Noname manuscript No.
(will be inserted by the editor)

The k-simultaneous consensus problem

Y. Afek - E. Gafni -

the date of receipt and acceptance should be inserted later

Abstract This paper introduces and investigates the k-
simultaneous consensus task: each process participates
at the same time in k independent consensus instances
until it decides in any one of them. It is shown that the
k-simultaneous consensus task is equivalent to the k-
set agreement task in the wait-free read/write shared
memory model, and furthermore k-simultaneous con-
sensus possesses properties that k-set does not. In par-
ticular we show that the multivalued version and the
binary version of the k-simultaneous consensus task
are wait-free equivalent. These equivalences are inde-
pendent of the number of processes. Interestingly, this
provides us with a new characterization of the k-set
agreement task that is based on the fundamental binary
consensus problem.

Keywords: Asynchronous shared memory systems, Bi-

A preliminary draft of this paper has been presented at the con-
ference ICDCN’06 [3].

Partially supported by PAPIIT-UNAM project IN116808.
Partially supported by the French ANR project SHAMAN.

Y. Afek
Computer Science Department, Tel-Aviv University, Israel
69978, E-mail: afek @cs.tau.ac.il

E. Gafni
Department of Computer Science, UCLA, Los Angeles, CA
90095, USA, E-mail: eli@cs.ucla.edu

S. Rajsbaum
Instituto de Matematicas, UNAM, D. F. 04510, Mexico E-mail:
rajsbaum @math.unam.mx

M. Raynal
Université de Rennes 1, IRISA, Campus de Beaulieu, 35042
Rennes, France E-mail: raynal @irisa.fr

C. Travers
Department of Computer Science, Technion, Haifa 32000, Israel
E-mail: corentin@cs.technion.ac.il

S. Rajsbaum - M. Raynal - C. Travers

nary vs multivalued agreement, Consensus, Distributed
computability, Process crash, Set agreement, Wait-free
construction.

1 Introduction

Context and motivation of the paper In the consensus
task, each process proposes a value, and it is required
that (1) each non-faulty process decides on a value (ter-
mination) in such a way that (2) there is a single de-
cided value (agreement), and (3) the decided value is
one of the proposed values (validity). Unfortunately,
this problem has no solution in asynchronous systems
as soon as even only one process may crash, be the sys-
tem a shared memory system [18] or a message passing
system [10].

One way to weaken the consensus problem is to
allow several different values to be decided. This ap-
proach has given rise to the k-set agreement problem
where up to k different values can be decided [7]. While
this problem (sometimes also called k-set consensus)
can be solved despite asynchrony and process failures
when k > ¢ (where ¢ is the maximum number of pro-
cesses that can be faulty), it has been shown that it has
no solution when t > k [6,15,22].

This paper presents and investigates another way to
weaken the consensus problem. The intuition that un-
derlies this problem, called here scalar k-simultaneous
consensus, is “win one out of several”. More explic-
itly, each process proposes a value in k£ independent
consensus instances, the same value to all instances.
It is required that every correct process decides on a
value in at least one consensus instance. In other words,
a process decides on at least one pair composed of a
value and a consensus instance number. Two processes
can decide on different pairs; however if they decide

on the same consensus instance they also decide on
the same value (that has been proposed by one of the
processes)!. We also consider an equivalent vector ver-
sion of the k-simultaneous consensus, where each pro-
cess proposes k possibly different values, one value to
each of the k independent consensus instances. Again
a process decides on a pair composed of a value and
a consensus instance number. Two processes can de-
cide on two different pairs; if they decide on the same
consensus instance they also decide on the same value
(that has been proposed to that instance). It is easy to
see that the scalar version and the vector version of the
k-simultaneous consensus task are equivalent (see Sec-
tion 2.4).

As explained in [13], simultaneous consensus can
be useful in situations where several processes partici-

ministically assigned to a consensus instance. While it
is known that the multivalued consensus and the bi-
nary consensus are equivalent (e.g., [21]), the same
equivalence cannot be achieved in the k-set consen-
sus realm, since it is meaningless to talk about binary
k-set consensus. What about k-simultaneous multival-
ued consensus and k-simultaneous binary consensus?
The binary version of the problem is a simple case of
the multivalued one, but what about the other direc-
tion? It is shown in this paper that the two problems
are equivalent by presenting a wait-free transforma-
tion that, given k-simultaneous binary consensus tasks,
builds a k-simultaneous multivalued task.

Hence, the paper shows that the k-set agreement
problem and the k-simultaneous binary consensus prob-
lem are equivalent. Intuitively, this means that, given a
solution to any one of these problems, it is possible

pate concurrently in k different applications: a k-simultaneotas wait-free solve the other one in an asynchronous

consensus solution can guarantee wait-free progress in
at least one application. Indeed, recently this problem
has been instrumental in determining the weakest fail-
ure detector that wait-free solves the (N — 1)-set agree-
ment problem in asynchronous read/write shared mem-
ory systems made up of N processes [23]. In addition
to its possible applications, a simple and natural gen-
eralization of the simultaneous consensus is the simul-
taneous set-consensus, i.e., the case where each of the
k consensus instances is replaced by an instance of an-
other agreement task (this point is investigated in the
conclusions section where each consensus instance is
replaced by an /-set agreement instance).

In this paper we address two questions, (see Fig-
ure 1) the first question addresses the relation between
the k-set agreement problem and the k-simultaneous
consensus problem. While, given a solution to the k-
simultaneous consensus problem, it is easy to solve
the k-set agreement problem, what about the other di-
rection? In other words, are these problems equiva-
lent? We answer this question positively by present-
ing a wait-free transformation that, given a k-set agree-
ment task, builds a k-simultaneous consensus task.

The second question addressed in this paper con-
cerns the relation between the multivalued and the bi-
nary version of the k-simultaneous consensus. In the
binary version each consensus instance is a binary con-
sensus: each process proposes either 0 or 1 to each con-
sensus instance. We consider only the vector version
of the problem. Indeed for £ > 2, the scalar version
is trivial, since each binary input value can be deter-

! Let us notice that the words “simultaneous consensus” have
been used with a different meaning in round-based synchronous
systems. In these systems, they mean that all the processes that
participate in a consensus instance have to terminate during the
very same round [8,9].

read/write shared memory system prone to any num-
ber of process crashes. Thus, while, unlike consensus,
k-set agreement has no binary version, the previous
equivalence provides a characterization of k-set agree-
ment in terms of k£ simultaneous instances of the binary
consensus problem. This is summarized in Figure 1.

Roadmap Section 2 describes the computation model
and presents the problems we are interested in. Section
3 shows that the k-set agreement problem and the k-
simultaneous consensus problem are equivalent. Sec-
tion 4 shows that the k-simultaneous multivalued con-
sensus problem is not more powerful than its binary
counterpart. Finally, in Section 5 the conclusions are
provided.

2 Computation model and problem definitions
2.1 Computation model

Processes The system consists of an arbitrary num-
ber of processes denoted p;, pj, . . . The integer ¢ is the
identity of p;, and no two processes have the same
identity. A run is a sequence of steps of a number of
processes with unique identity. The processes that ap-
pear in a run are called participating processes. An in-
finite number of processes may participate in an infi-
nite run and the number of active processes simulta-
neously may grow without bounds. This is the infinite
arrival model with unbounded concurrency, introduced
and investigated in [11,20]. A process that participates
in a run is provided with a local constant whose value
is its identity. It is not provided with local variables

Multivalued Multivalued

k-set agreement

k-simultaneous consensus |

Binary

k-simultaneous consensus

Theorem 1 (Section 3)
(Both sets of possible input values
have the same size in both problems)

Fig. 1 Equivalences among the problems

whose values would allow it to compute the number of
participating processes or their identities.

Processes are asynchronous, there is no assumption
on their relative speeds. Moreover, any number of pro-
cesses may crash. Before it crashes (if it ever crashes),
a process executes correctly its algorithm. A crash is a
premature halt: after it has crashed, a process executes
no more operations. Given a run, a process that does
not crash is correct in that run, otherwise it is faulty in
that run.

A remark on the number of processes: Most distributed
algorithms are designed for a set of IV processes where
N is fixed and known by every process. Moreover, each
process is assigned a unique identity comprised be-
tween 1 and N, and an algorithm can make use of both
the number of processes and their identity.

In contrast, the algorithms designed in this paper
work with an arbitrary number of processes. Such a
situation occurs in systems that dynamically change
over time. For example, a network may allow nodes
to be added or removed, or an operating system may
allow processes to dynamically join, participate in a
distributed algorithm and finally leave. Algorithms for
infinitely many processes (e.g. [11,20]) have recently
received attention. Their advantages over algorithms
for a fixed number of processes are significant [4]: (1)
They have no system size parameters to configure, and
(as a result) they are more robust and elegant; (2) They
automatically handle the crash/recovery of processes
(as a process that crashes and recovers can join the al-
gorithm simply by assuming a new identity); (3) They
guarantee progress even if processes keep on arriving
(which is important in loosely-coupled systems, like
peer-to-peer systems, where there is a large number of
nodes that come and go all the time).

Communication model The processes communicate by
way of reliable multi-reader/multi-writer atomic reg-
isters [5,17,19]. In addition the algorithms presented
here use the atomic snapshot primitive [1]. This basic

Theorem 2 (Section 4)

(The size of the set of the possible input values of the

k-simultaneous consensus is known to the processes)

operation, denoted SM .set_snapshot() where SM is a
shared array with one entry per process, returns a set
of values that were simultaneously present in SM dur-
ing the snapshot operation. Such a set is also called
a snapshot in the sequel. Any set of read and write
operations on individual cells of the array SM, and

SM .set_snapshot() operations, is linearizable [16]. There-

fore, if each cell in the array is written only once and
no value can ever be removed, the sets obtained by
a sequence of SM .set_snapshot() operations are such
that each set contains all the ones that precede it in se-
quence (also called linearization order). We say that
this sequence of sets satisfies the containment prop-
erty. A wait-free snapshot algorithm for the infinite ar-
rival model with unbounded concurrency is described
in[11].

Remark All the algorithms described in the paper are
given for an arbitrary process p;. Uppercase letters are
used to denote shared tasks or objects, while lower-
case letters are used for local variables (these variables
are subscribed with the index of the corresponding pro-
cess).

2.2 Problem definitions

Decision problems To model decision problems, we
identify two special local variables in each process p;:
an input variable denoted ¢nput; and an output variable
denoted dec;. The local variable input; is initialized
with some value v drawn from a set Z of possible in-
put values. We say that “process p; proposes the value
v” when v is the value in its input; variable when it
wakes up. The local variable dec;, initialized to L, can
be written only once. When it takes a value w different
from L, we say that “process p; decides on the value
w”. The value L is a default value not in Z.

A task T' is a one-shot decision problem specified
by a set of input values Z, a set of output values O and
a relation that specifies, for each assignment of values

in 7 to the processes, which output values each process
is allowed to decide on.

In the tasks investigated in this paper, the set Z of
input values is totally ordered, and n denotes the num-
ber of elements in Z. We assume that £ < n, where
k is the central parameter used in the specification of
the decision problems investigated in this paper (k-set-
agreement and k-simultaneous consensus).

An algorithm A (we also say an “object”) solves a
task 7' if:

— A provides each process with a single operation de-
noted A.propose(). That operation takes as input
any value in Z and returns values in O, where 7
and O are the input and output sets associated with
T (see above).

— In any execution in which A.propose() is invoked
at most once by each process, the values returned
by any A.propose() invocation complies with the
specification of 7T'.

The k-set agreement problem As indicated in the In-
troduction, the k-set agreement problem [7] is a gen-
eralization of the consensus problem (that corresponds
to the case k = 1). It is defined by the following prop-
erties.

— Termination: each correct process decides on a value.
— Validity: a decided value is a proposed value.
— Agreement: at most & different values are decided.

As for all the problems considered in this paper, the
termination property requires a solution based on wait-
free algorithms [14]: a correct process has to terminate
regardless of the number of faulty processes.

The k-set agreement problem could be defined for a
binary input set, by restricting the set of input values 7
to the set {0, 1}. However, while there is no wait-free
solution to the binary consensus problem, the binary
k-set agreement problem can be trivially solved when
k> 1.

Let KSA be an object that solves the k-set agree-
ment problem. It provides the processes with a sin-
gle operation denoted KSA.set_propose, (). That op-
eration takes a proposed value as input parameter, and
returns a decision value.

The k-simultaneous consensus problem * Both (the scalar

and the vector) versions of the k-simultaneous con-
sensus problem consist of k independent instances of
the consensus problem where a process is required to

2 This problem originates from our previous research where
we introduced and investigated the musical benches prob-
lem [12], and the committee decision problem [13]. The k-
simultaneous consensus problem generalizes both of them.

decide in at least one of them. More precisely, in the
scalar version, process p; proposes the same value v;
to each of the consensus instances. In the vector ver-
sion, process p; proposes a vector [v}, - - -, v¥] where
vy is the value it proposes to the e-th consensus in-
stance (1 < e < k). Each process decides on pairs
(¢, d) where c is a consensus instance and d is a value.
The problem is defined by the following properties.

— Termination: each correct process decides on at least
one pair.

— Validity: if a process p; decides (c, d), then c is a
consensus instance (i.e., 1 < ¢ < k), and d is a
value that has been proposed to that consensus in-
stance.

- Agreement: if the pairs (c,d) and (c,d') are de-
cided, then d = d’.

Similarly to the k-set-agreement problem, we de-
fine the binary k-simultaneous consensus problem by
restricting the set of input values Z. More precisely, we
have 7 = {0, 1} for the scalar binary k-simultaneous
consensus problem (each process proposes 0 or 1), and
T = {0, 1}* for its vector version (each process pro-
poses a size k vector made up of 0’s and 1°’s). As for
the k-set agreement problem, it is easy to see that the
scalar version of the binary k-simultaneous consensus
problem can trivially be solved when k > 1.

It is important to remark that, for £ = 1, both the
scalar and the vector version of the binary simultane-
ous consensus problem boil down to the binary con-
sensus problem. In the remainder of the paper, we use
explicitly the word “binary” when we discuss the bi-
nary version of a problem. When we discuss their non-
binary versions, we sometimes use the word “multival-
ued”.

Let K.SC be an object that solves the k-simultaneous
consensus problem. It provides the processes with a
single operation denoted K.SC'.sc_propose, (). In the
scalar version, that operation takes as input parame-
ter the process input value, and in the vector version
it takes a vector with k proposed values (one for each
consensus instance). That operation returns a pair (¢, d).
In the case of a binary k-simultaneous consensus ob-
ject, the operation is denoted bin_sc_propose ().

2.3 Problems equivalence

For comparing decision problems (tasks) we use wait-
free constructions. Namely, for two problems (tasks)
P1 and P2, we say that “P1 solves P2” if there is a
wait-free algorithm A that solves P2 using any num-
ber of copies of objects that solve P1 (in addition to
any number of read/write atomic registers). If P1 and

P2 solve each other, the problems are said to be equiv-
alent.

All the constructions described in the paper are wait-
free and work for an arbitrary number of processes.
Moreover, when we compare the multivalued versions
of the problems defined above, we assume that the size
of the set of input values in both problems is the same,
namely n.

2.4 The multivalued scalar version and vector version
are equivalent

It is easy to see that the vector version and the scalar
version are equivalent (i.e., each one can implement the
other one) when the size of the set Z of input values is
the same in both problems.

From the vector version to the scalar version Imple-
menting the scalar version from the vector version is
trivial. Let v; be the value proposed by p; in the scalar
version. The value it proposes to the vector version is
simply the vector [v;, . .., v;].

From the scalar version to the vector version The al-
gorithm described in Figure 2 implements the vector
version from the scalar version. A process p; first pro-
poses the vector input, (that contains its vector pro-
posal) to each consensus instance of the underlying
scalar version of the k-simultaneous consensus prob-
lem. It then obtains a pair (c;, w;) and decides on the
pair {(c;, d;) where d; is the value in w;[c;] (i.e., a value
proposed by a process to the c;-th consensus instance).
The proof is easy and left to the reader. It is also easy
to see that the size n of the set Z of input values is the
same in the vector version and the underlying scalar
version.

operation K.SC .sc_proposey, (v}, . ..
(01) input; — [vil, e ,vﬂ;

(02) (ci,w;) < KSC.sc_proposey, (input;); % scalar ver. %
(04) return{c;, d;).

,vE): % vector version %

Fig. 2 k-Simultaneous consensus: from the scalar version to the
vector version

3 k-Set agreement vs k-simultaneous consensus

This section shows that the k-set agreement problem
and the scalar k-simultaneous consensus problem are

equivalent. To that end it presents two wait-free con-
structions, one in each direction. Both constructions
are independent of the number of processes.

3.1 From scalar k-simultaneous consensus to k-set
agreement

A pretty simple wait-free algorithm that builds a k-
set agreement object (denoted KSA) on top of a k-
simultaneous consensus object (denoted K.SC') is de-
scribed in Figure 3. The invoking process p; calls the
underlying object KSC with its input to the k-set agree-
ment as input, and obtains a pair {(c;, d;). It then returns
d; as the decision value for its invocation of
KSA.set_proposey (v;).

operation KSA.set_proposey, (v;):
(01) (¢;,di) < KSC.sc_propose;, (v;);
(02) return(d;).

Fig. 3 From scalar k-simultaneous consensus to k-set agreement

Lemma 1 The algorithm described in Figure 3 is a
wait-free construction of a k-set agreement object from
a scalar k-simultaneous consensus object.

Proof The proof is immediate. The termination and
validity of the k-set agreement object follow directly
from the code and the same properties of the under-
lying k-simultaneous consensus object. The agreement
property follows from the fact that at most k£ values
can be decided from the k£ consensus instances of the

k-simultaneous consensus object. ULemma 1

3.2 From k-set agreement to scalar k-simultaneous
consensus

A wait-free algorithm that constructs a scalar k-simultaneous

consensus object KSC from a k-set agreement object
KSA is described in Figure 4. (|snap;| denotes the
number of elements in snap;.)

In the algorithm, the processes first go through a k-
set agreement object to reduce the number of distinct
values to at most &k (line 01). Then, each process p; (1)
posts the value it has just obtained in the cell SM [i]
of the shared memory (initialized to L), and (2) takes
a snapshot of the whole shared memory (line 03). Fi-
nally, a process p; returns the pair (c;, d;) where the
consensus instance c; is defined as the number of val-
ues in the set returned to p; by its snapshot invocation,
and d; is the minimum value in that set.

operation KSC'.sc_propose;, (v;):

(01) dv; <« KSA.set_propose, (v;);

(02) SMJi] « dv;;

(03) snap; « SM .set_snapshot();

(04) let ¢; = |snap;|; let d; = minimum value in snap;;
(05) return{c;, d;).

Fig.4 From k-set agreement to scalar k-simultaneous consensus

Lemma 2 The algorithm described in Figure 4 is a
wait-free construction of a scalar k-simultaneous con-
sensus object from a k-set agreement object.

Proof The code in Figure 4 is wait-free since there are
no loops and both the k-set agreement and the snapshot
operations are wait-free. The validity follows from the
fact that all the values in the algorithm originate from
process inputs.

Since the snapshots by the different processes de-
fine a linearizable sequence ordered by containment,
they also define a non-decreasing sequence when we
consider the size of the snapshots returned to the pro-
cesses. Therefore, there is a unique snapshot value of a
given size and hence the minimum value in each snap-
shot of a given size is unique. Thus there are at most k
distinct snapshot sizes, each with its unique minimum
value. Hence, there are at most k distinct outputs re-
turned and any two processes that return a pair with
the same snapshot size (same first coordinate) have the
same value associated with it, which proves the agree-

section describes an algorithm that implements the scalar
multivalued sc_propose,, () operation from atomic reg-
isters and binary vector simultaneous consensus ob-
jects. Let us observe that, while every process knows
n, no process knows initially the values that define the
set Z (it only knows the value it proposes).

4.1 A modular construction

An intermediary object The construction presented in
the next subsection builds an intermediary object, that
we call a restricted (-simultaneous consensus object.
The aim of such an object is to reduce by one the num-
ber of proposed values. More precisely, assuming that
at most ¢ + 1 different values are proposed by the pro-
cesses, this object guarantees that (1) each process de-
cides a value, and (2) at most ¢ different values are
decided on. More formally, each of an arbitrary num-
ber of processes proposes a value such that at most
¢ + 1 different values are proposed and the processes
decide on at most ¢ different pairs (c;, d;), such that
1 < ¢; < ¢, each d; is a value that has been proposed,
and any two processes that return a pair with the same
¢; also return the same d;.

The next subsection (Section 4.2) shows how a re-
stricted ¢-simultaneous consensus object can be built
out of atomic registers and a binary vector ¢-simultaneous
consensus object.

The construction Here we show how a cascading se-

ment property of the k-simultaneous consensus. U Lemma 2quence of restricted /-simultaneous consensus objects

3.3 A first equivalence

Theorem 1 The k-set agreement problem and the scalar
k-simultaneous consensus problem (both with sets of
possible input values of the same size n) are wait-free
equivalent in read/write shared memory systems made
up of an arbitrary number of processes.

Proof The proof of the equivalence follows directly

from Lemmas 1 and 2. UTheorem 1

4 Binary vs multivalued k-simultaneous consensus

The operation bin_sc_propose,,() is trivially a partic-
ular instance of the sc_propose; () operation: it cor-
responds to the case where only two values can be
proposed (Z = {0,1}). This section focuses on the
transformation in the other direction. Assuming |Z| is
bounded and n = |Z| is known to the processes, this

for/{ =n—1,n—2,...,k is used to construct a k-
simultaneous consensus object KSC. Each restricted
simultaneous consensus object in the sequence reduces
the number of different values by one and the whole
sequence reduces the size of the set of proposed val-
ues from n to k as described in Figure 5. Notice that
a binary /-simultaneous consensus is trivially imple-
mented from binary k-simultaneous consensus for £ >

k, thus, all together we construct a multivalued k-simultaneous

consensus from binary k-simultaneous consensus.

operation K.SC' .sc_propose;, (v;):

01) prop; < vs;

(02) for ¢ from n — 1 step —1 to k do

(03) (ci,prop;) < RSC|[{].rsc_propose,(prop;)
(04) end for;

(05) return{c;, prop;).

Fig. 5 From restricted simultaneous consensus to scalar k-
simultaneous consensus

Lemma 3 The algorithm described in Figure 5 is a
wait-free construction of a scalar k-simultaneous con-
sensus object from restricted (-simultaneous consensus
objects, with! =n —1,--- | k.

Proof The proof relies on the fact that the loop is
made up of consecutive rounds. As there are initially
at most n different values proposed by the processes,
it follows from the definition of the RSC[n — 1] ob-
ject that at most n — 1 of these values are returned
by the invocations RSC[n — 1].rsc_propose,, () is-
sued by the processes. Then, the next rounds reduce
the number of values to (at most) k. Finally, it fol-
lows from the definition of the last restricted simulta-
neous consensus object (RSCk]) that the invocations
RSC[k].rsc_propose;, () return at most k pairs (c;, d;)
and those are such that 1 < ¢; < k. As for any two
pairs (c;, prop;) and (c;, prop;) we have (¢; = ¢;) =
(prop; = prop;), the agreement property follows. The
validity and (wait-free) termination properties follow
directly from the text of the algorithm and the corre-
sponding properties of the underlying RSC[n — 1..k]

objects. Uremma 3

4.2 Constructing a restricted ¢-simultaneous
consensus object

The construction The wait-free algorithm construct-
ing a restricted /-simultaneous consensus object is de-
scribed in Figure 6. To reduce the number of values
from ¢+1 to ¢, the processes go through two sequential
phases (lines 01-10, and lines 11-23). Only processes
that have not decided in the first phase go into the sec-
ond phase.

In the first phase (lines 01-10) the processes go
through / stages T, ..., T, each is one iteration of the
loop in lines 02-09. A pair of arrays, 7’1 and T2, are
associated with each stage r, 1 < r < /; they are de-
noted 7’1" and T'2". In each stage r, each process p;
posts its initial proposal (line 03) into 71", then takes
a snapshot of the posted proposals (line 04), posts the
set obtained from snapshot in the shared array 72" of
snapshot values (line 05), and finally reads all the snap-
shot values deposited in 72" (line 06). If a process
finds a snapshot of size 1 containing some value v; but
no snapshot of size 2 then it returns the pair (c,v;),
where c is the iteration number. Otherwise the process
adopts the minimum value of some snapshot of size 2
or more and continues to the next iteration with this
adopted value. p; deterministically chooses a snapshot
from which it adopts the minimum value, but which
snapshot is chosen is unimportant, as long as the snap-
shot has at least two elements.

The key observation of the algorithm is that if a
process has finished the ¢ iterations of the first phase
without deciding (i.e., without returning in line 07 dur-
ing any iteration), then there are snapshots of size 2 that
have been posted in all the stages of the first phase. Let
us notice that, due to the minimum function in line 08,
one value is left behind in each iteration. Thus at most
2 different values arrive at the last (¢-th) iteration and,
if some process did not decide in this last iteration, then
this last size 2 snapshot is not empty. The size 2 snap-
shot in all the other iterations is also not empty because
otherwise two values would have been left behind in
one of the iterations, ensuring that all processes decide
by the last iteration (See Lemma 5).

In the second phase (lines 11-23), all the processes
that have not decided in the first phase use the vector
version binary ¢-simultaneous consensus object to de-
cide on one of the values in these non-empty size 2
snapshots in a way that is consistent with all the de-
cisions that have been already made during the first
phase. For each stage of the first phase we associate
the smaller value of the size 2 snapshot with 0, and
the larger with 1. If the process also sees a snapshot
of size 1 in stage r, then the r-th entry in its proposed
vector is the binary value associated with the value in
the size 1 snapshot (lines 14 and 15). Otherwise the
process proposes an arbitrary binary value (say 0) for
the r-th entry of its proposed binary vector (line 16)°.
This ensures that a value that has been decided by some
process during the stage r of the first phase will be the
value proposed by all the processes that enter the sec-
ond phase.

Finally, the binary /-simultaneous consensus object
is used (line 19) to decide on one of the values in these
size 2 snapshots (72" [2]) and the algorithm terminates.

Proof The rest of this section formalizes the previous
intuitive presentation by proving that the algorithm de-

scribed in Figure 6 implements a restricted ¢-simultaneous

consensus object.

Each cell of the shared array 7T'1" is written at most
once. It is then read through set_snapshot() operations,
and the returned snapshots are posted in 72". Thus,
the sets of values associated with each snapshot form
a growing sequence and each set contains all previous
sets in the sequence. Hence,

3 Let us observe that the algorithm can easily be made fully
deterministic. We write “some” at line 08 and “arbitrarily” at line
16 to emphasize the fact that the choice of the snapshot value
(line 08) and the choice of a proposed binary value (line 16) are
irrelevant for the correctness of the reduction. The replacement
of “some” and “arbitrary” by deterministic statements does not
modify the proof.

operation KSC'.rsc_propose,(v;):
01) est; «— v;;
(02) for r from 1 to ¢ do
(03) T17[i] < est;;
(04) s; «— set_snapshot(7'1");
©05) T2 [sql] — six
(06) for j from 1 to ¢ + 1 do ss[j] < T'2"[j] end for;
07) if (ss[1] = {v} # L) A (ss[2] =1)
then return(r, v)

(08) else est; < min(ss[z])

for some x such that (ss[z] # L Ax > 2)
(09) end if ;
(10) end for;
(11) foreachr € {1,---,¢} do
(12) let v, = min(727[2]); % smaller value in 72" [2] %
(13) let vy = max(T2"(2]; % larger value in T2"(2]) %
(14) case (727[1] = {vm})

then prop;[r] — 0

(15) (T27[1] = {vm})
then prop;[r] — 1
(16) else prop;[r] < 0 or 1 arbitrarily

(17) end case

(18) end for;

(19) (ci,dec;) < BSC|{].bin_sc_propose,(prop;);
% vector version %

(20) if (dec; = 1) then d; «— max (T2 [2])

21 else d; < min(72¢[2])

(22) end if;

(23) return(c;, d;).

Fig. 6 From binary ¢-simultaneous consensus to restricted ¢-
simultaneous consensus

Lemma 4 Foreveryr,1 <r </, foreveryx > 1, at
most one set of values of size x is written in T2" [x] by
the processes.

The following lemma establishes that if a process
does not decide in the first phase, a snapshot of size 2
has been posted in each stage r, 1 < r < ¢ when the
process starts the second phase.

Lemma S In the second phase (Lines 11-23), for every
r,1 < r < { each read of T2" 2] returns a non-_L
value.

Proof Let p; be a process that does not decide in the
first phase and starts executing the second phase. Let us
assume for contradiction that the lemma is false. This
means that, while p; is executing the second phase of
the protocol, a read of T2%[2] for some R,1 < R </
returns L. We show that p; would have to decide in the
first phase at line 07: a contradiction.

Write, read and set_snapshot() operations are lin-
earizable. Let 7 be the linearization point of the read of
T2%[2] issued by p; that returns L. Since no process
writes L in T2F[2], every read of T2F[2] linearized
before 7 must return L.

For every r,1 < r < ¢+ 1, let I[r] be the set
of values proposed before 7 to the r-th iteration in the

first phase of the protocol. We say that a value v is pro-
posed to iteration r before 7 if v is written in some en-
try of 7'1" and the corresponding write operation is lin-
earized before 7. We claim that for every r, 1 < r < £,
|I[r] = I[r + 1]| > 1, i.e., each iteration eliminates at
least one initial value (Claim C). Since at most £ + 1
values are initially proposed, Claim C implies that at
most { +1— (R — 1) = ¢ — R+ 2 values can be writ-
ten in T1%. Assuming Claim C (which is proved in the
sequel) we consider below the prefix of the execution
that ends at time 7. The proof is divided in two cases
according to the value of R.

— R = /. Following Claim C at most two values are
written in 7'1¢, no snapshot of size > 3 can be
posted in T2¢. Process p; executes iteration R be-
fore time 7. In particular, its read of 7'2¢[2] returns
L. It then follows from the code that the snapshot
of T1¢ by p; contains a single value, from which
we conclude that p; decides at Line 07 since it ob-
serves no posted snapshot of size > 2 in T'2¢.

— R < (. Each value written in 7'17%! is the smallest
value in some snapshot of size > 2 that have been
posted in T2, We know that at most (£ + 1) —
(R — 1) values are written in 7’17, Therefore, no
snapshot of size > (/ + 1) — (R — 1) is posted in
T2, Moreover, before 7, no snapshot of size 2 is
observed.

Furthermore, it follows from Lemma 4 that for ev-
ery 2,3 < x < ({+1) — (R — 1), at most one
snapshot of size 2 can be observed in T2%. Finally,
since each snapshot defines a unique estimate, we
conclude that at most ({ +1) — (R —1) —2 =
¢ — R values are proposed to iteration R + 1, i.e.,
[I[R+1]| < {—R.

It remains to show that p; decides in the first phase.
By applying Claim C to iterations R+1,...,{—1,
we have |I[¢]| < 1. Process p; executes iteration ¢
before 7. Therefore, p; obtains a snapshot of size 1,
writes it in 7'2¢[1] and then decides since no snap-
shot of size 2 is posted in T'2¢ before 7.

Claim C:Vr,1 <r <{—1,|I[r] —I[r+1]| > 1.

Proof of Claim C. A value written in 717! is the
smallest value in some snapshot of size > 2 posted
in 72" (Line 08). The claim follows since there are

at most |I[r]| — 1 distinct snapshots of size > 2 that
may be written in 7'2". End of the Proof of Claim C.
ULemma 5

Lemma 6 [faprocess decides (r,v), thenr € {1,...,{}
and v is a value proposed by a process.

Proof The fact that » € {1,...,¢} follows directly
from the code of the algorithm. The validity of v fol-

lows from the observation that a value enters a snap-
shot only if it was already in a previous snapshot, or
was proposed by a process during the first stage of the

first phase. ULemma 6

Lemma 7 Ifp; and p; decide (r;,v;) and (r;,v;), re-
spectively, we have (r; = r;) = (v; = v;).

Proof For each consensus instance R, let D denote
the set of processes that decide in the RR-th consen-
sus instance. We consider three cases according to the
phase(s) in which processes that belong to Dy, decide.

— All the processes that belong to Dp decide in the
first phase (Line 07). In that case, process p; € Dg
decides a value contained in a singleton snapshot
that it has observed in T2%. Agreement follows
from the fact that a unique snapshot of size one
may be posted in 72 by the different processes
(Lemma 4).

— All the processes that belong to Dp decide in the

second phase (line 23). Each process p; € Dp gets
back a pair (R, d;) from the binary ¢-simultaneous
consensus object. Due to the agreement property of
the object, 3d € {0,1} such that Vp; € Dg,d; =
d.
Moreover, per Lemma 5, every process in Dy ob-
serves a snapshot of size 2 in 72" at lines 20 or 21
and, by Lemma 4, they observe the same snapshot.
It then follows from lines20-22 that each process in
Dp, returns the same value.

— Decisions occur in both phases. Let C' be the set
of processes that invoke the binary ¢-simultaneous
consensus object (a process that belongs to C' could
have not decided in the first phase). Among them,
let p. be the first process that reads 72F[1] in the
second phase of the algorithm (lines 14-15). This
occurs at time 7. There are two cases according to
the value returned by that read.

— Suppose that p. does not observe a snapshot of
size 1 (T27[1] = L1). In that case no process in
Dp, could decide in the first phase of the algo-
rithm.

Assume for contradiction that process p; de-
cides (R, v) at line 07. p; must observe T27[1] =
{v} at some time 7’. As the read of T27[1]
by p. returns L, and no process writes L in
T2%[1], it follows that 7/ > 7. But by Lemma
5, we know that T2%[2] # 1 when p, starts
the second part of the protocol. Consequently,
p; must also observe T2%[2] # 1, which pre-
vents it from deciding in the first part of the
protocol (line 07).

— Suppose that p. observes a singleton snapshot
{v} in T2E. Per Lemma 4, only one singleton

snapshot can be written in 72, Therefore, ev-
ery process in C reads {v} in T2%[1] at lines
14-15. Then every process in C “proposes” v
to the Rth binary-consensus. More precisely,
each process proposes d = 0 (resp. d = 1)
to the R-th binary consensus if v is the small-
est (resp. greatest) value in the snapshot writ-
ten in T2%[2] (by Lemma 5, there is always a
snapshot s of size 2 written in 7'27[2] when
processes execute the second part of the pro-
tocol. Since snapshots are ordered by contain-
ment, v € s).

Therefore, by the validity property of the /-simultaneous

binary consensus object, each process in Dp
that decides in the second part gets back (R, d)
from the object, and consequently returns the
same pair (R, v) (lines 20-22). Moreover, a pro-
cess in Dp, that decides in the first part of the
protocol returns also (R, v), {v} being the only
snapshot written in T27[1].

DLemma 7

Lemma 8 The algorithm described in Figure 6 is a
wait-free construction of a restricted (-simultaneous
consensus object from a binary vector (-simultaneous
consensus object for any number of processes.

Proof The wait-free property follows directly from
the text of the algorithm and the same property of the
underlying binary simultaneous consensus object. The
validity and the agreement properties have been proved

in Lemma 6 and Lemma 7, respectively. OLemma 8

4.3 A second equivalence

Theorem 2 The multivalued k-simultaneous consen-
sus problem (where the size n of the set of the possible
input values is known by the processes), and the bi-
nary k-simultaneous consensus problem are wait-free
equivalent in read/write shared memory systems made
up of an arbitrary number of processes.

Proof As already indicated, the multivalued version
of the problem trivially solves its binary version. The
other direction follows from the algorithm described in
Figure 5 (proved in Lemma 3), and the algorithm de-
scribed in Figure 6 (proved in Lemma 8). Oppeorem 2

5 Conclusion

This paper has introduced and studied the k-simultaneous
consensus problem. Its main result is the following the-

orem, whose proof follows from Theorem 1 and Theo-
rem 2.

Theorem 3 The k-set agreement problem and the k-
simultaneous binary consensus problem are wait-free
equivalent in asynchronous read/write shared memory
systems made up of an arbitrary number of processes.

This theorem provides a new characterization of

the k-set agreement problem. This characterization shows

that k-simultaneous consensus captures both k-set agree-
ment and consensus.

The paper has focused mainly on establishing equiv-
alence between several variants of the simultaneous con-
sensus problem and the set-agreement problem. It leaves
open several avenues for future research, some of which
are detailed below.

Generalization to other decision problems Given a de-
cision problem (task) 7', the k-simultaneous version of
T can be defined in a way similar to the k-simultaneous
consensus problem. Instead of £ instances of the con-
sensus problem, we then consider k instances of 7.
Each process proposes a value to each instance of T'
and is required to decide in at least one of the k in-
stances. Of course, a value decided in an instance must
comply with the specification of T'.

As a simple example, let us consider the following
natural generalization of the k-simultaneous consensus
problem that is the “k-simultaneous /-set-agreement”
[3,13]. This problem is defined in the same way as
the k-simultaneous consensus problem, namely, each
process has to decide a pair (¢, v) subject to the fol-
lowing constraints: (1) 1 < ¢ < k, (2) v is a pro-
posed value for the c-th instance and (3) at most ¢ val-
ues are decided in each instance. It is easy to see that
the scalar version and the vector version of this prob-
lem are equivalent. Also, given a solution to the k-
simultaneous ¢-set-agreement problem, it easy to solve
(¢k)-set-agreement, since at most £k pairs are decided.

What about the other direction ? A simple modifi-
cation of the algorithm described in Figure 4 constructs
a k-simultaneous ¢-set-agreement object from an (¢k)-
set-agreement object. The first statement in line 04 that
defines the consensus instance is replaced by “let ¢; =
[‘S"l#i‘]” that now defines the k-set instance number
associated with the value decided by p;.

The (¢k)-set-agreement object reduces the number
of distinct values to £k. Thus, the first coordinate of
the decided pairs is at most k. Finally, as the sets of
values obtained by snapshot invocations are related by
containment, there are at most £ distinct sets snap such
that (¢ — 1)/ + 1 < |snap| < cl. Therefore, at most k¢
values are decided in the c-th instance. Hence,

10

Theorem 4 The ((k)-set agreement problem and the
k-simultaneous (-set-agreement problem are wait-free
equivalent in asynchronous read/write shared memory
systems made up of an arbitrary number of processes.

Cost of the equivalences The algorithms presented in
Section 3 use only one extra object in addition to atomic
registers. For example, the algorithm described in Fig-
ure 4 shows that only one k-set-agreement object is
needed to solve the multivalued scalar k-simultaneous
consensus problem.

The second construction from binary k-simultaneous
consensus to multivalued k-simultaneous consensus uses
(n — k) binary simultaneous consensus objects, where
n is the size of the set Z of the possible input values.
By contrast, as far as we know, the best construction
of a multivalued consensus object from binary consen-
sus objects requires only log(n) base binary consensus
objects (e.g., [21]).

Another interesting open problem concerns the im-
provement of the step complexity of the algorithm pre-
sented in Figure 6 that builds a restricted /-simultaneous
consensus object from binary ¢-simultaneous consen-
sus objects.

The case of message-passing systems The paper fo-
cused on the shared memory model. Another interest-
ing open problem is: are Theorems 1, 2 and 3 still valid
in an asynchronous message-passing system prone to
process crashes? If the number N of processes is fixed
and known, the answer is yes if at most t < N/2 pro-
cesses may crash (this is because atomic registers can
be implemented in such systems [2]). For larger values
of ¢, “Are the k-set-agreement problem and the binary
k-simultaneous problem equivalent?” remains an open
question.

Acknowledgements We would like to thank the anonymous ref-
erees for their careful reading and their suggestions that help im-
prove both the content and the presentation of the paper.

References

1. Afek Y., Attiya H., Dolev D., Gafni E., Merritt M., and
Shavit N., Atomic Snapshots of Shared Memory. Journal
of the ACM, 40(4):873-890, 1993.

2. Attiya H., Bar-Noy A., and Dolev D., Sharing Memory Ro-
bustly in Message-Passing Systems. Journal of the ACM,
42(1):124-142, 1995.

3. Afek Y., Gafni E., Rajsbaum S., Raynal M. and Travers C.,
Simultaneous Consensus Tasks: a Tighter Characterization
of Set Consensus. Proc. 8th Int’l Conference on Distributed
Computing and Networking (ICDCN’06), Springer-Verlag
LNCS #4308, pp. 331-341, 2006.

11.

12.

13.

15.

16.

17.

19.

20.

21.

22.

23.

. Aguilera M., A pleasant stroll through the land of infinitely

many creatures. ACM SIGACT News, Distributed Comput-
ing Column, 35(2):36-59, 2004.

. Attiya H. and Welch J., Distributed Computing: Fundamen-

tals, Simulations and Advanced Topics, (2d Edition), Wiley-
Interscience, 414 pages, 2004.

. Borowsky E. and Gafni E., Generalized FLP Impossibility

Results for ¢-Resilient Asynchronous Computations. Proc.
25th ACM Symposium on Theory of Computing (STOC’93),
pp. 91-100, 1993.

. Chaudhuri S., More Choices Allow More Faults: Set Con-

sensus Problems in Totally Asynchronous Systems. Infor-
mation and Computation, 105:132-158, 1993.

. Dolev D., Reischuk R. and Strong R., Early Stopping in

Byzantine Agreement. Journal of the ACM, 37(4):720-741,
April 1990.

. Dwork C. and Moses Y., Knowledge and Common Knowl-

edge in a Byzantine Environment: Crash Failures. Informa-
tion and Computation, 88(2):156-186, 1990.

. Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility

of Distributed Consensus with One Faulty Process. Journal
of the ACM, 32(2):374-382, 1985.

Gafni E., Merritt M., and Taubenfeld G., The Concurrency
Hierarchy, and Algorithms for Unbounded Concurrency.
Proc. 20th ACM Symposium on Principles of Distributed
Computing (PODC’01), ACM Press, pp. 161-170, 2001.
Gafni E. and Rajsbaum S., Musical Benches. Proc. 19th
Int’l Symposium on Distributed Computing (DISC’05),
Springer Verlag LNCS #3724, pp. 63-77, 2005.

Gafni E., Rajsbaum R., Raynal M. and Travers C., The
Committee Decision Problem. Proc. 8th Latin Ameri-
can Theoretical Informatics (LATIN’06), Springer-Verlag
LNCS #3887, pp. 502-514, 2006.

. Herlihy M.P., Wait-Free Synchronization. ACM Transac-

tions on Programming Languages and Systems, 13(1):124-
149, 1991.

Herlihy M.P. and Shavit N., The Topological Structure
of Asynchronous Computability. Journal of the ACM,
46(6):858-923, 1999.

Herlihy M.P. and Wing J.M., Linearizability: a Correct-
ness Condition for Concurrent Objects. ACM Transactions
on Programming Languages and Systems, 12(3):463-492,
1990.

Lamport L., On interprocess communication, Part 1: Mod-
els, Part 2: Algorithms. Distributed Computing, 1(2):77-
101, 1986.

. Loui M.C., Abu-Amara H., Memory Requirements for

Agreement Among Unreliable Asynchronous Processes.
Advances in Computing research, JAl Press, 4:163-183,
1987.

Lynch N.A., Distributed Algorithms. Morgan Kaufimann
Pub., San Francisco (CA), 872 pages, 1996.

Merritt M. and Taubenfeld G., Computing with Infinitely
Many Processes. Proc. 14th Int’l Symposium on Distributed
Computing (DISC’00), Springer-Verlag LNCS #1914, pp.
164-178, 2000.

Mostéfaoui A., Raynal M. and Tronel F., From Binary
Consensus to Multivalued Consensus in Asynchronous
Message-Passing Systems. Information Processing Letters,
73:207-213, 2000.

Saks M. and Zaharoglou F., Wait-Free k-Set Agreement
is Impossible: The Topology of Public Knowledge. SIAM
Journal on Computing, 29(5):1449-1483, 2000.

Zielifisky P., Anti-{2: the Weakest Failure Detector for Set
Agreement. Proc. 27th ACM Symposium on Principles of
Distributed Computing (PODC’08), ACM Press, pp. 55-64,
2008.

11

