebble to the right on a node labeled with a. If Duplicator cannot
move then Spoiler wins. For F + F−1 + X + X−1, there is an added condition
for Duplicator’s answer. If Spoiler plays on a next or previous position, then
Duplicator has to answer on a next or previous position We speak of the F +F−1

Ehrenfeucht-Fräıssé game and the F +F−1 +X+X−1 Ehrenfeucht-Fräıssé game,
when the logic is clear from the context we just write Ehrenfeucht-Fräıssé game.
We say that Duplicator has a wining strategy for the k rounds Ehrenfeucht-Fräıssé
game if there exists a function that tells her how to play depending on Spoiler’s
moves such that she wins the game if she plays according to this function. Given
two words w,w′, we write w ≃k w

′ the fact that Duplicator has a winning strategy
for the k-rounds F + F−1 game on w and w′. We write w ≃+

k w′ the fact that
Duplicator has a winning strategy for the k-rounds F +F−1+X+X−1 game on w
and w′. The following Lemma can be proved using classical techniques (recall that
the nesting depth of a UTL formula is the maximal number of nested modalities
F, F−1, X,X−1 in the formula):

Lemma 3.1. Fix two words w,w′ and some integer k, the two following proposi-
tions hold:

• w ≃k w
′ iff w and w′ satisfy the same F +F−1 formulas of nesting depth k.

• w ≃+
k w′ iff w and w′ satisfy the same F + F−1 + X + X−1 formulas of

nesting depth k.

36

CHAPTER 3. FO2 OVER WORDS

Reachability. We define two relations on semigroups (therefore these relations
are also defined on monoids). These relations will later play a key role in our
inductions. Note that these relations are usually introduced as the Green relations.
In order to stay close to the proofs we will present on trees in the second part,
we give a slightly different definition. Therefore, in order to avoid confusion, we
give them a different name. Fix some semigroup S and u, v ∈ S. We say that u
is r-reachable from v iff there exists v′ ∈ S such that u = vv′. Symmetrically we
say that u is l-reachable from v iff there exists v′ ∈ S such that u = v′v.

3.2 FO2(<)

In this section we give a decidable characterization of FO2(<) using monoids. This
characterization was first presented in [TW98]. While the proof we provide uses
the same ideas as the one of [TW98], the presentation is slightly different in order
to be extended later to the tree setting.

Theorem 3.2. ([TW98]) A regular language L over an alphabet A is definable
in FO2(<) iff its syntactic monoid M verifies, for all u, v ∈M :

(uv)ω = (uv)ωv(uv)ω (2.2)

Notice that this characterization is the same as the one of Theorem 2.6 for
∆2(<). Therefore Theorem 3.2 yields the FO2(<) part of Theorem 2.5: ∆2(<
) and FO2(<) have the same expressive power. Given Theorem 3.9, deciding
definability in FO2(<) becomes a simple matter. It is sufficient to compute the
syntactic monoid of the input regular language and then we check if it satisfies
Equation (2.2). Therefore we get the following corollary:

Corollary 3.3. It is decidable whether a regular word language is definable in
FO2(<).

We devote the rest of this section to the proof of Theorem 3.2. We have to
prove both directions of the Theorem. We begin with the easier “only if” direction.

Proposition 3.4. The syntactic monoid of a language L definable in FO2(<)
verifies (2.2).

Proof. Rather than using the FO2(<) point of view, in regards to Theorem 2.4 we
use the F +F−1 point of view and show than the syntactic monoid of a language
definable in F + F−1 verifies (2.2).

Consider some language L that is defined by an F +F−1 formula ϕ. Let k be
the nesting depth of modalities in ϕ and M be the syntactic monoid of L with α

37

CHAPTER 3. FO2 OVER WORDS

the associated morphism. We show that for all u, v ∈ M , (uv)2k = (uv)kv(uv)k,
which concludes the proof. The proof is an Ehrenfeucht-Fräıssé argument.

Consider w1, w2 two words and p, q two words such that α(q) = u and α(q) = v.
We show that Duplicator wins the k-move game between w1(pq)

k(pq)kw2 and
w1(pq)

kq(pq)kw2. Since ϕ is of nesting depth k, it then follows from Lemma 3.1
that w1(pq)

k(pq)kw2 ∈ L iff w1(pq)
kq(pq)kw2 ∈ L. By definition of the syntactic

monoid, the result then follows.

We finish the proof by giving a winning strategy for Duplicator. To simplify
the arguments we suppose that p and q are just letters and that w1 and w2 are
empty words. The extension of the strategy in the general case is straightforward.
Therefore the two words composing the board are of the form (ab)kb(ab)k and
(ab)k(ab)k with a and b letters. In order to give the strategy, we need to give a
few extra definitions. Consider some position x on the board. We call the right
number (resp. left number) of x the number of full copies of the factor ab to
the right (resp. left) of x. Given a position x in (ab)kb(ab)k and a position y in
(ab)k(ab)k we that they are identical iff they are either both on the (ab)k prefix
of the words or both in the (ab)k suffix of the words at the same position (see
Figure 3.1).

ab · · · abab · · · ab b ab · · · ab{

l factors {

k factors

{

k factors

x

ab · · · abab · · · ab ab · · · ab{

l factors {

k factors

{

k factors

y

lx = l
ly = l

rx = 2k − l − 1
ry = 2k − l − 1

x, y are identical

Figure 3.1: Definitions for the strategy in Proposition 3.4

We define a property P(i) depending on some integer i. We then show that
Duplicator can preserve this property while playing, where i is the number of turns
left to play. Suppose that the pebbles are in positions x and y on the board, we
write rx, ry the right numbers of x, y and lx, ly their left numbers. P(i) holds iff
one the following properties holds:

1. x, y are identical.

38

CHAPTER 3. FO2 OVER WORDS

or

2. lx, ly, rx, ry ≥ i.

At the beginning of the game, x and y are identical, therefore P(k) holds. Now
suppose that there are i turns left to play, that the pebbles are in positions x and
y and that P(i) holds. Suppose that Spoiler moves the pebble at position x to a
new position x′, depending on the item holding for P(i) and Spoiler’s move, we
Duplicator’s strategy in order to make P(i− 1) true.

x, y were identical. There are two cases. If Spoiler did not move on the central
b in (ab)kb(ab)k, Duplicator just answers on a position y′ that is identical to x′ and
P(i− 1) holds for the first item. If Spoiler moves to the central b in (ab)kb(ab)k,
then we have rx′ = lx′ = k ≥ i > i − 1. If x < x′, Duplicator answers on the
leftmost b of the suffix (ab)k. If x′ < x, Duplicator answers on the rightmost b
of the prefix (ab)k. We then have ry′ , ly′ ≥ k − 1 ≥ i − 1. P(i − 1) holds for the
second item.

We had lx, ly, rx, ry ≥ i. There are two cases. If lx′ , rx′ ≥ i. Since we had
ly, ry ≥ i − 1, Duplicator can find a position y′ such that ly′ , ry′ ≥ i − 1 in both
directions. Depending on the direction of Spoiler’s move she chooses one of them
as her answer and P(i − 1) holds for the second item. Otherwise, suppose that
lx′ < i− 1 (the case where rx′ < i− 1 is symmetric). Because lx ≥ i, x′ < x, also
since ly ≥ i there exists y′ < y that is identical to x′, this is Duplicator’s answer.
P(i− 1) is then verified for the first item.

We turn to the other direction of Theorem 3.2. Fix a finite monoid M satis-
fying (2.2) and a morphism α : A∗ → M . Theorem 3.2 is a consequence of the
following Proposition:

Proposition 3.5. For all ur, ul, v ∈M , Lv
ul,ur

= {w | ulα(w)ur = v} is definable

in FO2(<).

Indeed, if we fix ur, ul = 1M , we get that for all v ∈M , α−1(v) is definable in
FO2(<). Therefore any language recognized by M is definable in FO2(<), which
concludes the proof of Theorem 3.2. We finish with the proof of Proposition 3.5.
We construct a formula that defines Lv

ul,ur
using an induction mechanism. There-

fore we need a way to concatenate two languages definable in FO2(<) into a single
language that is also definable in FO2(<). While this not possible in the general
case, we use the following weaker Lemma:

39

CHAPTER 3. FO2 OVER WORDS

Lemma 3.6 (Concatenation Principle). Let L and K be two languages that are
definable in FO2(<). Let ϕ(x) be a FO2(<) formula with one free variable x with
the following property: for all words w there exists at most one position i such
that w, i satisfies ϕ(x). (Notice that this property is semantic and might not be
apparent just by looking at the syntax of the formula). The following language is
definable in FO2(<):

{w = a1 . . . ai−1aiai+1 . . . an | a1 . . . ai−1 ∈ K, ai+1 . . . an ∈ L and w, i |= ϕ(x)}

Proof. This is done by relativizing the quantifiers inside the formula recognizing
L and the formula recognizing K respectively to the position before and after the
position selected by ϕ.

We are now ready for the proof of Proposition 3.5:

Proof. We proceed by induction on the three following parameters:

1. The size of the alphabet A.

2. The number of elements of M that are r-reachable from ul.

3. The number of elements of M that are l-reachable from ur.

Note that since M is finite all this parameters are well defined. We consider
three cases depending on the elements of M that are l-reachable from ur or r-
reachable from ul. In the first case we suppose, that there exists elements of
M that are r-reachable from ul but not the other way around. We conclude by
induction on parameters 1) and 2). In the second case, we suppose that there
exists elements of M that are l-reachable from ur but not the other way around.
We conclude by induction on parameters 1) and 3). Finally in the last case, we
conclude by showing that if neither of the two previous cases hold, then Lv

ul,ur
is

either empty or universal. Since both are easily defined in FO2(<) this ends the
proof.

Case 1: There exists u such that ul is not r-reachable from ulu. We
proceed as follows: first we show that given any word w, we can detect in FO2(<)
the leftmost position x in w such that the prefix at x, w′ is such that ul is not
r-reachable from ulα(w′) (if such a position exists). We show that it corresponds
to the first occurrence of some letter a. We then finish the proof by induction on
the alphabet size on the left of x and by induction on the second parameter on
the right of x using Lemma 3.6 to merge the two sides. This structure is shown
in Figure 3.2.

40

CHAPTER 3. FO2 OVER WORDS

}w′ {
w

{
ul

{

ur

New letter a

New greater ulSmaller alphabet

Figure 3.2: Arguments in the first case of Proposition 3.5

Lemma 3.7. There exists some set of labels B such that:

• For any letter b ∈ B ul is not r-reachable from ulα(b).

• For any word w such that ul is not r-reachable from ulα(w), the smallest
prefix w′ of w such that ul is not r-reachable from ulα(w′) has only its
rightmost letter in B.

Proof. We choose B as the set of labels such that for all b ∈ B ul is not r-reachable
from ulα(b). By definition, B satisfies the first item.

Now fix some word w such that ul is not r-reachable from ulα(w), and w1 the
smallest prefix of w such that ul is not r-reachable from ulα(w1). Let b ∈ A and
w2 ∈ A∗ such that w1 = w2b. We show that b ∈ B and that no letter of w2 is in
B which ends the proof.

We show a slightly more general result, for all u ∈ M , ul is not r-reachable
from uluα(b). Indeed, fix some u and suppose that ul is r-reachable from uluα(b),
there exists u′ such that ul = uluα(b)u′. By hypothesis on w2 there exists v such
that ulα(w2)v = ul

ulα(w2) = ulα(w2) · vuα(b)u′α(w2)
ulα(w2) = ulα(w2) · (vuα(b)u′α(w2))

ω

ulα(w2) = ulα(w2) · e With fix e = (vuα(b)u′α(w2))
ω

ulα(w2) = ulα(w2) · e · α(b)u′α(w2) · e using (2.2)
ulα(w2) = ulα(w2) · α(b)u′α(w2) · e
ul = ulα(w1) · u

′α(w2) · e · v

Which means that ul is r-reachable from ulα(w1) which is a contradiction. It
follows that b ∈ B (consider u = ǫ), and that w2 contains no b (ul is r-reachable
from ulα(w2)).

It follows from Lemma 3.7 and the hypothesis of this case that B is not empty.
Therefore, by induction on the size of the alphabet the restriction of Lv

ul,ur
to A−B

41

CHAPTER 3. FO2 OVER WORDS

is definable in FO2(<). Therefore we can suppose without loss of generality that
all words of Lv

ul,ur
contain letters of B.

For all u ∈ M such that ul is r-reachable from ulu, consider the languages
Ku

ul,1M
. By definition and Lemma 3.7 they contain no letter in B, therefore

by induction on the size of the alphabet they are definable in FO2(<). For all
u′ ∈M such that ul is not r-reachable from ulu

′, consider the languages Lv
ulu′,ur

.
By definition there are less elements of M that are r-reachable from ulu

′ than from
ul. Therefore, by induction on the second parameter the languages Lv

ulu′,ur
are

definable in FO2(<). By Lemma 3.7, the language Lv
ul,ur

is a union of languages
of the form:

Ku
ul,1M

bLv
ulu′,ur

for uα(b) = u′

If we fix K = Ku
ul,1M

, L = Lv
ulu′,ur

and ϕ the formula selecting the leftmost
position labeled with b, it is a simple consequence of Lemma 3.6 that this language
is definable in FO2(<). This ends the proof of this case.

Case 2: There exists u such that ur is not l-reachable from uur. This
case is symmetric to the previous one. We proceed as follows, first we show that
given any word w, we can detect in FO2(<) the rightmost position x in w such
that the suffix at x, w′ is such that ur is not l-reachable from α(w′)ur (if such
a position exists). We show that it corresponds to the first occurrence of some
letter a. We then finish the proof by induction on the alphabet size on the right
of x and by induction on the third parameter on the left of x using Lemma 3.6 to
merge the two sides. This structure is shown in Figure 3.3.

}w′{

w

{

ul

{

ur

New letter a

Smaller alphabetNew greater ur

Figure 3.3: Arguments in the second case of Proposition 3.5

Lemma 3.8. There exists some set of labels B such that:

• For any letter b ∈ B ur is not l-reachable from α(b)ur.

• For any word w such that ur is not l-reachable from α(w)ur, the smallest
suffix w′ of w such that ur is not l-reachable from α(w′)ur has only its
leftmost letter in B.

42

CHAPTER 3. FO2 OVER WORDS

Proof. We choose B as the set of labels such that for all b ∈ B ur is not l-reachable
from α(b)ul. By definition, B satisfies the first item.

Now fix some word w such that ur is not l-reachable from α(w)ur, and w1 the
smallest suffix of w such that ur is not l-reachable from α(w1)ur. Let b ∈ A and
w2 ∈ A∗ such that w1 = bw2. We show that b ∈ B and that no letter of w2 is in
B which ends the proof.

We show a slightly more general result, for all u ∈ M , ur is not l-reachable
from α(b)uur. Indeed, fix some u and suppose that ur is l-reachable from α(b)uur,
there exists u′ such that ur = u′α(b)uur. By hypothesis on w2 there exists v such
that vα(w2)ul = ul

α(w2)ur = α(w2)u
′α(b)uv · α(w2)ur

α(w2)ur = (α(w2)u
′α(b)uv)ω+1 · α(w2)ur

α(w2)ur = α(w2)u
′α(b) · (uvα(w2)u

′α(b))ω · uv · α(w2)ur
α(w2)ur = α(w2)u

′α(b) · e · uv · α(w2)ur with e = (uvα(w2)u
′α(b))ω

α(w2)ur = α(w2)u
′α(b) · e · α(w2)u

′α(b) · e · uv · α(w2)ur using (2.2)
α(w2)ur = (α(w2)u

′α(b)uv)ω · α(w2)u
′α(b) · (α(w2)u

′α(b)uv)ω+1 · α(w2)ur
α(w2)ur = (α(w2)u

′α(b)uv)ω · α(w2)u
′α(b) · α(w2)ur

ur = v · (α(w2)u
′α(b)uv)ω · α(w2)u

′ · α(w1)ur

Which means that ur is l-reachable from α(w1)ur which is a contradiction. It
follows that b ∈ B (consider u = ǫ), and that w2 contains no b (ur is l-reachable
from α(w2)ur).

It follows from Lemma 3.8 and the hypothesis of this case that B is not empty.
Therefore, by induction on the size of the alphabet the restriction of Lv

ul,ur
to A−B

is definable in FO2(<). Therefore we can suppose without loss of generality that
all words of Lv

ul,ur
contain letters of B.

For all u ∈ M such that ur is l-reachable from uur, consider the languages
Ku

1M ,ur
. By definition and Lemma 3.8 they contain no letter in B, therefore by

induction on the size of the alphabet they are definable in FO2(<).
For all u′ ∈M such that ur is not l-reachable from u′ur, consider the languages

Lv
ul,u′ur

. By definition there are less elements of M that are l-reachable from u′ur
than from ur. Therefore, by induction on the third parameter the languages
Lv
ul,u′ur

are definable in FO2(<).
By Lemma 3.8, the language Lv

ul,ur
is a union of languages of the form:

Lv
ul,u′ur

bKu
1M ,ur

for α(b)u = u′

If we fix L = Ku
1M ,ur

, K = Lv
ul,u′ur

and ϕ the formula selecting the rightmost
position labeled with b, it is a simple consequence of Lemma 3.6 that this language
is definable in FO2(<). This ends the proof of this case.

43

CHAPTER 3. FO2 OVER WORDS

Case 3: Induction Base We are not in any of the two previous cases, therefore,
for all u, ul is r-reachable from ulu and ur is l-reachable from uur. We show that
Lv
ul,ur

is either A∗ or the empty set. Since both are easily defined in FO2(<), this
concludes the proof. we show that for all u, u′ ∈M uluur = ulu

′ur.
Indeed, by hypothesis there exists u1 ∈ M such that uluuru1 = ulu

′ur and
there exists u2 ∈M such that uluur = u2ulu

′ur. We get:

uluur = u2uluuru1
uluur = (u2)

ωuluur(u1)
ω

uluuru1 = (u2)
ωuluur(u1)

ω+1

uluuru1 = (u2)
ωuluur(u1)

ω using (2.1)
ulu

′ur = uluur

This ends the proof. Notice that we actually only use Equation (2.1) which is
a simple consequence of Equation (2.2).

3.3 FO2(<, Succ)

In this section we give a decidable characterization for the class of languages defin-
able in FO2(<,Succ) using semigroups. This characterization was first presented
in [TW98]. However the proof was using difficult results from [Alm96]. The proof
we present here is direct.

Theorem 3.9. A regular word language L over an alphabet A is definable in
FO2(<,Succ) iff its syntactic semigroup S verifies, for all u, v, e ∈ S with e idem-
potent:

(eueve)ω = (eueve)ωv(eueve)ω (2.3)

Notice that this characterization is identical to the one of Theorem 2.6 for
∆2(<,Succ). Therefore Theorem 3.9 yields the FO2(<,Succ) part of Theorem 2.5:
FO2(<,Succ) and ∆2(<,Succ) have the same expressive power over words. Again,
a simple consequence of Theorem 3.9 is that in order to check definability of a reg-
ular language in FO2(<,Succ) it is sufficient to compute the syntactic semigroup
and verify Equation (2.3). Therefore we get the following corollary:

Corollary 3.10. It is decidable whether a regular word language is definable in
FO2(<,Succ).

The rest of this section is devoted to the proof of Theorem 3.9. Both direction
are proved using Ehrenfeucht-Fräıssé game techniques. Therefore, we use Theo-
rem 2.4 in order to adopt an F + F−1 + X + X−1 point of view. There are two
directions in Theorem 3.9. We begin with the easier ’only if’ direction.

44

CHAPTER 3. FO2 OVER WORDS

Proposition 3.11. If a language L is definable in FO2(<,Succ), its syntactic
semigroup verifies (2.3).

Proof. This is done using Ehrenfeucht-Fräıssé techniques using a strategy for Du-
plicator similar to the one used for the proof of Proposition 3.4.

The other direction is proved using the following proposition. Recall that given
two words w,w′ we write:

• w ≃k w
′ iff Duplicator has a winning strategy in the k rounds F +F−1 game

on w and w′.

• w ≃+
k w′ iff Duplicator has a winning strategy in the k rounds F + F−1 +

X +X−1 game on w and w′.

Proposition 3.12. Let S be a semigroup verifying Equation (2.3) and α : A+ → S
some morphism. Then the following property holds:

∃k w ≃+
k w′ =⇒ α(w) = α(w′)

It follows from Proposition 3.12 that any language recognized by a semigroup
verifying Equation (2.3) is a union of classes of ≃+

k for some k. It is also a
consequence from Lemma 3.1 that any union of classes of ≃+

k for some k is definable
in F + F−1 + X + X−1. It follows that any language recognized by a semigroup
verifying Equation (2.3) is definable in F + F−1 + X + X−1. This finishes the
proof of Theorem 3.9. We turn to the proof of Proposition 3.12:

Proof. We begin with the definition of a construction on words that we use
throughout the proof. We define a new alphabet B and to each word over A
we associate a word over B in a canonical manner. Note that this construction
was first presented in [Str85].

We fix an arbitrary order on E(S) the set of idempotents of S. We define a
new alphabet B = {(e, w, f), (e, w), (w, f) | e, f ∈ E(S), w ∈ A∗ |w| ≤ |S|}, and
to each word w = a0a1 · · · an of length greater than |S| of A+ we associate a word
⌊w⌋ = b0 · · · bm of B+ such that:

• b0 = (w0, f0), bm = (em, wm), and bi = (ei, wi, fi) for 1 ≤ i < m.

• ei+1 = fi for 0 ≤ i < m.

• w0 · · ·wm = w.

• We have α(wi)fi = α(wi).

45

CHAPTER 3. FO2 OVER WORDS

Because of the third item, to each position x in w corresponds a position
x̂ which is the position i such that x is in the factor wi. We also want this
construction to be locally canonical. By this we mean that for each position x
of w it is possible to infer the label b ∈ B of x̂ in ⌊w⌋ only by inspecting the
neighborhood of x of a bounded size.

The construction of ⌊w⌋ is based on the following observation:
If w = a0 · · · an is such that n > |S|, we can find i, j, i < j such that: α(a0 · · · ai) =
α(a0 · · · aj). We then have α(a0 · · · ai) = α(a0a1 · · · ai)(α(ai+1 · · · aj))

ω. This im-
plies that there is a idempotent e such that α(a0 · · · ai) = α(a0a1 · · · ai)e.

In order to make this canonical we always consider the smallest such i and,
once i is determined, the smallest e in the order chosen for E(s), such that the
property above holds.

The construction of ⌊w⌋ is now obtained from w by considering all sequences
of |S| + 1 letters of w successively from left to right and inserting the idempotent
determined as above at the right place.

It is easy to verify that all desired properties are verified. In particular the
construction is locally canonical for a neighborhood of size 2|S| + 1.

We now show:

Lemma 3.13. ∀m ∃n w ≃+
n w′ =⇒ ⌊w⌋ ≃m ⌊w′⌋

Lemma 3.14. ∃m ⌊w⌋ ≃m ⌊w′⌋ =⇒ α(w) = α(w′)

Using the Lemmas we have for all w,w′ such that |w| > |S|, |w′| > |S|:

∃k w ≃+
k w′ =⇒ α(w) = α(w′)

Then for all w,w′:

w ≃+
k+|S|+1 w

′ =⇒ α(w) = α(w′)

Which ends the proof of Proposition 3.12. We prove Lemmas 3.13 and 3.14:

Proof. (of Lemma 3.13) This proof relies on the local canonicity of the con-
struction. Let k = |S| and take n = m + k. Assume that w ≃+

n w′. We describe
a winning strategy for Duplicator on the m rounds F +F−1 Ehrenfeucht-Fräıssé-
game on ⌊w⌋ and ⌊w′⌋, that we call G in our proof. The strategy uses Duplicator’s
strategy on the n round F + F−1 + X + X−1 Ehrenfeucht-Fräıssé-game on w
and w′. During the play of the game G, Duplicator will play alone a shadow
F +F−1 +X+X−1 Ehrenfeucht-Fräıssé-game on w and w′ that we denote by G+.

• Spoiler plays on a position y′ labeled with a letter b = (e, p, f) of ⌊w′⌋ (the
case in which he plays on ⌊w⌋ is symmetric).

46

CHAPTER 3. FO2 OVER WORDS

• Duplicator simulate a play of Spoiler in G+ by putting the pebble on the
position x′ in w′ corresponding to the first letter of wi. (notice that x̂′ = y′)

• Her strategy on G+ gives her an answer on a position x of w. Since there are
at least k more moves in G+, x and x′ agree on their label and on the label
of their k predecessors and k successors. It follows that x and x′ have the
same neighborhood of size 2k+1, by local canonicity x̂ and x̂′ have the same
label b. Therefore, the position x̂ in ⌊w⌋ is Duplicator’s answer to Spoiler’s
move.

As Duplicator can survive n rounds, this concludes the proof.

Proof. (of Lemma 3.14) Given b = (e, p, f) ∈ B, we write α(b) for eα(p)f .
We say that a word w of B+ is well formed iff w = b1 . . . bm with b1 = (w1, f1),
bn = (en, wn) and bi = (ei, wi, fi) and for all i, fi = ei+1. In particular, by
definition, if w is a word of A+, ⌊w⌋ is well-formed. We show that given two well
formed words w and w′ of B+, we have:

w ≃k w
′ =⇒ α(w) = α(w′)

The proof is done by induction on |B| and we show that the property holds for
k > |S1||B|:

• If |B| = 0 then the result is just α(ǫ) = α(ǫ).

• Otherwise we prove two properties. For u ∈ S1, we write dpr(u) (resp.
dpl(u)) the number of elements v of S1 such that u is r-reachable (resp.
l-reachable) from v.

∀ul ∈ S1 w ≃k−dpr(ul) w
′ ⇒ ulα(w) and ulα(w′) are mutually r-reachable

∀ur ∈ S1 w ≃k−dpl(ur) w
′ ⇒ α(w)ur and α(w′)ur are mutually l-reachable

Before proving the properties we show how to conclude using them. Consider
the properties in the case where ul = ur = ǫ. We then have w ≃k w′ ⇒
α(w) and α(w′) are mutually r-reachable and l-reachable. Therefore we have
α(w) = uα(w′) and α(w′) = α(w)v. A little algebra then yields:

α(w) = uα(w)v

α(w) = uωα(w)vω

α(w)v = uωα(w)vω+1

α(w′) = uωα(w)vω using (2.3)

α(w′) = α(w)

47

CHAPTER 3. FO2 OVER WORDS

We now prove the first property, the second one being obtained by symmetry. We
proceed by induction on the number of elements that r-reachable from ul. We
consider three cases:

1. ul is r-reachable from both ulα(w) and ulα(w′).

2. ul is not r-reachable from ulα(w).

3. ul is not r-reachable from ulα(w′).

In the first case there is nothing to be done, since the mutual r-reachability
between ulα(w) and ulα(w′) is an immediate consequence. We do the proof for
the second case, the third case is handled by symmetry.

Suppose ul is not r-reachable from ulα(w). Then there exists b ∈ B such that
w = w1bw2 and ul is r-reachable from ulα(w1) while ul is not r-reachable from
ulα(w1b)

Claim 3.15. There is no position in w1 with label b.

Proof. Suppose that b ∈ w1, and that b = (e, p, f) and v = α(p). Because w is
well formed, b is compatible with w1, therefore, the last letter of w1 ends with the
idempotent e. Therefore, we can decompose ulα(w1) as:

ulα(w1) = v1evfv2e

Because ul is r-reachable from ulα(w1), v1 is r-reachable from v1evfv1e and
there exists h such that:

v1 = v1evfv2eh

It follows that:

v1evfv2e = v1evfv2eh evfv2e

v1evfv2e = v1evfv2e eh evfv2e

v1evfv2e = v1evfv2e (eh evfv2e)
ω

v1evfv2e = v1evfv2e (eh evfv2e)
ω evfv2e (eh evfv2e)

ω Using (2.3)

v1evfv2e = v1evfv2e evf v2e (eh evfv2e)
ω

Therefore v1evfv2e is r-reachable from v1evfv2e evf . This is exactly says that
ulα(w1) is r-reachable from ulα(w1b), which is a contradiction by hypothesis.

48

CHAPTER 3. FO2 OVER WORDS

We decompose w′ as w′ = w′
1bw

′
2 such that b /∈ w′

1. Note that such a decomposition
exists because w ∼=k−dpr(x) w

′ and k − dpr(x) ≥ 1 and therefore b is a letter of w′

(if Spoiler plays on the b in w, there is a b in w′ which Duplicator can respond
on).

Claim 3.16. w1
∼=k−dpr(x)−1 w

′
1 and w2

∼=k−dpr(x)−1 w
′
2

Proof. In both cases this is a simple consequence of Claim 3.15. In the game on
w, w′, if Spoiler place a pebble on w1 then Duplicator’s response must be in w′

1.
Otherwise Spoiler would play in w′ his next move on the b separating w′

1 from w′
2

and by Claim 3.15 Duplicator would not be able to find such a b to the left of the
current pebble which is in w1. Similarly if Spoiler plays in w2 Duplicator must
answer in w′

2, as soon as one extra move is available.

We conclude the proof with this last claim. First considering w1 and w′
1 we have:

• b /∈ w1, w
′
1.

• Since, ul is not reachable from ulα(w1b), dpr(ul) ≥ |S1|, therefore: k −
dpr(ul) − 1 > |S1||B| − (|S1| − 1) − 1 > |S1|(|B − 1|).

Therefore, using the outer induction hypothesis on the size of |B|, ulα(w1) =
ulα(w′

1). Now considering w2 and w′
2 we have:

• k − dpr(ul) − 1 > |S1||B| − dpr(ulα(w1b)).

• Thanks to the inner induction hypothesis, with v = ulα(w1b) we have vα(w2)
and vα(w′

2) mutually r-reachable.

But then ulα(w′) = ulα(w′
1)α(bw′

2) = vα(w′
2) and ulα(w) = vα(w′

2) are mu-
tually r-reachable which ends the proof.

49

CHAPTER 3. FO2 OVER WORDS

50

Chapter 4

Locally Testable Languages

over Words

In this Chapter we provide and prove a decidable characterization for LT. Decid-
able characterizations for LT were obtained independently by [BS73] and [McN74].
These characterizations are based on the syntactic semigroup of the language. We
present a new proof for this characterization. It is based on a non algebraic charac-
terization of LT that we call tame languages. This proof also implies the algebraic
characterization of [BS73] and [McN74].

Note that there exists another method to decide membership in LT for a regular
word language. This algorithm, presented in [Boj07a], relies on the delay theorem.
In the special case of LT, the delay theorem says that if a finite state automaton
A recognizes a language in LT then this language must be κ-locally testable for
a κ computable from A. This theorem was proved over words in [Str85] and
can be used in order to decide whether a regular language is in LT as explained
in [Boj07a].

In Section 4.1, we define the notion of a tame language. Then in Section 4.2,
we state and prove the characterization.

4.1 Tame Languages

Guarded Operations Fix some integer k, we define two closure properties on
languages that we call k-guarded swap and k-guarded stutter.

Let w be a word and x, y, z be three positions in w such that x < y < z. The
swap of w at x, y, z is the word w′ constructed from w by switching w[x, y] with
w[y, z], see Figure 4.1. A swap is k-guarded if x, y, z have the same k-type.

Let w be a word and x, y, z be three positions in w such that x < y < z and
such that w[x, y] = w[y, z]. The stutter of w at x, y, z is the word w′ constructed

51

CHAPTER 4. LT OVER WORDS

x y z

w

⇐

w′

Figure 4.1: Swap

from w by deleting w[y, z], see Figure 4.2. A stutter is k-guarded if x, y, z have
the same k-type.

x y z

w

⇐

w′

Figure 4.2: Stutter

Let L be a word language and k be a number. We say that L is closed under
k-guarded swap (resp. k-guarded stutter) if for every word w and every word w′

constructed from w using k-guarded swap (resp. k-guarded stutter) then w ∈ L
iff w′ ∈ L. An important observation is that k-guarded operations do not affect
the set of (k + 1)-types occurring in a word.

If L is closed under the two k-guarded operations described above, we say that
L is k-tame. A language is said to be tame if it is k-tame for some k.

4.2 Decidable Characterization

Theorem 4.1. Consider L, a regular language over some alphabet A, the following
properties are equivalent:

1. L is in LT.

2. L is tame.

3. The syntactic semigroup S of L verifies, for all u, v, e ∈ S such that e is an
idempotent:

52

CHAPTER 4. LT OVER WORDS

eueue = eue (4.1)

eueve = eveue (4.2)

The algebraic part of Theorem 4.1 is exactly the algebraic characterization
of [BS73] and [McN74]. It follows from Theorem 4.1 that membership in LT is a
decidable property of regular languages.

Corollary 4.2. It is decidable whether a regular language is in LT.

We devote this section to the proof of Theorem 4.1. We proceed in two steps.
First we prove that being in LT is equivalent to being tame. In a second step we
prove that tameness is equivalent to the algebraic characterization.

4.2.1 LT ⇔ tame

We prove that tameness is equivalent to being in LT. There are two directions
that we separate. We begin with the easier “only if” direction and show that any
LT language is tame.

Proposition 4.3. If L is LT then L is tame.

Proof. By definition L is k-locally testable for some integer k. Since the k-guarded
operations do not affect the k-types in the words, it follows that L is k-tame.
Therefore L is tame which ends the proof.

We turn to the harder “if” direction, if a language is tame then it is in LT. It
follows from the following proposition:

Proposition 4.4. Let L be a k-tame language. Consider w1, w2 two words:

w1 ≃k+1 w2 ⇒ w1 ∈ L iff w2 ∈ L

Indeed a simple consequence of Proposition 4.4 is that if L is k-tame, then it
is a union of classes of ≃k+1 which is exactly the definition of being (k+ 1)-locally
testable. Therefore if L is tame, it is in LT, and this finishes this direction of the
proof. We now prove Proposition 4.4.

Proof. Before proving Proposition 4.4 we need some extra terminology. Let w be
some word and x < y be two positions in w, we say the factor w[x, y] is a loop of
k-type τ if x and y have the same k-type and that this k-type is τ . A factor w′ of
some word w is a k-loop if there is some k-type τ such that w is a loop of k-type
τ . Notice that the notion of k-loop depends on the surrounding word w.

53

CHAPTER 4. LT OVER WORDS

Consider L that is k-tame and fix w1, w2 two words such that w1 ≃k+1 w2.
We show that w1 ∈ L iff w2 ∈ L. We proceed in two steps. First we show that
using a sequence of k-guarded stutters, we can transform w1 into a new word
w3. Intuitively w3 corresponds to the word w2 plus some added factors that are
k-loops. By hypothesis of tameness, since w3 is built using k-guarded stutters,
we get that w1 ∈ L iff w3 ∈ L. Then in a second step we show that we can add
these k-loops within w2 using k-guarded stutters and swaps. Again by hypothesis
of tameness, this does not affect membership in L. It follows that w2 ∈ L iff
w3 ∈ L and subsequently that w1 ∈ L iff w2 ∈ L, which ends the proof. This
proof structure is depicted in Figure 4.3.

w1

w2

w3

1) Using k-guarded stutters, construction

of w3 which is w2 with added k-loops

2) Using k-guarded operations, construc-

tion of the added k-loops within w2

Figure 4.3: Proof structure in Proposition 4.4

Construction of w3 from w1. Before starting the proof we give a formal def-
inition for w3. Fix two words w,w′ and x1, . . . , xn the sequence of positions of
w and x′1, . . . , x

′
m the sequence of positions of w′. We say that w′ contains w iff

there exists a injective map β from the positions of w to the positions of w′ that
verifies the following conditions:

• For xi < xj , β(xi) < β(xj).

• For yi < yj such that for all l that verifies i ≤ l < j, yl 6∈ β(w) and
yi−1, yj ∈ β(w), w′[yi−1, yj] is a k-loop.

We illustrate this notion in Figure 4.4. We want to construct w3 from w1 such
that it contains w2. We prove a slightly more general lemma by induction:

Lemma 4.5. For every position x2 in w2, there exists a word w3 and a position
x3 in w3 such that:

54

CHAPTER 4. LT OVER WORDS

w′

w

k−loop k−loop} }

Figure 4.4: Illustration of w′ that contains w

• w3 can be constructed from w1 using k-guarded stutters.

• x2 and x3 have the same (k + 1)-type.

• The prefix at x2 of w2 is contained into the prefix at x3 of w3.

Proof. This is by induction on the length of the prefix at x2, if x2 is the leftmost
position of w2 then we just choose w1 for w3 and x3 for the leftmost position in w3.
Indeed the empty word is contained in itself and by definition, since w1 ≃k+1 w2,
x2 and x3 have the same (k + 1)-type.

Now suppose that the property is verified for a prefix of length n and fix x2
such that the prefix at x2 is of length n+1. Let y2 = x2−1 by induction hypothesis
there exists a word w4 and a position y4 in w4 such that:

• w4 can be constructed from w1 using k-guarded stutters.

• y2 and y4 have the same (k + 1)-type.

• The prefix at y2 of w2, is contained into the prefix at y4 of w4.

We show that we can construct the desired word w3 from w4 using at most
one stutter. Let τ be the (k + 1)-type of x2. Since w1 ≃k+1 w2 and because k-
guarded stutter does not affect (k+1)-types, by construction we have w4 ≃k+1 w2.
Therefore τ occur in w4 at some position z4. We distinguish two cases depending
on the relation between z4 and y4:

We have y4 < z4 In this case there is no need to use stutter and we just choose
w3 = w4 and x3 = z4. By choice of x3 it has the same (k + 1)-type as x2. We
just need to show that the prefix at x2 in w2 is contained into the prefix at x3
in w3. By choice of w3 we already have a mapping from the prefix at y4 into the
prefix at y2. We complete it by mapping x2 to x3. To finish the proof we just

55

CHAPTER 4. LT OVER WORDS

need to show that if the factor w3[y4 + 1, x3] is not empty then it is a k-loop. This
is true because y2 and y4 have the same (k + 1)-type therefore their successors
x2 and y4 + 1 have the same k-type. Since x3 has been chosen to have the same
(k+1)-type as x2, it follows that x3 and y4+1 have the same k-type. We illustrate
the construction in Figure 4.5.

w3

w2

y4 x3 = z4

y2x2

k−loop}

Partial Mapping

Figure 4.5: Case y4 < z4 in Lemma 4.5

We have y4 ≥ z4 We show that we can reduce this case to the previous one
using one k-guarded stutter on w4. By hypothesis z4 and y4 + 1 have the same
k-type. Therefore we apply k-guarded stutter between z4 and y4 + 1 in w4. This
yields a word w3 with a position z′4 with (k + 1)-type τ to the right of y4 and we
are in the previous case (see Figure 4.6).

Now that we have Lemma 4.5, to get w3 from w1 such that it contains w2 we
fix x2 as the rightmost position of w2. Since x2 and x3 have the same (k+1)-type,
it follows that x3 is also the rightmost position of w3. Therefore w2 is contained
in w3.

Construction of w3 from w2. We want to insert the added loops of w3 in w2

using k-guarded operations. We prove the following lemma:

Lemma 4.6. Assume L is k-tame. Let w be a tree and x a node of w of k-type τ .
Let w′ be another word such that w ≃k+1 w

′ and w′′ be a k-loop of type τ in w′.
Consider the word W constructed from w by inserting a copy of w′′ at x. Then
w ∈ L iff W ∈ L.

56

CHAPTER 4. LT OVER WORDS

w4

w2

z4 y4

z′4y4z4

⇒Stu
tter

Same k-type

Figure 4.6: Case y4 ≥ z4 in Lemma 4.5

Proof. Consider the factor w′′ occurring in w′. Let y0, · · · , yn be the positions of
w′′ in w′ (w′′ = w′[x0, xn]) and τ0, · · · , τn be their respective (k + 1)-types.

From w we construct using k-guarded swaps and k-guarded stutters a word
w1 such that there is a sequence of nodes x0, · · · , xn in w1 with for all 0 ≤ i < n,
xi is of type τi and xi < xi+1. The word w1 is constructed by induction on n. If
n = 0 then this is a consequence of w ≃k+1 w

′ that one can find in w a position of
type τ0. Consider now the case n > 0. By induction we have constructed from w
a word w′

1 such that x0, · · · , xn−1 is an appropriate sequence in w′
1. Because the

two k-guarded operations preserve (k + 1)-types, we have w ≃k+1 w
′
1 and hence

there is a position x of w′
1 of type τn. If xn−1 < x then we are done. Otherwise

consider x′ = Succ(xn−1) and notice that because yn = Succ(yn−1) and xn−1 has
the same (k + 1)-type than yn−1 then x′, yn and x have the same k-type.

By hypothesis, x < x′ and the factor w′
1[x, x

′] is a k-loop, therefore we can use
k-guarded stutter to duplicate it. This places a node having the same (k+1)-type
as x as the successor of xn−1 and we are done.

This concludes the construction of w1. From w1 we construct using k-guarded
swaps and k-guarded stutters a word w2 such that there is a sequence x0, · · · , xn
in w2 with for all 0 ≤ i < n, xi is of type τi and xi = Succ(xi−1).

Consider the sequence x0, · · · , xn obtained in w1 from the previous step. Recall
that the k-type of x0 is the same as the k-type of xn. Hence using k-guarded
stutter we can duplicate in w1 the factor w1[x0, xn]. Let w′

1 the resulting word.
We thus have two copies of the sequence x0, · · · , xn that we denote by the right
copy and the left copy. Assume xi 6= Succ(xi+1). Notice then that w′

1[xi−1, xi] is
a k-loop. Using k-guarded swap we can move the left copy of this context next to
its right copy. Using k-guarded stutter this extra copy can be removed. We are

57

CHAPTER 4. LT OVER WORDS

left with an instance of the initial sequence in the right copy, while in the left one
xi = Succ(xi−1).

Repeating this argument yields the desired word w2. Since w2 was constructed
from w using a sequence of k-guarded swaps and k-guarded stutter and since L is
k-tame w ∈ L iff w2 ∈ L.

We end the proof by showing that we can construct w2 from w using the same
sequence of k-guarded operations. Indeed W is just w with an added k-loop, w′′

therefore, we can easily identify the nodes of w with the nodes of W outside of this
loop. Consider the same sequence of k-guarded operations applied to W . Observe
that this yields a tree W2 corresponding to W2 with possibly several extra copies
of w′′. With appropriates k-guarded swaps, all the extra copies can be brought
together and using k-guarded stutter only one copy remains resulting in w2. Hence
W ∈ L iff w2 ∈ L and finally w ∈ L iff W ∈ L and this finishes the proof. See
figure 4.7.

w

W

=⇒
k-guarded
operations

=⇒
k-guarded
operations

w2

W2

=
⇒

deletion of
extra copies
of w′′

Figure 4.7: Relation with w2

By construction of w3 we have k+1 ≃w3
w1 and therefore k+1 ≃w3

w2. Hence
we can construct w3 from w2 via a repeated use of Lemma 4.6. It follows that
w3 ∈ L iff w2 ∈ L, since we already had that w3 ∈ L iff w1 ∈ L, we conclude that
w1 ∈ L iff w2 ∈ L which concludes the proof.

4.2.2 Algebraic characterization

We now prove the equivalence between the algebraic characterization given by
Equations (4.1) and (4.2) and tameness. We prove the following Proposition:

Proposition 4.7. Let L be a regular language. L is tame iff the syntactic semi-
group of L, S, verifies for all u, v, e ∈ S such that e is idempotent:

58

CHAPTER 4. LT OVER WORDS

eueue = eue (4.1)

eueve = eveue (4.2)

Proof. There are two directions. First suppose that L is k-tame, we show that
S verifies (4.1) (the proof is similar for (4.2)). Let w,w′ be two words such
that α(w) = u, α(w′) = e. Now consider the words (w′)kw(w′)kw(w′)k and
(w′)kw(w′)k. By closure under k-guarded stutter we get that for all words w1, w2,
w1(w

′)kw(w′)kw(w′)kw2 ∈ L iff w1(w
′)kw(w′)kw2 ∈ L. By definition of the syn-

tactic semigroup it follows that eueue = eue. Therefore S verifies Equation (4.1).

We turn to the other direction and suppose that S verifies Equations (4.1)
and (4.2). We begin to show that we can extract an idempotent of any word
of length greater than |S|. Indeed if w = a0 · · · ak is such that k > |S|, we can
find i, j, i < j such that: α(a0 · · · ai) = α(a0 · · · aj). We then have α(a0 · · · ai) =
α(a0a1 · · · ai)(α(ai+1 · · · aj))

ω. This implies that there is a idempotent e such that
α(a0 · · · ai) = α(a0a1 · · · ai)e.

Fix k = |S|, we show that L is k-tame. We show that L is closed under
k-guarded stutter (the closure under k-guarded swap is proved similarly using
Equation (4.2)).

Let w be a word and let x, y, z be three positions as in the definition of k-
guarded stutter and with the same k-type. The word w can be written w =
w1w

′w2w
′w2w

′w3 with w′ of length greater than k and with x, y, z being the
leftmost positions of respectively the three copies of w′ from left to right. By
choice of k we have α(w′) = uev with e idempotent. Therefore:

α(w1w
′w2w

′w2w
′w3) = α(w1)uevα(w2)uevα(w2)uevα(w3)

α(w1w
′w2w

′w2w
′w3) = α(w1)uevα(w2)uevα(w3) using (4.1)

α(w1w
′w2w

′w2w
′w3) = α(w1w

′w2w
′w3)

It follows that w ∈ L iff the k-guarded stutter of w at x, y, z is in L. Therefore
L is closed under k-guarded stutter which finishes the proof..

4.3 Discussion

An interesting corollary of the characterization is that we can bound the expected
k such that a language is k-LT. It is linear in the size of the syntactic semigroup
of L.

59

CHAPTER 4. LT OVER WORDS

Corollary 4.8. Let L be some language and S be the syntactic semigroup. Then
L is in LT iff L is (|S| + 1)-locally testable iff L is |S|-tame.

Proof. L is LT iff its syntactic semigroup |S| verifies Equations (4.1) and (4.2).
By the proof of Proposition 4.7 we get that L ∈ LT ⇒ L |S|-tame. Finally by
Proposition 4.4 we get that L |S|-tame ⇒ L (|S| + 1)-locally testable.

Notice that this provides an alternate decision procedure for deciding mem-
bership in LT. Indeed for any fixed k there exists a finite amount of k-locally
testable languages. Therefore, to decide if L is LT, one only need to compare it
to all (|S| + 1)-LT languages for S the syntactic semigroup of L. This decision
procedure will be particularly useful for the tree setting in the second part.

60

Part II

Trees

61

Chapter 5

Notations and Algebra for

Trees

In this chapter we give definitions and fix notations for trees that we use in this
second part. In particular, we define the notions of unranked trees, forests and
trees of bounded rank. We give actually give these definitions by regrouping them
into only two categories. In Section 5.1 we regroup the definitions of forests and
unranked trees in Section 5.1. In Section 5.2 we give the definitions for trees of
bounded rank. Note that the trees of bounded rank we investigate are actually
terms. This means that the number of children of a node is determined by its
label. Sections 5.3 and 5.4 are devoted to regular tree languages. In Section 5.3,
we define regular languages of trees and forests and in Section 5.4, we define regular
languages of trees of bounded rank. In Section 5.5 we give the definition of forest
algebras for forests. Note that all the definitions and results of this section are
taken from [BW07]. Finally, in Section 5.6 we define k-algebras for trees of rank
k.

5.1 Unranked Trees and Forests

Trees and Forests. We consider finite unranked ordered trees and forests whose
nodes are labeled over an alphabet. Recall that an alphabet A is a finite set.
Formally if A is an alphabet then our unranked trees and forests over A are
generated by the following rules: For all a ∈ A, a is a tree, if k ≥ 1 and t1, · · · , tk
are trees then t1 + · · · + tk is a forest, furthermore if a ∈ A and s is a forest then
a(s) is a tree. We also consider an empty forest that we write 2. See Figure 5.1.
Note that in Chapter 11 we will also consider unordered unranked trees. Intuitively
this means that there is no order between siblings. Formally, this means that for
any permutation σ, the forests t1 + · · · + tk and tσ(1) + · · · + tσ(k) are viewed as

63

CHAPTER 5. NOTATIONS AND ALGEBRA FOR TREES

the same forest. We will come back to this notion in Chapter 11.

b a b

a c a

d d d

Forest

a

c a

d d d

Unranked Tree

Figure 5.1: Illustration of the Notions of Unranked Trees and Forests

Relations. We use standard terminology for forests and unranked trees in order
to define the notion of node or position in a tree or a forest. We also use standard
definitions for the notions of ancestor, parent, descendant, child, following sibling,
next sibling, preceding sibling and previous sibling of a node. We also call root a
node that has no parent and leaf a node that has no children. Notice that a tree
has only one root while a forest may have several. We depict these relations in
Figure 5.2.

xa

xp

zps y− x y+ zfs

xc

xd

xa is an ancestor of x
xp is the parent of x

xd is a descendant of x

xc is a child of x
zfs is a following sibling of x

y+ is the next sibling of x

zps is a preceding sibling of x

y− is the previous sibling of x

Figure 5.2: Illustration of the Relations in a Forest

Contexts and Strict Contexts. We define the notion of context and the notion
of strict context which is a refinement of the notion of context. Contexts are
defined in the usual way. A context is a special kind of forest (or unranked tree)
over the alphabet A ∪ {2} with only one node with label 2 that must be a leaf.

64

CHAPTER 5. NOTATIONS AND ALGEBRA FOR TREES

We call this particular node the the port of the context. Notice that the port may
be a root. We have an empty context, 2. A strict context is a context whose port
has no siblings (see Figure 5.3). Moreover, a context such that the port is a root
is not strict. The notion of strict context will be crucial in Chapter 10.

Given contexts c and c′, their concatenation c · c′ is the context formed by
identifying the root of c′ with the port of c. A forest c · t can be obtained similarly
by combining a context c and a forest t.

b a b

a c a

d d

Strict Context

b a b

a c a

b d d

Not a Strict Context

Figure 5.3: Illustration of the Notion of Strict Context

If x is a node of a forest then the subtree at x is the tree rooted at x. The
subforest of x is the forest consisting of all the subtrees that are rooted at siblings
of x (including x), see Figure 5.4. Notice that by definition of strict contexts and
subforests we have that s is a subforest of a forest t iff there exists a strict context
c such that t = c · s. Therefore if we consider the forest a · (a+ b+ d), a+ b+ d is
a subforest but not b+ d.

a

a a c d

d d c a a a b c

x

⇒{ Subtree at x

d

a b c

Subforest of x

a a c d

d d c a a a b c

Figure 5.4: Illustration of the Notion of Subtrees and Subforests

65

CHAPTER 5. NOTATIONS AND ALGEBRA FOR TREES

5.2 Trees of Bounded Rank

Trees. An alphabet of rank k for some integer k is a tuple A = (A0, A1, . . . , Ak),
with Ai is a finite set of symbols of rank i. Intuitively this means that any node
labeled with a label of ai will have i children. Given an alphabet of rank k,
A = (A0, A1, . . . , Ak), the trees of rank k over A are generated by the following
rules: for all a ∈ A0, a is a tree, for 1 ≤ i ≤ k, a ∈ Ai and i trees t1, ..., ti,
a(t1, ..., ti) is a tree. Notice that there is no empty tree in this setting.

Relations. Notice that a tree of rank k is in particular an unranked tree. There-
fore the notions of nodes, ancestor, parent, descendant, child, following sibling, next
sibling, preceding sibling and previous sibling are defined as in Section 5.1 for un-
ranked trees. (see Figure 5.2)

Contexts and i-contexts. The notion of context also remains identical, a con-
text is a tree with a designated leaf that has a special label and which is called
the port of the context. We do not consider a notion of strict context for trees of
rank k since we do not need it. However we consider a new notion that we call
i-contexts. For any integer 1 ≤ i ≤ k an i-context is a tree that has exactly i ports
that are all siblings (see Figure 5.5). In particular a context is a 1-context. A
context c can be composed with another context c′ or with a tree t in the obvious
way. An i-context can be attached below a context to get a new i-context and we
can attach a tree below a i-context to get a (i− 1)-context

a

c a

d d

2-Context

a

c a

d d

Not a 2-Context

d ∈ A0

a ∈ A2

c ∈ A2

Figure 5.5: Illustration of the Notion of Strict Context

Given a tree t and a node x of t the subtree of t rooted at x, consisting of all
the nodes of t that are descendant of x, is denoted by t|x. Given a tree t and two
nodes x, y of t such that y is a descendant (not necessarily strict) of x, the context
of t between x and y, denoted by t[x, y], is defined by keeping all the nodes of t
that are descendant of x but not descendant of y and by placing the port at y.
We say that a context C occur in t if C is the context of t between x and y for
some nodes x and y of t.

66

CHAPTER 5. NOTATIONS AND ALGEBRA FOR TREES

5.3 Regular Languages of Unranked Trees and Forests

Languages of trees and languages of forests. Fix some alphabet A, an
unranked tree language (resp. a forest language) over A is a set of unranked trees
(resp. of forests) over A. We write A∆ the pair (H,V) where H is the set of all
forests over A (including the empty forest) and V the set of all contexts over A.
We write A∆̄ the pair (H,V) where H is the set of all forests over A (excluding
the empty forest) and V the set of all strict contexts over A.

Regular Languages. All the classes we investigate are fragments of the class
of regular unranked trees languages (resp. regular forest languages). Regular
languages are the languages that are definable using a finite automaton. Note
that regular languages can also be equivalently defined using algebraic and logical
notions. We provide the algebraic definition in the Section 5.5 and the logical
definition in Chapter 6. We briefly recall the definition of finite automata. An
unranked tree automaton is a tuple (A,Q, δ,Qf)). A denotes an alphabet, Q a
set of states, Qf ∈ Q a set of final states and δ a finite partial transition function
that associates a new state of Q to a label in A and a regular word language over
Q. We say that an unranked tree t is accepted by a tree automaton iff there exists
a mapping α from the nodes of t into Q such that:

• If r is the root of t, α(r) ∈ Qf .

• If x is some node of t labeled with a ∈ A and x1, . . . , xn is the sequence
of children of x, there exists some regular language L ⊆ Q∗ such that:
δ(L, a) = α(x) and α(x1) . . . α(xn) ∈ L.

The notion of automaton for forests is defined similarly. Instead of having a
set of final states, we have a final regular language L ⊆ Q∗.

5.4 Regular Languages of Trees of Bounded Rank

Languages of terms. Fix an alphabet A of rank k for some k. A tree language
overA is a set of trees of rank k overA. We writeA∆ the tuple (H,W1,W2, . . . ,Wk)
where H is the set of all trees over A and for all i, Wi is the set of all i-contexts
over A. Note that W1 includes the empty context.

Regular Languages. All the classes we investigate are fragments of the class
of regular tree languages. Regular languages are the languages that are definable
using a finite automata. We briefly recall the definition of finite automata. An
unranked tree automaton is a tuple (A,Q, δ,Qf)). A denotes an alphabet of rank

67

CHAPTER 5. NOTATIONS AND ALGEBRA FOR TREES

k for some k, Q a set of states, Qf ∈ Q a set of final states and δ a transition
function. For all i, δ associates a new state to each label of rank i along with
a sequence of i states. We say that an unranked tree t is accepted by a tree
automaton iff there exists a mapping α from the nodes of t into Q such that:

• If r is the root of t, α(r) ∈ Qf .

• If x is some node of t labeled with a ∈ A of arity i and x1, . . . , xi is the
sequence of children of x, then δ(a, α(x1), . . . , α(xi)) = α(x).

5.5 Forest Algebras

Forest algebras were introduced by Bojańczyk and Walukiewicz as an algebraic
formalism for studying regular forest languages [BW07]. They correspond to semi-
groups and monoids over words. In the same spirit as we have monoids and semi-
groups over words, we can define several notions of forest algebra. We consider two
such definitions here. We call them forest algebras using monoids and forest al-
gebras using semigroups. Intuitively forest algebras using semigroups correspond
to A∆̄ and forest algebras using monoids to A∆ in the same way that semigroups
correspond to A+ and monoids to A∗. We give a brief summary of the definition
of forest algebras and of their important properties. More details can be found
in [BW07]. We begin with the definition of forest algebra using semigroups.

A forest algebra using semigroups consists of a pair (H,V) of semigroups,
subject to some additional requirements, which we describe below. We write the
operation in V multiplicatively and the operation in H additively, although H is
not assumed to be commutative.

We require that V acts on the left of H. That is, there is a map (h, v) 7→ vh ∈
H such that w(vh) = (wv)h for all h ∈ H and v, w ∈ V. We require this action
to be faithful. This means that for all v, v′ ∈ V if for all h ∈ H, vh = v′h then
v = v′. We further require that for every g ∈ H and v ∈ V , V contains elements
(v + g) and (g + v) such that (v + g)h = vh+ g, (g + v)h = g + vh for all h ∈ H.

A forest algebra using monoids is a forest algebra using semigroups such that
the pair (H,V) is a pair of monoids. Notice that A∆̄ together with the natural
actions is a forest algebra using semigroups and A∆ a forest algebra using monoids.

Recognition of a language. A morphism α : (H1, V1) → (H2, V2) of forest
algebras using semigroups is actually a pair (γ, δ) of semigroup morphisms γ :
H1 → H2, δ : V1 → V2 such that γ(vh) = δ(v)γ(h) for all h ∈ H, v ∈ V. However,
we will abuse notation slightly and denote both component maps by α.

We say that a forest algebra using semigroups (H,V) recognizes a forest lan-
guage L if there is a morphism α : A∆̄ → (H,V) and a subset X of H such that

68

CHAPTER 5. NOTATIONS AND ALGEBRA FOR TREES

L = α−1(X). We also say that the morphism α recognizes L. Similarly we can
define recognition of a language by forest algebras using monoids. The following
Proposition is proved in [BW07].

Proposition 5.1. ([BW07]) Fix L a forest language over some alphabet A, the
following properties are equivalent:

1. L is regular.

2. L ∩A∆̄ is recognized by a finite semigroup forest algebra.

3. L is recognized by a finite monoid forest algebra.

Syntactic forest algebra. Consider some forest language L over an alphabet
A. We define an equivalence ∼L over contexts and forests of A∆̄. Given two forests
t1, t2 of A∆̄, we say that t1 ∼L t2 iff for any two forests s, s′ of A∆ and any context
c of A∆̄, c · (s+ t1 + s′) ∈ L iff c · (s+ t2 + s′) ∈ L. Given two contexts c1, c2 of A∆̄

we say that c1 ∼L c2 iff for any forest s of A∆̄, c1 · s ∼L c2 · s. This equivalence
is of finite index for both forests ans contexts iff L is regular. This yields a forest
algebra recognizing L which we call the syntactic forest algebra using semigroup
of L. Similarly we can define a notion of syntactic forest algebra using monoids
of L using the same equivalence over A∆. Given a tree automaton, both syntactic
forest algebras, recognizing the same language can be computed. See [BW07] for
more details.

Idempotents. As we said in Chapter 1, given any finite semigroup S, there is
a number ω(S) (denoted by ω when S is understood from the context) such that
for each element x of S, xω is an idempotent. Given a forest algebra (H,V) we
will denote by ω(H,V) the product of ω(H) and ω(V) and for any element u ∈ V
and g ∈ H we will write uω and ωg for the corresponding idempotents.

5.6 Algebra for Trees of Bounded Rank

In order to express our characterizations over classes of languages if trees of
bounded rank,, we define our own algebraic formalism. This formalism is in-
tentionally close to the definition of forest algebras [BW07] as we want to be able
to compare the ranked and unranked cases.

Notice that this notion of algebra is related to the notion of preclones defined
in [ÉW05]. The difference is the preclones work on multi-contexts, which are
contexts that may have an arbitrary number of ports with no restriction relative
to their position in the tree. Here we restrict our multi-contexts to be i-contexts.
Meaning that all the ports are sibling.

69

CHAPTER 5. NOTATIONS AND ALGEBRA FOR TREES

In order to simplify the definition we suppose that the trees we consider are
unordered. This means that we make no difference between the tree a(t1, t2)
and the tree a(t2, t1). We choose to make this restriction because this simplifies
the definitions and all the classes for which we will use k-algebra only contain
languages that are closed under commutation of subtrees. However, note that it
is possible to extended the definition of k-algebras to ordered trees.

We defined three types of objects for trees of bounded rank, trees, contexts and
k-contexts. Our algebra reflects this and also contains three types of objects. The
most important object, which corresponds to contexts is the transition monoid of
the automaton. The second objects corresponds to trees and corresponds to the
set of states of the automaton. Finally the third object corresponds to k-contexts
and is very close to the transition function of the automaton. However, we choose
this algebraic viewpoint in order to remain close to the notions used for unranked
trees.

We first give the formal definition of our algebra, then move on with the
definitions of morphisms, recognition of a language and syntactic Algebra of a
language.

k-algebras. A k-Algebra is a tuple (H,V,W2, ...,Wk) where H,W2...,Wk are
sets and V is a monoid, we write · its operation. Intuitively, H corresponds to
trees, V to contexts and Wi to i-contexts. We will often write W1 for V , we
separate V from the sets Wi in order to keep notations close to the notations of
forest algebras. Several operations are defined on this tuple, each one reflecting
the corresponding operation on trees, contexts and i-contexts. The operations of
contexts over trees and i-contexts are reflected by actions of V on H and each
set Wi. An action of a monoid V on H is function f : V × H → H such that
f(v · v′, h) = f(v, f(v′, h)). We abusively write all actions · (f(v, h) = v · h), we
also ask that those actions are faithful, meaning that for v 6= v′ the actions of v
and v′ are different. Finally, for each 2 ≤ i ≤ k we have an operation ⋄, from
Wi×H onto Wi−1, such that (w⋄h)⋄h′ = (w⋄h′)⋄h (since our trees are unordered
the order in which we attach trees under k-contexts is not important). Because
of this last axiom, if w ∈ Wi, we write w ⋄ (h1, ..., hj) for w ⋄ h1 ⋄ ... ⋄ hj if j < i
and w · (h1, ..., hi) for (w ⋄ h1 ⋄ ... ⋄ hi−1) · hi.

Morphisms of k-algebras. We use the usual notion of morphism: A morphism
of k algebras α : (H1,W 1

1 , ..,W
1
k) → (H2,W 2

1 , ...,W
2
k) is composed of k + 1 ap-

plications α0 : H1 → H2 and αi : W 1
i → W 2

i for 1 ≤ i ≤ k. We ask α1 to be a
morphism, for all h ∈ H1 and all v ∈W 1

1 α1(v)α0(h) = α0(vh) and for all h ∈ H1,
all i such that 2 ≤ i ≤ k and all w ∈W 1

i , αi(w) ⋄ α0(h) = αi−1(v ⋄ h).

70

CHAPTER 5. NOTATIONS AND ALGEBRA FOR TREES

Recognition by a k-algebra. Notice that if A is an alphabet of rank k, A∆

together with the natural operations is a k-algebra. We say a tree language L is
recognized by a k-Algebra (H,W1, ...,Wk) iff there exists a morphism α : A∆ →
(H,W1, ...,Wk) and a subset G of H such that L = α−1(G). Classical techniques
show the following proposition:

Proposition 5.2. Fix L an unordered language of trees of rank k, the following
properties are equivalent:

1. L is regular.

2. L is recognized by a finite k-algebra.

Syntactic k-algebra Given a tree language L we define an equivalence relation
on A∆. Given two trees t, t′, t ∼L t′ iff for all contexts p, pt ∈ L iff pt′ ∈ L.
Given two contexts q, q′, q ∼L q′ iff for all trees t and all contexts p, pqt ∈ L iff
p′qt ∈ L. By induction on i we extend this definition on i-contexts, given q, q′

two i-contexts q ∼L q′ iff for all trees t, q ⋄ t ∼L q′ ⋄ t′. Those relations define a
congruence over A∆ and we call the quotient, the syntactic k-algebra of L. The
syntactic k-algebra of L recognizes L, if L is regular, it is finite and computable
from the automata recognizing L.

71

CHAPTER 5. NOTATIONS AND ALGEBRA FOR TREES

72

Chapter 6

Fragments of First Order Logic

over Trees

In this chapter, we define all the fragments of first-order logic that we will study.
The situation is more complicated than it was in the setting of words. First
some fragments that had the same expressive power in the setting of words are
no longer equal on trees. For example, ∆2(<v) and FO2(<v) are incomparable
in terms of expressive power. We consider several predicates on trees. All these
predicates are based on two orders. The first one, <v is the ancestor relation and
the second one, <h, is the following sibling relation. The chapter is organized as
follows: In Section 6.1 we define first order logic and monadic second order logic
over forests. Notice that the definition is actually independent on whether we
consider forests, unranked trees or trees of bounded rank. Since trees of bounded
rank and unranked trees are in particular forests we choose to give the definitions
for forests. Section 6.2 is devoted to first-order logic using only two variables. In
Section 6.3 we study unary temporal logic over forests. We will see that contrary
to words, depending on the modalities we consider, it is not always equal to FO2

in terms of expressive power. In Section 6.4 we define ∆2 on forests, ∆2 is the last
fragment of FO that was related to FO2 in the word setting. We will see that it
no longer has the same expressive power as FO2. In Section 6.5 we define boolean
combinations of existential first-order formulas. Finally, Section 6.6 is devoted to
the definition of locally testable tree languages. Note that the primary definition
of this class is not logical. Therefore we define notions of LT separately for trees
of bounded rank and unranked trees. An overview of the logics we consider as
well as a comparison of their expressive power can be found in Figure 6.1.

73

CHAPTER 6. FRAGMENTS OF FIRST ORDER LOGIC OVER TREES

∆2(<h, Succh, <v, Succv)

FO2(<h, Succh, <v, Succv)

EX + EF +X−1 + F−1(Xh,Fh,X
−1
h
,F−1

h
)

=

∆2(<h, Succh, <v)

FO2(<h, Succh, <v)

EF + F−1(Xh,Fh,X
−1
h
,F−1

h
)

=

∆2(<h, <v)

FO2(<h, <v)

EF + F−1(Fh,F
−1
h

)
=

∆2(s,<v)

FO2(s,<v)

EF + F−1(S 6=)
=

∆2(<v)

EF + F−1(S) FO2(<v)

EF + F−1

FO(<v)

FO(<h, <v)

BC-Σ1(<v)

(

(

(

(
(

?

(

(

(

(

(

()

(

) (

(
(

(

Figure 6.1: Overview of the Logics Considered in Part II

74

CHAPTER 6. FRAGMENTS OF FIRST ORDER LOGIC OVER TREES

6.1 Monadic Second-order Logic and First-Order Logic

The definition of FO and MSO for forests is similar to the one we gave for words.
We view each forest as a relational structure whose domain is its set of nodes. The
signature contains several predicates. For every label a in the alphabet A, we have
a unary predicate Pa. We have two “vertical” binary relations: <v for the ancestor
relation and Succv for the child relation. Finally we have three “horizontal” binary
relations: <h for following sibling, s for the sibling relation and Succh for the next
sibling relation.

FO. First-order logic, denoted FO(<h, <v), uses first order variables that we will
write x, y, z, A first order-formula is defined by the following grammar (x, y
are first-order variables):

ϕ = Pa(x) for a ∈ A | x <v y | Succv(x, y) | x <h y | s(x, y) | Succh(x, y) |
| x = y | ∃x ϕ | ∀x ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ϕ⇒ ϕ

Given a first-order formula ϕ we call the set of its free variables the set of
variables that are not under the scope of some quantifier ∀ or ∃. If ϕ has no free
variables we say that it is closed. Notice that variables may be reused in the same
formulas. For example the following formula is a valid first-order formula:

∀x(Pa(x) ∨ ∃y(y <v x ∧ Pb(y) ∧ ∃x(x <h y ∧ Pa(x))))

Fix a first-order formula ϕ with n free variables x1, . . . , xn. We say that a word
w together with n positions i1, . . . , in in w satisfy ϕ and we write w, i1, . . . , in |= ϕ
iff:

• ϕ = Pa(xk) and ik is a labeled with an a.

• ϕ = xk = xl and ik = il.

• ϕ = xk <v xl and il is an ancestor of ik.

• ϕ = Succv(xk, xl) and il is a child of ik.

• ϕ = xk <h xl and il is a following sibling of ik.

• ϕ = s(xk, xl) and ik, il are siblings.

• ϕ = Succh(xk, xl) and il is the next sibling of ik.

• ϕ = ϕ1 ∧ ϕ2 and w, i1, . . . , in |= ϕ1 and w, i1, . . . , in |= ϕ2.

75

CHAPTER 6. FRAGMENTS OF FIRST ORDER LOGIC OVER TREES

• ϕ = ϕ1 ∨ ϕ2 and w, i1, . . . , in |= ϕ1 or w, i1, . . . , in |= ϕ2.

• ϕ = ¬ϕ′ and w, i1, . . . , in |= ϕ′ is false.

• ϕ = ϕ1 ⇒ ϕ2 and w, i1, . . . , in |= ¬ϕ1 ∨ ϕ2.

• ϕ = ∃xn+1 ϕ
′ and there exists a node in+1 in w such that:

w, i1, . . . , in, in+1 |= ϕ′.

• ϕ = ∀xn+1 ϕ
′ and for all nodes in+1 in w we have:

w, i1, . . . , in, in+1 |= ϕ′.

We say a closed first-order formula ϕ defines a language L iff L = {w | w |= ϕ}.
We write FO(<v) the restriction of FO(<h, <v) to the “vertical” predicates <v

and Succv. Notice that the relations Succv and s can be expressed using <v and
that Succh can be expressed using <h.

There is no known decidable characterization of either FO(<h, <v) or FO(<v)
whether its on forests, unranked trees or trees of bounded rank. In particular the
problem of deciding if a regular tree or forest language is definable in FO(<v) or
in FO(<h, <v) remains open.

MSO. We view monadic second-order as an extension of first-order logic. We
add a set of second-order variables that we write X,Y, Z, This variables
represent sets of positions. The grammar of FO is now extended by the following
rules (with X a second variable and x a first-order variable):

ϕ = ∃X ϕ | ∀X ϕ | x ∈ X

Fix a monadic second-order formula ϕ, n free first-order variables x1, . . . , xn
and m free second-order variables X1, . . . , Xm. We extend the semantic of FO
in the following way: given n positions i1, . . . , in in w and m sets of positions
I1, . . . , In we say that they satisfy ϕ and we write w, i1, . . . , in, I1, . . . , In |= ϕ iff:

• ϕ = ∃Xn+1 ϕ
′ and there exists a set of nodes In+1 of w such that:

w, i1, . . . , in, I1, . . . , In, In+1 |= ϕ′.

• ϕ = ∀Xn+1 ϕ
′ and for all sets of nodes In+1 of w we have:

w, i1, . . . , in, I1, . . . , In, In+1 |= ϕ′.

• ϕ = xk ∈ Xl ϕ
′ and ik ∈ Il.

We say a closed MSO formula ϕ defines a language L iff L = {w | w |= ϕ}.
We consider the two logics MSO(<v) and MSO(<h, <v). A very well known
result is that regular languages are exactly the languages that are definable in
MSO(<h, <v):

76

CHAPTER 6. FRAGMENTS OF FIRST ORDER LOGIC OVER TREES

Theorem 6.1. ([TW68]) We have the following properties:

• A forest language L is definable in MSO(<h, <v) iff it is regular.

• An unranked tree language L is definable in MSO(<h, <v) iff it is regular.

• A language of trees of bounded rank L is definable in MSO(<h, <v) iff it is
regular.

6.2 First Order Logic Using Only Two Variables

This section is devoted to first-order logic using only two variables. As in the
setting of words, FO2 is the two variable restriction of FO. Because of this restric-
tion it is no longer possible to express s and Succv using <v and to express Succh

using <h. For this reason we have several more fragments to consider depending
on the predicates we include. Sorted by increasing expressive power we consider
the following logics: FO2(<v), FO2(s,<v), FO2(<h, <v), FO2(<h, Succh, <v) and
FO2(<h, Succh, <v, Succv).

Recall that in the setting of words, in terms of expressive power, FO2 was
equivalent to unary temporal logic and to first-order logic restricted to only one
quantifier alternation. More precisely, FO2(<) had the same expressive power
as F + F−1 and as ∆2(<), and FO2(<,Succ) had the same expressive power
as F + F−1 + X + X−1 and as ∆2(<,Succ). In Sections 6.3 and 6.4, devoted
respectively to unary temporal and one quantifier alternation on trees, we will
investigate these relationships in the tree and forest setting. In particular, we will
see that the situation is much more complicated than it was in the word setting.

We will see that fragments using horizontal predicates such as FO2(s,<v),
FO2(<h, <v), FO2(<h, Succh, <v) and FO2(<h, Succh, <v, Succv) have the same
expressive power as their natural unary temporal logic counterpart. However, we
will see that the natural unary temporal logic fragment for FO2(<v) is actually
less expressive. In Chapter 6.4, we will see that none of the ∆2 fragments are
equivalent to their FO2 counterpart in the tree and forest setting.

In Chapter 10 we present decidable characterizations for the logics FO2(s,<v),
FO2(<h, <v) and FO2(<h, Succh, <v). These characterizations are presented in
the forest setting using forest algebras. However using the sibling predicate s, it
is simple to express that a forest is a tree (the root has no sibling). Therefore,
the result extends to unranked trees for the three logics. Moreover, it is possible
to bound the number of children the nodes of a tree may have with the follow-
ing sibling relation (<h). Therefore, the characterizations of FO2(<h, <v) and
FO2(<h, Succh, <v) extend to trees of bounded rank.

77

CHAPTER 6. FRAGMENTS OF FIRST ORDER LOGIC OVER TREES

6.3 Unary Temporal Logic

We begin with the definition of unary temporal logic (UTL) over trees and forests.
For some alphabet A every UTL formula is defined by the following grammar:

ϕ = a ∈ A | EF ϕ | F−1 ϕ | EX ϕ | X−1 ϕ | Fh ϕ | F−1
h

ϕ | Xh ϕ | X−1
h

ϕ |
| S ϕ | S 6= ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ϕ⇒ ϕ

We say a tree or a forest t together with a node x in t satisfy a UTL formula ϕ
and we write t, x |= ϕ iff:

• ϕ = a ∈ A and the node x in t is labeled by a.

• ϕ = EF ϕ′ and there exists a descendant x′ of x such that t, x′ |= ϕ′.

• ϕ = F−1 ϕ′ and there exists an ancestor x′ of x such that t, x′ |= ϕ′.

• ϕ = EX ϕ′ and there exists a child x′ of x such that t, x′ |= ϕ′.

• ϕ = X−1 ϕ′ and the parent x′ of x verifies t, x′ |= ϕ′.

• ϕ = Fh ϕ
′ and there exists a following sibling x′ of x such that

t, x′ |= ϕ′.

• ϕ = F−1
h

ϕ′ and there exists a preceding sibling x′ of x such that
t, x′ |= ϕ′.

• ϕ = Xh ϕ
′ and the next sibling x′ of x verifies t, x′ |= ϕ′.

• ϕ = X−1
h

ϕ′ and the previous sibling x′ of x verifies t, x′ |= ϕ′.

• ϕ = S ϕ′ and some sibling x′ of x verifies t, x′ |= ϕ′

(this is non strict, x′ might be x).

• ϕ = S 6= ϕ′ and some strict sibling x′ of x verifies t, x′ |= ϕ′.

• ϕ = ϕ1 ∧ ϕ2 and w, x |= ϕ1 and w, x |= ϕ2.

• ϕ = ϕ1 ∨ ϕ2 and w, x |= ϕ1 or w, x |= ϕ2.

• ϕ = ¬ϕ1 and w, x do not satisfy ϕ1.

• ϕ = ϕ1 ⇒ ϕ2 and w, x |= ¬ϕ1 ∨ ϕ2.

78

CHAPTER 6. FRAGMENTS OF FIRST ORDER LOGIC OVER TREES

Using these modalities, we consider several variants: EF+F−1, EF+F−1(S),
EF+F−1(S 6=), EF+F−1(Fh,F

−1
h

), EF+F−1(Xh,Fh,X
−1
h
,F−1

h
) and EX+EF+

X−1 +F−1(Xh,Fh,X
−1
h
,F−1

h
). Given some forest t we say that t satisfies an UTL

formula ϕ iff there exists some root r in t such that t, r |= ϕ. Note that a more
natural definition would be to fix r as the root of the leftmost tree in the forest.
This does not work for EF +F−1, EF +F−1(S) and EF +F−1(S 6=). These logics
do not have enough expressive power to detect that a tree in the forest is the
leftmost one. Therefore choosing the leftmost root to evaluate the formula would
distinguish this root. For more expressive logics, EF + F−1(Fh,F

−1
h

), EF +

F−1(Xh,Fh,X
−1
h
,F−1

h
) and EX + EF + X−1 + F−1(Xh,Fh,X

−1
h
,F−1

h
) the two

definitions are equivalent in terms of expressive power. We say that a language L
is recognized by an UTL formula ϕ iff L = {t | t |= ϕ}.

6.3.1 Relations with First-Order Logic Using Only Two Variables

The logics EF + F−1 and EF + F−1(S) have no FO2 equivalent in terms of
expressive power. The reason is that these two logics are closed under bisimulation.
This means that if a language is definable in EF + F−1 or EF + F−1(S) it is
closed under the action of duplicating subtrees. In particular, if L is definable in
EF +F−1 or EF +F−1(S), then the tree a is in L iff the tree a+a is in L. This is
not the case in general for languages definable in FO2, for example the following
language contains all forests containing two nodes labeled with a, which is not
closed under bisimulation:

∃x∃y a(x) ∧ a(y) ∧ x 6= y

However for expressive logics, FO2 and UTL remain equivalent in terms of
expressive power:

Theorem 6.2. ([Mar05]) Fix L a regular language (L may be a language of
unranked trees, trees of bounded rank or forests). We have the following properties:

• L definable in FO2(s,<v) iff
L definable in EF + F−1(S 6=).

• L definable in FO2(<h, <v) iff
L definable in EF + F−1(Fh,F

−1
h

).

• L definable in FO2(<h, Succh, <v) iff
L definable in EF + F−1(Xh,Fh,X

−1
h
,F−1

h
).

• L definable in FO2(<h, Succh, <v, Succv) iff
L definable in EX + EF +X−1 + F−1(Xh,Fh,X

−1
h
,F−1

h
).

79

CHAPTER 6. FRAGMENTS OF FIRST ORDER LOGIC OVER TREES

Proof. This is proved using the same techniques as the for the corresponding
theorem in the word setting: Theorem 2.4. We just need to show that the following
FO2 formula is definable in UTL:

∃yΨ1(x, y) ∧ Pa(x) ∧ Ψ2(y)

When Ψ1 is a conjunction of atomic formulas and we have a UTL formula [Ψ2]
such that w, i |= Ψ2(y) iff w, i |= [Ψ2]. We give the translation tables for all logics
and all maximal coherent conjunctions Ψ1. We begin with EF + F−1(S 6=):

Ψ1 UTL formula

x = y a ∧ [Ψ2]

s(x, y) ∧ x 6= y a ∧ S 6=[Ψ2]

<v (x, y) a ∧ EF [Ψ2]

<v (y, x) a ∧ F−1[Ψ2]

x 6= y ∧ ¬x <v y ∧ ¬y <v x ∧ ¬s(x, y) a ∧ F−1 S 6= EF [Ψ2]

For EF + F−1(Fh,F
−1
h

):

Ψ1 UTL formula

x = y a ∧ [Ψ2]

<h (x, y) a ∧ Fh[Ψ2]

<h (y, x) a ∧ F−1
h

[Ψ2]

x <v y a ∧ EF [Ψ2]

y <v x a ∧ F−1[Ψ2]

x 6= y ∧ ¬x <v y ∧ ¬y <v x ∧ ¬ <h (x, y) ∧ ¬ <h (y, x) a ∧ F−1 S 6= EF [Ψ2]

For EF + F−1(Xh,Fh,X
−1
h
,F−1

h
):

Ψ1 UTL formula

x = y a ∧ [Ψ2]

<h (x, y) ∧ ¬Succh(x, y) a ∧Xh Fh[Ψ2]

Succh(y, x) a ∧Xh[Ψ2]

<h (y, x) ∧ ¬Succh(y, x) a ∧X−1
h

F−1
h

[Ψ2]

Succh(y, x) a ∧X−1
h

[Ψ2]

<v (x, y) a ∧ EF [Ψ2]

<v (y, x) a ∧ F−1[Ψ2]

x 6= y ∧ ¬x <v y ∧ ¬y <v x ∧ ¬ <h (x, y) ∧ ¬ <h (y, x) a ∧ F−1 S 6= EF [Ψ2]

For EX + EF +X−1 + F−1(Xh,Fh,X
−1
h
,F−1

h
):

80

CHAPTER 6. FRAGMENTS OF FIRST ORDER LOGIC OVER TREES

Ψ1 UTL formula

x = y a ∧ [Ψ2]

<h (x, y) ∧ ¬Succh(x, y) a ∧Xh Fh[Ψ2]

Succh(y, x) a ∧Xh[Ψ2]

<h (y, x) ∧ ¬Succh(y, x) a ∧X−1
h

F−1
h

[Ψ2]

Succh(y, x) a ∧X−1
h

[Ψ2]

<v (x, y) ∧ ¬Succv(x, y) a ∧ EX EF [Ψ2]

Succv(x, y) a ∧ EX[Ψ2]

<v (y, x) ∧ ¬Succv(y, x) a ∧X−1 F−1[Ψ2]

Succv(y, x) a ∧X−1[Ψ2]

x 6= y ∧ ¬x <v y ∧ ¬y <v x ∧ ¬ <h (x, y) ∧ ¬ <h (y, x) a ∧ F−1 S 6= EF [Ψ2]

6.3.2 Decidable Characterizations

In Chapter 10, we present decidable characterizations for FO2(s,<v), FO2(<h, <v

) and FO2(<h, Succh, <v) in Chapter 10. It follows from Theorem 6.2 that these
will also be decidable characterizations for EF+F−1(S 6=), EF+F−1(Fh,F

−1
h

) and

EF + F−1(Xh,Fh,X
−1
h
,F−1

h
). The Chapter will also include a decidable charac-

terization for EF+F−1(S). The case of EX+EF+X−1+F−1(Xh,Fh,X
−1
h
,F−1

h
)

remains open.
A decidable characterization for forest languages definable in EF + F−1 was

presented in [Boj07b]. We quote this characterization below. It uses forest alge-
bras and a specific relation that we define below. Intuitively, this relation compares
contexts. Considering a context, a smaller context can be built by deleting the
subtrees hanging on the path leading from the root to the port. More formally,
given a forest algebra using monoids (H,V) and u, v ∈ V we write u ⊣ v iff:

• u = u0 · · ·un

• v = (u0 + h0) · · · (un + hn)

• uo, . . . , un ∈ V , h0, . . . hn ∈ H

Theorem 6.3. ([Boj07b]) Fix L a regular forest language. L is definable in
EF + F−1 iff its syntactic forest algebra using monoids verifies:

h+ g = g + h ∀h, g ∈ H (6.1)

h+ h = h ∀h ∈ H (6.2)

81

CHAPTER 6. FRAGMENTS OF FIRST ORDER LOGIC OVER TREES

(uv)ω = (uv)ωv(uv)ω∀u, v ∈ V (2.2)

∀u1, u2, v1, v2 ∈ V such that u1 ⊣ u2 and v1 ⊣ v2
(u1v1)

ω(u2v2)
ω = (u1v1)

ωu1v2(u2v2)
ω (6.3)

Notice that the characterization involves Equation (2.2) which characterizes
F + F−1 in the word setting. It is shown in [Boj07b] that the ⊣ relation is com-
putable. Therefore since the syntactic forest algebra of a regular forest language
is computable, definability in EF + F−1 is decidable property of regular forest
languages. Also it is shown using technical arguments in [Boj07b] that the de-
cidability can be adapted for unranked trees. Therefore we have the following
corollary:

Corollary 6.4. ([Boj07b]) It is decidable whether a regular forest language is
definable in EF + F−1. It is decidable whether a regular unranked tree language
is definable in EF + F−1.

However this corollary does not extend to the setting of trees of bounded rank.
In particular EF + F−1 is not expressive enough to express that a tree is of rank
k for some k. Also Equation (6.2) and the ⊣ relation do not make sense in the
bounded rank setting since they affect the number of children of nodes. Therefore,
obtaining a decidable characterization for EF +F−1 in the bounded rank involves
additional work. We present such a characterization in Chapter 8.

6.4 First-Order Logic Using Only One Quantifier Al-

ternation

First-order logic using only one quantifier alternation is defined as in the setting
of words. We consider several formalisms depending on the predicates we con-
sider: ∆2(<v) ∆2(s,<v), ∆2(<h, Succh, <v), ∆2(<h, Succh, <v, Succv). We give
the definition for ∆2(<v). The other logics are defined similarly.

We say that a language is definable in ∆2(<v) iff it is definable by two frag-
ments of FO(<v). A Σ2(<v) formula is a FO(<) formula of the form:

∃x1...∃xn∀y1...∀ym ϕ(x1, ..., xn, y1, ..., ym)

Where ϕ is a FO(<v) quantifier free formula. A Π2(<v) formula is the negation
of a Σ2(<v) formula, meaning a formula of the form:

∀x1...∀xn∃y1...∃ym ϕ(x1, ..., xn, y1, ..., ym)

82

CHAPTER 6. FRAGMENTS OF FIRST ORDER LOGIC OVER TREES

Where ϕ is a FO(<v) quantifier free formula. We say a language is definable
in ∆2(<v) if it is definable by both a Σ2(<v) formula and a Π2(<v) formula. The
logics ∆2(<h, <v), ∆2(<h, Succh, <v) and ∆2(<h, Succh, <v, Succv) are defined
similarly.

6.4.1 Relations With First-Order Logic Using Only Two Vari-

ables

In the setting of words ∆2 had the same expressive power as FO2. In particular,
∆2(<) had the same expressive power as FO2(<) and ∆2(<,Succ) the same ex-
pressive power as FO2(<,Succ). This is no longer true for any of the fragments
in the tree and forest setting:

We begin with the logic ∆2(<v) which is incomparable with FO2(<v) in terms
of expressive power. We first give an example of a property definable in ∆2(<v)
but not in FO2(<v). It is simple to see that FO2(<v) is closed under the equation
3h = 2h over its syntactic forest algebra. However the language of forests that
contain three nodes labeled by a is not closed under that equation. We show that
we can define it in ∆2(<v). We actually exhibit a formula that is both a Σ2(<v)
and a Π2(<v) formula:

∃x∃y∃z x 6= y ∧ y 6= z ∧ x 6= z ∧ Pa(x) ∧ Pa(y) ∧ Pa(z)

We now present a property that can be expressed in FO2(<v) but not in
∆2(<v). Consider the language K of trees such that any node labeled by a has
an ancestor labeled by a b. K is definable by the following FO2(<v) formula:

∀x (¬Pa(x) ∨ ∃y (y < x ∧ Pb(y)))

However K is not definable in ∆2(<v). Indeed consider the following forest
with k some integer: t = (p + c · b · a)k. It is simple to prove that for any
language definable in ∆2(<v), for k big enough, if it contains t then it contains
(p+ c · b · a)k · (p+ c · a) · (p+ c · b · a)k. This last tree contains a a which has no
ancestor labeled with a b.

Using the same examples, we can show that ∆2(s,<v) and FO2(s,<v) are also
incomparable.

For the logics ∆2(<h, <v) and ∆2(<h, Succh, <v) we can prove that they are
strictly less expressive than respectively FO2(<h, <v) and FO2(<h, Succh, <v).
The inclusion is a difficult result. It is a corollary of the decidable characterizations
of FO2(<h, <v) and FO2(<h, Succh, <v) we present in Chapter 10. Once these
characterizations are proved it is simple to verify that the characterizations of
respectively FO2(<h, <v) and FO2(<h, Succh, <v) are implied by definability in

83

CHAPTER 6. FRAGMENTS OF FIRST ORDER LOGIC OVER TREES

respectively ∆2(<h, <v) and ∆2(<h, Succh, <v). That the inclusions are strict is
proved using the same example as for ∆2(<v). The language K of trees such
that any node labeled by a has an ancestor labeled by a b cannot be expressed
in ∆2(<h, <v) or ∆2(<h, Succh, <v). But is is expressed by the following FO2

formula:

∀x (¬Pa(x) ∨ ∃y (y < x ∧ Pb(y)))

The case of ∆2(<h, Succh, <v, Succv) remains open. Using the language K
we can still show that the expressive power of FO2(<h, Succh, <v, Succv) is not
included in the expressive power of ∆2(<h, Succh, <v, Succv). However, the in-
clusion of ∆2(<h, Succh, <v, Succv) in FO2(<h, Succh, <v, Succv) remains open.
Since we have no decidable characterization for FO2(<h, Succh, <v, Succv) we can-
not use the same argument as for the other logics.

6.4.2 Decidable Characterizations

Obtaining decidable characterizations for ∆2(s,<v), ∆2(<h, <v), ∆2(<h, Succh, <v

) and ∆2(<h, Succh, <v, Succv) remains an open problem for the settings of forest
unranked trees and trees of bounded rank.

A decidable characterization for ∆2(<v) was introduced in [BS08]. This char-
acterization uses forest algebra and a relation called the piece relation. Intuitively,
given a tree, we get a piece by suppressing some nodes and attaching the remaining
nodes while preserving the ancestor relation. We give a formal definition below.

Piece Relation. We define a relation � forest algebras using monoids. Given
an alphabet A and two forests s, t over A, we say that t is a piece of s iff there
exists an injective morphism of the nodes of t to the nodes of s that preserves
labels and the descendant relation, we write s � t (see Figure 6.2).

Since contexts are forests with a special leaf we can extend this definition to
contexts. Given two contexts p, q, we say that q is a piece of p iff seen as trees
q � p.

Given a forest algebra using monoids (H,V) and a morphism α : A∆ → (H,V)
we extend the notion of piece to elements of this forest Given h, g ∈ H we say
that h is a piece of g and write h � g iff there exists two trees t, s such that
α(t) = h, α(s) = g and t � s. Similarly, given u, v ∈ V we say that u is a piece of
v and write u � v if and only if there exists two contexts p, q such that α(p) = u,
α(q) = v and p � q.

Lemma 6.5. ([BSS08, BS08]) Given a forest algebra and a morphism α : A∆ →
(H,V). The piece relation, �, is computable.

84

CHAPTER 6. FRAGMENTS OF FIRST ORDER LOGIC OVER TREES

a

b

d d

e

b d

d d

c

d

t

�

a

d

e

d

d

d

s

Figure 6.2: Illustration of the Piece Relation on trees.

Theorem 6.6. ([BS08]) Fix L a regular forest language. L is definable in ∆2(<v)
iff its syntactic forest algebra using monoids, (H,V), verifies:

h+ g = g + h for h, g ∈ H (6.4)

uω = uωvuω for u, v ∈ V , v � u (6.5)

Notice that for u, v ∈ V , v � uv, therefore the identity characterizing ∆2(<)
in the word setting, Equation 2.2 is a consequence of Equation (6.5):

(uv)ω = (uv)ωv(uv)ω

It follows from Lemma 6.5 that the piece relation is computable, therefore a
simple consequence of Theorem 6.6 is that membership in ∆2(<v) is a decidable
property of forest languages. Also, notice that it is possible to express in ∆2(<v)
that a forest is a tree with the following Π2(<v) and Σ2(<v) formulas:

∀x ∀y ∃z (z = x ∨ z <v x) ∧ (z = y ∨ z <v x)
∃z ∀x x = z ∨ x <v z

Therefore, the decidability result also extends to unranked tree lamguages.
Altogether, we get the following corollary:

Corollary 6.7. It is decidable whether a regular forest language is definable in
∆2(<v). It is decidable whether a regular unranked tree language is definable in
∆2(<v).

However this corollary does not extend to the setting of trees of bounded
rank. In particular ∆2(<v) is not expressive enough to express that a tree is of
rank k for some k. However, we will see in Chapter 7 that there exists a decidable
characterization of ∆2(<v) for trees of bounded rank that uses Equation (6.5)
with an adapted notion of piece.

85

CHAPTER 6. FRAGMENTS OF FIRST ORDER LOGIC OVER TREES

6.5 Boolean Combination of Existential First Order

Formulas

Boolean combinations of existential first order formulas (BC-Σ1(<v)) have the
same definition as in the word setting. A Σ1(<v) is a FO(<v) formula of the form
∃x1...∃xnϕ(x1, ..., xn) with ϕ a quantifier free formula. A language is definable in
BC-Σ1(<v) iff it is definable by a boolean combination of such formulas. We quote
the decidable characterization of BC-Σ1(<v) below. This is a result from [BSS08].
It uses forest algebras and the piece relation, �, we defined in the previous section
for the characterization of ∆2(<v).

Theorem 6.8. ([BSS08]) Fix L a regular forest language. Then L is definable
in BC-Σ1(<v) iff its syntactic forest algebra using monoids (H,V) verifies for all
u, v ∈ V such that v � u:

h+ g = g + h for h, g ∈ H (6.6)

uω = uωv = vuω (6.7)

Notice that Equation (2.4) is a consequence of Equation (6.7) which charac-
terizes BC-Σ1(<) on words. Again it is a consequence of Theorem 6.8 that defin-
ability in BC-Σ1(<v) is a decidable property of forest languages. Using technical
arguments, it is shown in [BSS08] that the decidability result can be extended to
unranked trees. Therefore we obtain the following corollary:

Corollary 6.9. It is decidable whether a regular forest language is definable in
BC-Σ1(<v). It is decidable whether a regular unranked tree language is definable
in BC-Σ1(<v).

However this corollary does not extend to the setting of trees of bounded rank.
In particular BC-Σ1(<v) is not expressive enough to express that a tree is of rank
k for some k. We present a characterization for BC-Σ1(<v) in the setting of trees
of bounded rank in Chapter 9. This characterization use k-algebra and an adapted
notion of piece. In particular we will see that we need to add new equations in
the bounded rank setting.

6.6 Locally Testable Languages

In this section we define the notion of locally testable languages for unranked trees
and trees of bounded rank. Since this class is not defined as a fragment of FO the
definitions are specific to each setting. Notice that we do not talk about forests
for this class. However the definitions for unranked trees could be adapted in a
straightforward way to obtain a notion of LT for forests.

86

CHAPTER 6. FRAGMENTS OF FIRST ORDER LOGIC OVER TREES

6.6.1 Trees of Bounded Rank

For this class we actually work we actually work with binary trees. These are trees
for which all nodes have either 2 or 0 children. We make this restriction in order to
simplify the notations. However all the definitions an results we will present for LT
on binary trees extend to trees of rank k for any fixed k in a straightforward way.
We extend to binary trees the notion of types we defined on words in Chapter 2.

Types. Let t be a tree and x be a node of t and k be a positive integer, the
k-type of x is the (isomorphism type of the) restriction of t|x to the set of nodes
of t at distance at most k from x. When k will be clear from the context we will
simply say type. A k-type τ occur in a tree t if there exists a node of t of type τ .
If C is the context t[x, y] for some tree t and some nodes x, y of t, then the k-type
of a node of C is the k-type of the corresponding node in t. Notice that the k-type
of a node of C depends on the surrounding tree t, in particular the port of C has
a k-type, the one of y in t.

Given two trees t and t′ we denote by t 4k t
′ the fact that all k-types that

occur in t also occur in t′. Similarly we can speak of t 4k C when t is a tree and
C is t′[x, y] for some tree t′ and some nodes x, y of t′. We denote by t ≃k t

′ the
property that the root of t and the root of t′ have the same k-type and t and t′

agree on their k-types: t 4k t
′ and t′ 4k t . Note that when k is fixed the number

of k-types is finite and hence the equivalence relation ≃k has a finite number of
equivalence classes. This property is no longer true for unranked trees and this is
why we will have to use a different technique for this case.

A language L is said to be κ-locally testable if L is a union of equivalence
classes of ≃κ. A language is said to be locally testable (is in LT) if there is a κ
such that it is κ-locally testable. In words this says that in order to test whether
a tree t belongs to L it is enough to check for the presence or absence of κ-types
in t, for some big enough κ.

Decidable Characterization. We present a decidable characterization of LT
for binary trees in Chapter 11. This characterization is presented in an unusual
way. We were not able to obtain a reasonably simple set of identities for charac-
terizing LT similar to the ones we provide in Theorem 4.1 for the word setting.
Nevertheless we can show that membership in LT is a decidable property of regular
binary tree languages.

6.6.2 Unranked Trees

In the unranked tree case, there are several natural definitions of LT. We will
consider two such notions. Both these notions are unable to express an order on

87

CHAPTER 6. FRAGMENTS OF FIRST ORDER LOGIC OVER TREES

siblings. Therefore in order to simplify the notations we will suppose that our
unranked trees are unordered. This means that no order is assumed on children.
In particular even if a node has only two children we can not necessarily distinguish
the left child from the right child.

Our goal is to adapt the notion of LT we defined for binary trees to unranked
unordered trees. Recall the definition of k-type: the k-type of a node x is the
isomorphism type of the subtree induced by the descendant of x at distance at
most k from x. With unranked trees this definition generates infinitely many k-
types. We therefore introduce a more flexible notion of type, (k, l)-type, based
on one extra parameter l restricting the horizontal information. It is defined by
induction on k. Consider an unordered tree t and a node x of t. For k = 0, the
(k, l)-type of x is just the label of x. For k > 0 the (k, l)-type of x is the label of x
together with, for each (k−1, l)-type, the number, up to threshold l, of children of
x of this type. The reader can verify that over binary trees, the (k, 2)-type and the
k-type of x always coincide. As in the previous section we say that two trees are
(k, l)-equivalent, and denote this using ≃(k,l), if they have the same occurrences
of (k, l)-types and their roots have the same (k, l)-type. We also use t 4(k,l) t

′ to
denote the fact that all (k, l)-types of t also occur in t′.

Based on this new notion of type, we define two notions of locally testable
languages. The most expressive one, denoted ALT (A for Aperiodic), is defined as
follows. A language L is in (κ, λ)-ALT if it is a union of (κ, λ)-equivalence classes.
A language L is in ALT if there is a k and a λ such that L is in (κ, λ)-ALT.

The second one, denoted ILT in the sequel (I for Idempotent), assumes λ = 1:
A language L is in ILT if there is a κ such that L is a union of (κ, 1)-equivalence
classes.

Decidable Characterization. We present decidable characterizations for both
ILT and ALT for unranked unordered trees in Chapter 11. The characterization
of ILT is presented using a set of identities expressed with the formalism used
in [BS09] for the decidable characterization of LTT on trees. The characterization
of ALT is presented in the same way as the characterization for the trees of
bounded rank setting. We were not able to obtain a reasonably simple set of
identities for characterizing ALT.

Logical characterization There is a logical characterization of languages that
are locally testable. It corresponds to the languages definable by a temporal logic
defined by the following grammar:

ϕ = a ∈ A | EXϕ | Gϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ

Intuitively, G stands for “everywhere in the tree” while EX stands for “child”.

88

CHAPTER 6. FRAGMENTS OF FIRST ORDER LOGIC OVER TREES

In the binary tree case, we also requires two predicates distinguishing the left
child from the right child. In the unranked unordered setting the logic above is
closed under bisimulation and therefore correspond to ILT. Since this corresponds
exactly to the logical characterization of LT in the word setting (see Chapter 2),
this shows that in a sense ILT is the natural extension of LT to the unranked
setting.

89

CHAPTER 6. FRAGMENTS OF FIRST ORDER LOGIC OVER TREES

90

Chapter 7

One Quantifier Alternation

over Trees of Bounded Rank

In this Chapter we provide a decidable characterization for the class of languages
of trees of bounded rank that are definable in ∆2(<v). We briefly recall the
definition of ∆2(<v), see Chapter 6 for more details. We say that that a language
is definable in ∆2(<v) iff it is definable by both a Σ2(<v) formula and a Π2(<v)
formula. A Σ2(<v) formula is a first-order formula using only one quantifier
alternation starting with an existential quantification. A Π2(<v) formula is the
negation of a Σ2(<v) formula.

We already quoted decidable characterizations for ∆2(<v) in the settings of
words and forests. In Chapter 2 we presented the following result using monoids:

Theorem 2.6. ([PW97]) Fix L a regular word language. Then L is definable in
∆2(<) iff its syntactic monoid M verifies for all u, v ∈M :

(uv)ω = (uv)ωv(uv)ω (2.2)

In the forest setting, we quoted a decidable characterization using forest alge-
bras together with a relation called the piece relation that we defined in Chapter 6.

Theorem 6.6. ([BS08]) Fix L a regular forest language. L is definable in ∆2(<v)
iff its syntactic forest algebra using monoids, (H,V), verifies:

h+ g = g + h for h, g ∈ H (6.4)

uω = uωvuω for u, v ∈ V , v � u (6.5)

Notice that Equation (2.2) is a consequence of Equation (6.5). Therefore
Theorem 6.6 generalizes Theorem 2.6. However, Theorem 6.6 does not apply to

91

CHAPTER 7. ∆2 OVER TREES OF BOUNDED RANK

trees of bounded rank. In particular, ∆2(<v) is not expressive enough to express
that a tree is of rank k for some fixed integer k.

We present a decidable characterization for the languages of trees of rank k for
some fixed k that are definable in ∆2(<v). Our characterization uses k-algebras
(see Chapter 5) together with an equation that is similar to Equation (6.5). This
equation uses a notion of piece relation that is adapted to trees of bounded rank.
This new piece relation can be viewed as a restriction of the corresponding relation
on forests.

In Section 7.1 we present our decidable characterization and discuss its relation
with the characterization of [BS08] for the forest setting. Then in Section 7.2 we
provide a proof for the difficult “if” direction of this characterization. Throughout
this chapter we compare both the statements and the proofs we use to the ones
used in [BS08] for the forest setting.

7.1 Characterization of ∆2(<v)

We begin with the statement of the characterization. Note that like the charac-
terization of [BS08] this characterization uses a piece relation. However, we need
to adapt this notion to trees of bounded rank. Our notion of piece has to be more
restrictive than the one of [BS08]. Intuitively, given a tree, we get a piece by
suppressing some nodes and attaching the remaining nodes while preserving the
ancestor relation. With such a definition every piece of a forest remains a forest.
However with this definition a piece of a tree of bounded rank tree need not be
a valid tree of bounded rank. To solve this problem we consider only pieces that
are valid trees.

Pieces. Given an alphabet A and two trees s, t over A, we say that t is a piece
of s iff there exists an injective morphism of the nodes of t to the nodes of s that
preserves labels and the descendant relation, we write s � t (see Figure 7.1).

Since i-contexts are trees with special leaves we can extend this definition to
i-contexts. Given two i-contexts p, q, we say that q is a piece of p iff seen as trees
q � p (see Figure 7.2).

Given a k-algebra (H,W1, ...,Wk) and a morphism α : A∆ → (H,W1, ...,Wk)
we extend the notion of piece to elements of this k-algebra. Given h, g ∈ H we
say that h is a piece of g and write h � g iff there exists two trees t, s such that
α(t) = h, α(s) = g and t � s. Similarly, given u, v ∈Wi we say that u is a piece of
v and write u � v if and only if there exists two i-contexts p, q such that α(p) = u,
α(q) = v and p � q.

Since we want decidability, we need to be able to compute the piece relation
given a k-algebra and an associated morphism. This can be proved using the same

92

CHAPTER 7. ∆2 OVER TREES OF BOUNDED RANK

a

b

d d

e

b d

d d

c

d

t

�

a

d

e

d

d

d

s

Figure 7.1: Illustration of the Piece Relation on trees.

a

b

d d

e

b d

c

d

�

a

d

e c

d

Figure 7.2: Illustration of the Piece Relation on 2-contexts.

arguments as in [BS08] for the unranked setting:

Lemma 7.1. ([BS08]) Given a k-algebra (H,W1, . . . ,Wk) and a morphism α :
A∆ → (H,W1, . . . ,Wk) the piece relation, � can be computed.

We are now ready to state our characterization. It uses k-algebras which are
defined in Chapter 5.

Theorem 7.2. Fix some integer k and L a regular tree language of bounded
rank k. L is definable in ∆2(<v) iff its syntactic k-algebra verifies the following
equation:

uω = uωvuω ∀u, v ∈ V such that v � u (7.1)

Our identity is identical to the provided in [BS08], the only difference is the
restriction we made while defining the piece relation. Notice that there is no
equivalent to Equation (6.4). This equation implied that the languages of forest

93

CHAPTER 7. ∆2 OVER TREES OF BOUNDED RANK

definable in ∆2(<v) are unordered. However, in our case this property is already
assumed in the definition of k-algebras (see Chapter 5).

Notice that Equation (2.2), which characterizes ∆2(<) on words in [PW97] (see
Theorem 2.6) is a simple consequence of Equation (7.1) (this is because v � uv):

(uv)ω = (uv)ωv(uv)ω ∀u, v ∈ V (2.2)

In the proof, we will distinguish the cases where we only need Equation (2.2)
from the cases where we need the full power of Equation (7.1).

Also notice that since the piece relation is computable (see Lemma 7.1) we get
the following corollary from Theorem 7.2:

Corollary 7.3. It is decidable whether a regular language of trees of bounded rank
is definable in ∆2(<v).

We now turn to the proof of Theorem 7.2. Of the three characterizations we
present for logics on trees of bounded rank, this one has the most similar proof to
its unranked counterpart. We begin we the easier ”only if” direction, a ∆2(<v)
language verifies (7.1). We show that we can actually derive this result from the
unranked characterization of [BS08].

Proposition 7.4. Let L be a tree language of bounded rank k definable in ∆2(<v),
then the syntactic k-algebra of L verifies (7.1).

Proof. We use the following Lemma taken from [BS08]:

Lemma 7.5. ([BS08]) Let ϕ be a formula of Σ2(<v) and let q � p be two
contexts. For n ∈ N sufficiently large, trees satisfying ϕ are closed under replacing
pnpn with pnqpn.

This Lemma was proved for forests, but any tree of bounded rank k can be
seen as a forest and the piece relation on trees of bounded rank is a restriction of
the piece relation for forests. Therefore the Lemma also holds for trees of bounded
rank.

Given this Lemma since, L is definable by both a Σ2(<v) and a Π2(<v) formula,
it follows that for n ∈ N sufficiently large, L is closed under replacing pnpn with
pnqpn.

It follows that the syntactic k-algebra of L verifies (7.1).

We turn to the other direction of Theorem 7.2, given L a regular tree language,
if the syntactic k-algebra of L verifies (7.1), then L is definable in ∆2(<v). We
actually prove a slightly more general proposition:

94

CHAPTER 7. ∆2 OVER TREES OF BOUNDED RANK

Proposition 7.6. Given α : A∆ → (H,W1, ...,Wk), with (H,W1, ...,Wk) satisfy-
ing (7.1), for every h ∈ H, the following language is definable in Σ2(<v).

L = {t | α(t) = h}

Before proving Proposition 7.6, we show that it concludes the proof of The-
orem 7.2. Indeed it means that ∀h ∈ H the language α−1(h) is definable in
Σ2(<v). We show that it is definable in Π2(<v). Consider K = ∪g 6=hα

−1(g), since
H is finite K is finite a disjunction of language definable with a Σ2(<v) formula
and is therefore itself definable with a Σ2(<v) formula. By definition we have
α−1(h) = {t | t 6∈ K}, because the negation of a Σ2(<v) formula is a Π2(<v)
formula, it follows that α−1(h) is definable with a Π2(<v) formula. We conclude
that α−1(h) is in ∆2(<v).

We devote Section 7.2 to the proof of Proposition 7.6. The proof is similar to
the one of [BS08], in particular it uses the same induction structure. The main
differences occur in the proofs of the decomposition lemmas that decompose L as
a combination of several simpler languages. Technical differences also arise due to
the fact that we need to be careful about the arity of the trees we build.

7.2 Proof of Proposition 7.6

For g ∈ H we write Lg = α−1(g). We also work with languages of contexts, for
u ∈ V we write Ku = α−1(u). We state here a composition lemma that we will
use in the proof:

Lemma 7.7. Let K a context language definable in Σ2(<v), a ∈ Ai for some i ≤ k
and L1, ..., Li tree languages definable in Σ2(<v). The language, Ka(L1, ..., Li) is
definable in Σ2(<v).

Proof. The formula quantifies existentially over the position labeled with a and
relativizes the formulas for K,L1, ..., Li to this position.

Given this lemma we proceed with the proof. It goes by induction on two
parameters, the size of the k-algebra and the the position of h relatively to a
pre-order we define below.

Reachability We define the pre-order on H. This pre-order is the adaptation
on trees of the reachability order we defined on words back in Chapter 3. Given
h, g ∈ H, we say that h is reachable from g iff there exists v ∈ V such that
h = vg. If h and g are mutually reachable, we write h ∼ g and one can verify
that ∼ is an equivalence relation. There exists a maximal class of ∼ regarding
reachability, indeed if we consider some w ∈ W2, and H = {h1, ..., hn}, the type

95

CHAPTER 7. ∆2 OVER TREES OF BOUNDED RANK

(w ⋄h1) · ... · (w ⋄hn−1) ·hn is reachable from any type in H. We call this maximal
class Hm.

We prove Proposition 7.6 by induction on the size of the algebra (H,W1, ...,Wk)
then the number of types that are reachable from h. We distinguish two cases
depending on whether h ∈ Hm or not.

7.2.1 h 6∈ Hm

As in [BS08], we use the notion of stabilizer of h. We then use Equation (7.1)
to show this stabilizer depends only on the ∼-class of h. However our algebra
contains one object for every possible arity, this leads us to the definition of a
stabilizer for every arity. Take i ∈ {0, k} and h ∈ H we define the i-stabilizer of
h as follows:

stab0(h) = {g ∈ H : ∃w ∈W2 w(h, g) ∼ h}

stab1(h) = {v ∈ V : v · h ∼ h}

stabi(h) = {w ∈Wi : ∃g ∈ H w ⋄ g ∈ stabi−1(h)} i ∈ {2, k}

For k-algebras satisfying (7.1), the stabilizers have two crucial properties. The
first property which is only a consequence of (2.2) is that the stabilizers only
depends on the ∼-class of h. The second property which is a consequence of the
full equation (7.1) is that the stabilizers are closed under pieces.

Lemma 7.8. For i ∈ {0, k} and h, h′ ∈ H such that h ∼ h′ we have stabi(h) =
stabi(h

′).

Proof. We give the proof for the 0-stabilizer and the 1-stabilizer, the result for
i > 1 then follows by a simple induction on the definition.

Let h ∼ h′ and g ∈ stab0(h), we show that g ∈ stab0(h
′). By definition, there

exists w ∈ W2 such that (w ⋄ g)h ∼ h ∼ h′, by definition of ∼ this means that
there exists u, v ∈ V such that h = uh′ and h′ = v(w ⋄ g)h. We get that:

h′ = v(w ⋄ g)uh′

h′ = (v(w ⋄ g)u)ωh′

h′ = (v(w ⋄ g)u)ω(w ⋄ g)(v(w ⋄ g)u)ωh′ using (2.2)

h′ = (v(w ⋄ g)u)ω(w ⋄ g)h′

Therefore, g ∈ stab0(h
′).

Now consider v ∈ stab1(h), we show that v ∈ stab1(h
′). There exists x, y ∈ V

such that h = xh′ and h′ = yvh. We get that:

96

CHAPTER 7. ∆2 OVER TREES OF BOUNDED RANK

h′ = yvxh′

h′ = (yvx)ωh′

h′ = (yvx)ωv(yvx)ωh′ using (2.2)

h′ = (yvx)ωvh′

Therefore v ∈ stab1(h
′).

Lemma 7.9. For i ∈ {0, k}, let w ∈ stabi(h) and w′ � w, then w′ ∈ stabi(h).

Proof. We begin with i = 0, take g ∈ stab0(h) and g′ � g, there exists w ∈ W2

and x ∈ V such that x(w ⋄g)h = h, it follows that (x(w ⋄g))ωh = h. By definition
w ⋄ g′ � w ⋄ g, therefore using (7.1) we get:

h = (x(w ⋄ g))ω(w ⋄ g′)(x(w ⋄ g))ωh = (x(w ⋄ g))ω(w ⋄ g′)h

It follows that g′ ∈ stab0(h).

Now suppose that i = 1, take v ∈ stab1(h) and v′ � v, there exists x such that
xvh = h, it follows that (xv)ωh = h. Using (7.1), h = (xv)ωv′(xv)ωh = (xv)ωuh,
v′ ∈ stab1(h).

For i ≥ 2, the result follows by a simple induction on the definition.

Like in [BS08], we consider two cases depending on whether h ∈ stab0(h). If
h ∈ stab0(h) we show that L is recognized by a smaller algebra and conclude by
induction on the size of the algebra. If h 6∈ stab0(h) we conclude by decomposing
L as several languages that we show to be definable in Σ2(<v) using the induction
hypothesis on the reachability order.

h is a 0-stabilizer of h In this case we show that Lh is recognized by a
smaller k-algebra and conclude using the induction hypothesis. We show that
(stab0(h), stab1(h), ..., stabk(h)) is a k-algebra and that it recognizes Lh. Be-
cause h 6∈ Hm we have by definition of Hm, Hm ∩ stab0(h) = ∅, it follows that
stab0(h) (H and that (stab0(h), stab1(h), ..., stabk(h)) is of smaller size than
(H,W1, ...,Wk).

Lemma 7.10. (stab0(h), stab1(h), ..., stabk(h)) is a k-algebra.

Proof. We show that (stab0(h), stab1(h), ..., stabk(h)) is preserved under all the
operations of k-algebras.

97

CHAPTER 7. ∆2 OVER TREES OF BOUNDED RANK

stab1(h)stab1(h) ⊆ stab1(h)

stab1(h)stabi(h) ⊆ stabi(h) for i ≥ 2

stabi(h) ⋄ stab0(h) ⊆ stabi−1(h) for i ≥ 2

stab1(h)stab0(h) ⊆ stab0(h)

The first item is a consequence of Lemma 7.8. Let u, v ∈ stab1(h) we have
vh ∼ h, therefore by Lemma 7.8 uvh ∼ h, uv ∈ stab1(h). The second item follows
by induction on i.

Using Lemma 7.9 we show that the third and fourth items hold.
We prove the third item, take i > 2, g ∈ stab0(h) and w ∈ stabi(h). By

definition, there exists w′ ∈ W2 and g1, ..., gi−1 such that (w ⋄ (g1, ..., gi−1)) ∈
stab1(h) and w′ ⋄ g ∈ stab1(h). Therefore using the first item we obtain that (w ⋄
(g1, ..., gi−1))(w

′⋄g) ∈ stab1(h), since (w⋄(g, g2, ..., gi−1)) � (w⋄(g1, ..., gi−1))(w
′⋄

g), it follows from Lemma 7.9 that (w ⋄ (g, g2, ..., gi−1)) ∈ stab1(h) and w ⋄ g ∈
stab(i−1)(h).

We move to the fourth item, let v ∈ stab1(h) and g ∈ stab0(h), we have
w ∈ W2 such that w ⋄ g ∈ stab1(h). There exists u and u′ in V such that
h = uvh and h = u′(w ⋄ g)h, combining both we get h = uvu′(w ⋄ g)h. Since
vg � uvu′w(h, g) = h and by hypothesis h ∈ stab0(h), it follows from Lemma 7.9
that vg ∈ stab0(h).

h is not a 0-stabilizer of h In this case we describe Lh as a union of several
languages and show that each of them is definable in Σ2(<v). Let G be the set of
types g such that h is reachable from g but g is not reachable from h. By induction
hypothesis, for all g ∈ G, Lg is definable in Σ2(<v). Notice that stab0(h) ⊆ G,
indeed for all g ∈ stab0(h), h is reachable from g, but by Lemma 7.9, stab0(h)
is closed under pieces and therefore if g was reachable from h we would have
h ∈ stab0(h) which is false by hypothesis.

Lemma 7.11. A tree t belongs to Lh iff it belongs to one of the following type of
languages:

Kua0 u ∈ stab1(h) uα(a0) = h a0 ∈ A0

Kuai(Lg1 , ..., Lgi) u ∈ stab1(h) g1, .., gi ∈ G uα(ai)(g1, ..., gi) = h ai ∈ Ai

Proof. By definition, if t belongs to any such language, α(t) = h, therefore t ∈ Lh.
Now assume that t ∈ Lh, let t′ be a subtree of t such that α(t′) ∼ h and no
subtree of t′ is mutually reachable with h and let p such that t = pt′. It follows
that u = α(p) ∈ stab1(h), then depending on whether t is a leaf or not, t is in a
language of the first kind or of the second kind.

98

CHAPTER 7. ∆2 OVER TREES OF BOUNDED RANK

We show that the languages described in Lemma 7.11 are definable in Σ2(<v).
It will then follow from Lemma 7.7 that Lh is definable in Σ2(<v), concluding this
case. By induction we know that for every g ∈ G Lg is definable in Σ2(<v). It
follows that it is sufficient to prove that for any u ∈ stab1(h), Ku is definable in
Σ2(<v).

Lemma 7.12. For any u ∈ stab1(h) Ku is definable in Σ2(<v).

Proof. This is done using the same techniques as in [BS08]. We see Ku as a word
language over an infinite alphabet and conclude using the following Proposition
taken from [BS08].

A stratified monoid is a monoid along with a pre-order � that satisfies the
following property:

mωnmω = mω for n � m

Proposition 7.13. ([BS08]) Let B be an alphabet (possibly infinite), and let
β : B∗ → M be a morphism into a stratified monoid (M,�) that satisfies the
following identity:

(mn)ωm(mn)ω = (mn)ω (7.2)

For any m ∈M , the language β−1(m) is defined by a finite union of expressions

B∗
0C1B

∗
1 ...CiB

∗
i

where each Cj is of the form B ∩ β−1(n) for some n ∈ M , and each Bj is of the
form B ∩ β−1(N) for dome N ⊆M closed under �.

Now we define an infinite alphabet B, B contains two types of letters which
are all contexts of over A:

• a ∈ A1.

• a ⋄ (t1, ..., ti−1) for i ≥ 2 and a ∈ Ai.

Consider the morphism β : B → V which is alpha restricted to contexts of B.
By construction we have Ku = β−1(u). Now observe that together with the piece
relation (V,�) is a stratified monoid, therefore Proposition 7.2.1 applies we get
that Ku is of the form:

(B ∩ β−1(N0))
∗(B ∩ β−1(n1))...(B ∩ β−1(nk))∗(B ∩ β−1(Nk))∗

where n1, ..., nk are elements of V , and N1, ..., Nk are subsets of V that are closed
under the piece relation.

99

CHAPTER 7. ∆2 OVER TREES OF BOUNDED RANK

We just need to show that the expressions used are definable in Σ2(<v). For
expressions of the form (B ∩ β−1(N))∗ where N is closed under pieces, it follows
that (B ∩ β−1(N))∗ is closed under pieces and is therefore definable in Σ2(<v).
Languages of the form (B ∩ β−1(n1)) are just union of singletons {b} for b ∈ B.
We show that we can define such singletons in Σ2(<v), it is clear a ∈ A0 now
consider b = a ⋄ (t1, ..., ti−1) for a ∈ Ai, we show that we can define the language
{a ⋄ (t′1, ..., t

′
i−1) | α(tj) = α(t′j), 1 ≤ j ≤ i − 1} which concludes the proof.

This is because v ∈ stab1(h) and therefore it follows from Lemma 7.8 that for
all 1 ≤ j ≤ i − 1, α(ti) ∈ stab0(h) ⊆ G and therefore α−1(α(tj)) is definable in
Σ2(<v).

7.2.2 h ∈ Hm

We let G = H − Hm, it follows from the previous case that for all g ∈ G, Lg is
definable in Σ2(<v). Notice that in this case we have h ∈ stab0(h), but we cannot
conclude using the induction hypothesis since stab0(h) = H. We treat this case
using a new induction parameter over an added induction variable v ∈ V . We
show that for all v ∈ V the following language is definable in Σ2(<v):

Mv,h = {t : vαt = h}

The result follows since Lh = M1v ,h for 1v the neutral element of V . Similarly
to what we did for H we introduce a pre-order over V and proceed by induction
on the position of v regarding this order. Given u, v ∈ V , we say that v is
reachable from u iff there exists x ∈ V such that ux = v. If u, v ∈ V are mutually
reachablewe write u ∼ v. We proceed by induction on the number of context types
reachable from v. First we prove some properties on reachability over V , they are
similar to the ones we used for reachability over H.

We define a notion of stabilizer for v. Take i ∈ {0, k} and h ∈ H we define the
i-stabilizer of h as follows:

stab0(v) = {g ∈ H : ∃w ∈W2 v(w ⋄ g) ∼ v}

stab1(v) = {u ∈ V : vu ∼ v}

stabi(v) = {w ∈Wi : ∃g ∈ H w ⋄ g ∈ stabi−1(v)} for i ∈ {2, k}

Lemma 7.14. For u, v ∈ V such that u ∼ v and i ∈ {0, k} then stabi(v) =
stabi(u).

Proof. The proof is similar to the proof of Lemma 7.8. We give the proof for
the 0-stabilizer and the 1-stabilizer, the result for i > 1 then follows by a simple
induction on the definition.

100

CHAPTER 7. ∆2 OVER TREES OF BOUNDED RANK

Take v ∼ v′ and g ∈ stab0(v), we show that g ∈ stab0(v
′). There exists w ∈W2

such that v(w ⋄g) ∼ v ∼ v′, y definition of ∼ this means that there exists x, y ∈ V
such that v = v′x and v′ = v(w ⋄ g)y. We get that:

v′ = v′x(w ⋄ g)y

v′ = v′(x(w ⋄ g)y)ω

v′ = v′(x(w ⋄ g)y)ω(w ⋄ g)(x(w ⋄ g)y)ω using (2.2)

v′ = v′(w ⋄ g)(x(w ⋄ g)y)ω

Therefore, g ∈ stab0(v
′).

Now take x ∈ stab1(v), we show that x ∈ stab1(v
′). There exists y, y′ ∈ V

such that v = v′y and v′ = vxy′. We get that:

v′ = v′yxy′

v′ = v′(yxy′)ω

v′ = v′(yxy′)ωx(yxy′)ω using (2.2)

v′ = v′x(yxy′)ω

Therefore x ∈ stab1(v
′).

Lemma 7.15. The following are equivalent:

1. v is maximal with respect to reachability.

2. stab0(v) ∩Hm 6= ∅.

3. For all g, g′ ∈ H, vg = vg′.

Proof. First if v is maximal regarding reachability it means that for all g ∈ H and
all w ∈W2, v is reachable from v(w ⋄ g), stab0(v) = H. Therefore 1) ⇒ 2).

Now suppose that there exists hm ∈ Hm such that hm ∈ stab0(v). We first
show that H = stab0v, take h′ ∈ Hm, by definition h′ � hm. There exists
w ∈ W2 such that v(w ⋄ hm) ∼ v. It follows that there exists x ∈ V such that
v = v(w ⋄ hm)x = v((w ⋄ hm)x)ω, since (w ⋄ h′) � (w ⋄ hm) it follows from (7.1)
that v = v(w ⋄h′)((w ⋄hm)x)ω, h ∈ stab0(v). We write H = {h1, ..., hn}, and take
w ∈ W2, e = ((w ⋄ h1)...(w ⋄ hn))ω. From our hypothesis on v there exists x ∈ V
such that:

ve(w ⋄ eh1) · x = v

101

CHAPTER 7. ∆2 OVER TREES OF BOUNDED RANK

Using (2.2) we get that ∀g ∈ H e(w ⋄ eh1)ug = eh1, hence ∀g ∈ H vg = veh1.
Therefore 2) ⇒ 3).

Finally suppose that for all g, g′ ∈ H, vg = vg′ and take u ∈ V , we show that
vu = v, we have for all g, vug = vg, it follows that vu = v. Therefore 3) ⇒ 1).

With these definitions we prove that Mv,h is definable in Σ2(<v). We distin-
guish two cases. First, we treat the base case of the induction and suppose that
v is maximal regarding reachability. In the second case we suppose that v is not
maximal and conclude by induction.

v is maximal From Lemma 7.15 we get that v is constant, which makes Mv,h

either universal or empty. Both are easily defined in Σ2(<v).

v is not maximal We conclude as in the previous case by proving that Mv,h

is a union of specific languages that we prove to be definable in Σ2(<v). Before
stating these languages, we give extra definitions. Let t1, t2 be two trees, we write:

t1 ≡ t2 when ∀u /∈ stab1(v) vuα(t1) = vuα(t′2)

Lemma 7.16. ≡ is an equivalence relation and its classes are definable in Σ2.

Proof. Take L a class of ≡, we consider two cases:

• If L contains hm ∈ Hm then we have:

L =
⋂

u/∈stab1(v)

Mvu,hm

For all u 6∈ stab1(v), v is not reachable from vu. Therefore by induction
hypothesis on the position of v in the reachability order, Mvu,hm

is definable
in Σ2(<v). It follows that L is definable in Σ2(<v).

• Otherwise L is definable in Σ2(<v) since it is a union of Lg for g 6∈ Hm which
we know to be definable in Σ2(<v) by induction hypothesis.

For g ∈ H, consider s such that α(s) = g, we write Γg = {t | t ≡ s}. By
definition of ≡, Γg does not depend on the choice of s. By Lemma 7.16, Γg is
definable in Σ2(<v).

We are now ready to state the main result of this case:

102

CHAPTER 7. ∆2 OVER TREES OF BOUNDED RANK

Lemma 7.17. A tree t is in Mv,h iff there exists u ∈ stabV (v) such that it belongs
to one of the five types of languages below:

Kua a ∈ A0 vuα(a) = h
KuaΓh1

a ∈ A1 α(a) /∈ stab1(v) vuα(a)h1 = h
Kua(Lg,Γh1

, ...,Γhi−1
) a ∈ Ai g /∈ (stab0(v) ∪Hm) vuα(a)(g, h1, ..., hi−1) = h

Kua(Γh1
, ...,Γhi

) a ∈ Ai α(a) /∈ stabi(v) vuα(a)(h1, ..., hi) = h
Kua(Γh1

, ...,Γhi
) a ∈ Ai h1, h2 ∈ Hm vuα(a)(h1, ..., hi) = h

Proof. We first show that if t belongs to one of those languages, we have t ∈Mv,h.
We prove that vα(t) = h. This is clear for the first type of language. For the
second type of language, there exists s ∈ Γh1

such that vα(t) = vuα(a)α(s). Since
α(a) /∈ stab1(v), by Lemma 7.14 we get that uα(a) /∈ stab1(v). By definition of
Γh1

we get vα(t) = vuα(a)h1 = h.

The other types are treated by repeating the previous argument. For the third
type we know by Lemma 7.14 that (α(a) ⋄ g) /∈ stabi−1(v), therefore by definition
of Γh1

, ...,Γhi−1
we have vα(t) = vuα(a)(g, h1, ..., hi−1) = h. The fourth case is

similar since by Lemma 7.14 we have uα(a) /∈ stabi(v).

For the fifth type, there exists g1, ..., gi ∈ Γh1
, ...,Γhi

such that vα(t) =
vuα(a)(g1, ..., gi). Since g1, g2 ∈ Hm, it follows from 7.15 that u(α(a) ⋄ g1) /∈
stabi−1(v) and u(α(a) ⋄ g2) /∈ stabi−1(v). By definition of Γh1

, ...,Γhi
we get

vα(t) = vuα(a)(h1, ..., hi) = h.

Assume now that t ∈Mv,h, we have vα(t) = h. There exists a node x in t such
that the context p formed by putting a port at x is such that α(p) ∈ stab1(v), and
this property does not hold for any descendant of x. We distinguish several cases
and show that each one corresponds to a type of language defined in the lemma.

• If x is labeled by a ∈ A0, t belongs to a language of the first type.

• If x is labeled by a ∈ A1, by definition of x and Lemma 7.14, we have
α(a) /∈ stab1(v), t belongs to a language of the second type.

• If x is labeled by a ∈ Ai and has a child with type g /∈ stab0(v) ∪Hm, then
by definition t belongs to a language of the third type.

• If x is labeled by a ∈ Ai such that α(a) /∈ stabi(v) then by definition t
belongs to a language of the fourth type.

• Otherwise x is labeled with some a ∈ Ai such that α(a) ∈ stabi(v). We show
that x has two children that are in Hm. Let y by a child of x, by hypothesis
we know that the context formed by putting the port at y is not in stab1(v).
Because α(a) ∈ stabi(v), it follows that at least one sibling of y, z, is such

103

CHAPTER 7. ∆2 OVER TREES OF BOUNDED RANK

that the subtree s at z is not in stab0(v). Since we are not in Case (3) by
hypothesis, we get that α(s) ∈ Hm. By repeating the previous argument
for the z, we get a sibling of z, z′ such that the tree s′ at z′ is such that
α(s′) ∈ Hm. t belongs to a language of the fifth type.

We now prove that each type of language defined in Lemma 7.17 is definable
using a Σ2(<v) formula, which concludes this case. Given Lemma 7.16, we only
need to show that for u ∈ stab1(v), Ku is definable in Σ2(<v).

Lemma 7.18. For u ∈ stab1(v), Ku is definable in Σ2(<v).

Proof. This is done using similar arguments as for Lemma 7.12. We use Proposi-
tion 7.2.1. We work with the same infinite alphabet B, B contains two types of
letters which are all contexts of over A:

• a ∈ A1.

• a ⋄ (t1, ..., ti−1) for i ≥ 2 and a ∈ Ai.

Consider the morphism β : B → V which is alpha restricted to contexts of B.
By construction we have Ku = β−1(u). Now observe that together with the piece
relation (V,�) is a stratified monoid, therefore Proposition 7.2.1 applies we get
that Ku is of the form:

(B ∩ β−1(N0))
∗(B ∩ β−1(n1))...(B ∩ β−1(nk))∗(B ∩ β−1(Nk))∗

where n1, ..., nk are elements of V , and N1, ..., Nk are subsets of V that are closed
under the piece relation.

We just need to show that the expressions used are definable in Σ2(<v). For
expressions of the form (B ∩ β−1(N))∗ where N is closed under pieces, it follows
that (B ∩ β−1(N))∗ is closed under pieces and is therefore definable in Σ2(<v).
Languages of the form (B ∩ β−1(n1)) are just union of singletons {b} for b ∈ B.
We show that we can define such singletons in Σ2(<v), it is clear a ∈ A0 now
consider b = a ⋄ (t1, ..., ti−1) for a ∈ Ai, we show that we can define the language
{a ⋄ (t′1, ..., t

′
i−1) | α(tj) = α(t′j), 1 ≤ j ≤ i − 1} which concludes the proof. This

is because u ∈ stab1(v) and therefore it follows from Lemma 7.15 that for all
1 ≤ j ≤ i − 1, α(ti) ∈ stab0(h) ⊆ G and therefore alpha−1(α(tj)) is definable in
Σ2(<v).

104

Chapter 8

Unary Temporal Logic over

Trees of Bounded Rank

In this chapter, we study the temporal logic EF + F−1 in the setting of trees of
bounded rank. Our main goal in to obtain a decidable characterization for the
class of trees of bounded rank definable in EF + F−1.

We briefly recall the definition of EF + F−1, more details can be found in
Chapter 6. EF + F−1 is a temporal logic using a modality EF used to navigate
to some descendant node and a modality F−1 used to navigate to some ancestor
node.

Recall that we presented decidable characterizations for EF + F−1 in the
settings of words and forests. In Chapter 3 we presented a characterization for
F + F−1 that uses monoids:

Theorem 3.2. ([TW98]) A regular word language L over an alphabet A is de-
finable in F + F−1 iff its syntactic monoid M verifies, for all u, v ∈M :

(uv)ω = (uv)ωv(uv)ω (2.2)

In Chapter 6 we quoted a decidable characterization for EF +F−1 on forests.
It uses forest algebras and a specific relation ⊣ that tells that considering a context,
a smaller context can be built by deleting the subtrees hanging on the path leading
from the root to the port.

Theorem 6.3. ([Boj07b]) Fix L a regular forest language. L is definable in
EF + F−1 iff its syntactic forest algebra using monoids verifies:

h+ g = g + h ∀h, g ∈ H (6.1)

h+ h = h ∀h ∈ H (6.2)

105

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

(uv)ω = (uv)ωv(uv)ω ∀u, v ∈ V (2.2)

∀u1, u2, v1, v2 ∈ V such that u1 ⊣ u2 and v1 ⊣ v2
(u1v1)

ω(u2v2)
ω = (u1v1)

ωu1v2(u2v2)
ω (6.3)

Theorem 6.3 does not extend to trees of bounded rank in a straightforward
manner. In particular, it is impossible to express using EF +F−1 that a tree is of
rank k for some fixed integer k. A simple way to see this is that forest languages
definable in EF + F−1 are closed under bisimulation.

In this chapter we provide a decidable characterization for the class of tree
languages of bounded rank that are definable in EF +F−1. Our characterization
uses k-algebras which we defined in Chapter 5. We will also have to define a new
relation ⊣ that is adapted to trees of bounded rank. The relation used in the forest
setting makes no sense in the bounded rank setting since it affects the number
of children of the nodes. Notice that Equation (6.2) makes no sense over trees of
bounded rank. Therefore we will need to replace it with another equation. Finally,
our characterization will contain no equivalent to Equation (6.1). This is because
k-algebras already assume that the languages are closed under commutation of
sibling subtrees.

In Section 8.1 we present our decidable characterization and discuss its relation
with the characterization of [Boj07b] in the forest setting. In Section 8.2 we prove
the “only if” part of the characterization. Finally, in Section 8.3 we provide a proof
for the difficult “if” direction of this characterization. Throughout this chapter we
compare both the statements and the proofs we use to the ones used in [Boj07b]
for the unranked setting.

8.1 Characterization of EF + F−1

In order to give our characterization we need to define a relation over k-algebras.
In [Boj07b], a relation, ⊣, over contexts is used in order to state the character-
ization. Considering a context, a smaller context can be built by deleting the
subtrees hanging on the path leading from the root to the port. In our setting
this obviously does not preserve the arity of nodes, therefore we cannot just delete
subtrees as it would not preserve the tree structure. We define a variant of this
relation over trees of bounded rank, rather than deleting subtrees, we ask that all
the subtrees hanging on the path from the root to the port of the smaller context
appear on the same path in the bigger context. Given u, v ∈ V , we write u ⊣ v iff
we have:

• u = (u0 ⋄ (h, ..., h))...(un ⋄ (h, ..., h))

106

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

• v = (u0 ⋄ (g00, ..., g
0
δ0

))...(un ⋄ (gn0 , ..., g
n
δn

))

• ∀i ui ∈Wδi+1

• h ∈ {g00, ..., g
0
δ0
, ..., gn0 , ..., g

n
δn
}

u0

u1

u2

u3

h

h

h

h

h

u

⊣

u0

u1

u2

u3

g

f

g

g′

h

v

Figure 8.1: Illustration of the ⊣ Relation.

Since we use this relation in the characterization, for the characterization to
be decidable, we need ⊣ to be computable given a finite k-algebra. This is a
consequence of the following lemma:

Lemma 8.1. The relation ⊣ is computable.

Proof. To compute ⊣, we define a relation 4 ⊆ (V × H) × (V × H). We prove
that 4 can be computed and characterize ⊣ as the restriction of 4 on V which
ends the proof. Given u, v ∈ V and h ∈ H, we write (u, h) 4 (v, g) iff we have:

• h = g

• u = (u0 ⋄ (h, ..., h)...(un ⋄ (h, ..., h))

• v = (u0 ⋄ (g01, ..., g
0
δ0

))...(un ⋄ (gn1 , ..., g
n
δn

))

• ∀i ui ∈Wδi−1

• h ∈ {g01, ..., g
0
δ0
, ..., gn1 , ..., g

n
δn
}

By definition ⊣ is the restriction of 4 to V . We show that 4 is computable.
The relation 4 is the least R such that:

107

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

• ∀i ≤ k, ∀w ∈Wi+1, ∀g1, ...gi ∈ H and ∀h ∈ {g1, ..., gi}:

w

h · · · h(,h) (,h)R
w
g1 · · · gi

• ∀i ≤ k, ∀w ∈Wi+1, ∀g1, ...gi ∈ H, if (u, h)R(v, h) then:

u

w

h · · · h
(,h) (,h)R

v

w
g1 · · · gi

• ∀i ≤ k, ∀w ∈Wi+1, ∀g1, ...gi ∈ H, if (u, h)R(v, h) then:

u

w

h · · · h(,h) (,h)R v

w
g1 · · · gi

Therefore, we can then compute 4 using a least fixpoint algorithm.

With the relation ⊣ defined, we are now ready to state our characterization of
EF + F−1:

Theorem 8.2. Fix k some integer and L a regular tree language of bounded rank
k. L is definable in EF + F−1 iff its syntactic k-algebra verifies the equations:

∀w ∈W3 ∀h, g ∈ H
w · (h, h, g) = w · (h, g, g)

(8.1)

∀w ∈W2 ∀h, g ∈ H
(w ⋄ h)ωg = (w ⋄ h)ωw((w ⋄ h)ωg, (w ⋄ h)ωg)

(8.2)

∀w,w′ ∈W2 ∀h, h′ ∈ H and for e = ((w ⋄ h)(w′ ⋄ h′))ω

e = e(w ⋄ h′)(w′ ⋄ h)e
(8.3)

∀u1, u2, v1, v2 ∈ V such that u1 ⊣ u2 and v1 ⊣ v2
(u1v1)

ω(u2v2)
ω = (u1v1)

ωv2(u2v2)
ω (8.4)

The characterization proposed in [Boj07b] for unranked tree languages shares
some similarities with our definition. This characterization can be seen as divided
in two parts, an horizontal one and a vertical one.

The horizontal part states the closure under bisimulation. This closure does
not make sense in our case since it affects the rank of the nodes of the trees. The
essence of this closure is replaced with (8.1) and (8.2). Notice that there is no
equivalent to Equation (6.1). This is because k-algebras work on unordered trees.

108

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

Vertically, the characterization of [Boj07b] used two identities. The first one
is Equation (2.2) which characterizes EF + F−1 over words (see Theorem 3.2).
The second one uses the ⊣ relation. In our characterization both those equations
are replaced by (8.4). Recall however, that we had to redefine the relation ⊣
used in (8.4), this leads to different uses of this equation. We also need to add
a new identity, equation (8.3). In particular, notice that Equation (8.4) implies
Equation (2.2).

Before proving Theorem 8.2, we show that the characterization is decidable.
Indeed, the syntactic k-algebra of a regular language is computable, finite and
the relation ⊣ is computable (see Lemma 8.1). Therefore, in order to decide
definability in EF + F−1, it is sufficient to compute the syntactic k-algebra and
to check that it verifies the equations.

Corollary 8.3. It is decidable whether a language of trees of bounded rank is
definable in EF + F−1.

The rest of this chapter is devoted to the proof of Theorem 8.2. In Section 8.2
we prove that the equations are necessary. Then, in Section 8.3, we prove that
they are sufficient.

8.2 Necessity of the Equations

We use an Ehrenfeucht-Fräıssé game argument. We begin with the definition of
Ehrenfeucht-Fräıssé game for EF +F−1. A k rounds Ehrenfeucht-Fräıssé game is
played on two trees t and t′, there are two players called Spoiler and Duplicator
and they both possess one pebble. At the start of the game each player has his
pebble on the root of one of the two trees. A round is played as follows, assume
there is a pebble at position xt on t and at position xt′ on t′:

• Spoiler chooses a tree, say t, and moves the pebble at xt on a node yt that
is either a proper descendant or a proper ancestor of xt.

• Duplicator has to answer by moving the pebble at xt′ on a node yt′ of t′

with the same label as yt and which is a proper descendant of xt′ if yt was
a proper descendant of xt and a proper ancestor of xt′ if yt was a proper
ancestor of xt. If Duplicator cannot play, Spoiler wins.

• If Duplicator did not loose, the game continues to the next round with yt, yt′

playing the role of xt, xt′ .

If the game lasts k rounds Duplicator wins. If Duplicator has a winning
strategy for the Ehrenfeucht-Fräıssé game on t and t′, we write t ∼=k t′. The

109

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

Ehrenfeucht-Fräıssé is closely linked to the notion of definability in EF + F−1 as
stated in the following Lemma. We call rank of an EF +F−1 formula the nesting
depth of modalities.

Lemma 8.4. t ∼=k t
′ iff t and t′ satisfy the same EF + F−1 formulas of rank k.

Lemma 8.4 is proved using classical Ehrenfeucht-Fräıssé techniques. We use it
in order to prove that our equations are necessary. Suppose that L is definable in
EF + F−1 and let l be the rank of the corresponding EF + F−1 formula ϕ.

The correctness of all equations is proved by extending the strategies we de-
scribed for proving the correctness of Equation (2.2) in Chapter 3 (see Proposi-
tion 3.4). In this section we only provide the strategy for proving the correctness
of (8.4). We make this choice because this strategy is the most technical one since
it uses the relation ⊣. Let (H,V,W2, ...,Wk) be the syntactic k-algebra of L, we
show that it verifies (8.4). In order to make the notations simpler we suppose that
k = 2. The case k > 2 is treated using the similar arguments.

Let u1, u2, v1, v2 as in the statement of (8.4). We exhibit two contexts p and q
such that α(p) = (u1v1)

ω(u2v2)
ω, α(q) = (u1v1)

ωv2(u2v2)
ω and for all trees t and

all contexts r, rpt ∼=k rqt. It follows from Lemma 8.4 that for all trees t and all
contexts r, rpt ∈ L iff rqt ∈ L, and by definition of the syntactic k-algebra that
(u1v1)

ω(u2v2)
ω = (u1v1)

ωv2(u2v2)
ω.

We have u1 ⊣ u2 and v1 ⊣ v2. By definition of ⊣ it follows that there exists
wu
1 , ..., w

u
n ∈W2, w

v
1 , ..., w

v
m ∈W2 and h, h1, ..., hn, g, g1, ..., gm ∈ H such that:

• h ∈ {h1, ..., hn}

• g ∈ {g1, ..., gm}

• u1 = (wu
1 ⋄ h)...(wu

n ⋄ h)

• v1 = (wv
1 ⋄ g)...(wv

m ⋄ g)

• u2 = (wu
1 ⋄ h1)...(w

u
n ⋄ hn)

• v2 = (wv
1 ⋄ g1)...(w

v
m ⋄ gm)

To simplify the notations further without loss of generality we suppose that the
types wu

1 , ..., w
u
n,wv

1 , ..., w
v
m, h, h1, ..., hn, g, g1, ..., gm are all reached by single node

labels. We get labels cu1 , ..., c
u
n, c

v
1, ..., c

v
m ∈ A2 and a, a1, ..., an, b, b1, ..., bm ∈ A1

such that ∀i, j α(cji) = wj
i , α(a) = h, α(ai) = hi, α(b) = g and α(bi) = gi. We

define:

• d1 = (cu1 ⋄ a)...(cun ⋄ a)

110

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

• e1 = (cv1 ⋄ b)...(c
v
m ⋄ b)

• d2 = (cu1 ⋄ a1)...(c
u
n ⋄ am)

• e2 = (cv1 ⋄ b1)...(c
v
m ⋄ bm)

• p = (d1e1)
lω(d2e2)

lω

• q = (d1e1)
lωe2(d2e2)

lω

By construction we have α(p) = (u1v1)
ω(u2v2)

ω and α(q) = (u1v1)
ωv2(u2v2)

ω.
Now consider t some tree and r some context we show that Duplicator has a
winning strategy for the l rounds Ehrenfeucht-Fräıssé game on s1 = rpt and
s2 = rqt. In order to describe Duplicator’s strategy we give a few definitions.

We call the skeleton of s1 and s2 the sequence of nodes that goes from the root
of r to the root of t. Given a node x in rpt or rqt we call its key ancestor the first
ancestor of x that is on the skeleton. We call the downward level of x the sum of
the number of copies of the context e2 and the numbers of copies of the context
e1 that are below its key ancestor and its upward level the sum of the number e1
and the number of copies of e2 that are above its key ancestor. Given a node x
in p and a node y in q we say that x and y are locally similar iff they are both at
the same position in a context d1, d2, e1 or e2 or one is in a context e1 (resp. d1)
and the other in a context e2 (resp. d2) and they are at the same position on the
skeleton.

We are now ready to give Duplicator’s strategy. We show that she can play
maintaining the following invariant. We call x and y the positions of the pebbles in
s1 and s2. We say P(l′) is verified iff the play is in one of the following situations:

1. x, y are in the context r of their respective trees and are at the same position.

2. x, y are in the subtree t of their respective trees and are at the same position.

3. x, y are in p, q. They are locally similar is they are on inner nodes. Ei-
ther the upward levels of x, y are equal and their downward levels are both
greater than l′ or the upward levels of x, y are both greater than l′ and their
downward levels are equal.

We now show that Duplicator can play while maintaining P(l′) with l′ the
number of turns left to play. At the start of the game P(l) is verified for the first
item by definition. Now suppose that there are l′ turns left to play and that P(l′)
is verified. We explain how Duplicator can answer to Spoiler’s move in order to
make P(l′) true at the next turn. Note that Duplicator always answer in a locally
similar way.

111

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

If the first or the second item of P(l′) holds, as long as Spoiler does not move
on the extra copy of e2 in q, Duplicator answers to any move by copying Spoiler’s
move and P(l′ − 1) is verified. If Spoiler plays on the extra copy of e2 in q then
Duplicator answers on the topmost copy of e2 in p, the upward levels of x and
y are now equal and their downward levels are both greater than l − 1 ≥ l′ − 1,
therefore P(l′ − 1) is verified for the third item.

Now suppose that the third item of P(l′) holds. If Spoiler moves in r or t
Duplicator’s answer is clear. We suppose that Spoiler moves on some node x′ ∈ s1
(the case of a move in s2 is similar). We consider two cases depending on the
relationship between x and x′:

• x′ is an ancestor of x. If x, y had the same upward level then Duplicator’s
answer is straightforward as he can find a locally similar y′ with the same
upward level as x. If x, y had upward level bigger then l′ then either x′ has
an upward level smaller than l′ − 1 and Duplicator can find an y′ with the
same upward level or Duplicator can find an y′ with upward level bigger
than l′ − 1.

• x′ is a descendant of x and is an inner node. This case is symmetrical to the
previous one.

• x′ is a leaf descendant of x. This leaf is in a context d1, d2, e1 or e2, if there
exists a copy of the same context below y then this case is treated as the
previous one. We describe how we treat the case when the leaf is in a context
d1 (or e1) and there is no copy of d1 (or e1) below y. In this case, we know
by construction that there exists a leaf with the same label in the contexts
d2, Duplicator just plays on that node in the topmost copy of d2 below y.

8.3 Sufficiency of the Equations

We turn to the hardest direction of Theorem 8.2, if the syntactic k-algebra of L
verifies the equations, then L is definable in EF + F−1. Consider L a language
whose syntactic k-algebra verifies (8.1), (8.2), (8.3) and (8.4), we call α the asso-
ciated morphism. We show that L is definable in EF +F−1. We begin with a few
definitions.

Antichain Composition Principle. The proof makes use of the following com-
position lemma, taken from [Boj07b]. We reuse notations from [Boj07b]. It ex-
tends the Concatenation Principle we stated for words in Lemma 3.6 of Chapter 3.

A formula of EF +F−1 called antichain if in every tree, the set of nodes where
it holds forms an antichain, i.e. a set (not necessarily maximal) of nodes pairwise

112

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

incomparable with respect to the descendant relation. This is a semantic property,
and may not be apparent just by looking at the syntax of the formula.

We fix (i) an antichain formula ϕ, (ii) disjoint tree languages L1, · · · , Ln and
(iii) leaves of label a1, · · · , an. Given a tree s. We define the tree s[(L1, ϕ) →
a1, · · · , (Ln, ϕ) → an] as follows. For each node x of s where the antichain formula
ϕ holds, we determine the unique i such the tree language Li contains the subtree
of x. If such an i exists, we remove the subtree of x (including x), and replace x
by a leaf labeled with ai. Since ϕ is antichain, this can be done simultaneously
for all x. Note that the formula ϕ may depend also on ancestors of x, while the
languages Li only talk about the subtree of x.

Lemma 8.5. [Antichain Composition Lemma][Boj07b] Let ϕ, L1, · · · , Ln and
a1, · · · , an be as above. If L1, · · · , Ln and K are languages definable in EF +F−1,
then so is {t | t[(L1, ϕ) → a1, · · · , (Ln, ϕ) → an] ∈ K}.

X-trimmed trees In the following X will always be a subset of H. The fol-
lowing notion is adapted from [Boj07b]. A tree s is said to be X-trimmed if the
only nodes of s that are of type in X are leaves. We say that a tree language L
is definable modulo X if there is a definable tree language L′ that agrees with L
over X-trimmed trees.

P -reachability We reuse the notion of reachability we defined for the ∆2(<v)
characterization and for words in Chapter 3. Since most of the properties we
proved for this pre-order depended only on (2.2), it follows that this remains a
natural pre-order to use for EF + F−1. However we need to modify its definition
in this new setting. We parametrize the reachability relation with a subset P of
forbidden labels of A, intuitively a type will be P -reachable from an other type if
it is reachable using a context that does not use the forbidden labels of P .

We call a twig a tree which has exactly one inner node which is its root. Given
P ⊆ A, we say that a tree t is P -valid, iff the only nodes of P that are labeled with
elements of P are in twigs. We extend this definition to contexts and k-contexts
by adding the condition that if the port is in a twig, this twig must not contain
labels in P . The notion of P -validity is extended to types of (H,V,W2, ...,Wk),
h ∈ H is P -valid iff there exists a P -valid tree t such that α(t) = h, w ∈ Wi is
P -valid iff there exists some P -valid k-context p such that α(p) = w.

Given this definition, we define the notion of P -reachability for types of H and
V . Given h, g ∈ H we say that h is P -reachable from g if there exists a P -valid
x ∈ V such that h = xg. Similarly, given u, v ∈ V we say u is P -reachable from
v iff there exists a P -valid x ∈ V such that u = vx. A first observation regarding
P -reachability is that as long as P does not forbid all labels of arity greater or
equal to 2 there exists a maximal class of P -reachable types in H.

113

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

Lemma 8.6. If there exists i ≥ 2 and a ∈ Ai such that a 6∈ P then there exists a
unique subset HP

m ⊆ H such that every type in HP
m is reachable from all P -valid

types.

Proof. This is because given h, g ∈ H that are P -valid we can build a type g′ that
is P -reachable from both h and g using a, g′ = α(a) · (h, g, g, ...).

We have now all the definitions we need in order to start the proof. For all
h ∈ H, all v ∈ V and all P ⊆ A consider the following language:

LP
v,h = {t : v · α(t) = h and t is P -valid}

We show that:

Proposition 8.7. ∀h ∈ H, v ∈ V, P ⊆ A and X ⊆ H, LP
v,h is definable in

EF + F−1 modulo X.

This Proposition concludes the proof of Theorem 8.2 as L is a union of LP
v,h

for h ∈ α(L), P empty and v = 1V . Hence by applying Proposition 8.7 with
X = ∅, each of these LP

v,h are definable in EF +F−1, and therefore L is definable

in EF + F−1.
Before going on with the proof we make a simple observation that we will use

several times in the proof of Proposition 8.7:

Lemma 8.8. For all h ∈ H, the language Th = {t : α(t) = h and t is a twig} is
definable in EF + F−1.

Proof. This is a simple consequence of (8.1). It follows from (8.1) that if two twigs
have the same root label and the same set of leaves they have the same type. It is
then simple to describe the root and the set of leaves of a twig in EF + F−1.

We proceed by induction on the following parameters listed by order of impor-
tance:

1. The size of X

2. The number of inner node labels in P

3. The number of leaf labels in P

4. The number of context types P -reachable from v

We consider three cases. The first case is basically the case of words, we suppose
that P forbids all letters of arity greater than 2 and conclude using known results
over word languages definable in EF + F−1. In the second and third cases we

114

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

suppose that there exists at least a letter of arity greater than 2 that is not
forbidden by P , therefore by Lemma 8.6 there exists a class of HP

m of types that
are P -reachable from all P -valid types. Our second case assumes that there exists
a type which is neither in X nor in HP

m. In this case we conclude by induction
on the size of X and the size of P . In the remaining case, when HP

m ∪X = H we
conclude by induction on the size of P and the number of contexts P -reachable
from v or by showing that LP

v,h is either empty of universal.

Case 1: P forbids all letters of arity greater than 2

In this case, all P -valid trees are of the form p · t where t is a twig and w ∈ A∗
1.

For every u ∈ V , we consider the word language Lu = {p ∈ (A1−P)∗ | α(p) =
u}. It follows from Equation (8.4) that V satisfies Equation (2.2), therefore, using
Theorem 3.2 and Theorem 2.4, we get that for all u ∈ V there exists an F + F−1

formula ϕu that defines Lu.

Now notice that:

LP
v,h = ∪{t twig,u∈V :vuα(t)=h}Lut

Because of Lemma 8.8 all of these languages is definable in EF +F−1 and the
result follows.

Case 2: HP
m ∪X 6= H

Fix G as a class of mutually P -reachable P -valid types such that G 6= Hm, G 6⊆ X,
and if G is P -reachable from a P -valid type h, h ∈ G or h ∈ X. The existence
of such a class G is ensured by our hypothesis. Intuitively, G is just above X
regarding P -reachability and is different form HP

m. We first show that membership
in G can be detected in EF + F−1 modulo X.

Lemma 8.9. There is a formula ϕ ∈ EF + F−1 such that for any X-trimmed
tree t the set of nodes x such that the subtree at x has type in G is exactly the set
of nodes at which ϕ holds.

Proof. This is proved using properties of the reachability relation similar to the
ones we used in Lemma 7.8. Most of them depended only Equation (2.2). There-
fore many arguments are similar. However some properties depend on equa-
tions (8.2) and (8.3) that are specific to this case.

We show that a X-trimmed subtree has type in G iff it does not contain certain
labels. Fix some g ∈ G, for 0 ≤ i ≤ k, we define the set of labels Bi as follows:

115

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

B0 = {a0 ∈ A0 : ∀w ∈W2 (w ⋄ α(a0))g 6∈ G}

B1 = {a1 ∈ A1 : α(a1)g 6∈ G}

Bi = {ai ∈ Ai : ∀h1, ..., hi−1 (α(ai) ⋄ (h1, ..., hi−1))g 6∈ G} for i ≥ 2

We write P ′ = B0∪...∪Bk, the result is a consequence of the following Lemma.

Lemma 8.10. Given a P -valid tree, t a subtree s of t has type outside G iff one
the following properties holds:

1. s is a leaf of type outside G.

2. s has a twig subtree which has type outside G.

3. s is not P ′-valid.

Before proving this Lemma we conclude the proof of Lemma 8.9. We only need
to show that we can express the conditions stated in Lemma 8.10 in EF + F−1.
The first condition is simply expressed, it follows from Lemma 8.8 that the second
one can be expressed. We just need to show that we can test P ′-validity. To test
P -validity we need to test that all nodes that are not in twigs are not labeled with
labels of P ′. This is simple to do if we can test test if a node is in a twig. This
is simple for inner nodes, we test if all the descendants of the node are leaves, for
leaves the formula tests that the node has an ancestor which is in a twig. We turn
to the proof of Lemma 8.10.

Proof. Before getting to the proof we make two observations that we will use
several times. First if for some P -valid v ∈ V and g′, g′′ ∈ G, if vg′ ∈ G, then
vg′′ ∈ G. This property is a consequence of Equation (8.4) and is proved using
the techniques we used in the study of ∆2(<v). We know there exists x, y, z ∈ V
P -valid and such that g′′ = xvg′, g′ = yg′′ and g = zg′′, therefore we have
g′′ = xvyg′′ = (xvy)ωg′′ = (xvy)ωvg′′ using (2.2). It follows that g = z(xvy)ωvg′′,
since z(xvy)ωv is P -valid, g is P -reachable from vg′′.

The second observation is that as soon as there exists a subtree s′ of s of type
outside G that is not a leaf, s has type outside G. Indeed suppose there is such a
subtree s′ and let h′ be its type, since s′ is not a leaf and s is X-trimmed, h′ 6∈ X
and by definition α(s) is P -reachable from h′ /∈ G, by choice of G it follows that
s has type outside G.

116

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

The conditions are sufficient The first condition is obviously sufficient and
the second one follows from our second observation. We turn to the third condi-
tion. First suppose that there exists an inner node in s labeled with a ∈ P , let
s′ be the subtree at this node, because of our second observation we can suppose
that all subtrees of s′ that are not leaves are of type in G. This means that s′ is
of the form (a ⋄ (t1, ...ti−1))s

′′) with a ∈ P ∩ Ai for some i and α(s′′) ∈ G. By
definition of a, α(a ⋄ (t1, ...ti−1))g 6∈ G, but then using our first observation we
have α(s′) = α((a ⋄ (t1, ...ti−1))s

′′) 6∈ G. It follows from our second observation
that α(s) 6∈ G.

Now suppose that there exists a leaf in s that is not in a twig and that is
labeled with a ∈ P ′, let s′ be the subtree at the father of this node, like before we
can suppose that all subtrees of s′ that are not leaves have type in G. Therefore
by hypothesis s′ is of the form (q ⋄ (ao))s

′′ with q a 2-context a0 ∈ P ′ and s′′ of
type in G. Take g′ = α(s′′) and w = α(q) ∈ W2. By definition of a0, we have
(w ⋄ g′)g 6∈ G, like in the previous case it follows from our first observation that
α(s′) 6∈ G, and our second allows us to conclude that α(s) 6∈ G.

The conditions are necessary Suppose that s has type outside G, we show
that is satisfies one of our four conditions. If s is a leaf the first condition is verified.
Otherwise, let s′ be a subtree of s such that α(s′) /∈ G, s′ is not a leaf and all
the subtrees of s′ that are not leaves have type in G. If s′ is a twig the second
condition is verified. Suppose that s′ is not a twig, if the root of s′ is labeled by
a ∈ P ′ then the third property is verified. Otherwise, if the root of s′ is labeled
with a 6∈ P ′ we show that the root of s′ has a child that is a leaf and is labeled
with a ∈ P ′. We do this in two steps, first we show using Equation (8.2) that the
root of s′ has at least one child that is a leaf then we show using Equation (8.3)
that at least one of this leaf child has a label in P ′. In order to simplify the
notation we suppose that the root of s′ is of arity 2, however the proof extends in
a straightforward way to arbitrary rank by repeating the arguments.

Suppose that the root of s′ has no child that is a leaf, it means that s′ =
(a ⋄ (t1)) · t2, with α(t1), α(t2) ∈ G. We have x ∈ V P -valid such that g = xα(t2).
Moreover, since a 6∈ P ′, the exists g′ ∈ H such that (α(a) ⋄ g′)g ∈ G, therefore
there exists y ∈ V P -valid such that y(α(a) ⋄ g′)xα(t2) = α(t2). Using a little
algebra we get:

α(t2) = (y(α(a) ⋄ g′)x)ωα(t2)

α(t2) = (y(α(a) ⋄ g′)x)ωy(α(a) ⋄ α(t2))x(y(α(a) ⋄ g′)x)ωα(t2) using (8.2)

α(t2) = (y(α(a) ⋄ g′)x)ωy(α(a) ⋄ α(t2))g

It follows that (α(a) ⋄ (α(t2)))g ∈ G, by our first observation we get that

117

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

s′ = (α(a) ⋄ (α(t2))) ·α(t1) ∈ G which is false. Therefore the root of s′ has a child
that is a leaf, suppose that this leaf has a label a0 outside P ′. Since s′ is not a
twig, it is of the form (a ⋄a0)s

′′ with s′′ of type in G and a0 6∈ P ′. Therefore there
exist w ∈ W2 and x ∈ V P -valid such that x(w ⋄ α(a0))g = g, also since a 6∈ P ′

there exists h′ ∈ H and y ∈ V P -valid such that y(α(a) ⋄ h′)g = g. Combining
the two equalities, we get:

g = y(α(a) ⋄ h′)x(w ⋄ α(a0))g

g = (y(α(a) ⋄ h′)x(w ⋄ α(a0)))
ωg

g = (y(α(a) ⋄ h′)x(w ⋄ α(a0)))
ωy(α(a) ⋄ α(a0))x(w ⋄ h′)g using (8.3)

From our first observation it follows that α(s′) ∈ G, which is false by hypoth-
esis. Therefore a0 ∈ P ′ and the third condition is verified.

This ends the proof of Lemma 8.9.

We now aim at applying Lemma 10.4, the antichain formula being essentially
the one given by Lemma 8.9. The next two lemmas show that the appropriate
languages are definable in EF + F−1.

Lemma 8.11. LP
v,h is definable in EF + F−1 modulo X ∪G.

Proof. This is by induction on X in Proposition 8.7.

Lemma 8.12. For any g ∈ G, LP
1V ,g is definable in EF + F−1 modulo X.

Proof. There are two cases, first if all the P -valid trees of type in G are leaves or
twigs LP

1V ,g is definable from Lemma 8.8. Otherwise it follows from Lemma 8.10

and the fact that since G 6= HP
m, P ′ is not empty. Also by Lemma 8.10, LP

1V ,g =

LP ′∪P
1V ,g . Therefore by induction on the numbers of labels in P , we get the result.

We are now ready to give the final argument which is depicted in Figure 8.2.
Let ϕ be the formula which holds at a node x of a tree t iff the subtree at x is
of type in G and there is no node between the root of t and x with a subtree
of type in G. From Lemma 8.9, ϕ is definable in EF + F−1 and by definition
it is an antichain formula. Let K be the restriction of LP

v,h to (X ∪ G)-trimmed

trees. By Lemma 8.11, K is definable in EF + F−1. Assume G = {g1, · · · , gl}.
For any i ≤ l, let Li be the restriction of LP

1V ,gk
to X-trimmed trees and let ak

be a leaf node such that α(ak) = gi. By Lemma 8.12 each Li is definable in
EF +F−1. Hence from the Antichain Composition Lemma, Lemma 10.4, we have
that {t | t[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak] ∈ K} is also definable in EF + F−1.
This precisely says that LP

v,h is definable in EF +F−1 modulo X. This concludes
the proof of Proposition 8.7 in this case.

118

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

No label in P ∪ P ′

(X ∪G)-trimmed

Figure 8.2: Illustration of the Antichain Composition Lemma for Case 2. The
marked nodes are the topmost nodes in G.

Case 3: HP
m ∪X = H

We distinguish two cases depending on whether there exists some inner node
symbol a ∈ A − P ′ of some arity i such that for all P -valid h1, ..., hi−1 ∈ H, v
is not P -reachable from v(a ⋄ (h1, ..., hi−1)). If there exist such a label we call it
P -bad and we proceed by induction, otherwise we conclude using (8.4).

Case 1: There exists a P -bad label Let a be the P -bad label and let i be
its arity. Given two elements h and h′ of H, we say that h is v+-equivalent to h′

if for all u P -reachable from v such that v is not P -reachable from u (hence the
P -depth of u is strictly higher that the P -depth of v) we have uh = uh′.

Take two P -valid trees s, s′ such that their root is labeled with a we say that
they are equivalent iff for each child of the root of s there exists a child of the
root of s′ that is v+ equivalent and for each child of the root of s′ there exists a
child of the root of s that is v+ equivalent. Let L1, · · · , Ln be all the equivalence
classes of this relation.

Lemma 8.13. L1, · · · , Ln are definable in EF + F−1 modulo X.

Proof. Notice first that the equivalence classes of the v+ equivalence restricted
to P -valid trees are definable in EF + F−1 modulo X. This is immediate by
induction on the P -depth of v in Proposition 8.7.

To determine if a tree is in L1, · · · , Ln−1 or Ln we just need to check that its
root is a and the set of classes of the v+ equivalence that appear in the children
of the root. Since we can test if a node is a child to the root (its only ancestor is
the root) and check the v+ equivalence class of tree, it follows that the L1, · · · , Ln

are definable in EF + F−1 modulo X

119

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

v

v+-equivalence classes definable in EF + F−1 by Lemma 10.16

No label in P ′ > P

Figure 8.3: Illustration of the Antichain Composition Lemma. The marked nodes
are the topmost nodes of label a.

For any j let hj be an arbitrarily chosen type in Lj and let aj be a leaf label
whose type is hj .

Let P ′ = (P −A0) ∪ {a} we have:

Lemma 8.14. The set LP ′

v,h is definable in EF + F−1 modulo X.

Proof. This is by induction on the number of inner node labels in P in Proposi-
tion 8.7.

Based on the above lemmas, we conclude this case of Proposition 8.7 as follows.
Consider the property that holds at a node y of a tree t if the y is labeled with a
and has no ancestor labeled with a, this property is easily expressed in EF +F−1

by a formula ϕ. By definition ϕ is antichain.
Let K = LP ′

v,h, by Lemma 8.14, K is definable in EF +F−1 modulo X. Hence
we can apply the Antichain Composition Lemma (see Figure 8.3) and have that
{t | t[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak] ∈ K} is definable in EF + F−1 modulo X.

We conclude by showing that LP
v,h = {t | t[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak] ∈

K}. This is a simple consequence of the following two lemmas.

Lemma 8.15. For any P -valid X-trimmed tree t, t[(L1, ϕ) → a1, · · · , (Ln, ϕ) →
an] is P ′-valid.

Proof. This follows from the construction of P ′ and the definition of ϕ.

Lemma 8.16. For any X-trimmed tree t, vα(t) = vα(t[(L1, ϕ) → a1, · · · , (Ln, ϕ) →
an]).

Proof. The proof uses (8.1) and (2.2) through Equation (8.4). We first prove a
preliminary result. Take u that is P -reachable from v and j ∈ {0, n}, then for

120

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

every t, t′ in Lj , we have uα(t) = uα(t′). In order to make the notations simpler
we suppose that a is of arity 3, since all technical difficulties arise for arity 3.
One can solve this case with greater arity via a repeated use of (8.1). We have
t = a(t1, t2, t3) and t′ = a(t′1, t

′
2, t

′
3), and since t, t′ ∈ Lj , for each ti there exists

a t′j that is v+-equivalent and for each t′j there exists a ti that is v+-equivalent.
Since our trees are unordered we only have two different cases, in the first one ti is
v+-equivalent to t′i for i = 1, 2, 3 and in the second one t1, t

′
1, t

′
2 are v+-equivalent

and t′3, t2, t3 are v+-equivalent. We first prove the result in the first case and then
reduce the second case to the first case using (8.1).

By definition uα(a ⋄ (t2, t3))) is P -reachable from v, we show that v is not
P -reachable from uα(a⋄ (t2, t3))). Indeed suppose that there exists x ∈ V P -valid
such that v = uα(a ⋄ (t2, t3)))x, by definition of u there exists y P -valid such that
u = vy therefore:

v = vyα(a ⋄ (t2, t3)))x

v = v(yα(a ⋄ (t2, t3)))x)ω

v = vα(a ⋄ (t2, t3)))(yα(a ⋄ (t2, t3)))x)ω using (2.2)

This means that v is P -reachable from vα(a ⋄ (t2, t3))), which implies that
a is not P -bad. By choice of a this is impossible. We conclude that v is not
P -reachable from uα(a ⋄ (t2, t3))), therefore since t1 and t′1 are v+-equivalent we
have uα(a(t1, t2, t3)) = uα(a(t′1, t2, t3)). After repeating this argument we get
uα(a(t1, t2, t3)) = uα(a(t′1, t

′
2, t

′
3)).

Now we turn to our second case, consider the tree s = a(t′1, t
′
3, t

′
3), t and s

verify the conditions of our first case, therefore we have uα(t) = uα(s). Now
consider the tree s′ = a(t′1, t

′
1, t

′
3) by Equation (8.1) we have α(s) = α(s′), also s′

and t′ are in the conditions of our first case, therefore we have uα(t′) = uα(s′).
Combining the three equalities we get uα(t) = uα(t).

We can now prove Lemma 8.16. We proceed by induction on the number of
labels a in t. If t contains no a then the result is clear as ϕ holds nowhere in t. Now
suppose that t contains an a and consider a node x of t where ϕ holds, x is labeled
with a. Let p be the context obtained by putting the port at x in t and s such that
t = ps. Take j ∈ {0, n} such that s ∈ Lj , by definition vα(p) is P -reachable from
v. Therefore by our preliminary result we have vα(p)α(s) = vα(p)α(aj). Take
t′ = paj , by construction t′ contains less labels a than t, therefore by induction we
have vα(t′) = vα(t′[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak]). By construction we have
(t′[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak] = (t[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak]. We get
that vα(t) = vα(t[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak]) which ends the proof.

121

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

Case 2: There is no P -bad label. In this case we show that over trees that
are neither leaves nor twigs LP

v,h is either empty or universal. This concludes this
case because thanks to Lemma 8.8 languages of leaves and languages of twigs are
easily expressed in EF + F−1.

Take two X-trimmed P -valid trees t, t′ that are not leaves nor twigs, we show
that vα(t) = vα(t′). Take g = α(t) and f = α(t′), since t, t′ are not leaves and are
X-trimmed by hypothesis on X for this case we have g, f ∈ HP

m. We first show
the following Lemma:

Lemma 8.17. There exists P -valid ug, uf ∈ V such that for all P -valid h ∈ H,
ugh = g and ufh = f .

Proof. This is a consequence of g, f being in HP
m, therefore we only do the proof

for g. Let {h1, ..., hn} be the set of P -valid types and take w ∈W2 that is P -Valid.
Consider the type ((w⋄h1)...(w⋄hn))ωhn. It is P -valid by construction and in Hm

because it is P -reachable from all P -valid types. Therefore there exists a P -valid
x ∈ V such that x((w ⋄ h1)...(w ⋄ hn))ωhn = g. Now consider the context type
ug = x((w ⋄ h1)...(w ⋄ hn))ωw ⋄ ((w ⋄ h1)...(w ⋄ hn))ωhn), consider some P -valid
h ∈ H, we have:

ugh = x((w ⋄ h1)...(w ⋄ hn))ω(w ⋄ h)((w ⋄ h1)...(w ⋄ hn))ωhn)

ugh = x((w ⋄ h1)...(w ⋄ hn))ωhn using DA

ugh = g

Now consider contexts such that ug and uf are their images:

ug = α((c1 ⋄ a1)...(cn ⋄ an))

uf = α((cn+1 ⋄ an+1)...(cm ⋄ am))

For the sake of simplifying the notations we supposed that all the labels on
the path from the root to the port were of arity 2, the proof however extends to
arbitrary rank in a straightforward way. Since there exists no P -bad label, there
exists a ∈ A0 such that v is P -reachable from vα(c1 ⋄ a).

Claim 8.18. For all i, v is P -reachable from vα(ci ⋄ a).

Proof. This is proved using Equation (8.3). Since there exists no P -bad label
there exists b ∈ A0 such that v is P -reachable from vα(ci ⋄ b)α(c1 ⋄ a). Therefore
there exists a P -valid x ∈ V such that:

122

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

v = vα(ci ⋄ b)α(c1 ⋄ a)x

v = v(α(ci ⋄ b)α(c1 ⋄ a)x)ω

v = vα(ci ⋄ a)α(c1 ⋄ b)(α(ci ⋄ b)α(c1 ⋄ a)x)ω using (8.3)

It follows that v is P -reachable from vα(ci ⋄ a).

We write:

u′g = α(c1 ⋄ a)...(cn ⋄ a)

u′f = α(cn+1 ⋄ a)...(cm ⋄ a)

Using Claim 8.18, it follows by definition of u′g and u′f that:

vu′gu
′
gu

′
fu

′
fx = v for some P -valid x ∈ V

v(u′gu
′
gu

′
fu

′
fx)ω = v

Hence by definition of ug:

v(u′gu
′
gu

′
fu

′
fx)ω(ugu

′
gufu

′
fx)ωf = vg

Notice that we have u′gu
′
g ⊣ ugu

′
g and u′fu

′
f ⊣ ufu

′
f , therefore using Equa-

tion (8.4):

vg = v(u′gu
′
gu

′
fu

′
fx)ωufu

′
fx(ugu

′
gufu

′
fx)ωf

vg = v(u′gu
′
gu

′
fu

′
fx)ωf by definition of uf

vg = vf

This completes the proof of Proposition 8.7.

123

CHAPTER 8. UTL OVER TREES OF BOUNDED RANK

124

Chapter 9

Boolean Combination of

Existential First Order

Formulas over Trees of

Bounded Rank

In this chapter we provide a decidable characterization for the class of languages
of trees of bounded rank definable by a boolean combination of Σ1(<v) formulas.

A formula of BC-Σ1(<v) formula is a boolean combination of formulas of the
form:

∃x1 . . . ∃xn ϕ

With ϕ a quantifier free FO(<v) formula. More details about BC-Σ1(<v) can
be found in Chapter 6.

Recall that in Chapters 2 and 6 we quoted decidable characterizations for the
corresponding classes in the settings of words and forests. In the word setting, the
result was using monoids:

Theorem 2.8. ([Sim75]) Fix L a regular word language. Then L is definable in
BC-Σ1(<) iff its syntactic monoid M verifies for all u, v ∈M :

(uv)ω = (uv)ωu = v(uv)ω (2.4)

The characterization on forests was using forests algebras together with the
piece relation, �, that we defined in Chapter 6:

Theorem 6.8. ([BSS08]) Fix L a regular forest language. Then L is definable
in BC-Σ1(<v) iff its syntactic forest algebra using monoids (H,V) verifies for all
u, v ∈ V such that v � u:

125

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

h+ g = g + h for h, g ∈ H (6.6)

uω = uωv = vuω (6.7)

Notice that in particular, Theorem 6.8 generalizes Theorem 2.8. However it
is impossible to express in BC-Σ1(<v) that a tree is of rank k for some fixed
integer k. Therefore Theorem 6.8 does not extend to trees of bounded rank in a
simple way. We will see that restricting the maximal number of children in the
trees actually leads to many problems.

Our characterization in the bounded rank setting contains an equation that
is similar to Equation (6.7). However, we will see that we need to add two new
equations. Note that these three equations use our adapted notion of the piece
relation we introduced in Chapter 7. The “only if” direction of the characterization
is proved using the same arguments as the proof of Theorem 6.8. The difficult
part of the proof is the “if” direction.

We make an important restriction in this chapter. Our characterization only
applies to trees of rank 2. It should be noted that in this case the extension
to arbitrary rank is not straightforward. In Section 9.4, we will point out the
difficulties tied to extending the proof to arbitrary rank k and discuss ideas for
overcoming these difficulties. From now on all the trees we consider are of rank 2.

The chapter is organized as follows: in Section 9.1 we provide a characteriza-
tion for BC-Σ1(<v) by means of 2-algebras, we also compare this characterization
with the one provided in [BSS08] for forests. Sections 9.2 and 9.3 are devoted to
the proof of the characterization. In the last Section, Section 9.4, we discuss the
case of trees of rank k for k greater than 2.

9.1 Characterization of BC-Σ1(<v) Over Trees of Rank 2

As in the case of unranked trees in [BSS08] our characterization of BC-Σ1(<v)
relies on the notion of pieces we already used in Chapter 7 for the characterization
of ∆2(<v). We recall this notion for trees of rank 2 below:

Pieces. Given an alphabet A of rank 2 and two trees s, t of rank 2 over A, we
say that t is a piece of s iff there exists an injective morphism of the nodes of t to
the nodes of s that preserves labels and the descendant relation, we write s � t
(see Figure 9.1).

Since contexts and 2-contexts are trees with special leaves we can extend this
definition to contexts and 2-contexts. Given two 2-contexts p, q, we say that q is
a piece of p iff seen as trees q � p (see Figure 9.2).

126

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

a

b

d d

e

b d

d d

c

d

t

�

a

d

e

d

d

d

s

Figure 9.1: Illustration of the Piece Relation on trees.

a

b

d d

e

b d

c

d

�

a

d

e c

d

Figure 9.2: Illustration of the Piece Relation on 2-contexts.

Given a 2-algebra (H,W1,W2) and a morphism α : A∆ → (H,W1,W2) we
extend the notion of piece to elements of this 2-algebra. Given h, g ∈ H we say
that h is a piece of g and write h � g iff there exists two trees t, s such that
α(t) = h, α(s) = g and t � s. Similarly, given u, v ∈Wi we say that u is a piece of
v and write u � v if and only if there exists two i-contexts p, q such that α(p) = u,
α(q) = v and p � q.

We are now ready to state the decidable characterization of BC-Σ1(<v) over
trees of rank 2. It uses the notion of 2-algebra. Recall that this notion is defined
in Chapter 5.

Theorem 9.1. Fix L a regular language of trees of rank 2. Then L is definable
in BC-Σ1(<v) iff its syntactic 2-algebra (H,V,W2) verifies for all u, u′, v ∈ V and
all w,w′ ∈W2:

uωv = uω = vuω v � u (9.1)

uωw = uωw′ ∃h ∈ H (w ⋄ h), (w′ ⋄ h) � u (9.2)

127

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

(w ⋄ h)uω = (w ⋄ h′)uω ∃w′ ∈W2 (w′ ⋄ h), (w′ ⋄ h) � u (9.3)

.

Notice that the first identity is the same as the one stated for the character-
ization of BC − Σ1(<v) over forest algebras in [BSS08] for unranked trees. The
only difference is in the definition of the piece relation which is more restrictive
in our setting. However, this small difference leads to many problems. In the
proof of Theorem 9.1, we often select a set of nodes in a tree and consider the
tree formed by these nodes as a piece of the initial tree. While in the unranked
setting this operation always yields a forest, in the setting of trees of rank 2, this
does not yield a tree in the general case (see Figure 9.3). Therefore we need to
be much more careful in the ranked setting when extracting pieces of the trees
we consider. In particular we say that a set of nodes of a tree (resp. context,
2-context) describes a valid piece of the same tree (resp. context, 2-context) iff
the restriction of the tree (resp. context, 2-context) to this set of nodes forms a
valid tree (resp. context, 2-context). Because of this restriction on the notion of
piece, we need to add Equations (9.2) and (9.3). notice they are consequences
of (6.7) in the unranked setting. Finally, notice that we are missing an equivalent
to Equation (6.6). This is because it is already assumed in k-algebra that the
trees are unordered.

a

b

d d

e

b d

d d

c

d d

e

d

d d

c

d

Arity 3

Not a tree

Figure 9.3: Set of nodes that do not describe a piece.

Notice that since the piece relation is computable (see Lemma 7.1), it follows
from Theorem 9.1 that definability in BC-Σ1(<v) is a decidable property of regular
languages of trees of rank 2:

Corollary 9.2. It is decidable whether a regular language of trees of rank 2 is
definable in BC-Σ1(<v).

128

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

There are two directions to Theorem 9.1. We first consider the simpler “only if”
direction. Equation 9.1 is identical to Equation (6.7) used in the corresponding
characterization in the unranked setting. And in the unranked setting Equa-
tions (9.2) and (9.3) are simple consequences of 9.1. Using the same type of
argument as in Chapter 7 for the characterization of ∆2(<v) in the bounded rank
setting (see Proposition 7.4), we can show that the three identities are a necessary
condition for being definable using a boolean combination of Σ1(<v) formulas:

Proposition 9.3. Let L be a regular tree language, if L is definable using a
boolean combination of Σ1(<v) formulas, then its syntactic 2-algebra verifies Equa-
tion (9.1), Equation (9.2) and Equation (9.3).

Proof. It was proved in [BSS08] that Equation (9.1) is necessary for being definable
in BC-Σ1(<v) in the unranked setting. Any tree of rank 2 can be viewed as an
unranked tree and the piece relation on trees of bounded rank is a restriction of
the piece relation for unranked trees. Therefore this is also true for trees of rank
2. The argument is identical for Equations (9.2) and (9.3).

The other direction is more difficult. We devote Section 9.2 and Section 9.3
to its proof. We prove that if the syntactic 2-algebra of a language verifies Equa-
tions (9.1),(9.2) and (9.3), then this language is definable using a boolean combina-
tion of Σ1(<v) formulas. As for the unranked setting of [BSS08], this is done using
an alternate definition of languages definable by boolean combination of Σ1(<v)
formulas, piecewise testable languages. We first give the definitions of piecewise
testable languages in Section 9.2 and prove that they are exactly the languages
definable by boolean combination of Σ1(<v) formulas. Then, in Section 9.3, we
use piecewise testable languages to prove Theorem 9.1.

9.2 Piecewise Testable Languages

A language is piecewise testable if its membership only depends on the pieces
contained in the trees. More formally, a tree language L over A is piecewise
testable iff if it can be defined as a boolean combination of languages of the form
{t | s � t} for some tree s.

This definition is identical to the one given in [BSS08], however, the equal-
ity between piecewise testable languages and languages definable by a boolean
combination of Σ1(<v) formulas is a little more tedious in our setting. Indeed
it remains simple to see that one can describe a piece using a Σ1(<v) formula.
However, the set of nodes selected by a Σ1(<v) formula does not always describes
a valid piece in the ranked setting. We solve this problem using a disjunction over
all the smallest trees verifying this formula.

129

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

Proposition 9.4. A tree language L over A is piecewise testable iff if it is defin-
able by a boolean combination of Σ1(<v) formulas.

Proof. Given a tree s, we can define the language {t | s � t} with a Σ1(<v)
formula. Therefore, if a language is piecewise testable, it is definable by a boolean
combination of Σ1(<v) formulas.

For the other direction, we prove than any Σ1(<v) formula is definable by a
boolean combination of languages of the form {t | s � t}. Take a Σ1(<v) formula
ϕ. It is of the form ∃x1 · · · ∃xnΨ(x1, . . . , xn) and let L be the language defined by
ϕ. Consider the set of trees of depth at most n, which satisfy ϕ, we write this set
{t1, . . . , tm}. We prove that L = ∪1≤i≤m{t | ti � t}, which ends the proof.

Take t ∈ ∪1≤i≤m{t | ti � t}, there exists i such that ti � t. There exists
an an injective mapping f of the nodes of ti to the nodes of t that preserves the
descendant relation and labels. By definition of ti there exists positions x1, . . . , xn
in ti such that ti |= ϕ(x1, . . . , xn). It follows that t |= ϕ(f(x1), . . . , f(xn)). We
have t ∈ L.

Take t ∈ L, then there exists positions x1, . . . , xn in t such that t |= ϕ(x1, . . . , xn).
Consider t′ the smallest piece of t such that the corresponding mapping f reaches
all positions x1, . . . , xn in t. Since we took the smallest piece we have t′ of
depth smaller than n, therefore there exists i such that t′ = ti and we have
t ∈ {t | ti � t}.

9.3 The Identities Are Sufficient

Fix a language L such that its syntactic 2-algebra verifies (9.1),(9.2) and (9.3).
We show that L is piecewise testable. Using Proposition 9.4 this ends the proof
of Theorem 9.1. We call α the syntactic morphism from L into its syntactic
2-algebra.

This result is a consequence of two properties that we state and prove below.
Given two trees t and t′ and an integer n we say that t ∼=n t

′ if and only if t and
t′ have the same pieces of size n. ∼=n is an equivalence relation and by definition
each class is piecewise testable. Any piecewise testable language is an union of
classes of ∼=n.

The first property is the following lemma taken from [BSS08]. The result
remains true in our setting since it only relies on a pumping argument.

Lemma 9.5. ([BSS08]) Let n ∈ N, there exists k ∈ N such that for any two trees
t, t′ such that t ∼=k t

′, there exists a tree s which verifies:

s � t s � t′ t ∼=n s ∼=n t
′

130

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

We turn to the second property. It corresponds to a similar property in [BSS08],
however the restriction on pieces in our setting makes it more technical.

Proposition 9.6. There exists an integer n ∈ N such that (see Figure 9.4 for the
second and third items):

1. For any context p, any tree t and any b ∈ A1:

p · b · t ∼=n p · t =⇒ α(p · b · t) = α(p · t)

2. For any context p, any tree t, any a ∈ A2 and any c ∈ A0:

p · a · (t, c) ∼=n p · t =⇒ α(p · a · (t, c)) = α(p · t)

3. For any for any context p, any two trees t1, t2, any a, a′ ∈ A2 and any
c ∈ A0:

p·a′ ·(a·(t1, t2), c) ∼=n p·a
′ ·(t1, t2) =⇒ α(p·a′ ·(a·(t1, t2), c)) = α(p·a′ ·(t1, t2))

Case 2)

p

a

c
t

∼=n

p

t

Case 3)

p

a′

ca

t1 t2

∼=n

p

a′

t1 t2

Figure 9.4: Illustration of the second and third properties in Proposition 9.6

Before proving Proposition 9.6, we show how to use it with Lemma 9.5 in order
to end the proof of Theorem 9.1. Let n be as defined in Proposition 9.6. From

131

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

this n we get an integer k as defined in Lemma 9.5. We show that for any two
trees t, t′ we have t ∼=k t

′ ⇒ α(t) = α(t′). It follows that L is a union of classes
of ∼=k and therefore is piecewise testable, which ends the proof. Indeed, take two
trees t, t′ such that t ∼=n t′. From Lemma 9.5 we get a tree s such that s � t,
s � t′ and t ∼=n s ∼=n t

′. We conclude by showing the following lemma:

Lemma 9.7. α(t) = α(s) and α(t′) = α(s)

Proof. We only do the proof for α(t) = α(s), the other item can be proved iden-
tically. We know that s is a piece of t therefore there exists a injective mapping
from the nodes of s to the nodes of t that preserves labels and the descendant
order. We say that a node x of t is relevant iff there exists a node y of s such that
f(y) = x. We proceed by induction on the number of non relevant nodes in t. If
all nodes of t are relevant then s = t and the result follows. Otherwise we begin
by proving two subresults that we will reuse several times in the proof:

Claim 9.8. If t contains a non relevant inner node x of arity 1, we have α(t) =
α(s).

Proof. We use the first item of Proposition 9.6. Let b be the label of x and p, t′ be
the context and tree such that t = p · b · t′. Let t′′ = p · t′, since x is not relevant,
we have s � t′′ � t. Therefore since s ∼=n t, we have t′′ ∼=n s. Also t′′ contains less
relevant nodes than t, it follows by induction that α(t′′) = α(s). Finally we have
t′′ ∼=n t and t = pbt′ and t′′ = pt′, it follows from the first item of Proposition 9.6
that α(t′′) = α(t) and finally α(s) = α(t).

Claim 9.9. If t contains a non relevant inner node x of arity 2, that has a non
relevant child x′ that is a leaf, we have α(t) = α(s).

Proof. We use the second item of Proposition 9.6. Let a be the label of x and c be
the label of x′. Let p, t′ such that t = p ·a · (t′, c). Let t′′ = p · t′, since x and x′ are
not relevant, we have s � t′′ � t. Therefore since s ∼=n t, we have t′′ ∼=n s. Also
t′′ contains less relevant nodes than t, it follows by induction that α(t′′) = α(s).
Finally we have t′′ ∼=n t and t = pa(t′, c) and t′′ = pt′, it follows from the second
item of Proposition 9.6 that α(t′′) = α(t) and finally α(s) = α(t).

Given this result we conclude the proof by distinguishing three cases. First
we treat the case where s or t is a leaf. In a second case we treat the case where
t has subtree that is not a leaf and contains only non relevant nodes. Finally we
suppose that non of the first two cases hold.

Case 1: Either s or t is a leaf. Since we have t ∼=n s, both s and t are leaves.
We get that s = t and alpha(s) = α(t).

132

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

Case 2: There exists a subtree of t that is not a leaf and contains only
non relevant nodes. In this case there exists a position x in t such that x is
not relevant and all its descendants are leaves that are not relevant. Depending
on the arity of x we are either in the setting of Claim 9.8 or Claim 9.9.

Case 3: We are neither in Case 1 nor Case 2. We know that s and t are
not leaves and that positions x of t such that all nodes of the subtree at position
x are not relevant are leaves. Since s is not a leaf t contains at least one relevant
inner node. Also, since s 6= t and s is a piece of t, t contains at least one non
relevant node. We show that we can suppose that this node is an inner node.
Indeed it is impossible for all the non relevant nodes of t to be leaves since s is a
valid piece of t. Let y be an inner node of t such that:

• y is relevant and has an inner descendant node that is non relevant.

• No descendant of y verifies that property.

By choice of y, it has a non relevant child x that is an inner node. If x is of
arity 1 we are in the setting of Claim 9.8. Suppose now that x is of arity 2. Since
we are not in the previous case, we know that x contain relevant descendants
(otherwise x would be a leaf). If x has a child whose subtree contains no relevant
nodes then by hypothesis this child is a leaf and we are in the setting of Claim 9.9.
Therefore, we suppose that both children of x contain relevant nodes. In this case
we claim that y is of arity 2 and has a child y′ whose subtree contains no relevant
nodes and is therefore a leaf. Indeed x is non relevant and has two children that
are relevant. Since y is relevant, the only way for s to be a valid piece of t is for
the tree rooted at the sibling of x to be completely non relevant so there are two
ports available below y in order to plug the two children of x, otherwise y would
have at least three children in the piece (see Figure 9.5). We call a′ the label of
y, a the label of x and c the label of y′. We have t = p · a′ · (a · (t1, t2), c), let
t′′ = p · a′ · (t1, t2). Since x and y′ are not relevant, we have s � t′′ � t. Therefore
since s ∼=n t, we have t′′ ∼=n s. Also t′′ contains less relevant nodes than t, it follows
by induction that α(t′′) = α(s). Finally we have t′′ ∼=n t and t = p ·a′ ·(a ·(t1, t2), c)
and t′′ = p · a′ · (t1, t2)t = pa(t′, c), it follows from the item case of Proposition 9.6
that α(t′′) = α(t) and finally α(s) = α(t).

It remains to prove Proposition 9.6. There are three items to prove. Notice
that the first item is similar to the corresponding proposition in [BSS08] in the
unranked setting. The second and third items are new. The three proofs follow
the same proof structure as in the unranked setting. The first item shares the

133

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

p

a′

a

{ {

Contain relevant
nodes

Is
p
lu

gg
ed

y

x

Figure 9.5: Third Case of Lemma 9.7

most similar proof. The most significant difference with the unranked setting is
that we have to do a lot of technical work to ensure that we work with valid pieces.
The second and third items need more work. We give a complete proof for the
second item and then explain how to adapt the proof to the first and third items.

9.3.1 Second Item of Proposition 9.6

The proof structure is similar to the one used for the first item in the unranked
setting. However we must be very careful to ensure that we consider only valid
pieces at each step of the proof.

Fix p a context, t a tree, a ∈ A2 and c ∈ A0 as described in the second item
of Proposition 9.6. We write α(t) = h and v = α(p). We write:

s = p · a · (t, c)

s′ = p · t

Our goal is to prove that if s ∼=n s
′ then α(s) = α(s′). For that we need to

give a few definitions:

Good Decomposition. Consider some tree r and X a set of nodes of r, if X
describes a valid piece of r we write r[X] that piece. In that case, we say that
x, x′ ∈ X is a good decomposition of r if:

• x has label a.

• In r[X], x′ is a child of x and is a leaf labeled with c.

134

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

• In r[X], the subtree at the other child of x has type h.

• In r[X], the context obtained by putting the port at x has type v.

Notice that this implies that if x, x′ ∈ X is a good decomposition of r then
α(r[X]) = α(s) and α(r[X − {x, x′}]) = α(s′).

Fractals A fractal is a bested sequence of good decompositions. More formally,
consider a sequence of good decompositions x1, x

′
1 ∈ X1 · · ·xl, x

′
l ∈ Xl. We say

the sequence x1, x
′
1 ∈ X1 · · ·xl, x

′
l ∈ Xl is a fractal of length l iff:

Xi ⊆ Xi+1 − {xi+1, x
′
i+1}

We call a subfractal a subsequence of a fractal. Notice that a subfractal is also a
fractal.

We use the notion of fractal to conclude the proof of this case of Proposition 9.6.
First we show that by choosing a big enough n ∈ N, s ∼=n t entails the existence
of a fractal of any desired length. We then show that if there exists a big enough
fractal then α(t) = α(s). By combining the two results we conclude the proof of
the second item of Proposition 9.6.

Lemma 9.10. ∀l ∈ N, there exists n ∈ N such that if s′ ∼=n s then there exists a
fractal of length l inside s.

Proof. The proof is similar to the one used in the unranked setting. We proceed
by induction on l, by definition of s there exists a fractal of length 1 in s.

Assume now that there exists m such that if s′ ∼=m s then there exists a
fractal of length l inside s. Using a pumping argument we can show that there
exists an integer η such that if a tree T contains a fractal of length l then there
exists a piece of that tree of size η that also contains a fractal of length l. We
choose n = max(η,m), suppose that s′ ∼=n s, it follows from n ≥ m and from the
induction hypothesis that s contains a fractal of length l. By choice of η it follows
that there is a piece of s size η that contains a fractal of length l. By choice of n
this piece can be found in s′. By definition of s we can complete this fractal into
a fractal of length l + 1 in s by fixing Xl+1 as the set of all node of s.

Proposition 9.11. There exist an integer l such that if there exists a tree r
containing a fractal of length l we have:

α(t) = α(s)

135

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

Combining Proposition 9.11 and Lemma 9.10 we get that there exists an integer
n such that if s ∼=n t then α(s) = α(t) which concludes the proof of the second
item of Proposition 9.6.

The rest of this section is devoted to the proof of Proposition 9.11. We pro-
ceed in a way similar to the one followed in the unranked case. We refine the
notion of fractal, first with the notion of tame fractal and then with the notion
of monochromatic tame fractal. We then prove that the existence of a big enough
fractal entail the existence of a tame fractal and subsequently a monochromatic
tame fractal of any desired length. Finally we prove that the existence of a big
enough monochromatic tame fractal implies that α(t) = α(s) which concludes the
proof of Proposition 9.11. The main differences with the unranked case occur
in the transition from fractals to tame fractals and the usage of monochromatic
tame fractals to conclude. The transition from tame fractal to monochromatic
tame fractals is identical to the unranked setting.

Tame Fractals The definition of tame fractals is more tedious than in the
unranked setting. First in our setting we have two important nodes, x, x′, to
handle whereas there was only one in the unranked setting. Also, in our setting
we need to add one extra property to the definition. This property is designed
to ensure that the successive subsets of nodes given by the fractal describes valid
pieces of the contexts we define.

Let r be a tree and consider x1 ∈ X1 · · ·xn ∈ Xn a fractal of length n inside
r. There are three mutually exclusive types of tame fractals:

Bottom-up tame fractal We say this fractal is a bottom-up tame fractal iff
there exists n+ 1 contexts q, q1, . . . , qn and a tree r′ such that:

• r = qqn · · · q1r
′.

• For all i, xi, x
′
i are in qi.

• For i < i′, qi ∩Xi′ is a valid piece of qi.

Top-down tame fractal We say this fractal is a top-down tame fractal iff
there exists n+ 1 contexts q, q1, . . . , qn and a tree r′ such that:

• r = qq1 · · · qn.

• For all i, xi, x
′
i are in qi.

• For i < i′, qi ∩Xi′ is a valid piece of qi.

136

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

Scattered top-down tame fractal We say this fractal is a scattered top-down
tame fractal iff there exists 2n + 2 contexts q, q′, q1, . . . , qn, q̃1, . . . , q̃n and a tree
r′ such that:

• r = qq1 · · · qnq
′q̃n · · · q̃1r

′.

• For all i, xi is in qi.

• For all i, x′i is in q̃i.

• For i < i′, qi ∩Xi′ is a valid piece of qi and q̃i ∩Xi′ is a valid piece of q̃i.

A fractal is tame iff it is either a bottom-up tame fractal, a top-down tame
fractal or a scattered top-down tame fractal. The three categories of tame fractals
are depicted in Figure 9.6. Notice that the last item of all categories allows us to
write qi[Xi′] and q̃i[Xi′] for i < i′.

q

q1

qn

q′

xi}
q̃n

q̃1

r′

x′i}
Scattered top-down Fractal

q

q1

qn

r′

xi, x
′
i}

Top-down Fractal

q

qn

q1

r′

xi, x
′
i}

Bottom-up Fractal

Figure 9.6: Tame Fractals

We call skeleton of a tame fractal the sequence of nodes that goes from the
root of r to the root of r′.

Lemma 9.12. ∀l ∈ N, ∃n ∈ N such that given a tree r, if r contains a fractal of
length n then r contains a tame fractal of length l.

Proof. The proof of this result is more tedious than in the unranked setting.
Indeed in our setting we have to manipulate more nodes and we have to guarantee

137

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

the last condition of tameness which did no exist in the unranked setting. We use
the following claim taken from [BSS08]:

Claim 9.13. Let m ∈ N. There exists an integer f(m) such that for every tree r,
and every set Y of at least f(m) nodes there is a decomposition r = qq1 · · · qmr

′

where each qi contains at least a node of Y .

Proof. The proof is similar to the one in the unranked setting. However, in our
setting contexts that have the port in the root are not allowed. Because of this
we need to use the hypothesis that the rank of the trees is bounded with rank k
in order to conclude.

Let Z be the set of nodes in r which are closest common ancestors of two
distinct nodes in Y . We call the degree of z ∈ Z the number of nodes z′ ∈ Z ∪ Y
such that all nodes in the path between z and z′ are outside Z. We show that
the degree of a node z ∈ Z is bounded by k. Indeed, Z contains all the nodes
that are closest common ancestors of two nodes of Z. Therefore for each child of
z there can be at most one descendant z′ of this child such that all nodes in the
path between z and z′ are outside Z. Since z is at most of arity k, it follows that
the degree of z is bounded by k.

Let m′ = max(k + 1,m), we choose f(m) = (m′)m
′
. Two cases may hold,

either there exists a node in Z ∪ Y with degree m′, or Z ∪ Y contains a chain of
length m′. Since the first case is impossible, the second case holds and gives the
decomposition.

We use this claim to finish the proof of Lemma 9.12. For any integer m we
write g(m) = f((3m)2) with f as defined in Claim 9.13 (notice that by definition
f(m) > m). We choose n = g(g(l + 1)), let y1, y

′
1 ∈ Y1 · · · yn, y

′
n ∈ Yn be a fractal

of length n. We show that we can extract a tame subfractal of length l. We
construct this subfractal in two steps. In the first step, we use Claim 9.13 to
construct a subfractal that admits a monotone decomposition satisfying the first
item of tameness. Given this decomposition we then get a skeleton that we use to
construct our final decomposition. In the second step we extract a last subfractal
and construct the associated decomposition.

We use Claim 9.13 with Y the set of nodes yi. We get a decomposition of length
m = (3f(l+ 1))2 such that each context contains a node yi for some i. While this
decomposition might not be monotone we can extract a monotone subsequence of
length 3f(l + 1). We get a new fractal x1, x

′
1 ∈ X1 · · ·xmx

′
m ∈ Xm along with a

decomposition r = qq1q2 · · · qmr
′ or r = qqmqm−1 · · · q1r

′ such that for each i, xi is
in qi. This decomposition defines a skeleton, which is the sequence of nodes going
from the root of r to the root of r′.

We finish the proof by distinguishing two cases depending on whether our
subfractal is bottom-up or top-down.

138

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

Case 1: The Fractal is Bottom-up. For each good decomposition in the
fractal, we define a special node that we call x′′i . For every i, x′′i is xi if xi is on
the skeleton. Otherwise x′′i is the closest ancestor of xi on the skeleton that is in
Xi+1 (x′′i exists because both xi and xi+1 are in Xi+1 and their closest common
ancestor must be by construction on the skeleton). Notice that since by hypothesis
our extracted fractal is bottom-up, x′′i is either an ancestor of x′′i+1 or equal to
x′′i+1.

We want to build a new decomposition r = ppm · · · p1r
′′ that verifies all the

conditions of a bottom-up tame fractal. The idea is that we want to to choose
x′′i as root of the pi for all i. The problem is that we might have x′′i = x′′i+1 for
some i. We show that we can extract a subfractal of big enough length such that
it does not happen:

Claim 9.14. We can extract a subfractal of length f(l + 1) such that for all i,
x′′i 6= x′′i+1.

Proof. We show that for all i it is impossible that x′′i = x′′i+1 = x′′i+2. It then
follows that is sufficient to extract a subfractal by keeping a node every two nodes
xi. Since the original fractal was of length 3f(l + 1) we get a fractal of length
greater than f(l + 1) which satisfies the desired property.

Suppose that for some i, x′′i = x′′i+1 = x′′i+2. Let x′′ be this node. Since the
fractal is bottom-up this puts x′′ in or above qi+2. Therefore since by hypothesis,
xi ∈ qi and xi+1 ∈ qi+1, we have xi 6= x′′i and xi+1 6= x′′i+1, by definition it
follows that neither xi nor xi+1 are on the skeleton. Also we have x′′i+2 = x′′i ∈
Xi+1 therefore x′′i+2 6= xi+2 and xi+2 is not on the skeleton either (we depict this
situation in Figure 9.7). By definition there is no node between xi+1 and x′′ that
is in Xi+2 and on the skeleton. Therefore, x′′ is the first common ancestor of xi
and xi+1 in r[Xi+2]. Since it is also an ancestor of the node xi+2, this gives x′′

arity 3 which is impossible.

Since f(l + 1) > l, it follows from Claim 9.14 that we have a subfractal
z1, z

′
1 ∈ Z1 · · · zlz

′
l ∈ Zl of lengthl such that for all i, z′′i 6= z′′i+1. We construct

a decomposition r = ppl · · · p1r
′′ as follows: for all i we choose x′′i as the root of

pi. This fixes the port of pi as x′′i−1 (we choose the port of p1 as some leaf below
z1 that is in Z2 and different of z′1).

By construction we have for all i zi ∈ pi. Also the port of pi is in Zi therefore
it cannot be between zi and z′i which are parent and child in Zi. Therefore for all
i z′i ∈ pi. Finally, since both the root and the port of pi are in Zi+1, for all i′ > i,
Zi′ describes a valid piece of pi. Therefore the fractal is a bottom-up tame fractal
of length l and we are done.

139

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

xi+2

xi+1

xi

qi+2

qi+1

qi

x′′

In Xi+2

Figure 9.7: Illustration of Case 1

Case 2: The Fractal is Top-down As we did in the previous case, for each
good decomposition in the fractal, we define a special node that we also call x′′i .
However the definition is slightly different from the one of the previous case. For
every i, x′′i is xi if xi is on the skeleton. Otherwise x′′i is the closest ancestor of xi
on the skeleton that is in Xi (x′′i exists because both xi and xi−1 are in Xi and
their closest common ancestor is on the skeleton). Notice that since by hypothesis
our extracted fractal is top-down, x′′i is either an descendant of x′′i+1 or equal to
x′′i+1.

We want to build a new decomposition r = pp1 · · · pmr
′′ that verifies either the

conditions of a top-down tame fractal or the conditions of a scattered top-down
tame fractal. As in the previous case, the idea is that we want to to choose x′′i as
root of the pi for all i. Again the problem is that we might have x′′i = x′′i+1 for
some i. We solve this with a result similar to Claim 9.14:

Claim 9.15. We can extract a subfractal of length f(l + 1) such that for all i,
x′′i 6= x′′i+1.

Proof. We show that for all i it is impossible that x′′i = x′′i+1 = x′′i+2 = x′′i+3. It
then follows that it is sufficient to extract a subfractal by keeping a node xi out
of every three nodes. Since the original fractal was of length 3f(l + 1) we get a
fractal of length greater than f(l + 1) which satisfies the desired property.

Suppose that for some i, x′′i = x′′i+1 = x′′i+2 = x′′i+3. Let x′′ be that node. As
we did for Claim 9.14 we show that this implies arity 3 for x′′, which is impossible.
Since the fractal is top-down x′′ is in or above qi. Therefore since by hypothesis,
xi+3 ∈ qi+3,xi+2 ∈ qi+2 and xi+1 ∈ qi+1, xi+3,xi+2 and xi+1 are not on the
skeleton. Since x′′ is is the first ancestor of xi+3 that is on the skeleton, it follows
that xi+3,xi+2 and xi+1 must be in three separate children of x′′ in r[Xi+3] (see
Figure 9.8). This gives x′′ arity 3 which is impossible.

140

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

xi+1

xi+2

xi+3

qi

qi+1

qi+2

qi+3

x′′

In Xi+3

Figure 9.8: Illustration of Case 2

It follows from Claim 9.14 that we have a subfractal z1, z
′
1 ∈ Z1 · · · zf(l+1)z

′
f(l+1) ∈

Zf(l+1) of length f(l+ 1) such that for all i, z′′i 6= z′′i+1. We construct a decompo-
sition r = pp1 · · · pf(l+1)r

′′ as follows: for all i we choose x′′i as the root of pi. This
fixes the port of pi as x′′i+1 (we choose the port of pf(l+1) as some arbitrary leaf
below zf(l+1)).

By construction we have for all i zi ∈ pi and since both the root and the port
of pi are in Zi+1, for all i′ > i, Zi′ describes a valid piece of pi. The problem is
that z′i might not be in pi for all i.

We finish the proof by ordering the nodes z′i. Since we have a fractal of length
f(l + 1). We can redo the whole process with the nodes z′i replacing the nodes zi
and get a new subfractal of length l+1. This fractal z1, z

′
1 ∈ Z1 · · · zl+1z

′
l+1 ∈ Zl+1

is either top-down with a decomposition r = p̃p̃1 · · · p̃l+1r
′′′ or bottom-up with a

decomposition r = p̃p̃l+1 · · · p̃1r
′′′. And for all i, z′i ∈ p̃i and for all i′ > i Zi′

describes a valid piece of p̃i. We now distinguish two subcases depending on
whether this new subfractal is bottom-up or top-down.

Subcase 2.a: The Subfractal is Top-down. We show that the fractal is
actually a top-down tame fractal. Indeed by construction, for all i the root of p̃i is
in Zi (see the construction of x′′i in Case 2). Therefore since in r[Zi] z

′
i is a child of

zi, this root cannot be between them. It follows that for all i zi in p̃i. The fractal
is a top-down tame fractal of length l + 1 which means that we have a top-down
subfractal of length l.

141

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

Subcase 2.b: The Subfractal is Bottom-up. We show that the fractal is
actually a scattered top-down tame fractal. Recall that we still have our initial
top-down decomposition r = pp1 · · · pl+1r

′′ such that for all i, zi ∈ pi and for all
i′ > i, Zi′ describes a valid piece of pi. We show that the root of pl+1 is an ancestor
of the port of p̃l+1. Indeed z′l+1 ∈ p̃l+1 is a descendant of zl+1 ∈ pl+1.

Now fix p′ as the context with the same root as pl+1 and the same port as p̃l+1.
By construction we get r = pp1 · · · plp

′p̃l · · · p̃1r
′′′. We have a fractal of length l

such that for all i, zi ∈ pi and z′i ∈ p̃i and for i < i′, Zi′ describes a valid piece of
pi and p̃i. The fractal is a scattered top-down tame fractal of length l.

This finishes the proof of Lemma 9.12.

Monochromatic Tame Fractals The definition of monochromatic tame frac-
tals is similar to the one given in the unranked setting. However we need to
modify it slightly so that it corresponds to our notion of tame fractal. Fix r
a tree and consider x1, x

′
1 ∈ X1 · · ·xn, x

′
n ∈ Xn a tame fractal inside r. Let

q, q1, . . . , qn, q
′, q̃1, . . . , q̃n and r′ be as in the definition of tame fractals. We con-

sider two cases depending on the nature of the tame fractal. If the fractal is
bottom-up, for any l1, l2, l3 such that 0 ≤ l1 < l2 < l3 ≤ l + 1 we write:

ul1,l2,l3 = α(ql2 · · · ql1+1) for l3 = n+ 1
ul1,l2,l3 = α((ql2 · · · ql1+1)[X

l3]) for l3 ≤ n

If the fractal is top-down, for any l1, l2, l3 such that 0 ≤ l1 < l2 < l3 ≤ n + 1
we write:

ul1,l2,l3 = α(ql1+1 · · · ql2) for l3 = n+ 1
ul1,l2,l3 = α((ql1+1 · · · ql2)[X l3]) for l3 ≤ n
ũl1,l2,l3 = α(q̃l2 · · · q̃l1+1) for l3 = n+ 1
ũl1,l2,l3 = α((q̃l2 · · · q̃l1+1)[X

l3]) for l3 ≤ n

Notice that these are well defined because of the last hypothesis in the defini-
tion of tame fractals (For i′ > i Xi′ describes a valid piece of qi, q̃i). Also notice
that the ũl1,l2,l3 are only defined in the case of a scattered top-down tame fractal.

We say the tame fractal is monochromatic iff there exists u, ũ ∈ V such that
for all 0 ≤ l1 < l2 < l3 ≤ l + 1 and all 0 ≤ l′1 < l′2 < l′3 ≤ l + 1:

ul1,l2,l3 = ul′
1
,l′
2
,l′
3

= u

ũl1,l2,l3 = ũl′
1
,l′
2
,l′
3

= ũ

Lemma 9.16. ∀l ∈ N, ∃n ∈ N such that for all trees r, if r contains a tame
fractal of length n then r contains a monochromatic tame fractal of length l.

142

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

Proof. This is proved using a combinatorial argument using Ramsey Theorem.
The proof is identical to the one given in [BSS08].

Combining Lemma 9.12 and Lemma 9.16 we get that the existence of a big
enough fractal implies the existence of a monochromatic tame fractal of any desired
length. Using this result we conclude the proof of Proposition 9.11 by showing that
the existence of a big enough monochromatic fractal implies that α(s′) = α(s).
Recall that ω is the number such that for any v ∈ V in the syntactic k-algebra of
l, vω is idempotent.

Lemma 9.17. If there exists a monochromatic tame fractal of length l = ω + 1,
then α(s) = α(s′).

Proof. Consider r a tree such that there exists a monochromatic tame fractal
x1 ∈ X1 · · ·xl ∈ Xl in r. We consider three cases depending on the type of tame
fractal.

Case1: Bottom-up tame fractal. Consider r = qqlql−1 · · · q1r
′, the decompo-

sition of the fractal. Since xl ∈ Xl is a good decomposition, by definition of s we
have:

α(s) = α(r[Xl])

α(s) = α((qql)[Xl]) · ul−2,l−1,l · · ·u0,1,l · α(r′[Xl])

α(s) = α((qql)[Xl]) · u
ω · α(r′[Xl]) by monochromaticity and by choice of l

Also by definition of s′ we have (since xl, x
′
l ∈ ql):

α(s′) = α(r[Xl − {xl, x
′
l}])

α(s′) = α((qql)[Xl − {xl, x
′
l}]) · ul−2,l−1,l · · ·u0,1,l · α(r′[Xl])

α(s′) = α((qql)[Xl − {xl, x
′
l}]) · uω · α(r′[Xl]) by monochromaticity and by choice of l

By monochromaticity, we know that α(ql) = u. Therefore if Xl describes a
valid piece of ql we get α(ql[Xl]) � u and α(ql[Xl − {xl, x

′
l}]) � u. We then

conclude using Equation (9.1) that:

α(s) = α(s′) = α(q[Xl])u
ωα(r′[Xl])

Now suppose that Xl do not describe a valid piece of ql. We depict this
situation in 9.9.

If xl ∈ p then so is x′l. Therefore we have:

143

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

uω

r′[Xl]

p′

p t′

N
o
d

es
of
q

N
o
d

es
of
q l

(qq
l)[X

l]

xl

Figure 9.9: Xl does not describe a valid piece of ql in Case 1 of Lemma 9.17

α(s) = (α(p′) ⋄ α(t′)) · α(p) · uω · α(r′[Xl])

α(s′) = (α(p′) ⋄ α(t′)) · α(p[Xl − {xl, x
′
l}]) · uω · α(r′[Xl])

By definition α(p) � α(ql) = u. Using Equation (9.1) we get α(s′) = α(s).
If xl is in t′ then so is x′l. Therefore we have:

α(s) = (α(p′) ⋄ α(t′)) · α(p) · uω · α(r′[Xl])

α(s′) = (α(p′) ⋄ α(t′[Xl − {xl, x
′
l}])) · α(p) · uω · α(r′[Xl])

By definition there exists some w ∈ W2 such that (w ⋄ α(t′)) � α(ql) = u.
Therefore Equation (9.3) yields α(s′) = α(s). This concludes this case.

Case 2: Top-down tame fractal. Consider r = qq1q2 · · · qlr
′, the decomposi-

tion of the fractal. Since xl, x
′
l ∈ Xl is a good decomposition, by choice of l and

by monochromaticity, we get:

α(s) = α(r[Xl]) = α(q[Xl]) · u
ω · α((qlr

′)[X l])
α(s′) = α(r[Xl − {xl, x

′
l}]) = α(q[Xl]) · u

ω · α((qlr
′)[Xl − {xl, x

′
l}])

As in the previous case, we assume first that if Xl describes a valid piece
of ql. By monochromaticity we have α(ql) = u. Therefore α(ql[Xl]) � u and
α(ql[Xl − {xl, x

′
l}]) � u. We then conclude using Equation (9.1) that:

α(s) = α(s′) = α(q[Xl])u
ωα(r′[Xl])

144

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

q[Xl]
uω

p

t1 t2
N

o
d

es
of
q l

N
o
d

es
of
r′

(q
l r

′)[X
l]

Figure 9.10: Xl does not describe a valid piece of ql in Case 2 of Lemma 9.17

If Xl does not describe a valid piece of ql we depict the situation in Figure 9.10.

We have:

α(s) = α(q[Xl]) · u
ω · α(p)[X l]) · (α(t1[Xl]), α(t2[Xl]))

α(s′) = α(q[Xl]) · u
ω · α(p)[Xl − {xl, x

′
l}]) · (α(t1[Xl]), α(t2[Xl]))

By definition there exists some h ∈ H such that (α(p) ⋄ h) � α(ql) = u.
Therefore Equation (9.2) yields α(s) = α(s′). This concludes this case.

Case 3: Scattered top-down tame fractal. Consider r = qq1q2 · · · qlq
′q̃l . . . q̃1r

′,
the decomposition of the fractal. We have:

α(s) = α(q[Xl]) · u
ω · α((qlq

′q̃l)[X
l]) · ũω · α(r′[Xl])

α(s′) = α(q[Xl]) · u
ω · α((qlq

′q̃l)[Xl − {xl, x
′
l}]) · ũω · α(r′[Xl])

This is done using the same arguments as Case 1 for the bottom-part and the
same arguments as Case 2 for the top part. We conclude that α(s′) = α(s).

9.3.2 Third Item of Proposition 9.6

The proof is very close to the one we provided for the second case of Proposi-
tion 9.6. The difference is contained in the new definitions for good decompo-
sitions and tame fractals. The sequence of Lemmas is identical and the proofs
are also done using the same arguments. In this section, we provide the adapted
definition for the notion of fractal.

145

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

Fix p a context, t1, t2 two trees, a, a′ ∈ A2 and c ∈ A0 as described in the third
item of Proposition 9.6. We write α(t1) = h, α(t2) = g and v = α(p). We write:

s = p · a′ · (a · (t1, t2), c)

s′ = p · a′ · (t1, t2)

Good Decomposition We define a new notion of good decomposition that
corresponds to this case. Consider some tree r and X a set of nodes of r, if X
describes a valid piece of r we write r[X] that piece. In that case, we say that
x, x′ ∈ X is a good decomposition of r if:

• x has label a.

• In r[X], x′ is a sibling of x and is a leaf labeled with c.

• In r[X], the children of x have types h and g.

• In r[X], the 2-context obtained by putting the port at x and its sibling has
type vα(a′)

Fractals The definition is identical to the previous case. A fractal is a sequence
of good decompositions. More formally, consider a sequence of good decomposi-
tions x1, x

′
1 ∈ X1 · · ·xl, x

′
l ∈ Xl. We say the sequence x1, x

′
1 ∈ X1 · · ·xl, x

′
l ∈ Xl is

a fractal of length l iff:

Xi ⊆ Xi+1 − {xi+1, x
′
i+1}

Tame Fractals The definition of tame fractals is symmetric with the one we
gave for the second case of Proposition 9.6. Let r be a tree and consider x1 ∈
X1 · · ·xn ∈ Xn a fractal of length n inside r.

Top-down tame fractal We say this fractal is a top-down tame fractal iff
there exists n+ 1 contexts q, q1, . . . , qn and a tree r′ such that:

• r = qq1 · · · qn.

• For all i, xi, x
′
i are in qi.

• For i < i′, Xi′ describes a valid piece of qi.

146

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

Bottom-up tame fractal We say this fractal is a bottom-up tame fractal iff
there exists n+ 1 contexts q, q1, . . . , qn and a tree r′ such that:

• r = qqn · · · q1r
′.

• For all i, xi, x
′
i are in qi.

• For i < i′, Xi′ describes a valid piece of qi.

Scattered bottom-up tame fractal We say this fractal is a scattered bottom-
up tame fractal iff there exists 2n + 2 contexts q, q′, q1, . . . , qn, q̃1, . . . , q̃n and a
tree r′ such that:

• r = qq̃1 · · · q̃nq
′qn · · · q1r

′.

• For all i, xi is in qi.

• For all i, x′i is in q̃i.

• For i < i′, Xi′ describes a valid piece of qi and q̃i.

q

q̃1

q̃n

q′

xi}
qn

q1

r′

x′i}
Scattered bottom-up Fractal

q

q1

qn

r′

xi, x
′
i}

Top-down Fractal

q

qn

q1

r′

xi, x
′
i}

Bottom-up Fractal

Figure 9.11: Tame Fractals

The rest of the proof is identical to the one of the second item. We use the
sane sequence of lemmas and the same proofs.

147

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

9.3.3 First Item of Proposition 9.6

This case is the simplest one. It has the closest definitions to the unranked setting.
In this section, we provide the adapted definitions for the notion of fractal.

Fix p a context, b ∈ A1 and t a tree as described in the first item of Proposi-
tion 9.6. We write α(t) = h and v = α(p). We write:

s = p · b · t

s′ = p · t

Good Decomposition We define a new notion of good decomposition that
corresponds to this case. Consider some tree r and X a set of nodes of r, if X
describes a valid piece of r we write r[X] that piece. In that case, we say that
x ∈ X is a good decomposition of r if:

• x has label b.

• In r[X], the subtree at the child of x has type h.

• In r[X], the context obtained by putting the port at x has type v.

Fractals The definition is identical to the previous case. A fractal is a sequence
of good decompositions. More formally, consider a sequence of good decomposi-
tions x1 ∈ X1 · · ·xl ∈ Xl. We say the sequence x1 ∈ X1 · · ·xl ∈ Xl is a fractal of
length l iff:

Xi ⊆ Xi+1 − {xi+1}

Tame Fractals The definition of tame fractals is simpler to the ones for the
second and third items. Since we have less nodes to manipulate, we do not need
the scattered fractal category. Let r be a tree and consider x1 ∈ X1 · · ·xn ∈ Xn a
fractal of length n inside r.

Top-down tame fractal We say this fractal is a top-down tame fractal iff
there exists n+ 1 contexts q, q1, . . . , qn and a tree r′ such that:

• r = qq1 · · · qn.

• For all i, xi is in qi.

• For i < i′, Xi′ describes a valid piece of qi.

148

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

Bottom-up tame fractal We say this fractal is a bottom-up tame fractal iff
there exists n+ 1 contexts q, q1, . . . , qn and a tree r′ such that:

• r = qqn · · · q1r
′.

• For all i, xi is in qi.

• For i < i′, Xi′ describes a valid piece of qi.

The rest of the proof is identical to the one of the second item. We use the
sane sequence of lemmas and the same proofs.

9.4 Discussion

Our characterization in Theorem 9.1 is restricted to trees of rank 2. For trees of
rank k for some arbitrary k, we conjecture the following theorem:

Conjecture 9.18. Fix L a regular language of trees of rank k. L is definable in
BC-Σ1(<v) iff its syntactic k-algebra (H,V,W2, . . . ,Wk) verifies for all u, u′, v ∈
V , all w,w′ ∈W2 and all w̃ ∈W3:

uωv = uω = vuω v � u (9.1)

uωw = uωw′ ∃h ∈ H (w ⋄ h), (w′ ⋄ h) � u (9.2)

(w ⋄ h)uω = (w ⋄ h′)uω ∃w′ ∈W2 (w′ ⋄ h), (w′ ⋄ h) � u (9.3)

w̃ · (uωh, g, u′ωh′) = w̃ · (uωh, g′, u′ωh′)
∃w ∈W2 (w ⋄ g) � u

∃w′ ∈W2 (w′ ⋄ g′) � u′
(9.4)

Notice that this characterization uses the same equations as Theorem 9.1 and
a new equation, Equation (9.4). Equation (9.4) is specific to the trees of rank
k for k ≥ 3 since it uses an element of W3. The main problem for proving
Conjecture 9.18 would to prove an adapted version of Proposition 9.6 which we
state below:

Conjecture 9.19. There exists an integer n ∈ N such that for: (the construction
is depicted in Figure 9.12):

• 1 ≤ ι ≤ µ ≤ k

• 0 ≤ ι1, ι2 ≤ i, 0 ≤ µ1, µ2 ≤ j such that ι1 + ι2 = ι and µ1 + µ2 + 1 = µ,
ι2 = µ1 + 1

• a ∈ Aj, b ∈ Ai

149

CHAPTER 9. BC-Σ1(<V) OVER TREES OF BOUNDED RANK

• a1, . . . , aµ1
, b1, . . . , bι1 ∈ A0

• t1, . . . , tµ2−1, s1, . . . , sι2 some trees

• p a context

If we write t = pa(b(b1, . . . , bι1 , s1, . . . , sι2), a1, . . . , aµ1
, t1, . . . , tµ2

) and s =
pa(s1, . . . , sι2 , t1, . . . , tµ2

), we have:

t ∼=n s =⇒ α(t) = α(s)

p

a

b a1 · · · aµ1

· · ·

b1 · · · bι1
· · ·

t1 tµ2

s1 sι2

Arity 1 + µ1 + µ2

Arity ι1 + ι2

t

p

a

· · · · · ·t1 tµ2
s1 sι2

Arity ι2 + µ2 = 1 + µ1 + µ2

s

Figure 9.12: Illustration of the trees s and t in Conjecture 9.19

The problem for proving Conjecture 9.19 is that it involves much more nodes
than Proposition 9.6. In particular this leads to a definition of good decomposition
that is much more complicated. As well as a notion of tame fractal which involves
more categories. This makes the proof of Lemma 9.12 much more technical.
Finally one of the categories of tame fractal involves using Equation (9.4) in the
proof of Lemma 9.16.

150

Chapter 10

First Order Logic with Two

Variables over Unranked Trees

In this chapter, our main goal is to provide a characterization for the logic FO2(<h

, <v) on forests. We briefly recall the definition of FO2(<h, <v), more details can
be found in Chapter 6. FO2(<h, <v) is the restriction of FO(<h, <v) to only two
variables that may be reused. It uses the predicates <v for the ancestor relation
and <h for the following sibling relation. It is stated in Theorem 6.2 that FO2(<h

, <v) has the same expressive power as the temporal logic EF + F−1(Fh,F
−1
h

).

EF + F−1(Fh,F
−1
h

) navigates in a forest using two “vertical” modalities, one for
going to some ancestor node (F−1) and one for going to some descendant node
(EF), and two “horizontal” modalities for going to some following sibling (Fh) or
some preceding sibling (F−1

h
). We will use Theorem 6.2 throughout the chapter and

consider EF +F−1(Fh,F
−1
h

) or FO2(<h, <v) formulas depending on convenience.

Recall that in Chapter 3, we presented a decidable characterization for the
restriction of FO2(<h, <v) to the setting of words:

Theorem 3.2. ([TW98]) A regular word language L over an alphabet A is de-
finable in F + F−1 iff its syntactic monoid M verifies, for all u, v ∈M :

(uv)ω = (uv)ωv(uv)ω (2.2)

Also, in Chapter 6 we quoted a decidable characterization for the temporal
logic EF + F−1 on forests. The logic EF + F−1 is less expressive than FO2(<v)
which is the restriction of FO2(<h, <v) to the vertical predicate <v. This charac-
terization uses forest algebras and a specific relation ⊣ that we defined in Chap-
ter 6. The relation ⊣ is defined as follows: from some context, a smaller context
can be built by deleting the subtrees hanging on the path leading from the root
to the port.

151

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

Theorem 6.3. ([Boj07b]) Fix L a regular forest language. L is definable in
EF + F−1 iff its syntactic forest algebra using monoids verifies:

h+ g = g + h ∀h, g ∈ H (6.1)

h+ h = h ∀h ∈ H (6.2)

(uv)ω = (uv)ωv(uv)ω ∀u, v ∈ V (2.2)

∀u1, u2, v1, v2 ∈ V such that u1 ⊣ u2 and v1 ⊣ v2
(u1v1)

ω(u2v2)
ω = (u1v1)

ωu1v2(u2v2)
ω (6.3)

Our characterization shares some similarities with these two results. However,
it is also very different. A first difference would be that for FO2(<h, <v), we
will need to consider forest algebras using semigroups rather than forest algebras
using monoids. Recall that forest algebras using semigroups are restricted to strict
contexts (see Chapter 5 for more details).

Not surprisingly, Equation (2.2) is still part of our characterization of FO2(<h

, <v). It states states both the horizontal and vertical semigroups H and V of
the syntactic forest algebra of the language must satisfy Equation (2.2). However,
because we consider forest algebras using semigroups, the vertical statement of
Equation (2.2) is less powerful than for Theorem 6.3 since it is restricted to strict
contexts.

The other equations used in Theorem 6.3 are no longer true for languages
definable in FO2(<h, <v). because of the order <h, languages definable in FO2(<h

, <v) are not closed under bisimulation. Therefore neither Equation (6.1) nor
Equation (6.2) are true. Finally we give an example of language that is definable
in FO2(<h, <v) but does not verify (6.3). Consider the following FO2(<h, <v)
formula:

ϕ = ∀x (¬(∃y (Pa(y) ∧ x <h y)) ∨ ∃y (x <v y ∧ ∃x (y <h x ∧ Pb(x))))

The formula ϕ recognizes the language L of forests such that all nodes that
have a following sibling labeled with a, have an ancestor which has a following
sibling labeled with b. Consider the contexts c1 = c · 2, c2 = c · 2 + b and
d1 = c · 2, d2 = c · 2 + a. For all integer k, the (c1d1)

k(c2d2)
ka ∈ L while

(c1d1)
kc1d2(c2d2)

ka 6∈ L. Therefore L does not verify (6.3).
Besides using (2.2) on the two semigroups, our characterization uses a third

extra property. The statement of (2.2) on H can be seen as a reflection of the
horizontal expressive power of FO2(<h, <v), and the statement of (2.2) on V

152

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

as a reflection of its vertical expressive power. Our third property mixes both
expressive powers at the same time. We call it closure under saturation and we
do not know yet whether it is implied by the previous identities or not.

It is immediate from the word case that being definable in FO2(<h, <v) implies
that the vertical and horizontal semigroups of the syntactic forest algebra satisfy
the required identity. That closure under saturation is also necessary is proved via
a classical, but tedious, Ehrenfeucht-Fräıssé game argument. As usual, the main
difficulty is to show that the closure conditions are sufficient. In order to do so, as
it is standard when dealing with FO2 (see Chapters 3 and 8), we introduce a notion
of reachability relations for comparing elements of the syntactic algebra. However,
in our case, we parametrize these relations with a set of forbidden patterns: the
contexts authorized for going from one type to another type cannot use any of
the forbidden patterns. We are then able to perform an induction using this set
of forbidden patterns, thus refining our comparison relations more and more until
they become trivial.

In Section 10.1 we define several notions that will be involved in both the
statement and the proof of our characterization. In particular we give a definition
of the notion of patterns we consider and of the reachability order we use. In Sec-
tion 10.2, we state our characterization and discuss its relation with Theorems 3.2
and 6.3. Sections 10.3 and 10.4 are devoted to the proof of our characterization.
In Section 10.3 we prove that closure under saturation is a necessary property of
languages definable in FO2(<h, <v). In Section 10.4, we prove that any language
verifying the characterization is definable in FO2(<h, <v).

It turns out that our proof technique applies for various horizontal predi-
cates. In the Section 10.5 we show how to adapt the characterization obtained for
FO2(<h, <v) in order to obtain decidable characterizations for FO2(<h, Succh, <v

), FO2(s,<v) and EF + F−1(S). Finally, in Section 10.6, we discuss the decid-
ability of closure under saturation. Note that we do not provide a full proof for
the decidability of saturation as this is ongoing work.

Note that all forest algebras we consider in this chapter are forest algebras
using semigroups. Also all contexts we consider are strict. Recall that this means
that the port of the context has no sibling.

10.1 Preliminaries

In this section we define the main ingredient necessary to our characterization
of FO2(<h, <v). In the first part we describe how we will handle the horizontal
behavior of the logic in our proof. In the second part we define orders over H and
V that will play a key role in our characterization. We assume fixed a language
L recognized by a forest algebra (H,V) via a morphism α.

153

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

10.1.1 Horizontal behavior and k-SMTypes.

As mentioned in the introduction we will constantly be working with sequences of
sibling nodes. Actually we will be working with the sequence of their labels. For
technical reasons, we also include to the label of a node the label of its child if it
has a unique child that is a leaf. We now make this notion more precise.

Shallow Multicontexts A multicontext is defined as for context but has several
ports. The arity of a multicontext is the number of its ports. A multicontext is
said to be shallow if each of its trees is either a single leaf a, a single node with
a port below b(2) or, a tree of the form b(a) where b is a node and a a leaf (see
Figure 10.1). Let x be a node of a forest s. Let x1, · · · , xl be the sequence of
siblings of x, including x. Let t1, · · · , tl be the subtrees of s rooted at those nodes.
The shallow multicontext of x in s is the sequence p1, · · · , pl such that pi := a if
ti = a, pi := b(a) if ti = b(a), and pi := b(2) otherwise. A shallow multicontext
c occurs in a forest s iff there exists a node x of s such that c is the shallow
multicontext of x in s. Given a shallow multicontext c of arity n and a sequence T
of n forests, c[T] denotes the forest obtained after placing each tree in the sequence
T at their corresponding place in the sequence of ports of c.

b a a c d c a+ + + + + +

a b

Figure 10.1: Illustration of a typical shallow multicontext

k-SMTypes As expected we will only manipulate shallow multicontexts modulo
FO2(<h, <v) definability. Intuitively, FO2(<h, <v) treats a shallow multicontext
as a string whose letters are either a, b(a), or b(2). More formally, consider the
alphabet A+ containing the letters a for all a ∈ A, the letters b(2) for all b ∈ A
and the letters b(a) for all a, b ∈ A. We see a shallow multicontext p as a string
over the alphabet A+. Now consider FO2(<), the first order logic restricted to
two variables on strings using the predicate < for the following position relation.
For each positive integer k and any two shallow multicontexts p and p′, we write
p ≡k p

′ for the fact that p and p′ seen as words over A+ agree on all sentences of
FO2(<) of quantifier rank k. We denote by k-SMTypes the equivalence classes of
this relation. Notice ≡k has finite index and that each equivalence class of ≡k is
definable in FO2(<).

Let P be a set of k-SMTypes - this set will play the role of forbidden patterns
in our proof - a forest t is said to be P -valid if no shallow multicontext of a class

154

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

in P occur in t. Similarly we define the notion of P -valid context. We extend
the notion of P -validity to forest types of H. We say h ∈ H is P -valid iff there
exists a P -valid forest t such that h = α(t). Similarly for v ∈ V . By definition
P -validity is definable in FO2(<h, <v).

Lemma 10.1. For any k and any set P of k-SMTypes, the language of P -valid
forests is definable in FO2(<h, <v).

(X, k)-PosTypes We also need to denote specific positions within k-SMTypes,
again modulo definability in FO2(<h, <v). For this we will use the notion of
(X, k)-PosTypes. Consider a set X ⊆ H, X will later be a parameter in our
induction. Again we see a shallow multicontext as a word over the alphabet A+.
For technical reasons, rather than using the full power of FO2(<) to describe
our positions, we use a weaker logic FO2

X(<)). The logic FO2
X(<)) is weaker in

testing labels, intuitively, it works like FO2(<) on shallow multicontexts but it
cannot distinguish the symbol b(2) from the symbol b(a) whenever α(a) 6∈ X.
More formally, FO2

X(<)) is limited in the unary predicates it can use to test
labels. FO2

X(<)) can use a for all a ∈ A, b(a) when α(a) ∈ X, or b(2)∨ b(a) when
α(a) 6∈ X.

Given two nodes x and x′ of t we write x ∼=k,X x′ if the shallow multicontext
of x and the shallow multicontext of x′ seen as words over A+ satisfy the same
formulas of FO2

X(<)) of quantifier depth at most k, with one free variable denoting
respectively the position x and x′. We only consider classes of of ∼=k,X such that
b(2)(x) holds for some b ∈ A. We denote by (X, k)-PosTypes the equivalence
classes of this relation. Notice that ∼=k,X has finite index.

Given a (X, k)-PosType δ and a k-SMType τ , we say that δ is compatible with
τ if all shallow multicontexts p ∈ τ contain a position x ∈ δ.

The following lemma is immediate from the definitions.

Lemma 10.2. For any k-SMType τ and compatible (X, k)-PosType δ, there is a
formula ψτ,δ of EF +F−1(Fh,F

−1
h

) such that for any forest s, the set of nodes of s
satisfying ψτ,δ is exactly the set of nodes of s in δ and whose shallow multicontext
is in τ .

10.1.2 P -reachability

We define P -reachability, which is an order on elements of H. P -reachability will
play a major role as a parameter of our induction.

As before, P denotes a set of k-SMTypes for some k. A forest type h ∈ H
is said to be P -reachable from the forest type h′ if there exists a P -valid context
type v such that h = vh′. Two forest types are P -equivalent if they are mutually
P -reachable.

155

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

Notice that the notion of P -reachability becomes finer when P increases: if
P ⊆ P ′ then P ′-reachable implies P -reachable.

When we have at least one shallow multicontext of arity at least 2 outside of P
then P -reachability restricted to P -valid forest types contains a unique maximal
class. In that case we say that P is branching and we write HP this maximal
class:

Claim 10.3. If there is a shallow multicontext of arity at least 2 outside of P
then there is a unique maximal class regarding P -reachability restricted to P -valid
forest types.

Proof. Take p outside of P and of arity n ≥ 2. Given h, h′ ∈ H that are P -valid,
consider t and t′ two P -valid trees such that α(t) = h and α(t′) = h′. Consider
the ordered set T of n P -valid forests containing copies of t and t′, with at least
one copy of t and one copy of t′. Now α(p[T]) is P -reachable from both h and h′.
The result follows.

Similarly we define P -reachability over V . Given two contexts u, v ∈ V we say
that v is P -reachable from u whenever there is a P -valid context type c such that
v = u · c.

10.1.3 Antichain Composition Principle

We shall make use of the following composition lemma. This lemma is essentially
taken from [Boj07b]. We reuse notations from [Boj07b].

A formula of FO2(<h, <v) with one free variable is called antichain if in every
forest, the set of nodes where it holds forms an antichain, i.e. a set (not necessarily
maximal) of nodes pairwise incomparable with respect to the descendant relation
and to the following sibling relation. This is a semantic property, and may not be
apparent just by looking at the syntax of the formula.

We fix (i) an antichain formula ϕ, (ii) disjoint tree languages L1, · · · , Ln and
(iii) leaves of label a1, · · · , an. Given a forest s, we define the forest s[(L1, ϕ) →
a1, · · · , (Ln, ϕ) → an] as follows. For each node x of s such that s, x |= ϕ(x), we
determine the unique i such the forest language Li contains the subforest of x.
If such an i exists, we remove the subforest of x (including x and its siblings),
and replace it by a leaf labeled with ai. Since ϕ is antichain, this can be done
simultaneously for all x. Note that the formula ϕ may also depend on ancestors
of x, while the languages Li only talk about the subtree at x. A simple argument,
similar to the one given in [Boj07b] for EF + F−1, and restricting the navigation
inside or outside suitable definable regions, shows:

156

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

Lemma 10.4. [Antichain Composition Lemma] Let ϕ, L1, · · · , Ln and a1, · · · , an
be as above. If L1, · · · , Ln and K are languages definable in FO2(<h, <v), then so
is {t | t[(L1, ϕ) → a1, · · · , (Ln, ϕ) → an] ∈ K}.

10.2 Characterization of FO2(<h, <v)

In this section we state our main theorem, which is the decidable characterization
of FO2(<h, <v). This characterization is given using two equations over the syn-
tactic forest algebra of the language and a property we call saturation. We begin
with the definition of saturation.

Saturation Fix some integer k and a language L recognized by a forest algebra
(H,V) via a morphism α. We first define the notion of a saturated context. Con-
sider some branching set of forbidden k-SMTypes P . By Claim 10.3 there exists
a unique maximal class HP regarding P -reachability. We write H̄p = H − HP .
Intuitively a context is saturated if it is P -valid and contains one representative for
each k-SMType τ 6∈ P and compatible (H̄P , k)-PosType. More formally, a context
∆ is said to be P -saturated if (i) it is P -valid (ii) for each P -valid k-SMType τ ,
and each each compatible (H̄P , k)-PosType δ, there exists a node x, occurring in
the skeleton of ∆ (i.e. the path from the root of ∆ to its port), such that x ∈ δ
and the shallow multicontext of x in ∆ is in τ .

We say that a tree language L is closed under k-saturation if for all branching
set P of k-SMTypes, for all context ∆ that is P -saturated, for all P -valid tree t,
for all P -valid shallow multicontext p, for all position x of p and for all sequence
T of P -valid forests whose types are in HP , we have:

α(∆)ωα(t) = α(∆)ωα(p[T, x])α(∆)ωα(t) (10.1)

were p[T, x] is the context formed from p by placing the forests of T at the corre-
sponding ports of p except for the port at position x. A language is closed under
saturation if it is closed under k-saturation for some k.

The main result.

Theorem 10.5. A regular forest language L is definable in FO2(<h, <v) iff its
syntactic forest algebra using semigroups (H,V) verifies the following properties:

a) H verifies the equation

ω(h+ g) + g + ω(h+ g) = ω(h+ g) (10.2)

b) V verifies the equation
(uv)ωv(uv)ω = (uv)ω (10.3)

157

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

c) L is closed under saturation.

As we already said It turns out that (10.2) and (10.3) above are exactly the iden-
tities characterizing, over strings, definability in FO2(<). We give this equations
new names in chapter so we do not confuse the horizontal one with the vertical
one.

Theorem 3.2. ([TW98]) A regular language L over an alphabet A is definable
in F + F−1 iff its syntactic monoid M verifies, for all u, v ∈M :

(uv)ω = (uv)ωv(uv)ω (2.2)

Recall that FO2(<h, <v) can express the fact that a forest is a tree and, for
each k, that a tree has rank k, hence Theorem 10.5 also apply for regular unranked
tree languages and regular languages of trees of bounded rank.

There are two directions that need to be proved for obtaining Theorem 10.5. In
Section 10.3 we prove that the properties listed in the statement of Theorem 10.5
are necessary for having definability in FO2(<h, <v) using an Ehrenfeucht-Fräıssé
argument. In Section 10.4 we prove the most difficult direction of Theorem 10.5,
the properties imply definability in FO2(<h, <v).

10.3 Correctness of the Properties

In this section we prove that the properties stated in Theorem 10.5 are necessary
for being definable in FO2(<h, <v). Meaning that any language L definable in
FO2(<h, <v) verifies Equations (10.2) and (10.3) and is closed under saturation.

It is simple to see that Equations (10.2) and (10.3) are necessary. The proof
is identical to the one used in [TW98] for the string case. We thus concentrate on
proving that saturation is necessary using a classical, but tedious, Ehrenfeucht-
Fräıssé argument:

Lemma 10.6. A forest language definable in FO2(<h, <v) is closed under satu-
ration.

Before proving Lemma 10.6, we give some definitions that will play a key role
in its proof. We call the root of a forest, the root of the leftmost tree in the
forest. Recall that the skeleton of a context is the path of node that goes from the
port to the root that is an ancestor of the port. We define a new notion that we
call the extended skeleton of a context. The extended skeleton is the set of nodes
composed of the skeleton itself and all nodes that are siblings of a node on the
skeleton. Both notions are illustrated in Figure 10.2.

The rest of this section is devoted to the proof of Lemma 10.6.

158

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

b a b a b

a c a

d d d a b

Skeleton

b a b a b

a c a

d d d a b

Extended Skeleton

Figure 10.2: Illustration of the notions of skeleton and extended skeleton.

Given Theorem 6.2, we adopt an EF +F−1(Fh,F
−1
h

) point of view as the cor-

responding game is slightly simpler. Assume L is definable in EF +F−1(Fh,F
−1
h

)
and is recognized by the forest algebra (H,V) via some morphism α. Let k be
the nesting depth of the navigational modalities used in the formula recognizing
L, we show that L is closed under k-saturation.

The proof is an Ehrenfeucht-Fräıssé argument. The definition of the game
corresponding to EF + F−1(Fh,F

−1
h

) is standard. There are two players, Dupli-
cator and Spoiler, the board consists in two forests and both players agree on the
number of moves in advance. At any time there is one pebble placed on a node
of each of the two forests and the corresponding nodes have the same label. At
the beginning of the game the two pebbles are placed on the root of the leftmost
tree of each forests. At each step Spoiler moves one of the pebble, either to some
ancestor of its current position, or to some descendant or to some left or right sib-
ling. Duplicator must respond by moving the other pebble in the same direction
to a node of the same label. If Duplicator cannot move then Spoiler wins.

Given P , ∆, p, x, t and T as in the definition of k-saturation, let u = α(∆),
h = α(t) and v = α(p[T, x]).

We exhibit two forests S and S′ such that α(S) = uωh and α(S′) = uωvuωh
and such that Duplicator has a winning strategy for the k-move game described
above when playing on S and S′.

A classical argument then shows that this implies that no formula of EF +
F−1(Fh,F

−1
h

) whose nesting depth of its navigational modalities is less than k can
distinguish between the two forests. This implies that uωh = uωvuωh as desired.

Our agenda is as follows. In Section 10.3.1 we define the two forests S and S′

on which we will play. Finally in Section 10.3.2 we give the winning strategy for

159

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

Duplicator in the k-move game on S and S′.

10.3.1 Definition of the forests S and S ′.

By definition of k-saturation P is branching and by Claim 10.3 we let HP =
{h1, · · · , hl} be the maximal P -equivalence class. We fix {a1, . . . , al} a set of
labels such that for all i, α(ai) = hi.

Since P is branching, there exists a shallow multicontext q0 outside of P with
arity greater than 2. We denote by Vi the context obtained from q0 by placing
the forest ai into all the ports of q0 except for the last one.

Because HP is the maximal class relative to P -reachability, for each i ≤ l,
there exists a P -valid context U ′

i such that hi = α(U ′
i)α(Vl · · ·V1)u

ωh. We write
Ui the context obtained from U ′

i · Vl · · ·V0 by replacing all maximal subforests of
forest type hi with the letter ai. For all i we write ui = α(Ui). The contexts Ui

have the two following properties:

• Ui is P -valid,

• for all i, uiu
ωh = hi,

• for all i, the context Ui contains all labels a1, . . . , al as subforests. Therefore
it contains at least one subforests for any forest types in HP .

Recall that by definition of k-saturation, for each shallow multicontext q oc-
curring in Ui and each position x in q that is not a leaf, there exists a q′ occurring
in ∆ such that (q, x) ∼=k (q′, x′) where x′ mark the position in q′ occurring in the
skeleton of ∆.

We now construct by induction on j contexts ∆j and Ui,j , and trees Ti,j such
that for all i, we have α(∆j) = u, α(Ui,j) = ui and α(Ti,j) = hi.

We initialize the process by setting for all i ≤ l:

• Ui,0 := Ui,

• ∆0 is obtained from ∆ by replacing all subforests of type hi with ai.

• Ti,0 = Ui,0 · (∆0)
ω · t.

By construction we have α(∆0) = u, α(Ui,0) = ui and α(Ti,0) = uiu
ωh = hi as

desired.

For j > 0, the inductive step of the construction is done as follows for all i ≤ l:

• Ui,j is formed from Ui by replacing each subforest of type hℓ that is a child
of a node of the extended skeleton by Tℓ,j−1 (see Figure 10.3),

160

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

• ∆j is formed from ∆ by replacing each subforest of type hℓ by Tℓ,j−1,

• Ti,j = Ui,j · Γj .

where Γj is the forest:
Γj = (∆j)

ω · · · (∆0)
ω · t

b a b a b

a1 a2 a1

a c a

a3

d d d a b

a1a3

Ui,0 = Ui

⇒

b a b a b

T1,j T2.j T1,j

a c a

T3,j

d d d a b

T1,jT3,j

Ui,j+1

Figure 10.3: Illustration of the construction of Ui,j from Ui: each subforest of type
hℓ in Ui is replaced by Tℓ,j−1.

By induction we have α(Ui,j) = α(Ui) = ui, α(∆j) = α(∆) = u and α(Ti,j) =
uiu

ωh = hi as required. Moreover ∆j remains P -saturated and each Ui,j contains
a copy of Tℓ,j−1 for all ℓ ≤ l.

161

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

Let m = 2k and let Pm be the context formed from p[T, x] by replacing all
maximal subforests of type hi by Ti,m−1. In particular, each forest of T is replaced
by the appropriate Tℓ,m. The construction is similar to the construction depicted
in Figure 10.3.

Finally let:

S := (∆m)(m+1)ω · Pm · Γm

S′ := (∆m)(m+1)ω · Γm

(10.4)

The following claim then conclude the proof of Lemma 10.6.

Claim 10.7. Duplicator has a winning strategy for the k-move game between S
and S′.

10.3.2 The winning strategy

Proof of Claim 10.7. We give a winning strategy for Duplicator. In order to be
able to formulate this strategy we need further definitions.

Given two nodes x and y and a number n we denote by x ≡h
n y the fact that

Duplicator has a winning strategy in the n-move game played on the words formed
by the sequence of labels of the siblings of x and of y, starting from the position
x on one side and y on the other side.

The nesting level of a node x of S or S′ is the minimal number ℓ such that x
belongs to a context ∆ℓ or Ui,ℓ. We set the nesting level of the nodes that in any
copy of t to 0. We also set the nesting level for the nodes of Pm that are not in
any tree Ti,m−1 for some i ≤ l to m. The notion of nesting level is illustrated in
Figure 10.4.

Recall that because of the construction of the context Ui,n, a node of nesting
level n always has, for all ℓ ≤ l, a descendant that is at the root of a forest Tℓ,n−1.

The skeleton of S (or of S′) is the path of S (of S′) going from its root to the
port of each copy of ∆m.

The upward number of a node x ∈ S (or x ∈ S′) is the number of occurrences
of ∆m in the path from x to the root of S (see Figure 10.5).

We now state a property P(n) that depends on an integer n, two nodes x ∈ S
and y ∈ S′, possibly two nodes x̂ ∈ S and ŷ ∈ S′ that are ancestors of respectively
x and y and possibly two nodes x̄ ∈ S and ȳ ∈ S that are on the skeleton.

We then show that when P(n + 1) holds on a game starting at x, y, then
Duplicator can play one move while enforcing P(n). As it is easy to see that P(k)
holds for the leftmost roots of S and S′, this will conclude the proof of Claim 10.7.

The inductive property P(n) states that x̂ is defined iff ŷ is defined and,
whenever they are defined, they have nesting level ≥ n− 1 and their parents have

162

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

)(
ω

)(
ω

∆m

∆m

)(
ω

)(
ω

)(
ω

∆m−1

∆j

∆0

t

S’

Nesting Level m

Nesting level m− 1

Nesting Level j

Nesting Level 0

)(
ω

)(
ω

)(
ω

Ui,n

∆n

∆j′

∆0

t

Nesting Level n < m

Nesting Level j′

Nesting Level 0

Figure 10.4: Illustration of the notion of nesting level in the proof of Claim 10.7.

nesting level ≥ n. Also they both have an upward number > n. Moreover it
requires the disjunction of the following three cases:

1. x̂ and ŷ are defined. In this case Duplicator has a winning strategy in the
n-move game played on the subforest of x̂ and the subforest of ŷ, starting
at positions x and y.

2. x̂ and ŷ are undefined and the upward number of x and y are ≤ n. In
this case x and y are at the same relative position from the root in their
respective forest (recall that by construction S and S′ are isomorphic up to
m copies of ∆m).

163

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

∆m

∆m

∆m

m
·
ω

co
p
ie
s
o
f
∆

m{ n
co
p
ie
s
o
f
∆

m

{

)(
ω

)(
ω

∆m−1

∆0

t

S’

N
o
d
es

o
f
u
p
w
a
rd

n
u
m
b
er

n

N
o
d
es

o
f
u
p
w
a
rd

n
u
m
b
er

m
·
ω

Figure 10.5: Illustration of the notion of upward number in the proof of Claim 10.7.

3. x̂ and ŷ are undefined, the upward number of x and y is > n. In this case x
and y are of nesting level > n, moreover x ≡h

n y.

Assume we are in a situation where P(n+1) holds. We sketch how Duplicator
can play while enforcing P(n). The strategy depends on why P(n+ 1) holds.

Case 1

x̂, and therefore also ŷ, are defined.

• If Spoiler moves to a node that is in the subforest of x̂ then Duplicator
simply respond using the strategy provided by Item (1) of P(n + 1). x̂ and ŷ
remain unchanged.

• We now assume that Spoiler moves to an ancestor x′ of x̂.

If the upward number of x′ is ≤ n. Notice that the only ancestors of x having a
smaller upward number than x are on the skeleton. Therefore x′ is on the skeleton.

164

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

Remember that, by Item (1) of P(n+1), ŷ has upward number > (n+1). Therefore
the copy y′ of x′ in the other forest, which has upward number ≤ n, is an ancestor
of ŷ. Duplicator then selects y′ as her answer while satisfying Item (2) of P(n).
In this case x̂ and ŷ now become undefined.

If the upward number of x′ is > n. By saturation of ∆m, there is a node z
in the skeleton ∆m such that x′ ≡h

n z. By hypothesis the upward number of y is
larger than the upward number of ŷ which is > (n+ 1). Hence we can find above
y an occurrence of ∆m of upward number > n. Duplicator answers by the copy
of z in this occurrence of ∆m. By construction x, y have upward numbers > n.
Moreover they are ancestors of x̂ and ŷ who had nesting level > n+1 by P(n+1).
Hence they have nesting level > n and Item (3) of P(n) is satisfied. In this case
x̂ and ŷ now become undefined.

Case 2

The upward number of x is ≤ n+ 1.

• If Spoiler moves up or horizontally, Duplicator simply copy Spoiler’s move
and Item (2) of P(n) remains true if we end up with an upward number ≤ n
otherwise Item (3) trivially hold. If Spoiler moves down to some node with an
upward number ≤ n, the we are still in the part of the forests that are identical in
both S and S′ and Duplicator simply copy Spoiler’s move. As above, Item (2) of
P(n) is true if we end up with an upward number ≤ n otherwise Item (3) trivially
hold.

• Assume now that Spoiler moves to some descendant x′ of x that has upward
number equal to n+ 1. Recall that x and y are at the same relative position from
the root in their respective forest. Therefore there exists a node y′ below y that
is at the same position as x′. Duplicator chooses y′ as her answer. If x′, y′ are of
nesting level > n then Item (3) trivially hold. If x′, y′ are of nesting level ≤ n,
they are both in a tree Ti,m−1 for some i at an isomorphic position. We choose
x̂ and ŷ as the roots of the copies of each tree Ti,m−1 in their respective forests.
P(n) holds for Item (1).

• Assume now that Spoiler moves to some descendant x′ of x that has upward
number > n + 1. Notice that the only ancestors of x′ that have upward number
smaller than n + 1 are on the skeleton. Therefore x, which has upward number
≤ n + 1, is on the skeleton and has nesting level m. By hypothesis x and y are
at the same relative position from the root in their respective forest. Therefore
y also has nesting level m. We distinguish between two cases depending on the
nesting level of x′. Intuitively, if x′ has small nesting level we will conclude by
enforcing Item (1) and if x′ has large nesting level we will conclude by enforcing
Item (3).

If x′ has nesting level > n. By saturation of ∆m, there is node z in the skeleton

165

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

of ∆m such that x′ ≡h
n z. By hypothesis the nesting level of y is m > (n + 1).

Hence we can find below y an occurrence of ∆j with j > n. Duplicator answers
by the copy of z in this occurrence of ∆j and Item (3) of P(n) is satisfied. In this
case x̂ and ŷ remain undefined.

If x′ has nesting level ≤ n. By definition, x′ is inside a forest Ti,n for some i such
that 0 ≤ i ≤ l. We set x̂ as the root of this forest. By hypothesis y is of nesting
level m > (n+ 1). Recall that this implies that for all ℓ such that 0 ≤ ℓ ≤ l y has
a tree Tℓ,n as descendant. In particular y has a forest Ti,n as descendant. We set ŷ
as the root of this forest. Since the subforests of x̂ and ŷ are identical, Duplicator
answers in the subforest of ŷ at an isomorphic position y′ to the position x′ in the
subforest of x̂. By definition x̂ and ŷ are of nesting level n and Duplicator has a
winning strategy (which consists in playing the isomorphism) in the n-move game
played on the subforest of x̂ and the subforest of ŷ, and starting at positions x′

and y′ . Hence Item (1) of P(n) is satisfied.

Case 3

The upward number of x is > (n+ 1).

• If Spoiler moves horizontally, Duplicator moves according to the winning
strategy provided by ≡h

(n+1) and Item (3) of P(n) remains true.

• If Spoiler moves up to some node x′.

If the upward number of x′ is ≤ n, then Duplicator answers by the copy of x′,
y′, in the other forest while satisfying Item (2) of P(n). Note that the upward
number of y is > n. Therefore y′ of upward number ≤ n is indeed an ancestor of
y. In this case x̂ and ŷ remain undefined.

If the upward number of x′ is > n. By saturation of ∆m, there is a node z
in the skeleton of ∆m such that x′ ≡h

n z. By hypothesis the upward number of y
is > n + 1. Hence we can find above y an occurrence of ∆m of upward number
n+ 1. Duplicator answers by the copy of z in this occurrence of ∆m and Item (3)
of P(n) is satisfied. In this case x̂ and ŷ remain undefined.

• If Spoiler moves down to some node x′.

If x′ has nesting level > n. By saturation of ∆n+1, there is a node z in the
skeleton of ∆n+1 such that x′ ≡h

n z. By Item (3) the nesting level of y > (n+ 1).
Hence we can find below y an occurrence of ∆n+1. Duplicator answers by the
copy of z in this occurrence of ∆n+1 and Item (3) of P(n) is satisfied. In this case
x̂ and ŷ remain undefined.

If x′ has nesting level ≤ n. By construction, x′ is inside a forest Ti,n for some
i such that 0 ≤ i ≤ l. We set x̂ as the root of this forest. By hypothesis y is of
nesting level > (n+ 1). Recall that this implies that for all ℓ such that 0 ≤ ℓ ≤ l
y has a forest Tℓ,n as descendant. In particular y has a forest Ti,n as descendant.
We set ŷ as the root of this forest. Since the subforests of x̂ and ŷ are identical,

166

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

Duplicator answers in the subforest of ŷ at an isomorphic position y′ to the position
x′ in the subforest of x̂. By definition x̂ and ŷ are of nesting level n and Duplicator
has a winning strategy (which consists as playing the isomorphism) in the n-move
game played on the subforest of x̂ and the subforest of ŷ, and starting at positions
x′ and y′ . Item (1) of P(n) is satisfied.

This concludes the proof of Claim 10.7 and therefore the proof of Lemma 10.6.

10.4 Sufficientness of the Properties

In all this section we fix a regular forest language L that is recognized by a forest
algebra (H,V) via a morphism α. We assume that L is closed under saturation
and that H and V verify Equations (10.2) and (10.3). We will show that L is
definable in FO2(<h, <v), concluding the proof of Theorem 10.5.

We assume that for each forest type h ∈ H there is a tree consisting of a single
leaf node that has h for forest type via α. This simplifies the notations in the
proof with no harm in the generality of the result.

As mentioned before, we will work with k-SMTypes for some fixed integer k.
We start by defining a suitable k.

Lemma 10.8. There exists a number k′′ such that whenever p and p′ are shallow
multicontext with the same k′′-SMType then for all forest s we have α(p[s̄]) =
α(p′[s̄]), where p[s̄] is the forest constructed from p by placing s at each port of p.

Proof. This is a consequence of Theorem 3.2 and the fact that H satisfies Equa-
tion (10.2). Consider words over H as alphabet and the natural morphism β :
H+ → H. Since H verifies (10.2), which is (2.2) stated with additive notations,
it follows from Theorem 3.2 that for every h ∈ H, β−1(h) is definable using a
formula of FO2(<). We choose k′′ as the maximal rank of all these formulas.

Take p and p′ with the same k′′-SMType and s some forest. Let t1, . . . , tn
be the sequence of trees occurring in p[s̄] and t′1, . . . , t

′
n′ be the sequence of trees

occurring in p′[s̄]. For all i let hi = α(ti) and h′i = α(t′i). As p ≡k′′ p
′ the

words h1 . . . hn and h′1 . . . h
′
n′ satisfy the same formulas of FO2(<) of rank k′′ over

the alphabet H. By our choice of k′′ it follows that β(h1 . . . hn) = β(h′1 . . . h
′
n′).

Therefore α(p[s̄]) = α(p′[s̄]).

As L is closed under saturation, there is an integer k′ such that L is closed
under k′-saturation. Take k as the maximum between k′ and k′′. Notice that L
remains closed under k-saturation and that the conclusion of Lemma 10.8 remains
true when replacing k′′ by the bigger number k.

The proof of Theorem 10.5 is done by induction using an inductive hypothesis
that is stated in the proposition below. One of the parameters is a subset X of
H. The following definition is adapted from [Boj07b]. We already used a similar

167

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

notion in Chapter 8 for the proof of the charcaterization of EF + F−1 in the
setting of trees of bounded rank. A forest s is said to be X-trimmed if the only
subforests of s that have a forest type in X are single leaves. We say that a forest
language L is definable modulo X if there is a definable forest language L′ that
agrees with L over X-trimmed forests. For each h ∈ H, v ∈ V 1 and each set of
k-SMTypes let LP

v,h = {t | v · α(t) = h and t is P -valid}.

Our goal in this section is to show that:

Proposition 10.9. ∀h ∈ H, v ∈ V 1 and X ⊆ H, and P a set of k-SMTypes, LP
v,h

is definable in FO2(<h, <v) modulo X.

Notice that in the statement of Proposition 10.9 we use V 1 instead of V . The
added neutral element is called the empty context type. We can then complete the
proof of Theorem 10.5 by applying Proposition 10.9 for all h ∈ α(L) with v the
empty context type, and P,X empty sets.

In the rest of this section we only care about P -valid forests and hence we
implicitly ignore the forest types h ∈ H such that α−1(h) contains no P -valid
forests.

In the rest of this section we prove Proposition 10.9, we work by induction on
three parameters that we now define.

We say that u is at distance one from u′ if u is P -reachable from u′, u′ is not
P -reachable from u and, for any context u′′ that is P -reachable from u′, u is also
P -reachable from u′′. The transitive closure of this relation defines the distance
between contexts. The P -depth of v is then the distance between v and the empty
context type.

We next define an order on sets of k-SMTypes. For each k-SMType τ , its
X-number is the number of (X, k)-PosTypes compatible with τ . For each set P
of k-SMTypes the n-index of P is the number of k-SMTypes in P of X-number
n. The X-index of P is then the sequence of its n-indexes ordered by decreasing
n. We write P1 <X P2 if the X-index of P1 is strictly smaller than the X-index
of P2.

We work by induction on the three following parameters, given below in their
order of importance:

• |X|

• the X-index of P

• the P -depth of v

We consider three main cases: In the first case we suppose that all shallow mul-
ticontexts that are not in P have arity 0 or 1. In this case we will show that we
can treat our forests as words and Proposition 10.9 follows from known results

168

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

over words. Therefore as soon as we are not in the first case we denote by HP the
unique maximal class relative to P -reachability as guaranteed by Claim 10.3.

Our second case assumes that there exists a P -valid forest whose forest type
is neither in X nor in HP . In this case we will conclude by induction either by
adding forest types in X or forbidden patterns in P while increasing its X-index.

In the remaining case, H \ X is reduced to HP on P -valid forests. We will
then show that we can increase the X-index of P , or increase the P -depth of v or
make use of closure under saturation of L to show that v must be constant and
hence LP

v,h is trivially definable.

10.4.1 Case 1: All shallow multicontexts outside of P have arity

0 or 1

We show that in this case we can treat our forests as words and use the known
results on words. Any P -valid forest t is therefore of the form:

c1 · · · cks

where k is possible 0 and the c1, · · · , ck are P -valid shallow multicontexts of arity
1 and s a P -valid shallow multicontext of arity 0. For each u ∈ V 1 and g ∈ H,
consider the languages:

Mu,g = {t | t = c1 · · · ck · s is P -valid,

α(c1...ck) = u, and α(s) = g}

Notice that LP
v,h is the union of those languages where vug = h. We show that for

any u and g, Mu,g is definable in FO2(<h, <v) modulo X. This will conclude this
case.

Let {τ1, ..., τn} be the set of k-SMTypes not in P of arity 1. From Lemma 10.8
it follows that any two contexts of type τi have the same image in V by α. Let
{v1, ..., vn} be those context types. Let Γ = {d1, ..., dn} be a word alphabet and
define a morphism β : Γ∗ → V by β(di) = vi.

Since V verifies Equation (10.3), for each v ∈ V there is a FO2(<h, <v) formula
ϕv such that the words of Γ∗ satisfying ϕv are the words of type v under β.
From each such formula ϕv we construct an FO2(<h, <v) formula Ψv by replacing
atomic formula Pdi(x) with a formula that tests if the k-SMType at position x is
τi (recall that by Lemma 10.2 this is expressible in FO2(<h, <v)). Since s contains
only leaves or trees of depth one, we can also easily express in FO2(<h, <v) that
α(s) = g by just investigating the labels occurring in s. By putting all this together
we get that Mu,g is definable in FO2(<h, <v) modulo X.

This proves Proposition 10.9 for this case. In the rest of this section we assume
the existence of a k-SMType of arity 2 outside of P and therefore, by Claim 10.3,
the existence of a unique maximal P -reachable class HP .

169

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

10.4.2 Case 2: There exists a P -valid forest whose forest type is

neither in X nor in HP .

Let t be such a P -valid forest. Fix a class G of mutually P -reachable forest types
such that the forest type of t is reachable from any forest type of G, G 6⊆ X, and
G is P -minimal with the previous two properties. In other words G is just above
X according to P -reachability, and is not in HP by hypothesis.

Our agenda for this case is as follows. First, we show that being a subforest
whose forest type is in G can be detected in FO2(<h, <v) as it only depends on
the presence or absence of certain k-SMTypes. Note that our hypothesis then
guarantees that there exists at least one k-SMType whose presence forces that
the corresponding forest has a forest type outside G.

Then, intuitively, we split the forest into two parts: one containing all the
nodes inside a subforest whose forest type is in G and another one containing all
the other nodes. As G is minimal there is no node of the second kind that is a
descendant of a node of the first kind. For the first part of the forest, we can add
to P the k-SMTypes that are forbidden for having a forest type in G and use our
induction hypothesis in order to get an FO2(<h, <v) formula giving the precise
forest type of G of a forest having a forest type in G. For the second part of the
forest we can add G in X and use our induction hypothesis in order to get an
FO2(<h, <v) formula describing this part. We then conclude using the Antichain
Composition Principle. This case illustrated in Figure 10.6.

We start by showing that membership in G can be detected in FO2(<h, <v).

Lemma 10.10. There is a formula ϕ(x) ∈ FO2(<h, <v) such that for any P -valid
and X-trimmed tree t the set of nodes x such that the subforest of x has forest
type in G is exactly the set of nodes at which ϕ holds.

Proof. This lemma is proved using Equations (10.2) and (10.3). We show that a
subforest has a forest type in G iff it does not contain certain k-SMTypes. Since
we can detect those forbidden k-SMTypes using a formula of FO2(<h, <v), the
result will follow. The proof relies on the following claim:

Claim 10.11. Take a shallow multicontext p of arity n and take two sequences T
and T ′ of n P -valid forests of forest type in G. We have:

α(p[T]) ∈ G ⇔ α(p[T ′]) ∈ G

Proof. We use Equation (10.3) to prove this claim. We write T = (t1, ..., tn) and
T ′ = (t′1, ..., t

′
n). For i ∈ [1, n] we write ci the context obtained from p[T ′] by

replacing t′i by a port and t′j by tj for j > i. Notice that by hypothesis on p, T
and T ′, ci is P -valid. We write ui = α(ci), and show that:

uiα(ti) ∈ G ⇔ uiα(t′i) ∈ G (10.5)

170

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

Let g = α(ti) and g′ = α(t′i) and suppose that uig ∈ G, we show that uig
′ ∈ G.

By symmetry this will prove (10.5). As G is closed under mutual P -reachability,
it is enough to show that uig

′ is mutually P -reachable from g′. By definition uig
′

is P -reachable from g′. Therefore it remains to show that g′ is P -reachable from
uig

′. From uig ∈ G we get that g′ is P -reachable from uig. As g and g′ are both in
G they are mutually P -reachable. Therefore we have two P -valid contexts c and c′

such that g′ = α(c)uig and g = α(c′)g′. A little bit of algebra and Equation (10.3)
yields:

g′ = α(c)uiα(c′)g′

g′ = (α(c)uiα(c′))ω+1g′

g′ = α(c)ui(α(c′)α(c)ui)
ωα(c′)g′

g′ = α(c)ui(α(c′)α(c)ui)
ωα(c)ui(α(c′)α(c)ui)

ωα(c′)g′ using Equation (10.3)

g′ = (α(c)uiα(c′))ωα(c)ui(α(c)uiα(c′))ω+1g′

g′ = (α(c)uiα(c′))ωα(c)uig
′

g′ = α((ccic
′)ωc)uig

′

as ccic
′ is P -valid, g′ is P -reachable from uig

′ and (10.5) is proved.

For concluding the proof of the claim, notice that by construction α(p[T]) =
u1α(t1). From Equation (10.5) we obtain uiα(ti) ∈ G iff uiα(t′i) ∈ G. Notice
that by construction uiα(t′i) = ui+1α(ti+1). Now, again from Equation (10.5), we
have ui+1α(ti+1) ∈ G iff ui+1α(t′i+1) ∈ G. Altogether this gives uiα(ti) ∈ G iff
ui+1α(ti+1) ∈ G. Finally by construction we also have unα(t′n) = α(p[T ′]). By
putting all this together we obtain α(p[T]) ∈ G iff α(p[T ′]) ∈ G as desired.

A shallow multicontext p of arity n is said to be H-good if for some sequence
T of n P -valid forests of forest type in G we have α(p[T]) ∈ G. From the previous
claim we know that this definition does not depend on the choice of T . A shallow
multicontext p that is not H-good is said to be H-bad. It turns out that this
distinction between good and bad shallow multicontexts characterizes membership
in G.

Claim 10.12. Let t be a P -valid X-trimmed forest. Then we have α(t) ∈ G iff t
contains only H-good shallow multicontexts.

Proof. Suppose that α(t) /∈ G, we show that t contains an H-bad shallow multi-
context. Let s be a subforest of t such that α(s) /∈ G and s = p[T] where p is
a shallow multicontext and T a sequence of forests of forest type in G (possibly
empty if p is of arity 0). The existence of such a subforest s is ensured by the fact
that α(t) /∈ G, that G is P -minimal and that t is X-trimmed. By Claim 10.11 p
is an H-bad shallow multicontext and it is contained in t.

171

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

It follows from this claim that in order to check whether a subforest is of
forest type in G, it is sufficient to check whether it contains an H-bad shallow
multicontexts or not. It remains to show that this can be expressed in FO2(<h

, <v). For this we show that the set of H-good shallow multicontexts is a union
of k-SMTypes.

Claim 10.13. Let p and p′ be two shallow multicontexts of the same k-SMType.
Then we have p is H-good iff p′ is H-good.

Proof. Suppose that p is H-good and of arity n. We show that p′ is H-good. Let
n′ be the arity of p′, by Claim 10.11 it is sufficient to prove that there exists a
sequence of n′ forests T ′ of forest type in G such that α(p′[T ′]) ∈ G. Let t be
a forest such that α(t) ∈ G and T be the sequence of n copies of t and T ′ the
sequence of n′ copies of t. As p ≡k p

′, because k ≥ k′′, by Lemma 10.8 we get
α(p′[T ′]) = α(p[T]). Since p is H-good, α(p[T]) ∈ G, therefore α(p′[T ′]) ∈ G.

This last claim concluded the proof of Lemma 10.10.

We now aim at applying Lemma 10.4, the antichain formula being essentially
the one given by Lemma 10.10. The next two lemmas show that the appropriate
languages are definable in FO2(<h, <v).

Lemma 10.14. LP
v,h is definable in FO2(<h, <v) modulo X ∪G.

Proof. By induction on |X| in Proposition 10.9 we get that L∅
v,h is definable mod-

ulo X ∪G. Notice that if a language of P -valid forests is definable modulo X it is
also definable modulo X ∪G. By combining the two we get that LP

v,h is definable

in FO2(<h, <v) modulo X ∪G.

Lemma 10.15. For any g ∈ G, LP
v,g is definable in FO2(<h, <v) modulo X.

Proof. Let P ′ be the set of H-bad k-SMTypes (recall the definition in the proof of
Lemma 10.10). Because G is not HP , there exists at least a H-bad k-SMType and
hence P ′ is not empty. We also know from the proof of Lemma 10.10 that forests
that have a forest type in G do not contain any k-SMTypes in P ′. Therefore for

any g ∈ G, LP
v,g = L

(P∪P ′)
v,g . Notice that the X-index of P∪P ′ is strictly higher than

the X-index of P . Hence, by induction on the X-index of P in Proposition 10.9,

L
(P∪P ′)
v,g is definable in FO2(<h, <v).

We are now ready to give the final argument which is depicted in Figure 10.6.
Let ϕ be the formula which holds at a node x of a tree t iff x is in LG, there
is no node between the root of t and x in LG and x has no left sibling. From
Lemma 10.10, ϕ is definable in FO2(<h, <v) and by definition it is an antichain
formula. By Lemma 10.14, there exists a language K definable in FO2(<h, <v)

172

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

No k-SMTypes in P ∪ P ′

(X ∪G)-trimmed

ϕ holds

Figure 10.6: Illustration of the Antichain Composition Lemma for Case 2. The
marked nodes are the topmost nodes in G and P ′ is the set of H-bad k-SMTypes

that agrees with LP
v,h on (X ∪G)-trimmed forests. Assume G = {g1, · · · , gl}. For

any i ≤ l, let ai be a leaf node such that α(ai) = gi. By Lemma 10.15 for any i ≤ l,
there exists a language Li definable in FO2(<h, <v) that agrees with LP

v,gi over
X-trimmed forests. Hence from the Antichain Composition Lemma, Lemma 10.4,
we have that K ′ = {t | t[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak] ∈ K} is also definable in
FO2(<h, <v). By definition of K and the Li, K

′ agrees with LP
v,h on X-trimmed

and hence LP
v,h is definable in FO2(<h, <v) modulo X. This concludes the proof

of Proposition 10.9 for this case.

10.4.3 Case 3: H \X is reduced to HP on P -valid forests

A context type u P -preserves v if v is P -reachable from vu. A context c P -
preserves v if α(c) preserves v.

We then distinguish two subcases. In the first subcase we assume that there is
a k-SMType τ 6∈ P and a compatible (X, k)-PosType δ such that no matter what
forests we place in the shallow multicontexts of τ , leaving a port at a position
in δ, the resulting context does not P -preserve v. In this subcase we will split
again the forest into two parts, conclude on each part by induction and combine
everything together using the Antichain Composition Principle.

In the remaining subcase, we will use closure under saturation to conclude
that LP

v,h is trivial.

Formally, we say that a k-SMType τ is P -bad for v if τ 6∈ P and there exists
a compatible (X, k)-PosType δ such that for any shallow multicontext p ∈ τ of
arity n, any position x of p in δ and any sequence T of n− 1 forests of forest type
in Hp, the context p[T, x] does not P -preserve v.

173

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

We distinguish two subcases.

Subcase 1: There exists a k-SMType τ which is P -bad for v.
We fix a τ 6∈ P of maximal X-number that is P -bad for a (X, k)-PosType δ.

Let p ∈ τ and x a position in p of type δ.
Given two elements h and h′ of H, we say that h is v+-equivalent to h′ if for all

context type u P -reachable from v such that v is not P -reachable from u (hence
the P -depth of u is strictly higher that the P -depth of v) we have uh = uh′.

Lemma 10.16. Each v+-equivalence class is definable in FO2(<h, <v) modulo X.

Proof. This is immediate by induction on the P -depth of v in Proposition 10.9.

Intuitively, we want to approximate the subtree below a v-bad position by its
v+-equivalence class. When doing this we may reintroduce shallow multicontexts
that were forbidden by P . But fortunately the X-index of P will increase when
doing so.

Let p ∈ τ . Let x1, · · · , xl be all the positions of p of (X, k)-PosType δ. Let
b(2) be the label of all the xi in p. Let P̂ be the set of all the shallow multicontexts
constructed from p by replacing at all the positions xi, b(2) by b(ai), for some
arbitrary choice of ai 6∈ X. Let ∆ be the set of k-SMTypes τ ′ of all the shallow
multicontexts in P̂ . Let P ′ be (P ∪ {τ}) \ ∆.

Lemma 10.17. The set LP ′

v,h is definable in FO2(<h, <v) modulo X.

Proof. We show that P ′ > P , the result follows by induction on the X-index of
P in Proposition 10.9.

More precisely, we show that any τ ′ ∈ ∆ is of X-number strictly smaller than
the X-number of τ . This gives the desired result.

By definition of ∆ there exists p ∈ τ and p′ ∈ τ ′ such that p′ can be obtained
from p by replacing b(2) with subtrees of the form b(a) where α(a) 6∈ X. Consider
a position x′ of p′ of label b′(2). By construction the corresponding position x of p
has the same label. By the definition of the logic used for defining (X, k)-PosTypes,
which cannot distinguish b(2) from b(a) if α(a) 6∈ X, x and x′ must have the same
(X, k)-PosType. Hence any (X, k)-PosType compatible with τ ′ is also compatible
with τ . Moreover, by construction of ∆, δ is no longer compatible with τ ′. As τ
had a maximal X-number, P ′ > P .

Based on the above lemmas, we conclude this case of Proposition 10.9 as
follows. Consider the property that holds at a node y of a tree t if the k-SMType
of the shallow multicontext at y is in τ and its (X, k)-PosType in δ and there is
no node between the root of t and y satisfying this property. By Lemma 10.1 this

174

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

property is expressible by a formula ϕ(y) of FO2(<h, <v) and it is antichain by
definition. We also know that each such position y has the same label, say b.

Let γ1, · · · , γk be all the equivalence classes of the v+-equivalence relation. For
each such class γi, consider the set of trees {b(t) | t ∈ γi}. Thanks to Lemma 10.16,
for each such set there exists Li definable in FO2(<h, <v) that agrees with it on
X-trimmed trees. For any i = 1, · · · , k, let hi be an arbitrarily chosen forest type
in the class γi, and let ai be a leaf label whose forest type is hi.

By Lemma 10.17, there exists K definable in FO2(<h, <v) that agrees with
LP ′

v,h on X-trimmed trees. Hence we can apply the Antichain Composition Lemma
(see Figure 10.7) and have that {t | t[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak] ∈ K} is
definable in FO2(<h, <v).

v

v+-equivalence classes definable in FO2(<h, <v) by Lemma 10.16

No k-SMTypes in P ′ > P

Figure 10.7: Illustration of the Antichain Composition Lemma for Subcase 1. The
marked nodes are the topmost nodes whose shallow multicontext are in τ .

We conclude by showing that LP
v,h = {t | t[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak] ∈

K} over X-trimmed trees. It follows that LP
v,h is definable modulo X. This is a

simple consequence of the following two lemmas.

Lemma 10.18. For any P -valid X-trimmed tree t, t[(L1, ϕ) → a1, · · · , (Lk, ϕ) →
ak] is P ′-valid.

Proof. This follows from the construction of P ′ and the definition of ϕ.

Lemma 10.19. For any X-trimmed tree t, vα(t) = vα(t[(L1, ϕ) → a1, · · · , (Lk, ϕ) →
ak]).

Proof. The proof goes by induction on the number of occurrences of τ in t and
the number of nodes y of (X, k)-PosType δ in each occurrence p of τ . If there is
no occurrence of τ , this is immediate as the substitution does nothing.

Consider a node y of a shallow multicontext p such that p ∈ τ and y is in δ and
no node above y satisfies that property. Let b be the label of y as specified by δ.

175

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

Let s be the subforest below y in t and i such that α(s) ∈ γi. Let c be the context
formed from t by placing a port at y. Let d the context formed from c by removing
all the strict ancestors of y. By the definition of P -bad and the choice of y, α(d)
does not P -preserve v. We write t′ the tree constructed from t by replacing
the subtree at y by b(ai). By construction t′[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak]
is cai[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak]. By induction hypothesis we have that
vα(t′) = vα(t′[(L1, ϕ) → a1, · · · , (Lk, ϕ) → ak]). Therefore it remains to show
that vα(t′) = vα(cs). We first claim that v is not P -reachable from vα(cd). This
is a consequence of Equation (10.3), suppose that v is P -reachable from vα(cd),
then there exists a P -valid u such that v = vα(cd)u. From there we get the
following sequence of equalities:

v = vα(cd)u

v = v(α(c)α(d)u)ω

v = v(α(c)α(d)u)ωα(d)(α(c)α(d)u)ω using (10.3)

v = vα(d)(α(c)α(d)u)ω

This implies that α(d) P -preserves v, which we know to be false. Let then u =
vα(cd). From the above v is not P -reachable from u but, as t is P -valid, u is
P -reachable from v. Hence uα(s) = uα(ai) by definition of v+-equivalence. This
implies the desired result.

Subcase 2: There is no k-SMType τ which is P -bad for v.
Using closure under saturation, we show that in this case, v is P -preserved by

a context that is constant over P -valid trees. This implies that LP
v,h contains no

P -valid trees or all of them and is therefore definable in FO2(<h, <v).

By hypothesis, for each τ 6∈ P and each compatible (X, k)-PosType δ, there
exists a shallow multicontext p ∈ τ and a position x ∈ δ of p such that there
exists a sequence T of P -valid X-trimmed forests such that the context p[T, x],
P -preserves v. For each pair (τ, δ), we fix such a context p[T, x]. Let ∆ be the
context defined as the concatenation of all those contexts. By construction, ∆ω is
P -valid and P -preserves v. By construction ∆ω is also saturated.

Using closure under saturation we show that ∆ω is constant on P -valid trees.
Let h1 and h2 be two elements of HP and t1, t2 be two forests such that α(t1) = h1
and α(t2) = h2. We want to show that α(∆)ωh1 = α(∆)ωh2.

Consider a P -valid shallow multicontext p of arity at least 2, and two positions
x, y of p and a sequence T of P -valid forests. Let T be an arbitrary sequence of
P -valid forests with types in HP . Let p[T, x, y] be the multicontext of arity 2
constructed from p by placing the two ports in x and y and placing the forests of
T for the other ports. Let p+[T, x] be the context constructed from p[T, x, y] by

176

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

placing ∆ωt2 at the port denoted by y. Let p+[T, y] be the context constructed
from p[T, x, y] by placing ∆ωt1 at the port denoted by x.

Then we have:

α(∆)ωh1 = α(∆)ωα(p+[T, x])α(∆)ωh1 using (10.1)

= α(∆)ωα(p+[T, y])α(∆)ωh2 by construction

= α(∆)ωh2 using (10.1)

And we are done with the last case.

10.5 Other Logics

Using the same proof structure we can obtain the decidability of several other
logics that differ with EF +F−1(Fh,F

−1
h

) only in the horizontal modalities. This
is done by adapting Equation (10.2) restricting H, together with the notion of
k-SMType and the notion of (X, k)-PosType, and therefore the notion of satura-
tion. We briefly give the definitions of these logics, see Chapter 6 for more details.
We illustrate this with the predicates S 6=, S, Xh and X−1

h
but we believe that

other modalities could be considered, assuming the induced logic over words has
a decidable characterization.

The predicate S 6=ϕ holds at x if ϕ holds at some sibling of x distinct from x.
It is a shorthand for Fhϕ∨F−1

h
ϕ. The predicate Sϕ holds at x if ϕ holds at some

sibling of x including x. It is a shorthand for ϕ ∨ S 6=ϕ. The predicates Xh and
X−1

h
are the usual next sibling and previous sibling modalities.

We provide decidable characterizations for three logics using these modalities.
The first one, EF + F−1(S), is the weakest one and cannot be equivalently de-
fined as a simple fragment of first order logic like FO2(<h, <v). This is because
languages defined by a formula of EF + F−1(S) are closed under bisimulation.
Fragments of first order logic allow quantification over incomparable nodes which
rules out closure under bisimulation.

The second one, EF +F−1(S 6=), can be equivalently defined using a first order
formalism. Consider the binary predicate s(x, y) that holds when x and y are
siblings. In terms of expressive power EF +F−1(S 6=) is equivalent to FO2(s,<v),
the two variable fragment of first order logic using the predicates s, and <v, see
Theorem 6.2.

Finally, we consider EF + F−1(Xh,Fh,X
−1
h
,F−1

h
), which is an extension of

the logic EF + F−1(Fh,F
−1
h

). This logic can be equivalently defined using a first
order formalism. Consider the binary predicate Succh(x, y) that holds when y is
the next sibling of x. In terms of expressive power EF + F−1(Xh,Fh,X

−1
h
,F−1

h
)

is equivalent to FO2(<h, Succh, <v), the two variable fragment of first order logic
using the predicates Succv, <v, and <v, see Theorem 6.2.

177

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

The three characterizations require Equation (10.3) for V as before. They also
require that H satisfy the known characterization of the fragment of LTL induced
by the horizontal modalities. Moreover they require closure under saturation of
the language with a notion of saturation modified in order to use the appropriate
notion k-SMType and (X, k)-PosType relative to the horizontal expressive power
of the logic.

For each of three logics mentioned above, we first define an adapted notion
of k-SMType and (X, k)-PosType such that Lemma 10.1, Lemma 10.2 holds for
the logic under investigation. This in particular yields a new notion of satura-
tion. Then we state the characterization of the logic. Notice then that aside from
the definition of the integer k through Lemma 10.8 and the Antichain Composi-
tion Principle, the proof of Theorem 10.5 is fully parametrized by the notions of
k-SMType and (X, k)-PosType. As the Antichain Composition Principle is rather
straightforward, we will therefore not give a full proof for these new characteriza-
tions and only focus on the choice of the integer k.

We begin with EF + F−1(S) and EF + F−1(S 6=). Because the horizontal
expressive power of these logics is very weak, the main proofs for these two logics
are actually much simpler than for EF + F−1(Fh,F

−1
h

) as we will see that there
is no need to parametrize the notions of k-SMType and (X, k)-PosType with an
integer k.

10.5.1 EF + F−1(S)

EF + F−1(S) is the weakest logic we consider. As we said before it cannot be
defined as a two variable fragment of first order logic.

We begin with the definition of the new notions of k-SMType and (X, k)-PosType.
As we did for FO2(<h, <v), we see a shallow multicontext as a string whose letters
are either a, b(a), or b(2).

SMTypes[S] The straightforward way to adapt the notion of k-SMType would
be to say that for any two shallow multicontexts p and p′, we have p ≡k p

′ iff p
and p′ agree on all sentences of EF + F−1(S) of nesting depth of modalities k.
But horizontally EF + F−1(S) can only check the set of trees appearing in the
shallow multicontext. Therefore, for any k ≥ 1, ≡k is the same as ≡1 and there
is no need to parametrize the notion of SMType[S] with an integer k. We denote
by SMTypes[S] the equivalence classes of the relation ≡1. We immediately have:

Lemma 10.20. For any set P of SMTypes[S], the language of P -valid forests is
definable in EF + F−1(S).

X-PosTypes[S] Let X ⊆ H. Recall that the notion of (X, k)-PosTypes was
defined in order to be able to point position within k-SMTypes. However since

178

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

there is no order on siblings due to the weakness of EF + F−1(S), two positions
with the same label in a SMType[S] are indistinguishable. Therefore we do not
need to parametrize the notion of X-PosType[S] with an integer k. Consider x a
node in some forest and let b be its label. The X-PosType[S] of a node x is b if x
is a leaf, b(a) is x has a single leaf child labeled with a such that α(a) ∈ X and
b(2) otherwise1. Altogether we have by definition:

Lemma 10.21. For any SMType[S] τ and compatible X-PosType[S] δ, there is
a formula ψτ,δ of EF + F−1(S) such that for any forest s, the set of nodes of s
satisfying ψτ,δ is exactly the set of nodes of s in δ and whose shallow multicontext
is in τ .

Recall the definition of saturation given in Section 10.2. The notion of S-
saturation is obtained identically after replacing k-SMType with SMType[S] and
(X, k)-PosType with X-PosType[S].

These new definitions yield the appropriate characterization.

Theorem 10.22. A regular forest language L is definable in EF +F−1(S) iff its
syntactic forest algebra (H,V) verifies:

a) H verifies the equations

2h = h and f + g = g + f (10.6)

b) V verifies Equation (10.3)

(uv)ωv(uv)ω = (uv)ω

c) L is closed under S-saturation.

Aside from the initial choice of the integer k which is no longer necessary
here, the proof is identical2 to the one we gave for Theorem 10.5. Lemma 10.8 is
replaced by the following result:

Lemma 10.23. Take p and p′ that have the same SMType[S] then for all forest s
we have α(p[s̄]) = α(p′[s̄]), where p[s̄] is the forest constructed from p by placing
s at each port of p.

1Note that in this case, it is actually possible to simplify the proof and remove all parameters
on X-PosTypes[S] by fixing X = H

2Notice that the first case of the proof is much simpler. Since the logic is closed under bisim-
ulation, for every shallow multicontext of arity 1 outside of P there exists a shallow multicontext
of arity 2 with the same SMType[S]. Therefore since P is a union of SMType[S], if there exists a
shallow multicontext of arity 1 outside of P then there also exists a shallow multicontext of arity
2 outside of P . It follows that Case 1 can be reformulated: All shallow multicontexts outside of
P have arity 0.

179

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

Proof. Since p and p′ that have the same SMType[S] the forests p[s̄] and p′[s̄]
contain the same trees but possibly with a different number of occurrences. It
follows from (10.6) that α(p[s̄]) = α(p′[s̄]).

10.5.2 EF + F−1(S 6=)

As said before EF + F−1(S 6=) has the same expressive power than FO2(s,<v).

SMTypes[S 6=] Like in the previous case the straightforward way to adapt the
notion of k-SMType would be to say that for any two shallow multicontexts p and
p′, we have p ≡k p

′ iff p and p′ agree on all sentences of EF + F−1(S 6=) of modal
depth k. Now horizontally EF + F−1(S 6=) can only check the number of each
tree that appears in the shallow multicontext up to threshold 2. Therefore, for
any k ≥ 2, ≡k is the same as ≡2 and there is no need to parametrize the notion
of SMType[S 6=] with an integer k. We denote by SMTypes[S 6=] the equivalence
classes of the relation ≡2.

Lemma 10.24. For any set P of SMTypes[S6=], the language of P -valid forests is
definable in EF + F−1(S 6=).

X-PosTypes[S 6=] Let X ⊆ H. As before, to the expressive weakness of EF +
F−1(S 6=), two positions with the same label in a SMType[S 6=] are indistinguish-
able. Therefore we do not need to parametrize the notion of X-PosType[S 6=]
with an integer k. Consider x a node in some forest and let b be its label. The
X-PosType[S 6=] of a node x is b if x is a leaf, b(a) is x has a single leaf child labeled
with a such that α(a) ∈ X and b(2) otherwise3.

Lemma 10.25. For any SMType[S6=] τ and compatible X-PosType[S6=] δ, there
is a formula ψτ,δ of EF +F−1(S 6=) such that for any forest s, the set of nodes of s
satisfying ψτ,δ is exactly the set of nodes of s in δ and whose shallow multicontext
is in τ .

As in the previous case, replacing these notion in the definition of saturation
yields a new notion of saturation that we call S 6=-saturation. We now have:

Theorem 10.26. A regular forest language L is definable in EF + F−1(S 6=) iff
its syntactic forest algebra (H,V) verifies:

a) H verifies the equations

3h = 2h and f + g = g + f (10.7)

3Again, it is actually possible to simplify the proof in this case and remove all parameters on
X-PosTypes[S 6=] by fixing X = H

180

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

b) V verifies Equation (10.3)

(uv)ωv(uv)ω = (uv)ω

c) L is closed under S 6=-saturation.

Aside from the initial choice of the integer k which is no longer necessary here,
the proof is identical to the one we gave for Theorem 10.5. Lemma 10.8 is replaced
by the following result:

Lemma 10.27. Take p and p′ that have the same SMType[S6=] then for all forest
s we have α(p[s̄]) = α(p′[s̄]), where p[s̄] is the forest constructed from p by placing
s at each port of p.

Proof. Since p and p′ that have the same SMType[S 6=] the forests p[s̄] and p′[s̄]
contain the same trees with the same number of occurrences up to threshold 2. It
follows from (10.7) that α(p[s̄]) = α(p′[s̄]).

10.5.3 FO2(<h, Succh, <v)

The characterization for FO2(<h, Succh, <v) is very close to our characterization
of FO2(<h, <v). Indeed, FO2(<h, Succh, <v) is more expressive than FO2(<h, <v)
and we can no longer simplify the notion of k-SMType and (X, k)-PosType as we
did in the previous two cases.

k-SMTypes[Xh] Consider FO2(<,Succ), the first order logic restricted to two
variables on words using the predicate < for the following node relation and the
predicate Succ for the next node relation. For each positive integer k and any two
shallow multicontexts p and p′, we write p ≡k p

′ the fact that p and p′ seen as
words agree on all sentences of FO2(<,Succ) of quantifier rank k. We denote by
k-SMTypes[Xh] the equivalence classes of this relation.

Lemma 10.28. For any set P of k-SMTypes[Xh], the language of P -valid forests
is definable in FO2(<h, Succh, <v).

(X, k)-PosTypes[Xh] Let X ⊆ H and consider the logic FO2
X(Succ, <) for de-

noting positions on shallow multicontexts that cannot distinguish b(2) from b(a)
whenever α(a) 6∈ X.

Given two nodes x and x′ of t we write x ∼=k,X x′ if the shallow multicontext
of x and the shallow multicontext of x′ seen as words satisfy the same formulas
of FO2

X(Succ, <) of quantifier depth at most k, with one free variable denoting
respectively the position x and x′. We denote by (X, k)-PosTypes[Xh] the equiv-
alence classes of this relation and we only consider (X, k)-PosTypes[Xh] such that
Pb(2)(x) holds for some b.

181

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

Lemma 10.29. For any k, any X ⊂ H, and any k-SMType[Xh] τ and compatible
(X, k)-PosType[Xh] δ, there is a formula ψτ,δ of FO2(<h, Succh, <v) such that for
any forest s, the set of nodes of s satisfying ψτ,δ is exactly the set of nodes of s in
δ and whose shallow multicontext is in τ .

As in the previous case, replacing these notion in the definition of saturation
yields a new notion of saturation that we call Xh-saturation. We now have:

Theorem 10.30. A regular forest language L is definable in FO2(<h, Succh, <v)
iff its syntactic forest algebra (H,V) verifies:

a) H verifies for all f, g ∈ H, for all e ∈ H such that e2 = e:

ω(e+ f + e+ g + e) + g + ω(e+ f + e+ g + e) = ω(e+ f + e+ g + e) (10.8)

b) V verifies Equation (10.3)

(uv)ωv(uv)ω = (uv)ω

c) L is closed under Xh-saturation.

Recall that Equation (10.8) is exactly the equattion that characterizes FO2(<
,Succ) in the word setting:

Theorem 3.9. ([TW98, Alm96]) A regular language L over an alphabet A is
definable in FO2(<,Succ) iff its syntactic semigroup S verifies, for all u, v, e ∈ S
with e idempotent:

(eueve)ω = (eueve)ωv(eueve)ω (2.3)

Aside from the initial choice of the integer k. The proof is identical to the one
we gave for Theorem 10.5. We explain here how to choose the integer k. We prove
the following Lemma that corresponds to Lemma 10.8:

Lemma 10.31. There exists a number k′′ such that whenever p and p′ have the
same k′′-SMType[Xh] then for all forest s we have α(p[s̄]) = α(p′[s̄]), where p[s̄]
is the forest constructed from p by placing s at each port of p.

Proof. This is a consequence of Theorem 3.9 and the fact that H verifies Equa-
tion (10.8). The proof is identical to the one we provided for Lemma 10.8 replacing
Theorem 3.2 by Theorem 3.9 and k-SMType with k-SMType[Xh].

182

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

10.6 Discussion

10.6.1 Decidability

One major consequence of Theorem 10.5, Theorem 10.22, Theorem 10.26 and
Theorem 10.30 is that in order to decide definability of a language L in the corre-
sponding logics one just needs to check if the syntactic forest algebra of L verifies
the equations given in the corresponding characterization and if L is closed under
the corresponding notion of saturation.

Recall first that the syntactic forest algebra (H,V) of a regular language L
can be computed from any automaton recognizing L. Then, by testing all possi-
ble combinations, it is straightforward to check whether H and V satisfy (10.3)
and (10.2).

The case of saturation is more complicated. We first show that, when k is
fixed, one can decide whether a regular language L is closed under k-saturation.
This is a consequence of the Pumping Lemma. Recall the definition: We need
to check that for all branching set P of k-SMTypes, for all context ∆ that is
P -saturated, for all P -valid tree t, for all P -valid shallow multicontext p, for all
position x of p and for all sequences T of P -valid forests whose types are in HP ,
we have:

α(∆)ωα(t) = α(∆)ωα(p[T, x])α(∆)ωα(t)

were p[T, x] is the context formed from p by placing the forests of T at the
corresponding ports of p except for the port at position x. From the Pumping
Lemma it follows that only finitely many context ∆, finitely many tree t, finitely
many shallow multicontext p and finitely many sequence of forest T needs to be
considered. As k is fixed, all the other quantifications also range over finite sets
hence a brute force approach testing all possibilities yields an algorithm for testing
closure under k-saturation.

Therefore, in order to decide if a language L is closed under saturation it is
sufficient to bound the number k such that L may be closed under k-saturation.
This is easy for EF+F−1(S) and EF+F−1(S 6=) since by definitions the notions of
S-saturation and S 6=-saturation do not depend on an integer k (see Section 10.5).
This yields the following corollary:

Corollary 10.32. It is decidable whether a forest language is definable in EF +
F−1(S). It decidable whether a language is definable in EF + F−1(S 6=).

Note that the brute force algorithm we described yields an awful complexity
with several nested exponential for the decision problem. We don’t know yet
whether this can be improved. Recall that the complexity of the same problem

183

CHAPTER 10. FO2(<H, <V) OVER UNRANKED TREES

for the corresponding logics over words is polynomial is the size of the syntactic
monoid.

We believe that it also possible to bound the number k such that a language
is k-saturated for the notions of saturation corresponding to EF + F−1(Fh,F

−1
h

)

and EF + F−1(Xh,Fh,X
−1
h
,F−1

h
). Using a tedious pumping argument we believe

we that can show that if a language if closed under saturation then it is closed
under k-saturation for k computable from the size of the syntactic forest algebra
of the language and the size of the alphabet. This is ongoing work. Therefore we
conjecture the following result:

Conjecture 10.33. It is decidable whether a regular forest language is definable
in EF+F−1(Fh,F

−1
h

). It is decidable whether a regular forest language is definable

in EF + F−1(Xh,Fh,X
−1
h
,F−1

h
).

10.6.2 Further remarks

It would be interesting to incorporate the vertical successor in our proofs and ob-
tain a decidable characterization for FO2(<h, Succh, <v, Succv), over trees. This
would yield a decidable characterization of the navigational core of XPath. But
this seems to require new ideas.

It would also be interesting to obtain an equivalent decidable characterization
of FO2(<h, <v) without using the cumbersome notion of saturation. For instance
it is not clear whether the notion of confusion introduced in [BSW09] can be used
as a replacement. We leave this as an open problem.

Our proof technique requires that the logic can at least express the fact that
two nodes are siblings. In particular it does not apply to FO2(<v). We leave as
an open problem to find a decidable characterization for FO2(<v).

184

Chapter 11

Locally Testable Languages

over Trees of Bounded Rank

and Unranked Trees

In this chapter we concentrate on LT for the setting of trees of binary trees and on
ILT,ALT for the setting of unordered unranked trees. Note that while we restrict
ourselves to binary trees for the setting of trees of bounded rank, the purpose of
this restriction is only to simplify notations. All results we present in this chapter
for binary trees extend to trees of rank k for any arbitrary k in a straightforward
way.

We will not discuss the setting of forests. However all results presented on un-
ranked unordered trees extend in a straightforward way to forests with an adapted
notion of ALT and ILT.

Recall that we already presented two decidable characterizations for LT in the
setting of words. One was algebraic and was first introduced in [BS73, McN74].
The second one was using a specific formalism. We quote this result below:

Theorem 4.1. Consider L, a regular language over some alphabet A, the following
properties are equivalent:

1. L is in LT.

2. L is tame.

3. The syntactic semigroup S of L verifies, for all u, v, e ∈ S such that e is an
idempotent:

eueue = eue (4.1)

185

CHAPTER 11. LT OVER TREES

eueve = eveue (4.2)

In the case of binary trees, we were not able to obtain a reasonably simple set
of identities for characterizing LT similar to the ones of Theorem 4.1. Nevertheless
we show:

Theorem 11.1. It is decidable whether a regular binary tree language is in LT.

Rather than exhibiting a set of identities we prove Theorem 11.1 using a
method similar to what we mentioned in the discussion of Chapter 4 in our study
of the word setting. We will bound the size of the expected κ such that the lan-
guage is LT-κ. Our strategy for proving Theorem 11.1 is as follows. In a first
step we provide necessary conditions for a language to be in LT. These condi-
tions are an extension to trees of the notion of tame languages we provided for
words in Section 4. In a second step we show that if a language L verifies those
necessary conditions then we can compute from an automaton recognizing L a
number κ such that if L is in LT then L is κ-locally testable. The last step is
simple and show that once κ is fixed, it is decidable whether a regular language is
κ-locally testable. This last step follows immediately from the fact that once κ is
fixed, there are only finitely many κ-locally testable languages and hence one can
enumerate them and test whether L is equivalent to one of them or not.

Given a regular language L, testing whether L is in LT is then done by: (1)
compute from L the κ of the second step and (2) test whether L is κ-locally
testable using the third step. The first step implies that this algorithm is correct.

Before starting providing the proof details we note that there exists examples
showing that the necessary conditions are not sufficient. Such an example will be
provided in Section 11.4. We also note that the problem of finding κ whenever such
a κ exists is a special case of the delay theorem mentioned in the introduction. In
the case of LT, the delay theorem says that if a finite state automaton A recognizes
a language in LT then this language must be κ-locally testable for a κ computable
from A. This theorem was proved over words in [Str85] and can be used in order
to decide whether a regular language is in LT as explained in [Boj07a]. We were
not able to prove such a general theorem for trees. Our second step can be seen
as a particular case of the delay theorem for languages satisfying the conditions
provided by the first step. Note that a formalisation of this argument as a “delay
theorem” can be found in [Str10].

In the setting of unranked unordered trees, the results for ILT and ALT will be
different. We will prove that membership of a regular language in ALT is decidable
using arguments similar to the binary tree case. However, for ILT we provide a
set of identities that characterizes the class. Recall that all the unranked trees we
consider in this chapter are unordered.

186

CHAPTER 11. LT OVER TREES

The chapter is organized as follows: Sections 11.1 and 11.2 are devoted to binary
trees. In Section 11.1 we exhibit our necessary conditions for a tree language to
be in LT. In Section 11.2 we show that for the languages satisfying the necessary
conditions the expected size of the neighborhoods can be computed, hence con-
cluding the decidability of the characterization. The case of unranked unordered
trees is treated in Section 11.3. In this section we explain how to extend the
results of Sections 11.1 and 11.2 to the setting of unranked unordered trees.

11.1 Tame Languages of Binary Trees

In this section we exhibit necessary conditions for a regular language of binary trees
to be in LT. These conditions will play a crucial role in our decision algorithm.
Notice that if we restrict ourselves to words this conditions correspond to the
notion of tame word langauges we defined in Chapter 4. These conditions are
expressed using the same formalism as the one used in [BS09] for characterizing
LTT.

Guarded operations. Let t be a tree, and x, x′ be two nodes of t such that x
and x′ are not related by the descendant relationship. The horizontal swap of t
at nodes x and x′ is the tree t′ constructed from t by replacing t|x with t|x′ and
vice-versa, see Figure 11.1 (left). A horizontal swap is said to be k-guarded if x
and x′ have the same k-type.

t|x t|x′

x x′
⇐⇒

t|x′ t|x

x x′

Figure 11.1: Horizontal Swap

Let t be a tree and x, y, z be three nodes of t such that x, y, z are not related
by the descendant relationship and such that t|x = t|y. The horizontal transfer
of t at x, y, z is the tree t′ constructed from t by replacing t|y with a copy of t|z,
see Figure 11.2 (right). A horizontal transfer is k-guarded if x, y, z have the same
k-type.

Let t be a tree of root a, and x, y, z be three nodes of t such that y is a
descendant of x and z is a descendant of y. The vertical swap of t at x, y, z is
the tree t′ constructed from t by swapping the context between x and y with the

187

CHAPTER 11. LT OVER TREES

t|x t|x t|z

x y z
⇐⇒

t|x t|z t|z

x y z

Figure 11.2: Horizontal Transfer

context between y and z, see Figure 11.3 (left). More formally let C = t[a, x],
∆1 = t[x, y], ∆2 = t[y, z] and T = t|z. We then have t = C · ∆1 · ∆2 · T . The tree
t′ is defined as t′ = C · ∆2 · ∆1 · T . A vertical swap is k-guarded if x, y, z have the
same k-type.

C

∆1

∆2

T

x

y

z

⇐⇒

C

∆2

∆1

T

x

y

z

Figure 11.3: Vertical Swap

Let t be a tree of root a, and x, y, z be three nodes of t such that y is a
descendant of x and z is a descendant of y such that ∆ = t[x, y] = t[y, z]. The
vertical stutter of t at x, y, z is the tree t′ constructed from t by removing the
context between x and y, see Figure 11.4 (right). A vertical stutter is k-guarded
if x, y, z have the same k-type.

C

∆

∆

T

x

y

z

⇐⇒

C

∆

T

x

z

Figure 11.4: Vertical Stutter

188

CHAPTER 11. LT OVER TREES

Let L be a tree language and k be a number. If X is any of the four construc-
tions above, horizontal or vertical swap, or vertical stutter or horizontal transfer,
we say that L is closed under k-guarded X if for every tree t and every tree t′ con-
structed from t using k-guarded X then t is in L iff t′ is in L. Notice that being
closed under k-guarded X implies being closed under k′-guarded X for k′ > k. An
important observation is that each of the k-guarded operation does not affect the
set of (k + 1)-types occurring in the trees.

If L is closed under all the k-guarded operations described above, we say that
L is k-tame. A language is said to be tame if it is k-tame for some k.

The following simple result shows that tameness is a necessary condition for
LT.

Proposition 11.2. If L is in LT then L is tame.

Proof. Assume L is in LT then there is a κ such that L is κ-locally testable.
We show that L is κ-tame. This is a straightforward consequence of the fact
that all the κ-guarded operations above preserve (κ+ 1)-types and hence preserve
κ-types.

A simple pumping argument shows that if L is tame then it is k-tame for k
bounded by a polynomial in the size of the minimal deterministic bottom-up tree
automata recognizing L. Notice that once k is fixed, a brute force algorithm can
check whether L is k-tame or not. Therefore the proposition below implies that
tameness is decidable. However for deciding LT we will only need the bound k0
given by the proposition.

Proposition 11.3. Given a regular language L and A the minimal deterministic
bottom-up tree automata recognizing L, we have L is tame iff L is k0-tame for
k0 = |A|3 + 1.

Proof. We prove that if X is one of the four operations that defines tameness, then
if L is closed under k-guarded X for k > k0, then L is closed under k0-guarded
X. This will imply that if L is k-tame then it is k0-tame.

Consider the case of k-guarded horizontal transfer and assume L is closed
under k-guarded horizontal transfers. We show that L is closed under k0-guarded
horizontal transfers. Let t be a tree and x, y, z three nodes of t having the same
k0-type and not related by the descendant relation such that t|x = t|y. We need
to show that replacing t|y by a copy of t|z does not affect membership into L.

We do this in three steps, first we transform t by pumping in parallel in the
subtrees of x, y and z until x, y, z have the same k-type, then we use the closure
of L under k-guarded horizontal transfer in order to replace t|y by a copy of t|z,
and finally we backtrack the initial pumping phase in order to recover the initial
subtrees.

189

CHAPTER 11. LT OVER TREES

We let t1 = t|x and t2 = t|z and we assume for now on that t1 6= t2. By position
we denote a string w of {0, 1}∗. A position w is realized in a tree t if there is a
node x of t such that if x1, · · · , xn = x is the sequence of nodes in the path from
the root of t to x then for all i ≤ n the ith bit of w is zero if xi is a left child and it
is one if xi is a right child. We order positions by first comparing their respective
length and then using the lexicographical order.

By hypothesis t1 and t2 are identical up to depth at least k0. Let w be the first
position such that t1 and t2 differ at that position. That can be either because
w is realized in t1 but not in t2, or vice versa, or w is realized in both trees but
the labels of the corresponding nodes differ. We know that the length n of w is
strictly greater than k0. If n > k, we are done with the first phase. We assume
now that n ≤ k.

Consider the run r of A on t. The run assigns a state q to each node of t.
From r we assign to each position w′ < w a pair of states (q, q′) such that q is the
state given by r at the corresponding node in t1 while q′ is the state given by r at
the corresponding node in t2. Because n > k0 > |A|2, there must be two prefixes
w1 and w2 of w that were assigned the same pair of states. Consider the context
C1 = t1[v1, v2] where v and v′ are the nodes of t1 at position w1 and w2 and the
context C2 = t2[v

′
1, v

′
2] where v and v′ are the nodes of t2 at position w1 and w2.

Without affecting membership in L, we can therefore at the same time duplicate
C1 in the two copies of t1 rooted at x and y and C2 in the copy of t2 rooted at z.

Let t′1 and t′2 be the subtrees of the resulting tree, rooted respectively at x and
z. The reader can verify that t′1 and t′2 now differ at a position strictly greater
than w.

Performing this repeatedly, we eventually arrive in a situation where the sub-
tree t′1 rooted at x and y agree up to depth k with the subtree rooted at z. We
can now apply k-guarded horizontal transfer and replace one occurrence of t′1 by
a copy of t′2. We can then replace t′1 by t1 and both copies of t′2 by t2 without
affecting membership into L.

The other operations are done similarly. For the horizontal swap, we pump the
subtrees at positions x and x′ simultaneously, which is possible because k0 > |A|2.
For vertical swap, we pump the subtrees at the positions x, y and z simultaneously,
and that requires k0 > |A|3. Finally, in for vertical stutter, we pump the subtrees
at the positions x, y and z simultaneously, which again requires k0 > |A|3.

11.2 Deciding LT for Binary Trees

In this section we show that it is decidable whether a regular tree language is in
LT. This is done by showing that if a regular language L is in LT then there
is a κ computable from an automata recognizing L such that L is in fact κ-

190

CHAPTER 11. LT OVER TREES

locally testable. Recall that once this κ is computed the decision procedure simply
enumerates all the finitely many κ-locally testable languages and tests whether L
is one of them.

Assume L is in LT. By Proposition 11.2, L is tame. Even more, from Propo-
sition 11.3, one can effectively compute a k such that L is k-tame. Hence Theo-
rem 11.1 follows from the following proposition.

Proposition 11.4. Assume L is a k-tame regular tree language then L is in LT
iff L is κ-locally testable where κ is computable from k.

Recall that for each k the number of k-types is finite. Let βk be this number.
Proposition 11.4 is an immediate consequence of the following proposition.

Proposition 11.5. Let L be a k-tame regular tree language. Set κ = βk + k + 1.
Then for all l > κ and any two trees t, t′ if t ≃κ t

′ then there exists two trees T, T ′

with

1. t ∈ L iff T ∈ L

2. t′ ∈ L iff T ′ ∈ L

3. T ≃l T
′

Proof of Proposition 11.4 using Proposition 11.5. Assume L is k-tame and let κ
be defined as in Proposition 11.5. We show that L is in LT iff L is κ-locally
testable. Assume L is in LT. Then L is l-locally testable for some l ∈ N. We
show that L is actually κ-locally testable. For this it suffices to show that for
any pair of trees t and t′, if t ≃κ t

′ then t ∈ L iff t′ ∈ L. Let T and T ′ be the
trees constructed for l from t and t′ by Proposition 11.5. We have T ≃l T

′ and
therefore T ∈ L iff T ′ ∈ L. As we also have t ∈ L iff T ∈ L and t′ ∈ L iff T ′ ∈ L,
the proposition is proved.

Before proving Proposition 11.5 we need some extra terminology. A non-empty
context C occurring in a tree t is a loop of k-type τ if the k-type of its root and
the k-type of its port is τ . A non-empty context C occurring in a tree t is a k-loop
if there is some k-type τ such that C is a loop of k-type τ . Given a context C we
call the path from the root of C to its port the principal path of C. Finally, the
result of the insertion of a k-loop C at a node x of a tree t is a tree T such that
if t = D · t|x then T = D ·C · t|x. Typically an insertion will occur only when the
k-type of x is τ and C is a loop of k-type τ . In this case the k-types of the nodes
initially from t and of the nodes of C are unchanged by this operation.

Proof of Proposition 11.5. Suppose that L is k-tame. We start by proving two
lemmas that will be useful in the construction of T and T ′. Essentially these

191

CHAPTER 11. LT OVER TREES

lemmas show that even though being k-tame does not imply being (k+ 1)-locally
testable (recall the remark after Theorem 11.1) some of the expected behavior
of (k + 1)-locally testable languages can still be derived from being k-tame. The
first lemma shows that given a tree t, without affecting membership into L, we
can replace a subtree of t containing only (k + 1)-types occurring elsewhere in t
by any other subtree satisfying this property and having the same k-type as root.
The second lemma shows the same result for contexts by showing that a k-loop
can be inserted in a tree t without affecting membership into L as soon as all the
(k+ 1)-types of the k-loop were already present in t. After proving these lemmas
we will see how to combine then for constructing T and T ′.

Lemma 11.6. Assume L is k-tame. Let t = Ds be a tree where s is a subtree of
t. Let s′ be another tree such that the roots of s and s′ have the same k-type.

If s 4k+1 D and s′ 4k+1 D then Ds ∈ L iff Ds′ ∈ L.

Proof. We start by proving a special case of the Lemma when s′ is actually another
subtree of t. We will use repeatedly this particular case in the proof.

Claim 11.7. Assume L is k-tame. Let t be a tree and let x, y be two nodes of
t not related by the descendant relationship and with the same k-type. We write
s = t|x, s

′ = t|y and C the context such that t = Cs. If s 4k+1 C then Cs ∈ L iff
Cs′ ∈ L.

Proof. The proof is done by induction on the depth of s and make a crucial use
of k-guarded horizontal transfer.

Assume first that s is of depth less than k. Since x and y have the same k-type,
we have s = s′ and the result follows.

Assume now that s is of depth greater than k.

Let τ be the (k+1)-type of x. We assume that s is a tree of the form a(s1, s2).
Notice that the k-type of the roots of s1 and s2 are completely determined by τ .
Since s 4k+1 C, there exists a node z in C of type τ . We write s′′ = t|z.

We consider several cases depending on the relationship between x, y and
z. We first consider the case where x and z are not related by the descendant
relationship, then we reduce the other cases to this case.

Assume that x and z are not related by the descendant relationship. Since s′′

is of type τ , it is of the form a(s′′1, s
′′
2) where the roots of s′′1 and s′′2 have the same

k-type than respectively the roots of s1 and s2. By hypothesis all the (k+1)-types
of s1 and s2 already appear in C and hence we can apply the induction hypothesis
to replace s1 by s′′1 and s2 by s′′2 without affecting membership into L. Notice that
the resulting tree is Cs′′, that t = Cs ∈ L iff Cs′′ ∈ L, and that Cs′′ contains two
copies of the subtree s′′, one at position x and one at position z. We now show
that we can derive Cs′ from Cs′′ using k-guarded operations. Since L is k-tame

192

CHAPTER 11. LT OVER TREES

it will follow that that Cs′′ ∈ L iff Cs′ ∈ L and thus Cs ∈ L iff Cs′ ∈ L. Let
t′′ = Cs′′ and we distinguish between three cases depending on the relationship
between z and y in t′′:

1. If z is descendant of y, let D = t′′[y, z] and notice that s′ = Ds′′. Since x, y
and z have the same k-type, we use k-guarded vertical stutter to duplicate
D and a k-guarded horizontal swap to move the new copy of D at position
x (see the picture below). The resulting tree is Cs′ as desired.

s′′

x
D

s′′

y

z

=⇒

Vertical
Stutter

s′′

x
D

D

s′′

y

z

=⇒

Horizontal
Swap

D

s′′

x
D

s′′

y

2. If z is an ancestor of y, let D = t′′[z, y] and notice that s′′ = Ds′. Since y
and x have the same k-type, we use k-guarded horizontal swap followed by
a k-guarded vertical stutter to delete the copy of D (see the picture below).
The resulting tree is Cs′ as desired.

D

s′

x
D
y
s′

z
=⇒

Horizontal
Swap

s′

x
D

D

s′
y

=⇒

Vertical
Stutter

s′

x
D

s′
y

3. If z and y are not related by the descendant relation, then x, y and z have
the same k-type, x, y, z that are not related by the descendant relationship
and t′′|x = t′′|z. We use k-guarded horizontal transfer to replace t′′|x with
t′′|y as depicted below.

s′′

x

s′′

z

s′

y =⇒

Horizontal
Transfer

s′

x

s′′

z

s′

y

193

CHAPTER 11. LT OVER TREES

This concludes the case where x and z are not related by the descendant
relationship in t. We are left with the case where x is a descendant of z (recall
that z is outside s and therefore not a descendant of x). We reduce this problem
to the previous case by considering two subcases:

• If y, z are not related by the descendant relationship, we use a k-guarded
horizontal swap to replace s by s′ and vice versa. This reverses the roles of
x and y and as y and z are not related by the descendant relationship we
can apply the previous case.

s′
y

s

z

x

=⇒

Horizontal
Swap

s
y

s′

z

x

=⇒

Previous
Case

s′
x

s′

z

y

• If z is an ancestor of both x and y we use k-guarded vertical stutter to
duplicate the context between z and x. This introduces a new node z′ of
type τ that is not related to y by the descendant relationship and we are
back with the previous case.

D
z

s′

y

s

x

=⇒

Vertical
Stutter

D
z

s′

y
D

z′

s′

y′

s

x

=⇒

Previous
Case

D
z

s′

y
D

z′

s′

y′

s′

x

=
⇒ Vertical

Stutter

D
z

s′

y

s′

x

194

CHAPTER 11. LT OVER TREES

We now turn to the proof of Lemma 11.6. The proof is done by induction on
the depth of s′. The idea is to replace s with s′ node by node.

Assume first that s′ is of depth less than k. Then because the k-type of the
roots of s and s′ are equal, we have s = s′ and the result follows.

Assume now that s′ is of depth greater than k.
Let x be the node of t corresponding to the root of s. Let τ be the (k+1)-type

of the root of s′. We assume that s′ is a tree of the form a(s′1, s
′
2). Notice that the

k-type of the roots of s′1 and s′2 are completely determined by τ . By hypothesis
s′ 4k+1 D, hence there exists a node y in D of type τ . We consider two cases
depending on the relationship between x and y.

• If y is an ancestor of x, let E be t[y, x] and notice that x and y have the
same k-type. This case is depicted below. Hence applying a k-guarded
vertical stutter we can duplicate E obtaining the tree DEs. Because L is
k-tame, DEs ∈ L iff t = Ds ∈ L. Now the root of Es in DES is of type
τ and therefore of the form a(s1, s2) where the roots of s1 and s2 have the
same k-type than respectively the roots of s′1 and s′2. By construction all
the (k + 1)-types of s1 and s2 already appear in D and hence we can apply
the induction hypothesis to replace s1 by s′1 and s2 by s′2 without affecting
membership into L. Altogether this gives the desired result.

y

x

E

s

(k + 1)-type τ

Vertical
Stutter

=
⇒

E

E

s

(k + 1)-type τ

=

s1 s2

E

a

Induction

=
⇒

s′1 s′2

E

a

• Assume now that x and y are not related by the descendant relationship.
This case is depicted below. Let s′′ be the subtree of Ds rooted at y. By

195

CHAPTER 11. LT OVER TREES

hypothesis all the (k + 1)-types of s are already present in D and the roots
of s and s′′ have the same k-type. Hence we can apply Claim 11.7 and we
have Ds ∈ L iff Ds′′ ∈ L. Now the root of s′′ is by construction of type
τ . Hence s′′ if of the form a(s1, s2) where s1 and s2 have all their (k + 1)-
types appearing in D and their roots have the same k-type as respectively
s′1 and s′2. Hence by induction s1 can be replaced by s′1 and s2 by s′2 without
affecting membership into L. Altogether this gives the desired result.

y x
s′′ s(k + 1)-type τ

Claim 11.7
=⇒ y x

s′′ s′′
(k + 1)-type τ

=

y x
s′′

s′1 s′2

a

Induction
⇐= y x

s′′

s1 s2

a

We now prove a similar result for k-loops.

Lemma 11.8. Assume L is k-tame. Let t be a tree and x a node of t of k-type
τ . Let t′ be another tree such that t ≃k+1 t

′ and C be a k-loop of type τ in t′.
Consider the tree T constructed from t by inserting a copy of C at x. Then t ∈ L
iff T ∈ L.

Proof. The proof is done in two steps. First we use the k-tame property of L to
show that we can insert a k-loop C ′ at x in t such that the principal path of C is
the same as the principal path of C ′. By this we mean that there is a bijection
from the principal path of C ′ to the principal path of C that preserves the child
relation and (k + 1)-types. In a second step we replace one by one the subtrees
hanging from the principal path of C ′ with the corresponding subtrees in C.

First some terminology. Given two nodes x, y of some tree T , we say that x
is a l-ancestor of y if y is a descendant of the left child of x. Similarly we define
r-ancestorship.

Consider the context C occurring in t′. Let y0, · · · , yn be the nodes of t′ on the
principal path of C and τ0, · · · , τn be their respective (k+ 1)-type. For 0 ≤ i < n,
set ci to l if yi+1 is a left child of yi and r otherwise.

196

CHAPTER 11. LT OVER TREES

From t we construct using k-guarded swaps and k-vertical stutters a tree t1
such that there is a sequence of nodes x0, · · · , xn in t1 with for all 0 ≤ i < n, xi is
of type τi and xi is an ci-ancestor of xi+1. The tree t1 is constructed by induction
on n. If n = 0 then this is a consequence of t ≃k+1 t

′ that one can find in t a node
of type τ0. Consider now the case n > 0. By induction we have constructed from
t a tree t′1 such that x0, · · · , xn−1 is an appropriate sequence in t′1. By symmetry
it is enough to consider the case where yn is the left child of yn−1. Because all
k-guarded operations preserve (k+ 1)-types, we have t ≃k+1 t

′
1 and hence there is

a node x of t′1 of type τn. If xn−1 is a l-ancestor of x then we are done. Otherwise
consider the left child x′ of xn−1 and notice that because yn is a child of yn−1 and
xn−1 has the same (k+1)-type than yn−1 then x′, yn and x have the same k-type.

We know that x is not a descendant of x′. There are two cases. If x and x′

are not related by the descendant relationship then by k-guarded swaps we can
replace the subtree rooted in x′ by the subtree rooted in x and we are done. If
x is an ancestor of x′ then the context between x and x′ is a k-loop and we can
use k-guarded vertical stutter to duplicate it. This places a node having the same
(k + 1)-type as x as the left child of xn−1 and we are done.

This concludes the construction of t1. From t1 we construct using k-guarded
swaps and k-guarded vertical stutter a tree t2 such that there is a path x0, · · · , xn
in t2 with for all 0 ≤ i < n, xi is of type τi.

Consider the sequence x0, · · · , xn obtained in t1 from the previous step. Recall
that the k-type of x0 is the same as the k-type of xn. Hence using k-guarded
vertical stutter we can duplicate in t1 the context rooted in x0 and whose port is
xn. Let t′1 the resulting tree. We thus have two copies of the sequence x0, · · · , xn
that we denote by the top copy and the bottom copy. Assume xi is not a child of
xi−1. By symmetry it is enough to consider the case where xi−1 is a l-ancestor of
xi. Notice then that the context between the left child of xi−1 and xi is a k-loop.
Using k-guarded vertical swap we can move the top copy of this context next to
its bottom copy. Using k-guarded vertical stutter this extra copy can be removed.
We are left with an instance of the initial sequence in the bottom copy, while in
the top one xi is a child of xi−1. This construction is depicted in figure 11.5.

Repeating this argument yields the desired tree t2.
Consider now the context C ′ = t2[x0, xn]. It is a loop of k-type τ . Let T ′ be

the tree constructed from t by inserting C ′ at x.

Claim 11.9. T ′ ∈ L iff t ∈ L.

Proof. Consider the sequence of k-guarded swaps and k-guarded vertical stutter
that was used in order to obtain t2 from t. Because L is k-tame, t ∈ L iff t2 ∈ L.

We can easily identify the nodes of t with the nodes of T ′ outside of C ′.
Consider the same sequence of k-guarded operations applied to T ′. Observe that
this yields a tree T2 corresponding to t2 with possibly several extra copies of C ′.

197

CHAPTER 11. LT OVER TREES

x0

xi−1

xi
D

E1

E2

=⇒
Vertical
Stutter

k
-l

o
op

x
0
..
.x

n

D

E1

E2

D

E1

E2

=⇒
Vertical
Swap

E1

E2

E1

E2

D

D

=⇒
Vertical
Stutter

E1

E2

E1

E2

D

x
0
..
.x

n

Figure 11.5: The construction of t2, eliminating the context D between xi−1 and
xi

With appropriates k-guarded swaps, all the extra copies can be brought together
and using k-guarded vertical stutter only one copy remains resulting in t2. Hence
T ′ ∈ L iff t2 ∈ L and the claim is proved. See figure 11.6.

It remains to show that T ′ ∈ L iff T ∈ L. By construction of T ′ we have
C ′ 4k+1 t. Consider now a node xi in the principal path of C ′. Let Ti be the
subtree branching out the principal path of C at yi and T ′

i be the subtree branching
out the principal path of C ′ at xi. By construction xi and yi are of (k+1)-type τi.
Therefore the roots of Ti and T ′

i have the same k-type. Because C ′ 4k+1 t all the
(k + 1)-types of T ′

i already appear in the part of T ′ outside of C ′. By hypothesis
we also have Ti 4k+1 t. Hence we can apply Lemma 11.6 and replacing T ′

i with
Ti does not affect membership into L. A repeated use of that Lemma eventually
shows that T ′ ∈ L iff T ∈ L.

We now turn to the construction of T and T ′ and prove Proposition 11.4.
Recall that the number of k-types is βk. Therefore, by choice of κ, in every

branch of a κ-type one can find at least one k-type that is repeated. This provides
many k-loops that can be used using Lemma 11.8 for obtaining bigger types.

Take l > κ, we build T and T ′ from t and t′ by inserting k-loops in t and t′

without affecting their membership in L using Lemma 11.8.

198

CHAPTER 11. LT OVER TREES

t

T ′

=⇒

k- guarded
operations

=⇒

k- guarded
operations

t2

T2

=
⇒

deletion
of extra

copies of C ′

Figure 11.6: Relation with t2

Let B = {τ0, ..., τn} be the set of k-types τ such that there is a loop of k-type
τ in t or in t′. For each τ ∈ B we fix a context Cτ as follows. Because τ ∈ B
there is a context C in t or t′ that is a loop of k-type τ . For each τ ∈ B, we fix
arbitrarily such a C and set Cτ as C · . . . · C

︸ ︷︷ ︸

l

, l concatenations of the context C.

Notice that the path from the root of Cτ to its port is then bigger than l.

We now describe the construction of T from t. The construction of T ′ from
t′ is done similarly. The tree T is constructed by simultaneously inserting, for all
τ ∈ B, a copy of the context Cτ at all nodes of t of type τ .

We now show that T and T ′ have the desired properties.

The first and second properties, t ∈ L iff T ∈ L and t′ ∈ L iff T ′ ∈ L,
essentially follow from Lemma 11.8. We only show that t ∈ L iff T ∈ L, the
second property is proved symmetrically. We view T as if it was constructed from
t using a sequence of insertions of some context Cτ for τ ∈ B. We write s0, ..., sm
the sequence of intermediate trees with s0 = t and sm = T . We call Ci the context
inserted to get si from si−1. We show by induction on i that (i) si ≃k+1 t and
(ii) si ∈ L iff si+1 ∈ L. This will imply t ∈ L iff T ∈ L as desired. (i) is clear
for i = 0. We show that for all i (i) implies (ii). Recall that Ci is constructed by
l copies of a k-loop present either in t or in t′. Let s be this tree and let s′ be
the tree constructed from s by duplicating the k-loop l times. Hence s′ is a tree
containing Ci and by construction s′ ≃k+1 s. Because t ≃κ t

′ with κ > k + 1 and
si ≃k+1 t we have s′ ≃k+1 si. By Lemma 11.8 this implies that si+1 ∈ L iff si ∈ L.
By construction we also have si+1 ≃k+1 si and the induction step is proved.

We now show the third property:

Lemma 11.10. T ≃l T
′

199

CHAPTER 11. LT OVER TREES

Proof. We need to show that T 4l T
′, T ′ 4l T and that the roots of T and T ′

have the same l-type. It will be convenient for proving this to view the nodes of T
as the union of the nodes of t plus some nodes coming from the k-loops that were
inserted. To do this more formally, if x is a node of t of k-type not in B, then x
is identified with the corresponding node of T . If x is a node of t whose k-type is
in B then x is identified in T with the port of the copy of Cτ that was inserted at
node x. We start with the following claim.

Claim 11.11. Take two nodes x in t and x′ in t′, such that x and x′ have the
same κ-type. Let y and y′ be the corresponding nodes in T and T ′. Then y and
y′ have the same l-type.

Proof. Let ν the κ-type of x and x′. Consider a branch of ν of length κ. By the
choice of κ we know that in this branch one can find two nodes z and z′ with
the same k-types τ , with z an ancestor of z′ and such that the k-type τ of z is
determined by ν (z is at distance ≥ k from the leaves of ν). Hence τ is in B.
Note that because the k-type of z is included in ν, the presence of a node of type
ν induces the presence of a node of type τ at the same relative position than z.
Hence a copy of Cτ is done simultaneously at the same place relative of y and y′

during the construction of T and T ′. Because this is true for all branches of ν and
because all Cτ have depth at least l, then y and y′ have the same l-type.

From claim 11.11 it follows that the roots of T and T ′ have the same l-type.
By symmetry we only show that T 4l T

′. Let y be a node of T and µ be its
l-type. We show that there exists y′ ∈ T ′ with type µ. We consider two cases:

• y is not a node of a loop inserted during the construction of T . Let x be the
corresponding position in t and let ν be its κ-type. Since t ≃κ t

′, there is
a node x′ of t′ of type ν. Let y′ be the node of T ′ corresponding to y′. By
Claim 11.11 y and y′ have the same l-type.

• y is a node inside a copy of Cτ inserted to construct T . Let x be the node
of t where this loop was inserted. Let ν be the κ-type of x (the k-type of x
is τ). Since t ≃κ t

′, there is a node x′ of t′ of type ν. Since κ > k, x and
x′ have the same k-type, a copy of Cτ was also inserted in t′ at position x′

during the construction of T ′. From Claim 11.11, x and x′, when view as
nodes of T and T ′ have the same l-type. Let y′ be the node of T ′ in the copy
of Cτ inserted at x′ that corresponds to the position y. Since y and y′ are
ancestors of x and x′ that have the same l-type, and that the context from
y to x is the same as the context from y′ to x′, then y and y′ must have the
same l-type.

200

CHAPTER 11. LT OVER TREES

This concludes the proof of Proposition 11.4.

11.3 Unranked Unordered Trees

In this section we consider unranked unordered trees with labels in A. In such
trees, each node may have an arbitrary number of children but no order is assumed
on these children. In particular even if a node has only two children we can not
necessarily distinguish the left child from the right child.

Our goal is to adapt the result of the previous section and provide a decidable
characterization of locally testable languages of unranked unordered trees. Since
we work directly with unordrered trees, we redefine the notion on regular languages
over unordered trees.

In this section by regular language we mean definable in the logic MSO using
only the child predicate and unary predicates for the labels of the nodes. There is
also an equivalent automata model that we briefly describe next. A tree automaton
A over unordered unranked trees consists essentially of a finite set of states Q =
{q1, · · · , qk}, an integer m denoted as the counter threshold in the sequel, and a
transition function δ associating a unique state to any pair consisting of a label
and a tuple (q1, γ1) · · · (qk, γk) where γi ∈ {= i | i < m} ∪ {≥ m}. The meaning is
straightforward via bottom-up evaluation: A node of label a get assigned a state
q if for all i, the number of its children, up to threshold m, that were assigned
state qi is as specified by δ. In the sequel we assume without loss of generality
that all our tree automata are deterministic.

We recall the definitions of LT over unranked unordered trees. In the unranked
tree case, there are several natural definitions of LT. Recall the definition of k-
type: the k-type of a node x is the isomorphism type of the subtree induced by the
descendant of x at distance at most k from x. With unranked trees this definition
generates infinitely many k-types. We therefore introduce a more flexible notion
of type, (k, l)-type, based on one extra parameter l restricting the horizontal
information. It is defined by induction on k. Consider an unordered tree t and
a node x of t. For k = 0, the (k, l)-type of x is just the label of x. For k > 0
the (k, l)-type of x is the label of x together with, for each (k − 1, l)-type, the
number, up to threshold l, of children of x of this type. The reader can verify that
over binary trees, the (k, 2)-type and the k-type of x always coincide. As in the
previous section we say that two trees are (k, l)-equivalent, and denote this using
≃(k,l), if they have the same occurrences of (k, l)-types and their roots have the
same (k, l)-type. We also use t 4(k,l) t

′ to denote the fact that all (k, l)-types of t
also occur in t′.

Based on this new notion of type, we define two notions of locally testable
languages. The most expressive one, denoted ALT (A for Aperiodic), is defined as

201

CHAPTER 11. LT OVER TREES

follows. A language L is in (κ, λ)-ALT if it is a union of (κ, λ)-equivalence classes.
A language L is in ALT if there is a k and a λ such that L is in (κ, λ)-ALT.

The second one, denoted ILT in the sequel (I for Idempotent), assumes λ = 1:
A language L is in ILT if there is a κ such that L is a union of (κ, 1)-equivalence
classes.

The main result of this section is that we can decide membership for both ILT
and ALT.

Theorem 11.12. It is decidable whether a regular unranked unordered tree lan-
guage is ILT. It is decidable whether a regular unranked unordered tree language
is ALT.

Tameness The notion of k-tame is defined as in Section 11.1 using the same k-
guarded operations requiring that the swaps nodes have identical k-type. We also
define a notion of (k, l)-tame which corresponds to our new notion of (k, l)-type.
Consider the four operations of tameness defined in Section 11.1, a horizontal
swap is said to be (k, l)-guarded if x and x′ have the same (k, l)-type, a horizontal
transfer is (k, l)-guarded if x, y, z have the same (k, l)-type, a vertical swap is
(k, l)-guarded if x, y, z have the same (k, l)-type and a vertical stutter is (k, l)-
guarded if x, y, z have the same (k, l)-type. Let L be a regular unranked unordered
tree language and let m be the counting threshold of the minimal automaton
recognizing L, we say that L is (k, l)-tame iff it is closed under (k, l)-guarded
horizontal swap, horizontal transfer, vertical swap and vertical stutter and l > m1.
We first prove that over unordered trees being k-tame is the same as being (k, l)-
tame.

Proposition 11.13. Let L be an unordered unranked regular tree language, then
for all integer k, L is k-tame iff there exists l such that L is (k, l)-tame. Further-
more, such a l can be computed from any automaton recognizing L.

Proof. If there exists l such that L is (k, l)-tame then L is obviously k-tame.
Suppose that L is k-tame, and let m be the counting threshold of the minimal
automaton A recognizing L, we show that there exists l′ such that L is closed
under (k, l′)-guarded operations. This implies the result as one can then take
l = max(m+ 1, l′).

We need to show that L is closed under (k, l′)-guarded vertical swap, verti-
cal stutter, horizontal swap and horizontal transfer. The proof is similar to the
proof of Proposition 1 in [BS09]. We will use the following claim which is proved
in [BS09] using a simple pumping argument:

1We assume l > m in order to make the statements of the results similar to those used in the
binary setting.

202

CHAPTER 11. LT OVER TREES

Claim 11.14. [BS09] For every tree automaton A there is a number l′, computable
from A, such that for every k if a tree t1 is (k, l′)-equivalent to a tree t2, then there
are trees t′1, t

′
2 with t′1 and t′2 k-equivalent such that A reaches the same state on

t′i as on ti for i = 1, 2.

We use this claim to prove that L is closed under horizontal transfer. Let l′ be
the number computed from A by Claim 11.14. We prove that L is closed under
(k, l′)-guarded horizontal transfer. Consider a tree t and three nodes x, y, z of t
not related by the descendant relationship and such that t|x = t|y and such that
x, y and z have the same (k, l)-type. Let t′ be the horizontal transfer of t at x, y, z.
Let t1 = t|x and t2 = t|z and t′1, t

′
2 obtained from t1, t2 using Claim 11.14. Let s

be the tree obtained from t by replacing t|x and t|y with t′1 and t|z with t′2, and let
s′ be the tree obtained from t′ by replacing t′|x with t′1 and t′|y and t′|z with t2.
From Claim 11.14 it follows that t ∈ L iff s ∈ L and t′ ∈ L iff s′ ∈ L. Since L is
k-tame, it is closed under k-guarded horizontal transfer, therefore we have s ∈ L
iff s′ ∈ L, it follows that t ∈ L iff t′ ∈ L.

The closure under horizontal swap is proved using the same claim. The proof
for vertical swap and vertical stutter use a claim similar to Claim 11.14 but for
contexts: For every tree automaton A there is a number l computable from A
such that for every k if the context C1 is (k, l)-equivalent to the context C2 (by
this we mean that their roots have the same (k, l)-type), then there are contexts
C ′
1, C

′
2 with C ′

1 k-equivalent to C ′
2 such that C ′

i induces the same function on the
states of A as Ci for i = 1, 2.

From this lemma we know that a regular language over unranked unordered
trees is tame iff it is k-tame for some k iff it is (k, l)-tame for some k, l. Moreover,
as in the binary setting, if a regular language is tame then it is (k, l)-tame for
some k and l computable from an automaton recognizing L. The bound on k can
be obtained by a straightforward adaptation of Proposition 11.3. The bound on l
then follows from Proposition 11.13. Hence we have:

Proposition 11.15. Let L be a regular language and let A be its minimal de-
terministic bottom-up tree automata, we have L is tame iff L is (k0, l0)-tame for
k0 = |A|3 + 1 and some l0 computable from A.

11.3.1 Decision of ALT

We now turn to the proof of Theorem 11.12. We begin with the proof for ALT
as both the decision procedure and its proof are obtained as in the case of binary
trees. Assuming tameness we obtain a bound on κ and λ such that a language
is in ALT iff it is in (κ, λ)-ALT. Once κ and λ are known, it is easy do decide
if a language is (κ, λ)-ALT since the number of such languages is finite. The

203

CHAPTER 11. LT OVER TREES

bounds on κ and λ are obtained following the same proof structure as in the
binary cases, essentially replacing k-tame by (k, l)-tame, but with several technical
modifications. Therefore, we only sketch the proofs below and only detail the new
technical material. Our goal is to prove the following result.

Proposition 11.16. Assume L is a (k, l)-tame regular tree language and let A be
its minimal automaton. Then L is in ALT iff L is in (κ, λ)-ALT where κ and λ
are computable from k, l and A.

Notice that for each k, l the number of (k, l)-types is finite, let βk,l be this
number. Proposition 11.16 is now a simple consequence of the following proposi-
tion.

Proposition 11.17. Let L be a (k, l)-tame regular tree language and let A be the
minimal automaton recognizing L. Set λ = |A|l + 1 and κ = βk,l + k + 1. Then
for all κ′ > κ, all λ′ > λ and any two trees t, t′ if t ≃(κ,λ) t

′ then there exists two
trees T, T ′ with

1. t ∈ L iff T ∈ L

2. t′ ∈ L iff T ′ ∈ L

3. T ≃(κ′,λ′) T
′.

Before proving Proposition 11.17 we adapt the extra terminology we used in
the proof of Proposition 11.5 to the unranked setting. A non-empty context C
occurring in a tree t is a loop of (k, l)-type τ if the (k, l)-type of its root and the
(k, l)-type of its port is τ . A non-empty context C occurring in a tree t is a (k, l)-
loop if there is some (k, l)-type τ such that C is a loop of (k, l)-type τ . Given a
context C we call the path from the root of C to its port the principal path of C.
Finally, the result of the insertion of a (k, l)-loop C at a node x of a tree t is a
tree T such that if t = D · t|x then T = D ·C · t|x. Typically an insertion will occur
only when the (k, l)-type of x is τ and C is a loop of (k, l)-type τ . In this case the
(k, l)-types of the nodes initially from t and of the nodes of C are unchanged by
this operation.

Proof of Proposition 11.17. Suppose that L is (k, l)-tame. Like we did for the
proof of the binary case we first prove two lemmas that are crucial for the con-
struction of T and T ′. They show that subtrees can be replaced and contexts
can be inserted as soon as this does not change the (k+1,l)-equivalence class of
the tree. They are direct adaptations of the corresponding lemmas for the ranked
setting: Lemmas 11.6 and 11.8. We start with subtrees.

204

CHAPTER 11. LT OVER TREES

Lemma 11.18. Assume L is (k, l)-tame. Let t = Ds be a tree where s is a subtree
of t. Let s′ be another tree such that the roots of s and s′ have the same (k, l)-type.

If s 4(k+1,l) D and s′ 4(k+1,l) D then Ds ∈ L iff Ds′ ∈ L.

Proof sketch. As in the binary setting the proof is done by first proving a restricted
version where s′ is actually another subtree of t. Before doing that, we state a
new claim, specific to the unranked setting, that will be useful later for solving the
induction bases of our proofs. In the binary setting, two trees that had the same
k-type at their root and were of depth smaller than k were equal. This obviously
does not extend to unranked trees and (k, l)-types. However it is simple to see
that equality can be replaced by indistinguishable by the minimal tree automaton
recognizing L.

Claim 11.19. Let A a tree automaton and m be its counting threshold. Let t and
t′ be two trees of depth smaller than k and whose roots have the same (k,m)-type.
Then t and t′ evaluate to the same state of A.

Proof. This is done by induction on k. If k = 0, t and t′ are leaves, it follows from
their (0,m)-type that t = t′.

Otherwise we know that t and t′ have the same (k,m)-type at their root
therefore they have the same root label. Let s and s′ be two trees that are
children of the root of t or of t′ and have the same (k − 1,m)-type at their root.
The depth of s and s′ is smaller than k − 1, therefore by induction hypothesis s
and s′ evaluate to the same state of A. Now, because the roots of t and t′ have
the same (k,m)-type, for each (k − 1,m)-type τ , they have the same number of
children of type τ up to threshold m. From the previous remark this implies that
for each state q of A, they have the same number of children in state q up to
threshold m. It follows from the definition of A that t and t′ evaluate to the same
state of A.

We are now ready to state and prove the lemma in the restricted case.

Claim 11.20. Assume L is (k, l)-tame. Let t be a tree and let x, y be two nodes
of t not related by the descendant relationship and with the same (k, l)-type. We
write s = t|x, s

′ = t|y and C the context such that t = Cs. If s 4(k+1,l) C then
Cs ∈ L iff Cs′ ∈ L.

Proof sketch. This proof only differs from its binary tree counterpart Claim 11.7
in the details of the induction step. It is done by induction on the depth of s.

Assume first that s is of depth less than k. Since x and y have the same
(k, l)-type and since l ≥ m it follows from Claim 11.19 that s and s′ evaluate the
the same state on the automaton A recognizing L. Hence we can replace s with
s′ without affecting membership in L.

205

CHAPTER 11. LT OVER TREES

Assume now that s is of depth greater than k.

Let τ be the (k + 1, l)-type of x. We write s1, ..., sn the children of s and a
the label of its root. Since s 4(k+1,l) C, there exists a node z in C of type τ . We
write s′′ = t|z.

We now do a case analysis depending on the descendant relationships between
x, y and z. As for binary trees, all cases reduce to the case when x and z are
not related by the descendant relationship by simple (k, l)-tameness operations.
Therefore we only consider this case here.

Assume that x and z are not related by the descendant relationship. We show
only that Cs ∈ L iff Cs′′ ∈ L. The proof that Cs′ ∈ L iff Cs′′ ∈ L is then done
exactly as for binary trees.

Since x and z are of same (k+1, l)-type τ , the roots of s′ and s′′ have the same
label a. Let s′′1, . . . , s

′′
n′ be the children of the root of s′′, like in the binary case

we want to replace the trees s1, . . . , sn with these children by induction since the
depth of the trees s1, . . . , sn is smaller than the depth of s. Unfortunately for each
(k, l)-type τi, the number of trees whose root has type τi among the children of x
and among the children of z might not be the same. However we know that in this
case both numbers are greater than l. We overcome this difficulty in two steps,
first we modify the children of x, without affecting membership in L, so that if si
and sj have the same (k, l)-type then si = sj , then we use the fact that l > m in
order to delete or duplicate children of x until for each (k, l)-type τi the number
of trees of root of type τi among the children of x and among the children of z is
the same. By definition of A, this does not affect membership into L. Finally we
replace the si by the s′′i by induction as in the binary case.

For the first step notice that any of the si is by definition of depth smaller
than s therefore by induction hypothesis we can replace it with any of its siblings
having the same (k, l)-type at its root without affecting membership in L.

We now turn to the proof of Lemma 11.18 in its general statement. The proof
is done by induction on the depth of s′. The idea is to replace s with s′ node by
node.

Assume first that s′ is of depth smaller than k. Then because the (k, l)-types
of the roots of s and s′ are the same we are in the hypothesis of Claim 11.19 and
it follows that s and s′ evaluate to the same state of A. The result follows.

Assume now that s′ is of depth greater than k.

Let x be the node of t corresponding to the root of s. Let τ be the (k+1, l)-type
of the root of s′. In the binary tree case we used a sequence of tame operations
to reduce the problem to the case where x has (k + 1, l)-type τ . Using the same
operations we can also reduce the problem to this case in the unranked setting.
Then we use the induction hypothesis to replace the children of x by the children
of the root of s′. Like in the proof of Claim 11.20, the problem is that the

206

CHAPTER 11. LT OVER TREES

number of children might not match but this is solved exactly as in the proof of
Claim 11.20.

As in the binary tree case, we now prove a result similar to Lemma 11.18 but
for (k, l)-loops.

Lemma 11.21. Assume L is (k, l)-tame. Let t be a tree and x a node of t of
(k, l)-type τ . Let t′ be another tree such that t ≃(k+1,l) t

′ and C be a (k, l)-loop of
type τ in t′. Consider the tree T constructed from t by inserting a copy of C at x.
Then t ∈ L iff T ∈ L.

Proof sketch. The proof is done using the same structure as Lemma 11.8 for the
binary case. First we use the (k, l)-tame property of L to show that we can insert a
(k, l)-loop C ′ at x in t such that the principal path of C is the same as the principal
path of C ′. By this we mean that there is a bijection from the principal path of
C ′ to the principal path of C that preserves the child relation and (k+ 1, l)-types.
In a second step we replace one by one the subtrees hanging from the principal
path of C ′ with the corresponding subtrees in C.

Let T ′ be the tree resulting from inserting C ′ at position x. We do not detail
the first step as it is done using exactly the same sequence of tame operations we
used for this step in the proof of Lemma 11.8. This yields: t ∈ L iff T ′ ∈ L. We
turn to the second step showing that T ′ ∈ L iff T ∈ L.

By construction of T ′ we have C ′ 4(k+1,l) t. Consider now a node x′i in the
principal path of C ′ and xi the corresponding node in C. Like in the binary tree
case we replace the subtrees branching out of the principal path of C ′ with the
corresponding trees branching out of the principal path of C using Lemma 11.18.
As in the previous proof, the problem is that the numbers of children might not
match. This is solved exactly as in the proof of Lemma 11.18.

We now turn to the construction of T and T ′ and prove Proposition 11.17.

The construction is similar to the one we did in the binary tree case, we insert
(k, l)-loops in t and t′ using Lemma 11.21 for obtaining bigger types. However
inserting loops only affect the depth of the types. Therefore we need to do extra
work in order to also increase the width of the types.

Assuming t ≃(k,l) t
′ we first we construct two intermediate trees T1 and T ′

1

that have the following properties:

• t ∈ L iff T1 ∈ L

• t′ ∈ L iff T ′
1 ∈ L

• T1 ≃(κ′,λ) T
′
1

207

CHAPTER 11. LT OVER TREES

This construction is the same as in the binary tree setting so we only briefly
describe it. Let B = {τ0, ..., τn} be the set of (k, l)-types τ such that there is a
loop of (k, l)-type τ in t or in t′. For each τ ∈ B we fix a context Cτ as follows.
Because τ ∈ B there is a context C in T1 or T ′

1 that is a loop of (k, l)-type τ . For
each τ ∈ B, we fix arbitrarily such a C and set Cτ as C · . . . · C

︸ ︷︷ ︸

κ′

, κ′ concatenations

of the context C. Notice that the path from the root of Cτ to its port is then
bigger than κ′.

T1 is constructed from t as follows (the construction of T ′
1 from t′ is done

similarly). The tree T1 is constructed by simultaneously inserting, for all τ ∈ B, a
copy of the context Cτ at all nodes of t of type τ . By Lemma 11.21 it follows that
t ∈ L iff T1 ∈ L and t′ ∈ L iff T ′

1 ∈ L. Using the same proof as of Proposition 11.5
for the binary tree setting, we obtain T1 ≃(κ′,λ) T

′
1.

We now describe the construction of T from T1, the construction of T ′ from
T ′
1 is done similarly. It will be convenient for us to view the nodes of T1 as the

union of the nodes of t plus some extra nodes coming from the loops that were
inserted.

Let n be the maximum arity of a node of T1 or of T ′
1. We duplicate subtrees in

T1 and T ′
1 as follows. Let x be a node of T1, that is not in a loop we inserted when

constructing T1 from t. For each (κ′ − 1, λ)-type τ , if x has more than λ children
of type τ we duplicate one of the corresponding subtrees until x has exactly n
children of type τ in total. This is possible without affecting membership into L
because λ > m|A|. Indeed, because λ > m|A|, for at least one state q of A, there
exists more than m subtrees of x of type τ for which A assigns that state q at
their root, and by definition of A any of these subtrees can be duplicated without
affecting membership into L. The tree T is constructed from T1 by repeating this
operation for any node x of T1 coming from t. By construction we have T1 ∈ L
iff T ∈ L and therefore t ∈ L iff T ∈ L. The same construction starting from T ′

1

yields a tree T ′ such that t′ ∈ L iff T ′ ∈ L.

We now show that T ≃κ′ T ′, it follows that T ≃(κ′,λ′) T
′ and this concludes

the proof.

Lemma 11.22. T ≃κ′ T ′

Proof. We need to show that T 4κ′ T ′, T ′ 4κ′ T and that the roots of T and T ′

have the same κ′-type.

Recall that in T1 we distinguished between two kinds of nodes, those coming
from t and those coming from the loops that were inserted during the construction
of T1 from t. We do the same distinction in T by assuming that a node generated
after a duplication gets the same kind as its original copy.

Recall the definition of B and of Cτ for τ ∈ B that was used for defining T1
and T ′

1 from t and t′.

208

CHAPTER 11. LT OVER TREES

As for the binary tree case it suffices to show that for any node of T coming
from t there is a node of T ′ coming from t′ and having the same κ′-type. Hence
the result follows from the claim below that is an adaptation of Claim 11.11.

Claim 11.23. Take two nodes x in t and x′ in t′, such that x and x′ have the
same (κ, λ)-type. Let z and z′ be the corresponding nodes in T and T ′. Then z
and z′ have the same κ′-type.

Proof. Let x and x′ be two nodes of t and t′ with the same (κ, λ)-type. Let x1
and x′1 be the corresponding nodes in T1 and T ′

1. The same proof as Claim 11.11
for the binary tree case shows that x1 and x′1 have the same (κ′, λ)-type.

Let y be a child of x. Let y1 be the node corresponding to y in T1. Notice now
that the (κ′, λ)-type of y1 in T1 is completely determined by the (κ − 1, λ)-type
ν of y in t. Indeed, by choice of κ, during the construction of T1, a loop of type
τ ∈ B will be inserted between y and any descendant of y at distance at most
β(k,l)− 1 from y. As κ > β(k,l) + k, the relative positions below y where such a Cτ

is inserted can be read from ν. As the depth of any Cτ is greater than κ′, from
ν we can compute exactly the descendants of y1 in T1 up to depth κ′. Hence ν
determines the (κ′, λ)-type of y1.

It follows that two children of x1 or of x′1 have the same (κ′, λ)-types iff they
had the same (κ− 1, λ)-types in t or in t′.

We now construct an isomorphism between the κ′-type of z and the one of
z′. Let d be the maximal distance between z and a node that is a descendant of
z where a loop was inserted during the construct of T from t. We construct our
isomorphism by induction on d.

If d = 0 then the (k, l)-type of z is in B and as z and z′ have the same (κ′, λ)-
type with κ′ > k, the (k, l)-type of z′ is the same as the one of z′. Therefore the
subtrees rooted at z and z′ are equal up to depth κ′ as they all start with a copy
of Cτ and we are done.

Otherwise, as z and z′ have the same (κ′, λ)-type their roots must have the
same labels. Consider now a (κ′ − 1, λ)-type µ. By construction of T and T ′, z
and z′ must have the same number of occurrences of children of type µ. Indeed
from the type these numbers must match if one of them is smaller than λ and
by construction they are equal to n otherwise. Hence we have a bijection from
the children of z of type µ and the children of z′ of type µ. From the text above
we know that the (κ′, λ)-type of these nodes is determined by the (κ − 1, λ)-
type of their copy in t or in t′. Because x and x′ have the same (κ, λ)-type,
the corresponding (κ− 1, λ)-types are all equal and hence all the nodes of type µ
actually have the same (κ′, λ)-type. By induction they are isomorphic up to depth
κ′ and we are done.

209

CHAPTER 11. LT OVER TREES

From Claim 11.22 the lemma follows as in the proof of Lemma 11.10 for binary
trees.

This concludes the proof of Proposition 11.17.

11.3.2 Decision of ILT

In the idempotent case we can completely characterize ILT using closure prop-
erties. We show that membership in ILT corresponds to tameness together with
an extra closure property denoted horizontal stutter reflecting the idempotent be-
havior. A tree language L is closed under horizontal stutter iff for any tree t and
any node x of t, replacing t|x with two copies of t|x does not affect membership
into L. Theorem 11.12 for ILT is a consequence of the following theorem.

Theorem 11.24. A regular unordered tree language is in ILT iff it is tame and
closed under horizontal stutter.

Proof. It is simple to see that tameness and closure under horizontal stutter are
necessary conditions. We prove that they are sufficient. Take a regular tree
language L and suppose that L is tame and closed under horizontal stutter. Then
there exists k and l such that L is (k, l)-tame. We show that if t ≃(k+1,1) t

′ then
t ∈ L iff t′ ∈ L. It follows that L is in ILT. We first show a simple lemma stating
that if two trees contain the same (k+1, 1)-types, then we can pump them without
affecting membership in L into two trees that contain the same (k + 1, l)-types.

Lemma 11.25. Let L closed under horizontal stutter and let s and s′ two trees
such that s ≃(k+1,1) s

′. Then there exists two trees S and S′ such that:

• s ∈ L iff S ∈ L.

• s′ ∈ L iff S′ ∈ L.

• S ≃(k+1,l) S
′

Proof. S is constructed from s via a bottom-up procedure. Let x be a node of s.
For each subtree rooted at a child of x, we duplicate it l times using horizontal
stutter. This does not affect membership into L. After performing this for all
nodes x of s we obtain a tree S with the desired properties.

Let T and T ′ be constructed from t and t′ using Lemma 11.25. Let T1, . . . , Tn
the children of the root of T and T ′

1, . . . , T
′
n′ the children of the root of T ′. Let T ′′

be the tree whose root is the same as T and T ′ and whose children is the sequence
of trees T1, . . . , Tn, T

′
1, . . . , T

′
n′ . We show that T ′′ ∈ L iff T ∈ L and T ′′ ∈ L iff

210

CHAPTER 11. LT OVER TREES

T ′ ∈ L. It will follow that T ∈ L iff T ′ ∈ L and by Lemma 11.25 that t ∈ L iff
t′ ∈ L which ends the proof.

To show that T ′′ ∈ L iff T ∈ L we use horizontal stutter and Lemma 11.18. As
the roots of T and T ′ have the same (k+1, l)-type, for each T ′

i , there exists a tree Tj
such that its root has the same (k, l)-type as T ′

i . Fix such a pair (i, j). Let S be the
tree obtained by duplicating Tj in T , by closure under horizontal stutter T ∈ L iff
S ∈ L. But now S = DTj for some context D such that T 4(k+1,l) D. Altogether
we have that: the roots of T ′

i and Tj have the same (k, l)-type (by choice if i and
j), T ′

i 4(k+1,l) D (as T ′
i 4(k+1,l) T

′ and T ≃(k+1,l) T
′) and Tj 4(k+1,l) D (as Tj

is part of T hence of D). We can therefore apply Lemma 11.18 and DT ′
i ∈ L iff

DTj ∈ L.

Repeating this argument for all i eventually yield the tree T ′′. This proves that
T ′′ ∈ L iff T ∈ L. By symmetry we also have T ′′ ∈ L iff T ′ ∈ L which concludes
the proof.

11.4 Tameness is not sufficient

Over strings tameness characterizes exactly LT as vertical swap and vertical stut-
ter are exactly the extensions to trees of the known equations for LT Over trees
this is no longer the case, in this section we provide an example of a language that
is tame but not LT. For simplifying the presentation we assume that nodes may
have between 0 to three children; this can easily be turned into a binary tree lan-
guage. All trees in our language L have the same structure consisting of a root of
label a from which exactly three sequences of nodes with only one child (strings)
are attached. The trees in L have therefore exactly three leaves, and those must
have three distinct labels among {h1, h2, h3}. The labels of two of the branches,
not including the root and the leaf, must form a sequence in the language b∗cd∗.
The third branch must form a sequence in the language b∗c’d∗. We assume that
b, c, c’ and d are distinct labels. Note that the language does not specify which
leaf label among {h1, h2, h3} is attached to the branch containing c’.

The reader can verify that L is 1-tame. We show that L is not in LT. For all
integer k, the two trees t and t′ depicted below are such that t ∈ L, t′ /∈ L, while
t ≃k t

′.

211

CHAPTER 11. LT OVER TREES

a

bk

c

dk

h1

bk

c

dk

h2

bk

c′

dk

h3
t ∈ L

≃k

t′ /∈ L

a

bk

c

dk

h1

bk

c′

dk

h2

bk

c′

dk

h3

11.5 Discussion

We have shown a decidable characterization for the class of locally testable regular
tree languages both for ranked trees and unranked unordered trees.

Complexity The decision procedure for deciding membership in LT as de-
scribed in this thesis requires a time which is a tower of several exponentials in
the size of the deterministic minimal automaton recognizing L. This is most likely
not optimal. In comparison, over strings, membership in LT can be performed
in polynomial time [Pin05]. Essentially our procedure requires two steps. The
first step shows that if a regular language L is in LT then it is κ-locally testable
for some κ computable from the minimal deterministic automaton A recognizing
L. The κ obtained in Proposition 11.4 is doubly exponential in the size of A. In
comparison, over strings, this κ can be shown to be polynomial. For trees we did
not manage to get a smaller κ but we have no example where even one exponential
would be necessary.

Our second step tests whether L is κ-locally testable once κ is fixed. This is
easy to do using a brute force algorithm that requires several exponentials in κ.
It is likely that this can be optimized but we didn’t investigate this direction.

However for unranked unordered trees we have seen in Theorem 11.24 that
in the case of ILT it is enough to test for tameness. The naive procedure for
deciding tameness is exponential in the size of A. But the techniques presented
in [BS09] for the case of LTT, easily extend to the closure properties of tameness,
and provide an algorithm running in time polynomial in the size of A. Hence
membership in ILT can be tested in time polynomial in the size of of the minimal
deterministic bottom-up tree automaton recognizing the language.

Open problem In the case of unranked ordered trees, we believe that tameness
together with a property that essentially say that the horizontal navigation is in

212

DECIDABLE CHARACTERIZATIONS FOR TREE LOGICS

LT should provide a characterization for an intuitive notion of LT. Note that in
this setting it is no longer clear whether tameness is decidable or not. We leave
the case of ordered trees as an open problem.

213

DECIDABLE CHARACTERIZATIONS FOR TREE LOGICS

214

Conclusion

Our main goal in this thesis is to get a better understanding of the expressive
power of first-order logic in the setting of trees. In particular, the main open
problem in this research area is to obtain decidable characterizations for FO(<v)
and FO(<h, <v) using the ancestor and following sibling relations. We leave this
main problem open. However, we were able to obtain decidable characteriza-
tions for several fragments of FO. This fragments are obtained by restricting the
expressive power of FO in specific ways. First we presented decidable character-
izations for logics obtained by restricting the quantifications, such as ∆2(<v), or
the number variables allowed, such as FO2(<h, <v). Also, we provided a decidable
characterization of LT which, in particular, restricts the predicates that may be
used in FO to only the successor relation.

A question that is raised from these results is why we are still unable to
obtain a decidable characterization for FO. A good place to look would be to
investigate which algebraic formalism is the right one for this purpose. We already
used several formalisms and it is not cleat that they are powerful enough for
FO. Moreover, none of them unify all the other formalisms. For instance, we
are still unable to express the tameness property we use for the characterization
of LT, using forest algebras. Another example is the notion of closure under
saturation we use in the characterization of FO2(<h, <v). This property involves
several parameters that are outside the syntactic forest algebra of the language.
In particular, we do know how to express this property using only the syntactic
forest algebra of the language.

This leads to two possible research directions. First, our knowledge of forest
algebra might be insufficient. We would need to further investigate this formalism
and devise new tools in order, for instance, to be able express properties such as
saturation.

Another possible direction would be the definition of a new algebraic formal-
ism that would be better suited for expressing our closure properties. For example
saturation relies heavily on branching in the trees. An adapted formalism, should
be able to express these branching properties in a simple way. Another possibility
for finding a new formalism is to investigate the expressive power of fragments of

215

DECIDABLE CHARACTERIZATIONS FOR TREE LOGICS

FO that are slightly more expressive than the logics for which we already have
decidable decidable characterizations. For example obtaining a decidable charac-
terization for FO2(<h, Succh, <v, Succv) would involve obtaining a better under-
standing on the child relation in trees. Therefore, it could lead to the definition of
an algebra that would be better in expressing this relation and could be used to
express closure properties for fragments such as LT. Similarly, studying a notion
of locally testable languages of unranked ordered trees, may lead to a better un-
derstanding on how to express horizontal closure properties. Another motivation
for searching for a new formalism is to unify all known formalism in a simple way.

216

Bibliography

[Alm96] Jorge Almeida. A syntactical proof of locality of DA. International
Journal of Algebra and Computation, 6:165–177, 1996.

[Boj07a] Miko laj Bojańczyk. A new algorithm for testing if a regular language
is locally threshold testable. Information Processing Letters, 104(3):91–
94, 2007.

[Boj07b] Miko laj Bojańczyk. Two-way unary temporal logic over trees. In Pro-
ceedings of the 22th Annual IEEE Symposium on Logic in Computer
Science (LICS’07), pages 121–130, 2007.

[BP89] Danièle Beauquier and Jean-Éric Pin. Factors of words. In Proceed-
ings of the 16th International Colloquium on Automata, Languages and
Programming (ICALP’89), pages 63–79, 1989.

[BS73] Janusz A. Brzozowski and Imre Simon. Characterizations of locally
testable languages. Discrete Mathematics, 4:243–271, 1973.

[BS08] Miko laj Bojańczyk and Luc Segoufin. Tree languages defined in first-
order logic with one quantifier alternation. In Proceedings of the 35th
International Colloquium on Automata, Languages and Programming
(ICALP’08), pages 233–245, 2008.

[BS09] Michael Benedikt and Luc Segoufin. Regular Languages Definable in
FO and FOmod. ACM Transactions of Computational Logic, 11(1),
2009.

[BSS08] Miko laj Bojańczyk, Luc Segoufin, and Howard Straubing. Piecewise
testable tree languages. In Proceedings of the 23th Annual IEEE Sym-
posium on Logic in Computer Science (LICS’08), pages 442–451, 2008.

[BSW09] Miko laj Bojańczyk, Howard Straubing, and Igor Walukiewicz. Wreath
products of forest algebras, with applications to tree logics. In Pro-
ceedings of the 24th Annual IEEE Symposium on Logic in Computer
Science (LICS’09), pages 255–263, 2009.

217

BIBLIOGRAPHY

[BW06] Miko laj Bojańczyk and Igor Walukiewicz. Characterizing EF and EX
tree logics. Theoretical Computer Science, 358, 2006.

[BW07] Miko laj Bojańczyk and Igor Walukiewicz. Forest algebras. In Automata
and Logic: History and Perspectives, pages 107–132. Amsterdam Uni-
versity Press, 2007.

[Bü60] Julius Richard Büchi. Weak second-order arithmetic and finite au-
tomata. Z. Math. Logik Grundlagen Math., 6:66–92, 1960.

[DG08] Volker Diekert and Paul Gastin. First-order definable languages. In
Logic and Automata: History and Perspectives, volume 2, pages 261–
306. Amsterdam University Press, 2008.

[DGK08] Volker Diekert, Paul Gastin, and Manfred Kufleitner. A survey on small
fragments of first-order logic over finite words. International Journal of
Foundations of Computer Science, 19(3):513–548, 2008.

[ÉI08a] Zoltán Ésik and Szabolcs Iván. Products of tree automata with an ap-
plication to temporal logic. Fundamenta Informaticae, 82:61–78, 2008.

[ÉI08b] Zoltán Ésik and Szabolcs Iván. Some varieties of finite tree automata
related to restricted temporal logics. Fundamenta Informaticae, 82:79–
103, 2008.

[Ési06] Zoltán Ésik. Characterizing CTL-like logics on finite trees. Theoretical
Computer Science, 356:136–142, 2006.

[EVW02] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic
with two variables and unary temporal logic. Inf. Comput., 179(2):279–
295, 2002.

[ÉW05] Zoltán Ésik and Pascal Weil. Algebraic characterization of regular tree
languages. Theoretical Computer Science, 340:291–321, 2005.

[Mar05] Maarten Marx. First order paths in ordered trees. In Proceedings of the
10th International Conference in Database Theory (ICDT’05), pages
114–128, 2005.

[McN74] Robert McNaughton. Algebraic decision procedures for local testability.
Mathematical Systems Theory, 8:60–76, 1974.

[Pin96] Jean-Éric Pin. Logic, semigroups and automata on words. Annals of
Mathematics and Artificial Intelligence, 16:343–384, 1996.

218

BIBLIOGRAPHY

[Pin05] Jean-Éric Pin. The expressive power of existential first order sentences
of büchi’s sequential µ calculus. Discrete Mathematics, 291:155–174,
2005.

[Pla08] Thomas Place. Characterization of logics over ranked tree languages.
In Proceedings of the 17th Annual EACSL Conference on Computer
Science Logic (CSL’08), pages 401–415, 2008.

[PS09] Thomas Place and Luc Segoufin. A decidable characterization of locally
testable tree languages. In Proceedings of the 36th International Collo-
quium on Automata, Languages and Programming (ICALP’09), pages
285–296, 2009.

[PS10] Thomas Place and Luc Segoufin. Deciding definability in FO2(<)
(or XPath) on trees. In Proceedings of the 25th Annual IEEE Sym-
posium on Logic in Computer Science (LICS’10), pages 1–1, 2010.

[PW97] Jean-Éric Pin and Pascal Weil. Polynomial closure and unambiguous
product. Theory of Computing Systems, 30, 1997.

[Sch65] Marcel Paul Schützenberger. On finite monoids having only trivial sub-
groups. Information and Control, 8, 1965.

[Sim75] Imre Simon. Piecewise testable events. Automata Theory and Formal
Languages, pages 214–222, 1975.

[Str85] Howard Straubing. Finite semigroup varieties of the form V*D. Journal
of Pure and Applied Algebra, 36(1):53–94, 1985.

[Str10] Howard Straubing. Forest categories. Unpublished manuscript, 2010.

[Til87] Bret Tilson. Categories as algebra: an essential ingredient in the theory
of monoids. Journal of Pure and Applied Algebra, 48:83–198, 1987.

[TT02] Pascal Tesson and Denis Thérien. Diamonds are forever: The variety
DA. In Semigroups, Algorithms, Automata and Languages, pages 475–
500, 2002.

[TW68] James W. Thatcher and Jesse B. Wright. Generalized finite automata
with an application to a decision problem of second-order logic. Math-
ematical System Theory, 2, 1968.

[TW85] Denis Thérien and Alex Weiss. Graph congruences and wreath prod-
ucts. Journal of Pure and Applied Algebra, 36:205–215, 1985.

219

BIBLIOGRAPHY

[TW98] Denis Thérien and Thomas Wilke. Over words, two variables are as
powerful as one quantifier alternation. In Proceedings of the 30th ACM
Symposium on the Theory of Computing (STOC’98), pages 234–240,
1998.

[Wil96] Thomas Wilke. An algebraic characterization of frontier testable tree
languages. Theoretical Computer Science, 154(1):85–106, 1996.

220

