
On the Number of Opinions Needed for
Fault-Tolerant Run-Time Monitoring in

Distributed Systems ?

Pierre Fraigniaud1??, Sergio Rajsbaum2? ? ?, and Corentin Travers3†

1 CNRS and U. Paris Diderot, France.
Pierre.Fraigniaud@liafa.univ-paris-diderot.fr

2 Instituto de Matemáticas, UNAM, D.F. 04510, Mexico.
rajsbaum@im.unam.mx

3 CNRS and U. of Bordeaux, France.
travers@labri.fr

Abstract. Decentralized runtime monitoring involves a set of monitors
observing the behavior of system executions with respect to some cor-
rectness property. It is generally assumed that, as soon as a violation of
the property is revealed by any of the monitors at runtime, some recov-
ery code can be executed for bringing the system back to a legal state.
This implicitly assumes that each monitor produces a binary opinion,
true or false, and that the recovery code is launched as soon as one of
these opinions is equal to false. In this paper, we formally prove that, in a
failure-prone asynchronous computing model, there are correctness prop-
erties for which there is no such decentralized monitoring. We show that
there exist some properties which, in order to be monitored in a wait-
free decentralized manner, inherently require that the monitors produce
a number of opinions larger than two. More specifically, our main result
is that, for every k, 1 ≤ k ≤ n, there exists a property that requires
at least k opinions to be monitored by n monitors. We also present a
corresponding distributed monitor using at most k+1 opinions, showing
that our lower bound is nearly tight.

1 Introduction

Runtime verification is concerned with monitoring software and hardware sys-
tem executions. It is used after deployment of the system for ensuring reliability,
safety, and security, and for providing fault containment and recovery. Its es-
sential objective is to determine, at any point in time, whether the system is

? All authors are supported in part by the CONACYT-CNRS ECOS Nord M12M01
research grant.

?? Additional support from the ANR project DISPLEXITY, and from the INRIA
project GANG.

? ? ? Additional support from UNAM-PAPIIT and LAISLA.
† Additional support from ANR project DISPLEXITY.

2

in a legal or illegal state, with respect to some specification. Consider a dis-
tributed system whose execution is observed by one or several monitors. Passing
messages to a central monitor at every event leads to severe communication
and computation overhead. Therefore, recent contributions [6,9,27] on runtime
verification of distributed systems focused on decentralized monitoring, where a
set of n monitors observe the behavior of the system. As soon as a violation of
the legality of the execution is revealed by any of these monitors at runtime,
recovery code can be executed for bringing the system back to a legal state. For
example, the recovery code can reboot the system, or release its resources. This
framework implicitly assumes that each monitor i produces a binary opinion
oi ∈ {true, false}, and that the recovery code is launched as soon as one of these
opinions is equal to false. In this paper, we formally prove that, in a crash-failure
prone asynchronous wait-free computing model [4], there are correctness prop-
erties for which such decentralized monitoring does not exist, even if we let the
number of opinions grow to an arbitrary constant k ≥ 2.

Let us consider the following motivating example arising often in practice [8],
of a system in which requests are sent by clients, and acknowledged by servers.
The system is in a legal state if and only if (1) all requests have been acknowl-
edged, and (2) every received acknowledgement corresponds to a previously sent
request. Each monitor i is aware of a subset Ri of requests that has been received
by the servers, and a subset Ai of acknowledgements that has been sent by the
servers. To verify legality of the system, each monitor i may communicate with
other monitors in order to produce some opinion oi. In the traditional setting
of decentralized monitoring mentioned in the previous paragraph, it is required
that the monitors produce opinions oi ∈ {true, false} such that, whenever the
system is not in a legal state, at least one monitor produces the opinion false.

In runtime monitoring, a correctness property is described by a formula in
some temporal logic. In this paper, we abstract away the logic, and directly spec-
ify the property by the set of legal configurations of the system, that we call a dis-
tributed language, denoted by L. For instance, in the request-acknowledgement
example above, L is the set of all configurations {(ri, ai), i ∈ I} such that
∪i∈I ri = ∪i∈I ai, where I ⊆ [1, n]. Indeed, this language is specifying that all
observed requests have been acknowledged, and every observed acknowledgement
corresponds to a previously sent request. The monitors must produce opinions
enabling to distinguish the legal configurations, i.e., those in L, from the illegal
ones. In order to make up their opinions, the monitors are able to communicate
among themselves, so that each monitor can potentially collect system observa-
tions of other monitors. Since we are mostly interested in lower bounds, we ask
very little from the monitors, and simply require that, for any pair (C,C ′) of
configurations with C ∈ L and C ′ /∈ L, the multiset of opinions produced by the
monitors given the legal configuration C must be different from the multiset of
opinions given the illegal configuration C ′.

In the centralized setting, more than two logical values may be required
to avoid evaluating prematurely the correctness of a property that cannot be
decided solely based on a prefix of the execution, like request-acknowledgement.

3

Hence [2,7] extended linear temporal logic (LTL) to logics with three values
(e.g., {true, false, inconclusive}). More recently, it was recognised [8] that even
three values are not sufficient to monitor some properties, and thus extensions
of LTL with four logical values (e.g., {true, false, probably true, probably false})
were introduced. In this paper we argue that, in an asynchronous failure-prone
decentralized setting, even four values may not be sufficient.

Our results. We consider decentralized monitoring in the wait-free setting [4].
(See Section 2 for details about this model, and for the reasons why we chose it).
Our main result is a lower bound on the number of opinions to be produced by a
runtime decentralized monitor in an asynchronous system where monitors may
crash. This lower bound depends solely on the language, i.e., on the correctness
property being monitored. More specifically, we prove that, for any positive
integer n, and for any k, 1 ≤ k ≤ n, there exists a distributed language requiring
monitors to produce at least k distinct opinions in a system with n monitors.
This result holds whatever the system does with the opinions produced by the
monitors. That is, our lower bound on the number of opinions is inherent to the
language itself — and not to the way the opinions are handled in order to launch
the recovery code to be executed in case the system misbehaves.

The number of opinions required to runtime monitor languages in a decen-
tralized manner is actually tightly connected to an intrinsic property of each
language: its alternation number. This parameter essentially captures the num-
ber of times a sequence of configurations of the system alternates between legal
and illegal. Our main result states that, for any k, 1 ≤ k ≤ n, there exists a
language with alternation number k which requires at least k opinions to be
monitored by n monitors. This bound is essentially tight, as we also design a
distributed monitor which, for any k, 1 ≤ k ≤ n, and any distributed language L
with alternation number k, monitors L using at most k + 1 opinions in systems
with n monitors.

Technically, in this paper, we establish a bridge between, on the one hand,
runtime verification, and, on the other hand, distributed computability. Thanks
to this bridge, we could prove our lower bound using arguments from (elemen-
tary) algebraic topology. More specifically, our impossibility result for 2 opin-
ions is obtained using graph-connectivity techniques sharing similarities with
the FLP impossibility result for consensus [15], while our general impossibility
result uses higher-dimensional techniques similar to those used in set agreement
impossibility results e.g. [22,23].

As far as we know, this paper is the first one studying necessary conditions
for monitoring distributed systems with failures.

Related work. The main focus in the literature is on sequential runtime verifica-
tion. The monitors are event-triggered [24], where every change in the state of
the system triggers the monitor for analysis. There is work also in time-triggered
monitoring [10], where the monitor samples the state of the program at regular
time intervals. Parallel monitoring has been addressed in [20] to some extent by
focusing on low-level memory architecture to facilitate communication between

4

application and analysis threads. The concept of separating the monitor from
the monitored program is considered in, e.g., [28]. Later, [9] uses a specialized
parallel architecture (GPU), to implement runtime formal verification in a par-
allel fashion. Efficient automatic signaling monitoring in multi-core processors is
considered in [13].

Closer to our setting is decentralized monitoring. In sequential runtime veri-
fication one has to monitor the requirement based on a single behavioral trace,
assumed to be collected by some global observer. A central observer basically
resembles classical LTL monitoring. In contrast, in decentralized monitoring,
there are several partial behavioural traces, each one collected at a component
of the system. Intuitively, each trace corresponds to the view that the compo-
nent has of the execution. In decentralized LTL monitoring [6] a formula φ is
decomposed into local formulas, so monitor i evaluates locally φi, and emits
a boolean-valued opinion. In our terminology, an “and interpretation” is used.
That is, it is assumed a global violation can always be detected locally by a
process. In addition, it is assumed the set of local monitors communicate over
a synchronous bus with a global clock. The goal is to keep the communication
among monitors minimal. In [26] the focus is in monitoring safety properties
of a distributed program’s execution, also using an “and interpretation”. The
decentralized monitoring algorithm is based on formulae written in a variant of
past time LTL. For the specific case of relaxed memory models, [11] presents a
technique for monitoring that a program has no executions violating sequential
consistency. There is also work [19] that targets physically distributed systems,
but does not focus on distributed monitoring.

To the best of our knowledge, the effects of asynchrony and failures in a
decentralized monitoring setting were considered for the first time in [17]. We
extend this previous work in two ways. First, we remove the restriction that the
monitors can produce only two opinions. Second, [17] investigated applications
to locality, while here we extend the framework and adapt it to be able to apply
it to a more general decentralized monitoring setting.

Related work in the distributed computing literature includes seminal pa-
pers such as [12] for stable property detection in a failure-free message-passing
environment, and [5] for distributed program checking in the context of self-
stabilization.

Organization of this paper. The distributed system model is in Section 2. Dis-
tributed languages and wait-free monitoring are presented in Section 3. In Sec-
tion 4 we present the example of monitoring leader election. Our main result
is in Section 5. Its proof is presented in Section 6. We conclude the paper and
mention some open problems in Section 7. A full version [18] provides additional
details and all the proofs.

2 Distributed system model

There are many possible computation and communication models for distributed
computation. Here we assume wait-free asynchronous processes that may fail by

5

crashing, communicating by reading and writing a shared memory. This model
serves as a good basis to study distributed computability: results in this model
can often be extended to other popular models, such as when up to a fixed num-
ber of processes can crash (in a dependent or independent way). Also, message-
passing, or various networking models that limit direct process-to-process con-
nectivity, are essentially computationally equivalent or less powerful than shared
memory. We recall here the main features of the wait-free model, and refer to
textbooks such as [4] for a more detailed description, as well as for the relation
to other distributed computing models.

The asynchronous read/write shared memory model assumes a system con-
sisting of n asynchronous processes. Let [n] = {1, . . . , n}. We associate each
process to an integer in [n]. Each process runs at its own speed, that may vary
along with time, and the processes may fail by crashing (i.e., halt and never
recover). We consider wait-free distributed algorithms, in which a process never
“waits” for another process to produce some intermediate result. This is because
any number of processes may crash (and thus the expected result may never be
produced).

The processes communicate through a shared memory composed of atomic
registers, organised as an array of n single-writer/multiple-reader (SWMR) regis-
ters, one per process. Register i ∈ [n] supports the operation read() that returns
the value stored in the register, and can be executed by any process. It also
support de operation write(v) that writes the value v in the register, and can
be executed only by process i.

In our algorithms we use a snapshot operation by which a process can read all
n SWMR registers, in such a way that a snapshot returns a copy of all the values
that were simultaneously present in the shared memory at some point during the
execution of the snapshot operation (snapshots are linearizable). Snapshots can
be implemented by a wait-free algorithm (any number of processes may crash)
using only the array of n SWMR registers [1] (see also textbooks such as [25]).
Thus, we may assume snapshots are available to the processes, without loss of
generality. The algorithms are simplified, as well as the proofs of our theorems,
without modifying the outcomes of our results.

In a distributed algorithm each process starts with an input value, repeats a
loop N times, consisting of writing to its register, taking a snapshot and mak-
ing local computations4. At the end each process produces an output value. In
a step, a process performs an operation on the registers (i.e., writes or snap-
shots). A configuration completely describes the state of the system. That is,
a configuration specifies the state of each register as well as the local state of
each process. An execution is a (finite) sequence of alternating configurations
and steps, starting and ending in a configuration. A process participates in an
execution if it takes at least one step in the execution. We assume that the first
step of a process is a write, and it writes its input.

4 If the set of possible input values is finite, all processes may execute the loop the
same number of times, N (e.g. see [3]).

6

3 Distributed languages and wait-free monitoring

3.1 Distributed languages

Let A be an alphabet of symbols, representing the set of possible values produced
by some distributed algorithm to be monitored. Each process i ∈ [n] has a read-
only variable, inputi, initially equal to a symbol ⊥ (not in A), and where the
value to be monitored is deposited. We consider only the simplest scenario, where
these variables change only once, from the value ⊥, to a value in A. The goal
is for the processes to monitor that, collectively, the values deposited in these
variables are correct.

Formally, consider an execution C0, s1, C1, . . ., where each Ci is a configura-
tion and each si is a step (write or snapshot) by some process, and C0 is the
initial configuration where all SWMR registers are empty. We assume the first
step by a process i is to write its input, and is taken only once its variable inputi
is initialized to a value in A. Thus, s1 is a write step by some process.

The correctness specification to be monitored is usually stated as a global
predicate in some logic (e.g. [13,14]). We rephrase the predicate in terms of
what we call a distributed language. An instance over alphabet A (we may omit
A when clear from the context) is a set of pairs s = {(id1, a1), . . . , (idk, ak)},
where {id1, . . . , idk} ⊆ [n] are distinct process identities, and a1, . . . , ak are (not
necessarily distinct) elements of A. A distributed language L over the alphabet
A is a collection of instances over A. Given a language L, we say that an instance
s is legal if s ∈ L and illegal otherwise.

Let s = {(id1, a1), . . . , (idk, ak)} be an instance over A. We denote by ID(s)
the set of identities in s, ID(s) = {id1, . . . , idk}. The multiset of values in s is
denoted by val(s) (formally, a function that assigns to each a ∈ A a non-negative
integer specifying the number of times a is equal to one of the ai in s).

Note that an instance s can describe an assignment of values from A to the
input variables of a subset of processes. More precisely, consider an execution
C0, s1, C1, . . . , sk, Ck, k ≥ 1. Suppose the processes that have taken steps in
this execution are those in P , P ⊆ [n]. This execution defines the instance
s = {(id1, a1), . . . , (idk, ak)} over A, where ID(s) = P and ai is the first value
written by process idi. A configuration Ck also defines an instance, given by the
input variables of processes that have written at least once (from the local state
of a process, one can deduce if it has already executed a write operation).

An execution is correct if and only if its instance s is in L. If the execution is
correct, then processes in ID(s) have values as specified by the language (and the
other processes have not yet been assigned a value or may be slow in announcing
their values).

Consider for example the language req-ack, which captures a simplified ver-
sion of the request-acknowledgment problem mentioned in the introduction, in
which no more than q requests are sent by the clients. Requests and acknowledg-
ments are identified with integers in [q]. A process idi may know of some subset
of requests ri ⊆ [q], and some subset of acknowledgments ai ⊆ [q]. The language

7

req-ack over alphabet A = 2[q] × 2[q] is defined by instances s as follows

s =
{

(id1, (r1, a1)), . . . , (idk, (rk, ak))
}
∈ req-ack ⇐⇒

⋃
1≤i≤k

ri =
⋃

1≤i≤k

ai.

For each process i, the sets ri and ai denote the (possibly empty) sets of requests
and acknowledgments, respectively, that process i is aware of. An instance is legal
if and only if every request has been acknowledged.

As another example, consider leader election, for which it is required that
one unique process be identified as the leader by all the other processes. This
requirement is captured by the language leader defined over A = [n] as follows:

s =
{

(id1, `1), . . . , (idk, `k)
}
∈ leader ⇐⇒ ∃i ∈ [k] : idi = `1 = · · · = `k. (1)

An instance is legal if and only if all the processes agree on the identity ` of one
of them.

3.2 Decentralized monitoring

Monitoring the correctness specified by a language L involves two components:
an opinion-maker M , and an interpretation µ. The opinion-maker is a dis-
tributed algorithm executed by the processes enabling each of them to produce
an individual opinion about the validity of the outputs of the system. We call
the processes running this algorithm monitors, and the (finite) set of possible
individual opinions U , the opinion set.

The interpretation µ specifies the way one should interpret the collection of
individual opinions produced by the monitors about the validity of the monitored
system. We use the minimal requirement that the opinions of the monitors should
be able to distinguish legal instances from illegal ones according to L. Consider
the set of all multi-sets over U , each one with at most n elements. Then µ =
(Y,N) is a partition of this set. Y is called the “yes” set, and N is called the
“no” set.

For instance, when U = {0, 1}, process may produce as an opinion either 0 or
1. Together, the processes produce a multi-set of at most n boolean values. We
do not consider which process produce which opinion, but we do consider how
many processes produce a given opinion. The partition produced by the and-
operator [17,16] is as follows. For every multi-set of opinions S, we set S ∈ Y if
every opinion in S is 1, otherwise, S ∈ N.

Given a language L over an alphabet A, a monitor for L is a pair (µ,M), as
follows.

– The opinion-maker M is a distributed wait-free algorithm that outputs an
opinion ui at every process i. The input of process i is any element ai of
A (assigned to its read-only variable inputi). Each process i is required to
produce an opinion ui such that: (1) every non-faulty process eventually
produces an output (termination), and (2) if process i outputs ui, then we
must have: ui ∈ U (validity).

8

– Consider any execution of M where all participating processes have decided
an opinion. If the instance s corresponding to the execution is legal, i.e.,
s ∈ L, the monitors must produce a multiset of opinions S ∈ Y, and if the
instance s is illegal, i.e., s 6∈ L, then they must produce a multiset of opinions
in N.

The paper focusses on the following question: given a distributed language
L, how many opinions are needed to monitor L?

3.3 Opinion and alternation numbers

As stated above, we are interested in the smallest size |U | of the opinion set
enabling the monitors, after the execution of some distributed algorithm, to
output opinions that distinguish legal instances from illegal ones. Hence, we
focus on the following parameter associated with every distributed language.

Definition 1 (Opinion number). Let L be a distributed language on n pro-
cesses. The opinion number of L is the smallest integer k for which there exists
a monitor (µ,M) for L using a set of at most k opinions. It is denoted by
#opinion(L).

As we shall see, there are monitors using a small number of opinions, inde-
pendent of the size of the alphabet used to define L, and depending only on the
number n of processes. The opinion number is shown to be related to a com-
binatorial property of languages, captured by the notion of alternation number.
Given a language L over the alphabet A, the alternation number of L is the
length of a longest increasing sequence of instances s1, . . . , sk with alternating
legality. More formally:

Definition 2 (Alternation number). Let L be a distributed language. The
alternation number of L is the largest integer k for which there exists instances
s1, . . . , sk such that, for every i, 1 ≤ i < k, si ⊂ si+1, and either (si ∈ L) ∧
(si+1 /∈ L) or (si /∈ L) ∧ (si+1 ∈ L). It is denoted by #altern(L).

Clearly, the alternation number is at most n since an instance has at most n
elements.

4 Monitoring leader election

As a warm up example, let us show that the language leader of Equation 1
can be monitored using three opinions, namely, that #opinion(leader) ≤ 3. To
establish this result, we describe a monitor for leader, called traffic-light. The
set of opinions consists of three values, namely {red, orange, green}. Recall that
the input of each process i ∈ [n] is a value `i where `i ∈ [n] is supposed to be
the identity of the leader. The opinion maker works as follows. Each monitor
i writes its identity and it own input `i in shared memory, and then reads the
whole memory with a snapshot operation. The snapshot returns a set of pairs,

9

si = {(idj , `j), j ∈ I} for some I, that includes the values written so far in the
memory. Recall that processes run asynchronously, hence a process may collect
values from only a subset of all processes. Process i decides “green” if every
process in si agrees on the same leader, and the ID of the common leader is
the ID of one of the processes in si. Instead, if two or more processes in si have
distinct leaders, then process i decides “red”. In the somewhat “middle” case
in which every process in si agrees on the same leader (i.e., same ID), but the
ID of the common leader is not an ID of a process in si, then process i decides
“orange”.

More formally, the traffic-light opinion maker uses two procedures: “agree”
and “valid”. Given a set s = {(id1, `1),. . . , (idk, `k)} of pairs (idi, `i) ∈ [n]× [n],
agree(s) is true if and only if `i = `j for every i, j, 1 ≤ i, j ≤ k. For a same s,
valid(s) is true if and only if, for every `i, 1 ≤ i ≤ k, there exists j, 1 ≤ j ≤ k
such that idj = `i. Each process performs the pseudo-code below:

Opinion-maker at process p with input `:
write (ID(p), `) to p’s register ;
snapshot memory, to get s = {(id1, `1), . . . , (idk, `k)};
if agree(s) and valid(s) then decide “green”
else if agree(s) but not valid(s) then decide “orange” else decide “red”.

The interpretation of the opinions produced by the monitors is the fol-
lowing. An opinion ui produced by process i is an element of the set U =
{green, orange, red}. The opinion-maker produces a multi-set u of opinions. We
define the yes-set Y as the set of all multi-sets u with no red elements, and at
least one green element. Hence, N is composed of all multi-sets u with at least
one red element, or with no green elements.

Now, one can easily check that the traffic-light monitor satisfies the desired
property. That is, for every set s = {(id1, `1), . . . , (idk, `k)} of pairs (idi, `i) ∈
[n] × [n], if u denotes the multi-set of opinions produced by the monitors, then
we have

s ∈ leader ⇐⇒ u ∈ Y.

Interestingly enough, one can prove that the language leader cannot be moni-
tored using fewer than three opinions. Namely,

Proposition 1. #opinion(leader) = 3.

Crucially, the fact that three opinions are required, and that, in particular,
the opinions true and false are not sufficient, is an inherent property of the
language leader, independently of the opinion-maker algorithm, and indepen-
dently of the interpretation of the opinions produced by the monitors. The lower
bound argument enabling to establish this result is not hard but uses a funda-
mental theorem about two-process read/write wait-free computation: the graph
of executions is connected (e.g. see [3]).

As we mentioned before, the number of opinions required to monitor a dis-
tributed language is strongly related to its alternation number. The sequence of

10

instances

s1 = {(1, 2)}, s2 = {(1, 2), (2, 2)}, and s3 = {(1, 2), (2, 2), (3, 3)}

satisfies s1 ⊂ s2 ⊂ s3. Moreover s1 and s3 are illegal, while s2 is legal (as far
as leader is concerned). We thus infer that the alternation number of leader
is at least 3. In fact, it can be shown that its alternation number is exactly 3.
Namely,

Proposition 2. #altern(leader) = 3.

Intuitively, the alternation between legal and illegal instances forces the pro-
cesses to use three opinions. Given s1, process 1 may say that the instance is
“probably illegal” (orange), while, given s2, process 2 may say that the instance
is “potentially legal” (green). Only process 3, given s3, can declare that the in-
stance is “definitively illegal” (red), no matter the number of further processes
that may show up.

5 Main result

In this section, we state our main result, that is, a lower bound on the number
of opinions needed to monitor languages with n monitors.

Theorem 1. For any n ≥ 1, and every k, 1 ≤ k < n, there exists a language L
on n processes, with alternation number k, that requires at least k opinions to be
monitored. For k = n, there exists a language L on n processes, with alternation
number n, that requires at least n+ 1 opinions to be monitored.

In other words, there are system properties which require a large number
of opinions to be monitored. Before dwelling into the details of the proof of
Theorem 1, we want to stress the fact that our lower bound is essentially the
best that can be achieved in term of alternation number. Indeed, Theorem 1 says
that, for every k, there exists a language L with alternation number k such that
#opinion(L) ≥ #altern(L). We show that this lower bound is essentially tight.
Indeed, we establish the existence of a universal monitor that can monitor all
distributed languages using a number of opinions equal roughly to the alternation
number. More specifically, we show that, for every k, and for every language L
with opinion number k, we have #opinion(L) ≤ #altern(L) + 1.

Theorem 2. There exists a monitor which, for every k ≥ 1, monitors every
language with alternation number k using at most k + 1 opinions.

Since the alternation number of a language on n processes is at most n,
Theorem 2 yields the following.

Corollary 1. There exists a monitor which, for every n ≥ 1, monitors every
language on n processes, using at most n + 1 opinions. Moreover, this monitor
uses at most k + 1 opinions for every execution in which at most k processes
participate.

11

It is worth noticing that the monitor of Corollary 1 has an interpretation µ
which does not depend at all on the language to be monitored, not even on the
number of processes involved in the language. (The same holds for Theorem 2).
The opinion-maker (as well as the one for Theorem 2), does however depend on
the language, but only up to a limited extent. Indeed, the general structure of the
opinion-maker is independent of the language. It simply uses a black box that
returns whether s ∈ L for any instance s. Apart from this, the opinion-maker is
essentially independent of the language. In this sense it is universal.

The full proof of Theorem 2 is omitted for lack of space. The rest of the paper
is dedicated to describing the main ideas of the proof of our main result.

6 Orientation-detection tasks, and proof of Theorem 1

To establish our lower bound, we show that the design of distributed runtime
monitors using few opinions is essentially equivalent to solving a specific type of
tasks, that we call orientation-detection tasks. This equivalence is made explicit
thanks to an equivalence lemma (Lemma 1). Introducing orientation-detection
tasks requires elementary notions of combinatorial topology.

6.1 Tasks and combinatorial topology terminology

When solving a distributed task5, each process starts with a private input value
and has to eventually decide irrevocably on an output value. (In our setting,
the input value of a process is a symbol in a given alphabet A, and the output
value is an opinion). A process i ∈ [n] is initially not aware of the inputs of other
processes. Consider an execution where only a subset of k processes participate,
1 ≤ k ≤ n. These processes have distinct identities {id1, . . . , idk}, where for
every i ∈ [k], idi ∈ [n]. A set s = {(id1, x1), . . . , (idk, xk)} is used to denote the
input values, or output values, in the execution, where xi denotes the value of
the process with identity idi — either an input value (e.g., a symbol in a given
alphabet A), or a output value (e.g., an opinion).

The monitor task. An opinion-maker M for a language L on n processes with
opinion set U , and interpretation µ = (Y,N) is a distributed wait-free algorithm
that solves the following monitor task. Any instance over alphabet A is a possible
assignment of inputs in A to the processes. If process i has input ai ∈ A, then
i is required to produce as output an opinion ui ∈ U such that, in addition to
satisfying termination and validity, it also satisfy consistency, defined as follows.
Consider any execution, where I is the set of processes that do not crash, and
all others crash without taking any steps. Let s = {(idi, ai), i ∈ I}, and let
u = {ui, i ∈ I} denote the multiset of opinions that are eventually output by the
processes in I. We must have: s ∈ L ⇐⇒ u ∈ Y.

5 A task is the basic distributed computing problem, defined by a set of inputs to the
processes and for each input to the processes, a set of legal outputs of the processes
– see, e.g., [22].

12

Simplices and complexes. Let s′ be a subset of a “full” set s = {(1, x1), . . . , (n, xn)},
i.e., a set s such that ID(s) = [n]. Since any number of processes can crash, all
such subsets s′ are of interest for taking into account executions where only
processes in ID(s′) participate. Therefore, the set of possible input sets forms
a complex because its sets are closed under containment. Similarly, the set of
possible output sets also form a complex. Following the standard terminology of
combinatorial topology, the sets of a complex are called simplexes. Hence every
set s′ as above is a simplex.

More formally, a complex K is a set of vertices V (K), and a family of finite,
nonempty subsets of V (K), called simplexes, satisfying: (1) if v ∈ V (K) then {v}
is a simplex, and (2) if s is a simplex, so is every nonempty subset of s. The
dimension of a simplex s is |s| − 1, the dimension of K is the largest dimension
of its simplexes, and K is pure of dimension k if every simplex belongs to a k-
dimensional simplex. In distributed computing, the simplexes (and complexes)
are often chromatic, since each vertex v of a simplex is labeled with a distinct
process identity i ∈ [n].

A distributed task T is formally described by a triple (I,O, ∆) where I and
O are pure (n− 1)-dimensional complexes, and ∆ is a map from I to the set of
non-empty sub-complexes of O, satisfying ID(t) ⊆ ID(s) for every t ∈ ∆(s). We
call I the input complex, and O the output complex. Intuitively, ∆ specifies, for
every simplex s ∈ I, the valid outputs ∆(s) for the processes in ID(s) that may
participate in the computation. We assume that ∆ is (sequentially) computable.

Given any finite set U and any integer n ≥ 1, we denote by complex(U, n) the
(n − 1)-dimensional pseudosphere [22] complex induced by U : for each i ∈ [n]
and each x ∈ U , there is a vertex labeled (i, x) in the vertex set of complex(U, n).
Moreover, u = {(id1, u1), . . . , (idk, uk)} is a simplex of complex(U, n) if and only
if u is properly colored with identities, that is idi 6= idj for every 1 ≤ i < j ≤
k. In particular, complex({0, 1}, n) is (topologically equivalent) to the (n − 1)-
dimensional sphere. For u ∈ complex(U, n), we denote by val(u) the multiset
formed of all the values in U corresponding to the processes in u.

6.2 Orientation-detection tasks

An oriented complex 6 is a complex whose every simplex s is assigned a sign,
sign(s) ∈ {−1,+1}. Given an oriented input complex, J , a natural task con-
sists in computing distributively the sign of the actual input simplex. That is,
each process is assigned as input a vertex of V (J), and the set of all the ver-
tices assigned to the processes forms a simplex s ∈ J . Ideally, one would like
that processes individually decide “yes” if the simplex is oriented +1 and “no”
otherwise. However, this is impossible in general because processes do not have
the same view of the execution, and any form of non-trivial agreement cannot
be solved in a wait-free manner [15]. Thus, we allow processes to express their
knowledge through values in some larger set U .

6 In the case of chromatic manifolds, our definition is equivalent to usual definition of
orientation in topology textbooks.

13

Definition 3 (Orientation detection task). Let J be a (n− 1)-dimensional
oriented complex. A task T = (J ,U , ∆), with U = complex(U, n) for some set
U , is an orientation detection task for J if and only if for every two s, s′ ∈ J ,
and every t ∈ ∆(s) and t′ ∈ ∆(s′): sign(s) 6= sign(s′)⇒ val(t) 6= val(t′).

Hence, to detect the orientation of a simplex s, the processes i, i ∈ I ⊆ [n],
occurring in a simplex s have to collectively decide a multiset val(t) = {val(i), i ∈
I} of values in U , where val(i) denotes the value decided by process i. If J is
non-trivially oriented, i.e., if there exist s, s′ ∈ J of the same dimension, with
sign(s) 6= sign(s′), then no orientation-detection tasks for J exists with |U | = 1,
because one must be able to discriminate the different orientations of s and
s′. Instead, for every oriented complex J , there exists an orientation-detection
task for J with |U | = 2. To see why, consider the task T = (J ,U , ∆), where
U is the (n − 1)-dimensional sphere, and ∆ maps every k-dimensional simplex
s ∈ J with sign(s) = −1 (resp., +1) to the k-dimensional simplex t ∈ U with
val(t) = {0, 0, . . . , 0} (resp., val(t) = {1, 1, . . . , 1}). However, this latter task is
not necessarily wait-free solvable (i.e., solvable in our context of asynchronous
distributed computing where any number of processes can crash). The complex-
ity of detecting the orientation of an oriented complex J is measured by the
smallest k for which there exists an orientation-detection task T = (J ,U , ∆)
that is wait-free solvable, with U = complex(U, n), and |U | = k.

In the next subsection, we show that the problem of finding the minimum-
size set U for detecting the orientation of an arbitrary given oriented complex
J is essentially equivalent to finding the minimum-size set of opinions U for
monitoring a language LJ induced by J (and its orientation).

6.3 Equivalence lemma

This section shows that the notion of monitoring and the notion of orientation-
detection are essentially two sides of the same coin.

Let L be a n-process distributed language defined over an alphabet A. We
define JL = complex(n,A). That is, for every collection {a1, . . . , ak} of at most
k elements of A, 1 ≤ k ≤ n, and every k-subset {id1, . . . , idk} ⊆ [n] of distinct
identities, {(id1, a1), . . . , (idk, ak)} is a simplex in JL. Let us orient JL as follows.
For every simplex s ∈ JL, we define:

sign(s) =

{
+1 if s ∈ L;
−1 otherwise.

Conversely, let J be a well-formed oriented complex. We say that an oriented
complex J on n processes is well-formed if for every I ⊆ [n], there exists s, s′ ∈
J with ID(s) = ID(s′) = I and sign(s) = −sign(s′). We set LJ as the n-
process language defined over the alphabet A = {+1,−1}×V (J). That is, each
element of A is a pair (σ, v) where σ is a sign in {+1,−1} and v a vertex of J .
The language LJ is the set of instances s = {(id1, (σ1, v1)), . . . , (idk, (σk, vk))}
specified as follows:

s ∈ LJ ⇐⇒
{
t = {(id1, v1), . . . , (idk, vk)} is a simplex of J ,
and sign(t) = σi for every i, 1 ≤ i ≤ k.

14

That is, in a legal instance, each process is assigned a vertex of some simplex
t ∈ J together with the orientation of t.

We have now all ingredients to state formally the first main ingredient to-
ward establishing Theorem 1: the equivalence between language-monitoring and
orientation-detection.

Lemma 1 (Equivalence lemma).
• Let L be a n-process language. If there exists k ≥ 1 and a wait-free solvable
orientation-detection task for JL using values in some set of size k, then there
exists a monitor for L using at most k opinions.
• Let J be a well-formed oriented complex, and let k ≥ 1. If no orientation-
detection task for J is wait-free solvable using k values, then the language LJ
requires at least k + 1 opinions to be monitored.

The proof of Lemma 1 is omitted from this extended abstract. This lemma
establishes an equivalence between wait-free solving orientation-detection tasks
and monitoring a language with few opinions. It can be shown that, in addition,
this lemma preserves alternation numbers in the following sense. The concept
of alternation number (for languages) can be similarly defined for oriented com-
plexes: for an oriented complex J , the alternation number of J is the length
of a longest increasing sequence of simplexes of J with alternating orientations.
Formally:

Definition 4 (Alternation number of oriented complexes). Let J be an
oriented complex. The alternation number, #altern(J), of J is the largest in-
teger k for which there exists s1, . . . , sk ∈ J such that, for every i, 1 ≤ i < k,
si ⊂ si+1 and sign(si) 6= sign(si+1).

The equivalence established in Lemma 1 preserves alternation number as
stated by the following result.

Lemma 2. For every language L, and every well-formed oriented complex J ,
we have #altern(JL) = #altern(L) and #altern(LJ) ≤ #altern(J) + 1.

6.4 Sketch of the proof of Theorem 1

Due to lack of space, we only sketch the proof of Theorem 1. We use the
correspondence between monitors and orientation-detection tasks as stated in
Lemma 1, and focus on orientation-detection tasks. Given k, 1 ≤ k < n, we care-
fully build an oriented complex J with alternation number k−1 and shows that
any orientation-detection task with input complex J cannot be solved wait-free
with k − 1 values or less. Therefore, by the equivalence Lemma (Lemma 1),
the language LJ induced by J requires at least k values to be monitored. To
complete the proof, we establish that the alternation number of LJ satisfies
#altern(LJ) = #altern(J) + 1 = k. (The case k = n is similar, except that we
construct J with alternation number n, and #altern(LJ) = #altern(J).).

The main challenge lies in constructing, and orienting the complex J in
such a way that no orientation-detection task with input J is wait-free solvable

15

with less than k values. One important ingredient in the proof is an adaptation
of Sperner’s Lemma to our setting. To get an idea of how the proof proceeds,
consider a `-dimensional simplex s ∈ J whose all (`− 1)-dimensional simplexes
have sign −1, but one which has sign +1. Assume moreover that ` values only
are used to encode the signs of these faces. Recall that any wait-free distributed
algorithm induces a mapping from a subdivision of the input complex to the
output complex [23]. By Sperner’s Lemma, we prove that, whatever the opinion-
maker does, at least one `-dimensional simplex s′ resulting from the subdivision
of s satisfies |val(s′)| = ` + 1. That is, ` + 1 values are used to determine the
orientation of s, for every monitor (µ,M). In the full paper we describe the many
details omitted here, that are behind this intuition. ut

7 Conclusions and future work

We investigated the minimum number of opinions needed for runtime monitor-
ing in an asynchronous distributed system where any number of processes may
crash. We considered the simplest case, where each process outputs a single value
just once, and the monitors verify that the values collectively satisfy a given cor-
rectness condition. A correctness condition is specified by a collection of legal
sets of these values, that may occur in an execution. Each monitor expresses its
opinion about the correctness of the set of outputs, based on its local perspec-
tive of the execution. We proved lower bounds on the number of opinions, and
presented distributed monitors with nearly the same number of opinions.

Many avenues remain open for future research. It would be interesting to
derive a temporal logic framework that corresponds to ours, and that associates
to opinions a formal meaning in the logic. In our setting the processes produce
just one output and the monitors must verify that, collectively, the set of outputs
produced is correct. It would of course be interesting to extend our results to
the case where each process produces a sequence of output values. Also, opinions
are anonymous. The interpretation specifies which multisets of opinions indicate
a violation, independently of the identities of the monitors that output them.
We do not know whether or not taking into account the identities would help
reducing the total number of opinions needed. Finally, it would be interesting to
extend our results to other models, such as t-resilient models in which not more
than t processes may fail.

References

1. Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snap-
shots of shared memory. J. ACM, 40(4):873–890, 1993.

2. O. Arafat, A. Bauer, M. Leucker, and C. Schallhart. Runtime verification revisited.
Technical Report TUM-I0518, Technischen Universität München, 2005.

3. H. Attiya and S. Rajsbaum. The Combinatorial Structure of Wait-Free Solvable
Tasks. SIAM J. Comput., 31(4):1286–1313, 2002.

4. H. Attiya and J. L. Welch. Distributed computing: fundamentals, simulations and
advanced topics. Wiley, USA, 2004.

16

5. B. Awerbuch and G. Varghese. Distributed Program Checking: A Paradigm for
Building Self-stabilizing Distributed Protocols (Extended Abstract). SFCS, pp.
258–267. IEEE, 1991.

6. A. Bauer and Y. Falcone. Decentralised LTL monitoring. Formal Methods, lncs
#7436, pp. 85–100. Springer, 2012.

7. A. Bauer, M. Leucker, and C. Schallhart. Monitoring of real-time properties.
FSTTCS, lncs #4337, pp. 260–272. Springer, 2006.

8. A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL semantics for runtime
verification. J. Log. and Comput., 20(3):651–674, 2010.

9. S. Berkovich, B. Bonakdarpour, and S. Fischmeister. Gpu-based runtime verifica-
tion. IPDPS, pp. 1025–1036. IEEE, 2013.

10. B. Bonakdarpour, S. Navabpour, and S. Fischmeister. Sampling-based runtime
verification. Formal Methods, pp. 88–102. Springer, 2011.

11. J. Burnim, K. Sen, C. Stergiou. Sound and complete monitoring of sequential
consistency for relaxed memory models. TACAS, lncs#6605, pp. 11–25, 2011.

12. K. M. Chandy and L. Lamport. Distributed Snapshots: Determining Global States
of Distributed Systems. ACM Trans. Comput. Syst., 3(1):63–75. ACM, 1985.

13. H. Chauhan, V. K. Garg, A. Natarajan, and N. Mittal. A distributed abstraction
algorithm for online predicate detection. SRDS, pp. 101–110. IEEE, 2013.

14. R. Cooper and K. Marzullo. Consistent detection of global predicates. Workshop
on Parallel and Distributed Debugging, pp. 167–174. ACM Press, 1991.

15. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, April 1985.

16. P. Fraigniaud, A. Korman, and D. Peleg. Local distributed decision. FOCS, pp.
708–717. IEEE, 2011.

17. P. Fraigniaud, S. Rajsbaum, and C. Travers. Locality and checkability in wait-free
computing. Distributed Computing, 26(4):223–242, 2013.

18. P. Fraigniaud, S. Rajsbaum, and C. Travers. On the Number of Opinions Needed
for Fault-Tolerant Run-Time Monitoring in Distributed Systems Technical report
#hal-01011079, 2014. Available at http://hal.inria.fr/hal-01011079.

19. A. Genon, T. Massart, C. Meuter. Monitoring distributed controllers: When an
efficient LTL algorithm on sequences is needed to model-check traces. Formal
Methods , lncs #4085, pp. 557–57, 2006.

20. J. Ha, M. Arnold, S. M. Blackburn, and K. S. McKinley. A concurrent dynamic
analysis framework for multicore hardware. OOPSLA, pp. 155–174. ACM, 2009.

21. M. Henle. A Combinatorial Introduction to Topology. Dover, 1983.
22. M. Herlihy, D. Kozlov, and S. Rajsbaum. Distributed Computing Through Combi-

natorial Topology. Morgan Kaufmann-Elsevier, 2013.
23. M. Herlihy and N. Shavit. The topological structure of asynchronous computabil-

ity. J. ACM, 46(6):858–923, 1999.
24. O. Kupferman and M. Y. Vardi. Model checking of safety properties. Form.

Methods Syst. Des., 19(3):291–314, 2001.
25. M. Raynal. Concurrent Programming - Algorithms, Principles, and Foundations.

Springer, 2013.
26. K. Sen, A. Vardhan, G. Agha, and G. Rosu. Efficient decentralized monitoring of

safety in distributed systems. ICSE, pp. 418–427. IEEE, 2004.
27. K. Sen, A. Vardhan, G. Agha, and G. Rosu. Decentralized runtime analysis of

multithreaded applications. IPDPS. IEEE, 2006.
28. H. Zhu, M.B. Dwyer, and S. Goddard. Predictable runtime monitoring. In ECRTS,

pp. 173–183. IEEE 2009.

