

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2008 Society for Industrial and Applied Mathematics
Vol. 38, No. 4, pp. 1574–1601

THE COMBINED POWER OF CONDITIONS AND INFORMATION
ON FAILURES TO SOLVE ASYNCHRONOUS SET AGREEMENT∗

ACHOUR MOSTEFAOUI† , SERGIO RAJSBAUM‡, MICHEL RAYNAL†, AND

CORENTIN TRAVERS†

Abstract. To cope with the impossibility of solving agreement problems in asynchronous sys-
tems made up of n processes and prone to t process crashes, system designers tailor their algorithms
to run fast in “normal” circumstances. Two orthogonal notions of “normality” have been studied in
the past through failure detectors that give processes information about process crashes, and through
conditions that restrict the inputs to an agreement problem. This paper investigates how the two
approaches can benefit from each other to solve the k-set agreement problem, where processes must
agree on at most k of their input values (when k = 1 we have the famous consensus problem). It
proposes novel failure detectors for solving k-set agreement and a protocol that combines them with
conditions, establishing a new bridge among asynchronous, synchronous, and partially synchronous
systems with respect to agreement problems. The paper also proves a lower bound when solving the
k-set agreement problem with a condition.

Key words. asynchronous system, condition, consensus, failure detection, input vector, legal
condition, set agreement, process crash, shared memory, snapshot

AMS subject classifications. 68Q10, 68Q25, 68Q85

DOI. 10.1137/050645580

1. Introduction. Distributed services have to run efficiently and reliably in
complex environments with unpredictable processing and communication delays, where
components can fail in various ways. It is unavoidable to encounter scenarios where
system performance will degrade, or even manual intervention will be required. There-
fore, system designers tailor their applications to run fast in “normal” circumstances
while having expensive recovery procedures in the rare cases of “abnormal” circum-
stances. Two complementary notions of “normality” have been considered, mirroring
the traditional computer science duality of control and data. On the control side we
have the failure detector approach [8], which abstracts away useful failure pattern
information, available in common operating scenarios. On the data side, we have the
condition-based approach [36], which looks at common input data patterns of a cer-
tain distributed problem we are interested in. The aim of this paper is to study how
the two approaches interact and can benefit from each other, with respect to solving
agreement problems.

1.1. Context of the paper. Distributed services often rely on an underlying
agreement protocol. The most popular and fundamental of the agreement problems is
consensus, which is actually indispensable for a lot of services. This paper investigates
the possibilities and limitations of solving consensus, and other weaker agreement
problems, in a system with failure detectors and conditions.

∗Received by the editors November 21, 2005; accepted for publication (in revised form) July 7,
2008; published electronically November 21, 2008. An extended abstract of this paper appeared in
the proceedings of PODC 2005. This work was supported by grants from LAFMI (Franco-Mexican
Lab in Computer Science), DGAPA-UNAM, and the European Network of Excellence ReSIST.

http://www.siam.org/journals/sicomp/38-4/64558.html
†IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France (achour@irisa.fr, raynal@irisa.fr,

ctravers@irisa.fr).
‡Instituto de Matemáticas, Universidad Nacional Autónoma de México, D. F. 04510, Mexico

(rajsbaum@math.unam.mx).

1574

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINED CONDITIONS AND FAILURE INFORMATION 1575

Agreement problems. The consensus problem can informally be stated as
follows. Each process proposes a value, and the processes that are not faulty have
to decide the same value such that the value decided is one of the proposed values.
As a familiar example, it is easy to see that the atomic broadcast problem relies on
consensus as it requires that all of the processes deliver the messages they broadcast
in the same order: They have, consequently, to agree in one way or another on the
same message delivery order. However, it is well known that the consensus problem
has no solution in message-passing asynchronous systems made up of n processes that
need to tolerate a single process crash failure [16].

The k-set agreement problem [9] relaxes the consensus requirement to allow up
to k different values, out of the proposed values, to be decided; when k = 1, we
have the consensus problem. Set agreement is an abstraction of problems that are
weaker than consensus. Its discovery was motivated by the search for a problem that is
solvable when k−1 processes can crash, but not when k can crash, in an asynchronous
system. Since then, it has been very valuable in the development of the foundations of
distributed computing. The proofs in [6, 29, 50] showing that k-set agreement is not
solvable in a system of k+1 processes where k can crash uncovered a deep connection
between distributed computing and topology and motivated a significant amount of
subsequent research.

The situation is totally different in synchronous systems, where both consensus
and k-set agreement can be solved for any value of t (the maximum number of process
crashes) [10, 49]. However, there are limitations on how fast these problems can
be solved in a synchronous system, as a function of the number of failures t to be
tolerated. It has been shown that consensus requires t + 1 rounds in the worst case
[15, 33], and there are protocols that meet this lower bound. These results have been
generalized for the set agreement problem in [10, 20, 48].

The following two complementary notions of “normality” have been considered1

to cope with the consensus and set agreement asynchronous impossibility results and
synchronous lower bounds.

Control: Enriching the underlying system. The first approach focuses on
the behavior of the underlying system. In this case “normal circumstance” means
a period during which the system behaves in a relatively synchronous way. Namely,
periods during which upper bounds on process execution speeds and on message trans-
mission delays hold (various such partially synchronous models have been considered,
e.g., [14]), or periods during which message exchange patterns satisfy some properties
(e.g., the notion of winning/losing responses introduced in [35]) that allow solving
consensus. A failure detector abstracts away such low-level assumptions by provid-
ing processes with a primitive they can invoke that returns information on process
failures. One of the noteworthy features of failure detectors is the modular approach
they favor: One can independently, on one side, solve a problem with the help of a
particular class of failure detector, and, on another side, implement the assumed fail-
ure detector with the help of the underlying timing or order assumptions. The design,
transportability, and proof of protocols then become modular and easier to achieve.

Chandra and Toueg introduced the failure detector notion [8] and defined eight
classes that can be used to solve asynchronous consensus. Together with Hadzilacos,
they later showed that one of these classes is the weakest class of failure detectors
to solve consensus when t < n/2 [7] (n being the total number of processes, and t
an upper bound on the number of faulty processes). The weakest failure detector

1There are other approaches, like randomization or stronger shared memory primitives.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1576 MOSTEFAOUI, RAJSBAUM, RAYNAL, AND TRAVERS

for consensus and any value of t was identified in [12]. These results are of great
theoretical interest because they identify the minimum knowledge about failures that
needs to be abstracted to solve consensus. Failure detectors to solve set agreement
have also been proposed [27, 44, 52], but we do not know yet what is the minimum
knowledge about failures that needs to be abstracted to solve this problem.

The failure detector approach has favored the design of indulgent protocols [21].
A protocol is indulgent with respect to its failure detector if it never violates its
safety property. This means that, when the underlying failure detector satisfies its
specification (normal circumstances) the protocol terminates correctly; and, when the
underlying failure detector does not satisfy its specification (abnormal circumstances),
it is possible that the protocol does not terminate, but if it terminates, it does so
correctly. Various indulgent failure detector-based consensus protocols have been
proposed (e.g., [8, 23, 31, 43, 46, 51]).

Data: Restricting the inputs. The condition-based approach [36] consists in
looking at certain combinations of input values of a given distributed problem. It is
often the case in practice that some combinations of the input values of processes occur
more frequently than others. For example, in an election, it is often the case that the
difference in the number of votes that candidates receive is significant. More precisely,
an input vector contains the values proposed by the processes in an execution. A
condition C is a set of input vectors, each representing a common combination of
inputs to the problem. If a protocol solves k-set agreement for C, then whenever the
input vector belongs to C, all of the correct processes decide. The solution should be
indulgent in the sense that if correct processes decide while the input vector does not
belong to the condition, they do not decide more than k values.

It was discovered in [36] that there is a family of conditions, called x-legal, that tie
together asynchronous and synchronous systems with respect to consensus solvability.
Informally, in an x-legal condition any two input vectors I1, I2 that force different de-
cisions have d(I1, I2) > x (Hamming distance), assuming n > x. Thus, in a sense, x is
the “power” of the condition; larger values of x make it easier to solve consensus. As-
suming up to t process crashes and d ≤ t (d can have a negative value), let S [d]

t be the
set of all x-legal conditions, x = t−d (e.g., S [0]

t consists of the t-legal conditions). Then

S [−t]
t ⊂ · · · ⊂ S[−1]

t ⊂ S [0]
t ⊂ S [1]

t ⊂ · · · ⊂ S[t]
t ,

where S [t]
t includes the condition made up of all of the possible input vectors. For a

condition C ∈ S [d]
t , −t ≤ d ≤ t, and a system prone to t process crashes, we have the

following:
• For values of d ≤ 0, for inputs in C, consensus is solvable by more and more

efficient protocols in a shared memory asynchronous system as we go from
d = 0 to d = −t [40].
• For values of d > 0, consensus is not solvable in an asynchronous system, but,

for inputs in C, it is solvable in a message-passing synchronous system with
more and more rounds, as we go from d = 1 (two rounds) to d = t (t + 1
rounds), and this is tight [37] (namely, when C ∈ S [d]

t and C /∈ S [d−1]
t , (d+1)

rounds are sufficient and necessary in worst case scenarios).
• d = 0 is the borderline case. On one hand, asynchronous consensus can be

solved (despite up to t faulty processes) for a condition C if and only if C is
t-legal [36]. On the other hand, consensus can be solved optimally (2 rounds)
in a message-passing synchronous system [37] for any t-legal condition.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINED CONDITIONS AND FAILURE INFORMATION 1577

The condition-based approach has been considered also for set agreement (and
for other problems), but a characterization of the conditions that allow solving set
agreement was not known (see section 1.3 for more about this and other related works).

1.2. Motivation and results. As we have seen, failure detectors and conditions
are two orthogonal approaches to cope with the impossibility of solving agreement
problems in asynchronous systems prone to t process crashes. So, the natural question
that comes to mind is,

What is the relation between the condition-based approach and the
failure detection-based approach when solving asynchronous agree-
ment problems?

More specifically, we are interested in studying how the two approaches can cooperate
to solve set agreement problems. We would like to understand which combinations
of failure detectors and conditions can be used to solve k-set agreement for a given
value of k.

For a given condition C, what is a failure detector that abstracts away
the synchrony needed to solve k-set agreement?

These and similar questions are the topic addressed in the paper.
The paper contains three main contributions. While trying to answer the previous

questions, we discovered a new class of failure detectors. We present an asynchronous
condition-based set agreement protocol based on this kind of failure detector. We
present a lower bound showing that our protocol is optimal. The next three sections
describe these results in more detail.

1.2.1. A new class of failure detectors. The first contribution of the paper is
the definition of a new class of failure detectors that we denote φy

t , 0 ≤ y ≤ t. A failure
detector of φy

t provides a primitive, denoted queryy(S), that can be invoked by a
process with a set of process identities S to be informed whether they have crashed
or not. Roughly speaking, queryy(S) returns true only when all of the processes in
S have crashed. If at least one process in S is alive, the output should be false. If |S|
is outside the range t− y < |S| ≤ t, the query returns no useful information.

Notice that the nature of our failure detectors is different from the standard failure
detectors of [8], that return a set of processes suspected to have crashed, and accept
no input parameter. The motivation is that often a process pi is interested in the
failures of only a specific part of the network, namely S, while the standard failure
detectors must find out the failure status of all processes in the network, even if pi

cares only about the state of a single process pj.
For each value of y between 0 and t, there is a class of failure detectors, φy

t . The
class φy

t provides more information on failures than the class φy−1
t . So, the class φt

t

is the most powerful, while φ0
t is the weakest (it actually provides no dependable

information on failures). Indeed, as shown in the paper, φy
t can be used to solve k-set

agreement for smaller values of k than φy−1
t .

The paper also compares the power of the φy
t failure detectors and the power of

the classic failure detector classes introduced by Chandra and Toueg [8]. It is shown
that it is possible to build any class φy

t , 0 ≤ y ≤ t, from a perfect failure detector
as defined in [8]. (A perfect failure detector eventually detects all crashed processes
and never suspects erroneously a noncrashed process.) In contrast, none of the other
classes of classic failure detectors can be used to build a failure detector of a class φy

t ,
1 ≤ y ≤ t. When we consider the construction in the other direction, we show that
no class φy

t , 0 ≤ y < t, can be used to build any of the classic failure detector classes.
When y = t, φt

t can be used to build a failure detector of the class P .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1578 MOSTEFAOUI, RAJSBAUM, RAYNAL, AND TRAVERS

1.2.2. A condition-based set agreement algorithm using failure detec-
tors. A second contribution of the paper is the design of a condition-based set agree-
ment protocol with access to a failure detector of the class φy

t , 0 ≤ y ≤ t. The
considered model is the classical asynchronous read/write shared memory distributed
system prone to at most t process crashes. The protocol can be instantiated with any
condition C ∈ S [d]

t , 0 ≤ d ≤ t. As we have seen, x = t− d represents the power of the
condition. That is, once n and t are fixed, the protocol is parameterized by the power
of the failure detector (captured by y) and the power of the condition (captured by
x = t− d).

We use the following terminology. We say that “a protocol solves the k-set agree-
ment problem” if the correct processes always decide; we say that “a protocol solves
the condition-based k-set agreement problem” if the correct processes decide at least
“in normal circumstances,” where “normal circumstances” means when (1) the in-
put vector belongs to the condition C; or when (2) a process decides or less than k
processes crash; or when (3) at least t− d processes crash initially.

The proposed protocol solves the condition-based k-set agreement for k = 1 +
max(0, d−y). Making more explicit the power y of the failure detector and the power
x = t − d of the condition, we have k = 1 + max(0, t − (x + y)). This shows how,
by adding the power of the condition and the power of the failure detector, we can
counterbalance the power t of the “adversary,” in order to reduce the value of k.
When we consider the boundary values of y and d, the protocol solves the following
problems:

• d = t corresponds to the case where there is no additional power provided
by the condition, as then condition C may contain all possible input vectors.
But, as any input vector belongs to this trivial condition, all correct processes
always decide, and, consequently, the protocol solves the k-set agreement
problem. More precisely,

– If y = t (strongest failure detector), the protocol solves the consensus
problem, k = 1.

– If y = 0 (no failure detector), the protocol solves the trivial (t + 1)-set
agreement problem.

– If 0 < y < t, the protocol solves k-set agreement, with k = t+1−y. When
we compare to the previous case, this shows the benefit provided by a
failure detector of the class φy

t . The number of decided values linearly de-
creases according to the power of the failure detector, as measured by y.

• d = 0 means that the condition C is t-legal, which means that condition-
based consensus can be solved despite asynchrony and up to t crashes, with
no failure detector. So, at most one value is decided, and all of the correct
processes terminate in normal circumstances. So, the protocol then solves
condition-based consensus. (Let us notice that this is independent of the
value of y.)
• if y = 0 (no failure detector), the protocol then relies only on the condition

and solves the condition-based k-set agreement problem for k = d + 1. No
more than (d + 1) values are decided, and the termination of the correct
processes is guaranteed at least in normal circumstances: The number of
decided values decreases linearly according to the parameter d defining the
condition.
This case is particularly interesting as it exhibits a new link relating syn-
chronous and asynchronous systems. More precisely, when the condition C

belongs to S [d]
t and the input vector belongs to C, (1) it is possible to solve

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINED CONDITIONS AND FAILURE INFORMATION 1579

consensus in at most (d + 1) rounds in a synchronous system [37]; and (2)
it is possible to solve (d + 1)-set agreement in an asynchronous system, both
systems being prone to t crashes. The optimal time bound for synchronous
condition-based consensus is equal to the number of decided values in asyn-
chronous condition-based set agreement. This time (in synchronous systems)
versus the number of decided values (in asynchronous systems) relation sheds
a new light on the global picture concerning the relations between synchronous
and asynchronous systems.

When we look at the general case, where the condition-based k-set agreement
problem is solved with k = 1+max(0, d−y), we see that when y ≥ d, condition-based
consensus is solved. This means that, if d is fixed, we need only to take a failure
detector of the class φd

t to solve condition-based consensus (failure detectors of any
class φy

t , with y > d are stronger than necessary). A similar reasoning can be done
when y is fixed, and we have the choice of the condition class.

The proposed protocol is indulgent [21, 23]: It never violates its safety require-
ment (no more than k = 1 + max(0, d − y) values are decided), and the correct
processes always terminate when the input vector belongs to the condition (“normal
circumstances”). Interestingly, a simple modification provides a protocol version in
which all of the correct processes always terminate. This is obtained at the price of an
increase in the number of values that can be decided when the input vector does not
belong to the (t− d)-legal condition C, namely, up to k′ = t + 1 − y different values
can then be decided. When the system is equipped with a failure detector of the class
φt

t, this protocol variant solves the consensus problem whatever the condition it is
instantiated with.

1.2.3. A lower bound. A third contribution of the paper is a lower bound
result showing that no protocol with access to a failure detector of the class φy

t can
solve k-set condition-based agreement for k ≤ max(0, d − y), if the condition is in
S [d]

t . The proof is by reduction to the standard t-resilient k-set agreement problem,
that is known to be impossible if t ≥ k [6, 28, 29, 50]. This lower bound result has
two nice corollaries. One states that (in the absence of a failure detector) there is
no condition-based k-set agreement protocol such that k ≤ d for any (t − d)-legal
condition (a previously open problem). The second one states that, among all of the
failure detector classes of the family (φy

t)0≤y≤t, the class φy
t is the weakest that allows

solving the k-set agreement problem for k > t− y.

1.3. Related work.

The condition-based approach for consensus and set agreement. The
condition-based approach has been applied to problems other than consensus like
interactive consistency [17] and, more related to our work, set agreement [3, 39]. The
paper [3] characterizes the set of input vectors that allow us to solve (n − 1)-set
agreement, wait-free, namely, when t = n− 1. Their notion of solvability is different
from ours, since they assume that a protocol never receives input vectors outside of
the condition. In [39], another family of conditions for set agreement is defined, but
no general lower bounds were proved. Randomization as a means of circumventing
the set agreement asynchronous impossibility result has been considered in [45].

Failure detectors. Most of the research about failure detectors has been di-
rected at solving consensus, but there have also been proposals of failure detectors
for solving other problems. Failure detectors for implementing various objects and
for solving nonblocking atomic commit have been studied (e.g., [12, 22, 47]). The

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1580 MOSTEFAOUI, RAJSBAUM, RAYNAL, AND TRAVERS

weakest class of failure detectors to solve consensus was identified in [7, 12]. For our
work, weaker classes of failure detectors are especially relevant, since set agreement is
an easier problem than consensus (and if conditions are considered, it becomes even
easier). Weaker classes of failure detectors were considered in [18, 44, 47, 52].

Failure detectors for set agreement. Among the failure detectors which are
not strong enough to solve consensus, the limited scope accuracy failure detectors
[25, 44, 52] have been studied with respect to set agreement. To illustrate this notion,
let us consider the class denoted Sx. A failure detector of that class satisfies the
following two properties. The completeness property states that the processes that
crash are eventually suspected in a permanent way. The limited scope accuracy
property states that there is a correct process that is not suspected by a set—cluster—
of x processes (some of these x processes may be correct, while others may be faulty).
An Sx-based k-set agreement protocol is presented in [44]. This protocol assumes that
t < k +x− 1 (which means that (t + 1)− (x− 1) is the smallest value of k that it can
tolerate). Using topological methods, it has been shown in [27] that this is actually a
lower bound for any Sx-based k-set agreement protocol (from which it follows that the
previous protocol is optimal with respect to the number of faulty processes that can
be tolerated). When the limited scope accuracy property has to hold only after some
unknown but finite time, we get the class denoted �Sx. It is shown in [27] that any
�Sx-based k-set agreement protocol requires t < min(n/2, k + x − 1). A �Sx-based
protocol meeting this lower bound is also presented in [27]. It is shown in [2] that
t < x is a necessary and sufficient requirement to transform any failure detector of
the class �Sx into a failure detector of the class �Sy for y > x.

The class of anonymously perfect failure detectors. A failure detector of
our class φy

t returns a binary output and can be invoked with a parameter S that
contains a set of process identities. In contrast, the classic failure detectors of [8]
return a set of identities, and are invoked with no parameter. A failure detector class
whose output is binary has been introduced by Guerraoui to solve the nonblocking
atomic commit problem [22], but, differently from ours, a failure detector of this class
does not accept a parameter to invoke it. This class, called anonymously perfect failure
detectors and denoted ?P , is defined as follows. Each process has a flag (initially equal
to false) that is eventually set to true if and only if a process has crashed (the identity
of the crashed process is not necessarily known, hence the name “anonymous”).

The definition of ?P has been extended in [18] to take into account the fact that
� processes have crashed (instead of a single one). This class, denoted ?P�, provides
each process with a flag that is eventually set to true if and only if at least � processes
have crashed (observe that ?P is ?P1).

So, a failure detector of the class ?P� answers true only if there is a set S of �
processes that have crashed. The set S is not known to the processes. Differently,
when we consider φy

t , the set S is user-defined and specific to each invocation.

A variant of Ω. A generalization of the class of leader failure detectors, de-
noted Ω, has been introduced in [47]. More explicitly, Ωz is the class of all failure
detectors that provide the processes with a primitive leader() satisfying the follow-
ing properties. First, leader() always returns a set of at most z process identities.
Second, there is a time τ such that, after τ , all of the invocations of leader() by
the correct processes return the same set of processes, and this set includes at least
one correct process. It is easy to see that Ω1 is Ω, and Ωn provides no information
on failures. That is, in general, Ωz is weaker than the weakest failure detector for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINED CONDITIONS AND FAILURE INFORMATION 1581

consensus. However, Neiger introduced them to study questions about augmenting
the synchronization power of types in the wait-free hierarchy [26], and their relation
to set agreement was not studied.

In a follow-up paper [38], we study the relation of Ωz to set agreement. More-
over, we study our new failure detectors, with respect to �Sx, Ωz, and show which
reductions among these classes are possible and which are not.

1.4. Organization of the paper. The paper is made up of nine sections. After
this introduction and a short section introducing the computation model considered in
the paper, section 3 presents the new failure detector classes φy

t . (Section 8 compares
them to classic failure detectors by Chandra and Toueg.) Section 4 provides a quick
overview of the most relevant notions (for this paper) of the condition-based approach,
including a definition of the condition-based k-set agreement problem. Section 5
presents a generic k-set agreement protocol that is based on the combined power of
a failure detector of the class φy

t and a condition of the class S [d]
t . The protocol is

discussed in section 6, where, at the price of an increase of the number of decided
values, an always terminating version is presented. Section 7 focuses on the lower
bound result. Finally, section 9 summarizes the content of the paper.

2. About the model of computation. This paper considers the usual asyn-
chronous model with n processes p1, . . . , pn, where at most t can crash 1 ≤ t < n.
The processes communicate through a shared memory made up of single-writer, mul-
tireaders atomic registers.

We assume that processes have access to an oracle that provides possibly unre-
liable information on process failures. A failure detector provides processes with a
primitive they can invoke to get information from the oracle on process failures.

3. The failure detector classes {φy
t }0≤y≤t.

3.1. Definition. This section introduces a new class of failure detectors, pa-
rameterized by an integer y, 0 ≤ y ≤ t, denoted φy

t . (A comparison to classic failure
detectors is done in section 8.) The power of a such a failure detector depends on the
value of y. As we are about to see, a failure detector is more powerful for larger values
of y, because it can return information about more specific regions of the network,
namely, about smaller sets S of processes, with |S| > t− y.

More precisely, a failure detector of the class φy
t provides a primitive queryy(S)

that returns a boolean answer. A process invokes it with the parameter S, a set of
processes specific to each invocation. Intuitively, if pi invokes queryy(S), the answer
will be true only when all processes in S have crashed. In that sense, these failure
detectors are different from the standard failure detectors, introduced by Chandra and
Toueg [8], that return a set of processes suspected to have crashed, and do not accept
an input parameter.2 The motivation is that often a process pi is interested in the
failures of only a specific sector of the network, namely S, while the Chandra–Toueg
failure detectors must find out the failure state of all processes in the network, even
if pi cares only about the state of only one process pj .

A query queryy(S) such that t−y < |S| ≤ t is relevant, otherwise it is irrelevant.
Intuitively, “relevant” means that it provides dependable information on failures. The
class φy

t is defined by the following properties:

2We have shown in [38] that there are transformations between the φ failure detectors and a
version with no input parameter. It is consequently possible to define them according to the failure
pattern only.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1582 MOSTEFAOUI, RAJSBAUM, RAYNAL, AND TRAVERS

• Triviality property. If |S| ≤ t − y, then queryy(S) returns true. If |S| > t,
then queryy(S) returns false .
• Safety property. If queryy(S) is relevant, then if at least one process in S

has not crashed when queryy(S) is invoked, the invocation returns false.
• Liveness property. Let queryy(S) be a relevant query. Let τ be a time such

that, at time τ , all of the processes in S have crashed. There is a time τ ′ ≥ τ
such that all of the invocations of queryy(S) after τ ′ return true.

The triviality property says that the invoking process gets back a true output
when the set S is too small, because, in this case, the failure detector is not powerful
enough to answer reliably on a region of the network that is too focused. If the set S
is too big, the output is false, because, by definition, no more than t processes can fail.
The safety property states that if the output of a relevant query is true, then all of the
processes in S have crashed. The liveness property states that queryy(S) eventually
outputs true when all of the processes in S have crashed (and the query is relevant).

3.2. Ranking the classes {φy
t }0≤y≤t. A failure detector of the class φ0

t pro-
vides no information related to failures as the invocation queryy(S) answers always
true if |S| ≤ t, and false if |S| > t. At the other extreme, with a failure detector of
the class φt

t, a process can query about the failure status of a single specific process,
since queryy(S) may return significant failure information about sets S of any size,
1 ≤ |S| ≤ t. That is, φ0

t and φt
t are two extreme classes. This section compares the

power of distinct classes of failure detectors denoted φy1
t and φy2

t .
Definition 1. For two classes of failure detectors A and B, we denote A ≤ B,

and say that B is at least as strong as A if any failure detector in B can be used to
build a failure detector in A. We also say that B is stronger than A (denoted A < B)
if A ≤ B and B �≤ A. The classes A and B are equivalent, (denoted A ≡ B) if A ≤ B
and B ≤ A.

We shall see that φy1
t is stronger than φy2

t if y1 > y2, since φy1
t provides more

information about failures than φy2
t . Given a run of the processes, let queryy(S) be

a failure detector query invocation that, from some time on, is indefinitely repeated.
Let us examine the outputs returned by the infinite sequence of queries when the
failure detector belongs to φy1

t and φy2
t , respectively. Notice that t − y2 > t − y1

(since y1 > y2).
• Case 1: |S| > t. Both outputs are systematically equal to false.
• Case 2: |S| ≤ t− y1. Both outputs are systematically equal to true.
• Case 3: t − y2 < |S| ≤ t (so, we also have t − y1 < |S| ≤ t) for a relevant

query. If at least one process of S never crashes, both outputs are always
equal to false . If all of the processes of S crash, eventually both outputs are
permanently equal to true.
• Case 4: t − y1 < |S| ≤ t − y2. In this case, the output is always true if the

failure detector belongs to the class Φy2
t . If it belongs to Φy1

t , the output is
as in Case 3 (it depends on the failures).

The last case, namely, when t−y1 < |S| ≤ t−y2, exhibits a noteworthy difference
between φy1

t and φy2
t : φy1

t provides information on failures while φy2
t does not. Indeed,

for y1 > y2, it is impossible to build a failure detector in φy1
t from one in φy2

t . On the
other hand, any failure detector in φy1

t can be used to build a failure detector in φy2
t

by returning true if |S| ≤ t− y2, returning false if |S| > t, and returning the output
of φy1

t if t− y2 < |S| ≤ t. (Formally, the next theorem is a consequence of Corollary
2 of section 7.)

Theorem 1. (y1 > y2) ⇒ (φy2
t < φy1

t).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINED CONDITIONS AND FAILURE INFORMATION 1583

4. The condition-based approach. The condition-based approach was intro-
duced in [36] to study conditions restricting the inputs to consensus that make the
problem solvable in an asynchronous system where t processes can crash. This line of
research has been extended to study conditions for other problems and in other dis-
tributed computing models [3, 17, 32, 36, 37, 39, 53]. In this paper, we are interested
in conditions for the set agreement problem in an asynchronous system.

4.1. Conditions. Let V be the set of values that can be proposed by the pro-
cesses. Moreover, let ⊥ /∈ V be a default value. An input vector is a size n vector
over V ∪ {⊥}. The input vector J proposed in an execution has in its ith entry J [i]
the value of V proposed by pi, or ⊥ if pi did not take any step in the execution. We
usually denote by I an input vector with all entries in V , and with J an input vector
that may have some entries equal to ⊥; such a vector J is called a view. The set Vn

x

consists of all of the input vectors, with at most x entries equal to ⊥, and Vn = Vn
0 .

Definition 2. A condition C is a subset of Vn.
Notation. For any pair of vectors J1, J2 ∈ Vn

x , J1 is contained in J2, denoted
J1 ≤ J2, if for all k : J1[k] �= ⊥ ⇒ J1[k] = J2[k]. Moreover, J1 < J2 if J1 ≤ J2 and
J1 �= J2, which means that J2 has at least one non-⊥ value that J1 does not have.
Also, #a(J) denotes the number of occurrences of a value a in the vector J , with
a ∈ V ∪ {⊥}. For a set of input vectors C ⊆ Vn, Cx is the set of all vectors J , with at
most x entries equal to ⊥ and such that J ≤ I for some I ∈ C. Finally, dist(J, J ′) is
the Hamming distance separating J and J ′, where J and J ′ are two vectors of Vn

x .

4.2. Legality of a condition. The main result of the condition-based approach
to solve asynchronous consensus is based on the following definition as formulated in
[17, 53].

Definition 3. A condition C is x-legal if there exists a function h : C �→ V with
the following properties:

• for all I ∈ C: h(I) = a⇒ #a(I) > x, and
• for all I1, I2 ∈ C: h(I1) �= h(I2)⇒ dist(I1, I2) > x.

A fundamental result of the condition-based approach is a characterization of the
conditions C for which consensus can be solved (for a precise definition of solving
consensus for C, see Definition 5, with k = 1).

Theorem 2 (see [36]). There is a t-fault tolerant protocol solving consensus for
C if and only if C is t-legal.

A general method to define t-legal conditions is described in [40], and two natural
t-legal conditions are described in [36].

It is convenient to extend h to vectors J with ⊥ values. The lemma that follows
shows that this is easy, provided J ∈ Cx.

Lemma 1. Let C be an x-legal condition, and I1, I2 ∈ C, J ∈ Cx such that
J ≤ I1 and J ≤ I2. Then h(I1) = h(I2).

Proof. Assume for contradiction that h(I1) �= h(I2). We have dist(I1, I2) > x
because C is x-legal. From the fact that J has at most x entries equal to ⊥ and
J ≤ I1, we have dist(J, I1) ≤ x (similarly, we also have dist(J, I2) ≤ x). From these
inequalities, the fact that the entries of J that differ in I1 and I2 are only its ⊥
entries, and again the fact that J has at most x entries equal to ⊥, we conclude that
dist(I1, I2) ≤ x. A contradiction.

Using this lemma we have a consistent definition.
Definition 4. Let C be an x-legal condition and J be any vector in Cx. The

function h is extended to J by taking any I ∈ C, with J ≤ I and letting h(J) = h(I).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1584 MOSTEFAOUI, RAJSBAUM, RAYNAL, AND TRAVERS

Assuming up to t process crashes and −t ≤ d ≤ t, let S [d]
t be the set of all

(t−d)-legal conditions (thus S [0]
t consists of the t-legal conditions). It is easy to check

that

S [−t]
t ⊂ · · · ⊂ S[−1]

t ⊂ S [0]
t ⊂ S [1]

t ⊂ · · · ⊂ S[t]
t ,

where S [t]
t includes the condition made up of all of the possible input vectors.

Notation. In the rest of the paper, Cd
t denotes a condition that belongs to S [d]

t .

4.3. The k-set agreement problem.

k-set agreement. Consensus is a fundamental problem in distributed computing
that is impossible in an asynchronous system even with a single crash failure. While
consensus requires all processes to decide on the same value, k-set agreement [9]
permits the processes to choose up to k different values. The problem is solvable
when k − 1 processes can crash, but not when k can crash. The proofs [6, 29, 50] of
this result uncovered a deep connection between distributed computing and topology
and motivated a significant amount of subsequent research.

The set of values V that can be proposed is assumed to be such that |V| > k.
Each process starts an execution with an arbitrary input value from V , the value it
proposes, and all correct processes have to decide on a value such that (1) any decided
value has been proposed, and (2) no more than k different values are decided. The
consensus problem is k-set agreement for k = 1.

Condition-based set agreement. We are interested in conditions C that, when
satisfied, make k-set agreement solvable in an asynchronous system where at most t

process can crash. As we shall see, k-set agreement is solvable for C ∈ S [d]
t if k ≥ d+1.

Notice that, if an input vector J ∈ Ct occurs in an execution of a protocol, then
as far as the processes with non-⊥ values in J can tell, the input vector could belong
to I ∈ C, because they cannot distinguish from another execution where the other
processes wake up and propose their values after the former processes have made their
decision. Given C ∈ S [d]

t , we say that C is d-satisfied for input vector J if J ∈ Ct or
#⊥(J) ≥ t− d.

Definition 5. A t-fault tolerant protocol solves the k-set agreement problem for
a condition C ∈ S [d]

t if in every execution with input vector J , the protocol satisfies
the following properties:

• Validity. Every decided value is a proposed value.3

• Agreement. No more than k different values are decided.
• Termination. Every correct process must decide if (1) C is d-satisfied for J

and no more than t processes crash, or (2.a) a process decides, or (2.b) fewer
than k processes crash.

The first two are the safety requirements of the standard set agreement problem,
and they should hold even if the input pattern does not belong to C. The third
item requires termination under “normal” operating scenarios: (1) inputs that could
belong to C or at least t − d processes crash, and (2.a) executions where a process
decides, or (2.b) fewer than k processes crash (a situation where k-set agreement is
solvable without conditions).

3It is shown in [13] that the solvability of k-set agreement is highly sensitive to the validity
property adopted.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINED CONDITIONS AND FAILURE INFORMATION 1585

Notice that, if set agreement is solvable for a condition C, then it is solvable for
any C′ contained in C: the same protocol works. As mentioned above, when t < k,
k-set agreement is solvable for Vn, hence for any condition C.

5. Combining conditions with φy
t to solve set agreement. This section

presents a set agreement protocol with access to a failure detector of the class φy
t ,

0 ≤ y ≤ t, and instantiated with the function h of a (t− d)-legal condition C ∈ S[d]
t ,

0 ≤ d ≤ t. It is a t-fault tolerant protocol that solves k-set agreement for Cd
t , where

k = 1+max(0, d−y) (recall Definition 5). Thus, all of the pairs (d, y) such that d ≤ y
allow solving condition-based consensus.

5.1. Base objects. In order to make the protocol simpler to understand, it is
presented in a modular way. More specifically, it relies on the following base ob-
jects: Three arrays of atomic registers, a consensus object, an adopt–commit-abort
object, and a condition-set agreement object. An adopt–commit-abort object and a
condition-set agreement object can always be implemented on top of base read/write
registers. As far as the consensus object is concerned, as we will see, it can always be
implemented in the particular context in which it is used by the processes.

The shared memory. The shared memory is made up of three arrays (denoted
V [1..n], W [1..n], and DEC [1..n]) of single-writer multireader atomic registers. All
are initialized to [⊥, . . . ,⊥]. The jth entry of an array X [1..n] can be read by any
process, but only pi can write to the ith component X [i]. To simplify the presentation
we assume that, in addition to these atomic read and write operations, a process pi can
also invoke the nonprimitive operation snapshot(X) that allows it to read the content
of all of the registers of the array X as if this reading was done instantaneously. (Such
an operation can be implemented in shared memory systems made up of single-writer,
multireader atomic registers despite any number of process crashes (1 ≤ t < n) [1, 4].)
In accordance with the terminology defined in [30], the read, write, and snapshot()
operations are linearizable (i.e., they appear as if they had been executed one after
the other, in agreement with their real-time occurrence order).

The underlying consensus object. A consensus object is accessed by a process
pi when pi invokes the operation alg cons(vi), where vi is the value proposed by pi.
Such an object allows any subset of processes to invoke alg cons(). Its properties are
the following:

• Termination. Any correct participating process decides a value.
• Validity. A decided value is a proposed value.
• Agreement. No two different values are decided.

As we will see, the underlying consensus object is used when more than t − y
process crash. It is shown in Theorem 8 that, in this case, a failure detector of the
class P (the class of perfect failure detectors [8]; see section 8) can be built from
a failure detector of the class φy

t (such a construction is described in the proof of
Theorem 8), and consensus can be solved in a single-writer multireader atomic register
asynchronous system enriched with such a failure detector.4

The underlying adopt–commit-abort object. The adopt–commit-abort ob-
ject we use here is a simple variant of the adopt–commit-abort object introduced in
[19, 52] in the context of shared memory systems, and an object introduced in [43]

4A �P-based alg cons() protocol is described in [42]. That protocol uses an underlying adopt–
commit-abort object. (Trivially, any failure detector in P is also in �P.) Other shared memory
consensus algorithms based on failure detectors can be found in [5, 24, 34].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1586 MOSTEFAOUI, RAJSBAUM, RAYNAL, AND TRAVERS

in the context of message-passing systems.5 Such an object has a single operation,
denoted adopt commit(). A process pi invokes adopt commit(vi), where vi is the value
it proposes to the adopt–commit-abort object and obtains a pair (d, v) as a result,
where d is control tag and v a value. The object is defined by the following properties.

• Termination. Any correct participating process decides a pair (d, v).
• Validity. If a process decides (d, v), then d ∈ {commit, adopt, abort}, and v

is a proposed value.
• Agreement. If a process decides (commit, v), then any other process that

decides, decides (d, v), with d ∈ {commit, adopt}.
• Obligation. If all of the participating processes propose the same value v,

then only the pair (commit, v) can be decided.
Intuitively, the adopt–commit-abort object is an abortable variant of consensus.

Let us observe that a process that decides (abort,−), can conclude that no process
decides (commit,−). However, when a process decides (adopt,−), it cannot conclude
which control tag has been decided by the other processes.

The underlying condition-set agreement object. A condition-set agree-
ment object has a single operation, denoted cond algo(). This object is designed to
solve a set agreement problem with the help of a (t − d)-legal condition C. A pro-
cess uses this object only in the particular context where the input vector J is such
#⊥(J) ≤ t− y.

A process pi invokes cond algo(Vi), where Vi is its local view of the input vector
J (we have then Vi ≤ J and #⊥(Vi) ≤ t−y), and only when the views can be ordered
by containment, Vi ≤ Vj or Vj ≤ Vi for all i, j. If it returns from that invocation, pi

obtains a value v. The object is defined by the following properties.
• Termination. Every correct process decides if (1) J ∈ Ct or #⊥(J) ≥ t − d

(C is d-satisfied for J), or (2.a) a process decides, or (2.b) more than (n− k)
correct processes invoke cond algo().
• Validity. A decided value is a value that has been proposed by a process in

its input view.
• Agreement. At most, k = 1 + max(0, d− y) values are decided.

5.2. The set agreement protocol.

Description of the protocol. The k-set agreement protocol based on a condi-
tion in C ∈ S [d]

t and a failure detector of the class φy
t is described in Figure 1. The

variables subscripted with i are local variables of pi. A process is made up of two
tasks: a main task T 1 and a background task T 2. The behavior of the task T 1 can
be decomposed into four parts.

• A process first writes the value vi it proposes into V [i] (line 1). Then, using
the snapshot() operation, it reads the array of proposed values until that array
contains “enough” values (line 2). “Enough” means here that there are no
more than (t−y) missing values, or there are more than (t−y) processes that
have crashed; this is known from the invocation queryy(Si). (Let us recall
that, when |Si| ≤ t− y, queryy(Si) answers always true).
• Then, the behavior of pi depends on the number of values it knows. If there

are too many crashes (line 4), pi sets a local variable propi to the value

5A wait-free implementation of an adopt–commit-abort object from single-writer multireader
atomic registers can be found in [52]. An implementation in message-passing systems, where a
majority of processes is correct, is presented in [43]. For completeness, an implementation of an
adopt–commit-abort object is described in Appendix A.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINED CONDITIONS AND FAILURE INFORMATION 1587

Function k-set agreement
[d,y]
n,t (vi)

task T1:
(1) V [i]← vi;
(2) repeat Vi ← snapshot (V); Si ← {j | Vi[j] = ⊥}
(3) until queryy (Si) end repeat;
(4) case (#⊥(Vi) > t − y) then propi ← CONS ; wi ← ⊥
(5) (#⊥(Vi) ≤ t − y) then propi ← COND ; wi ← cond algo(Vi)
(6) end case;
(7) W [i]← wi; (di, resi)← adopt commit(propi); Wi ← snapshot(W);
(8) case (resi = CONS) ∨ (di = abort)
(9) then DEC [i]← cond algo(vi); return (DEC [i])
(10) (resi = COND) ∧ (di = commit)
(11) then DEC [i]← Wi[j] such that Wi[j] �= ⊥; return(DEC [i])
(12) (resi = COND) ∧ (di = adopt)
(13) then esti ←Wi[j] such that Wi[j] �= ⊥;
(14) DEC [i]← cond algo(esti); return(DEC [i])
(15) end case

task T2:
(16) j ← 0;
(17) repeat forever j ← (j mod n) + 1;
(18) if (DEC [j] �= ⊥) then return(DEC [j]) end if
(19) end repeat

Fig. 1. A k-set agreement protocol with k = 1 + max(0, d− y).

CONS to try to decide a value from the underlying consensus algorithm (let
us remind that, when there are more than (t − y) crashes, it is possible to
solve consensus from φy

t). In the other case, pi knows enough proposed values
to decide from the condition (line 5); pi computes, consequently, a value wi

that could be decided from the condition and sets propi to COND .
• The process then uses the underlying adopt–commit-abort object (line 7) in

order to try agreeing on the same tag, namely, CONS or COND . Moreover,
each pi deposits in the array W [1..n] the value it has computed at line 4 or
line 5 and reads that array with the snapshot() operation.
• The last part depends on the result returned by the adopt–commit-abort

object.
– If pi obtains di = abort or resi = CONS , it concludes that no value

can be decided from the condition. It consequently uses the consensus
object to decide a value (lines 8–9).

– If pi obtains resi = COND , at least one entry of Wi is not equal to
⊥. Then, if, additionally, di = commit, pi concludes that any value
deposited in W can be decided from the condition, and it decides it
(lines 10–11).

– If pi obtains resi = COND together with di = adopt, it does not know
if the other processes pj have obtained dj = commit or dj = abort. So,
to be consistent, pi participates in the underlying consensus to which it
proposes a value that could be decided from the condition (lines 12–14).
It then decides the value returned by the consensus object.

The aim of task T 2 is to guarantee that a correct process always decides as soon
as a process decides. To that end, when a process pj is about to decide in task

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1588 MOSTEFAOUI, RAJSBAUM, RAYNAL, AND TRAVERS

T 1 (execution of the return(v) statement), it first writes v in DEC [j].6 Task T 2
of a process pi is then a simple loop statement that terminates when the predicate
(∃j : DEC [j] �= ⊥) becomes true. The execution of the return() statement by a
process pi terminates its execution of k-set agreement

[d,y]
n,t (vi).

Proof of correctness.
Theorem 3. When instantiated with a failure detector of the class φy

t and a
condition C in S

[d]
t , the protocol described in Figure 1 solves the condition-based k-set

agreement problem where k = 1 + max(0, d− y).
Proof. Validity property (a decided value has been proposed by a process). Let us

observe that a decided value deci is either an initial value vj proposed to the consensus
by a process pj (line 9) or a value wi obtained by a process pi from the condition-set
agreement object (lines 11 and 14). The validity property follows immediately from
the corresponding validity property of the consensus object and the condition-set
agreement object, and hence line 18 preserves validity.

Agreement property (at most k different values are decided). Let us observe
that, due to the agreement property of the adopt–commit-abort object, it is not
possible for two processes pi and pj that have invoked adopt commit() at line 7 to
be such that both the predicate (resi = CONS) ∨ (di = abort) and the predicate
(resj = COND)∧ (dj = commit) are true. It follows from that observation that it is
not possible for a process pi to execute line 9 while another process pj executes line
11. So, there are only two cases to consider (in addition to the trivial case of line 18).

• No process begins executing line 9 or 14. In that case, these processes decide
the value returned by the consensus object. Due to the consensus agreement
property, there is a single such value.
• No process begins executing line 11 or 14. In that case, these processes

decide a value returned from the condition-set agreement object . Due to the
condition agreement property, there are at most k = 1 + max(0, d − y) such
values, which proves the case.

Termination property. Let J be the input vector. We have to show that every
correct process decides if (1) the condition C is d-satisfied for J , or (2.a) a process
decides, or (2.b) fewer than k processes crash.

Let us notice that, as there are at most t process crashes (model assumption),
the repeat loop of lines 2–3 always terminates. Moreover, let us also observe that,
due to the termination property of the adopt–commit-abort object, any invocation of
adopt commit() issued by a correct process terminates (observation O1).

Let us also observe that the underlying consensus protocol is used only when the
number of crashes is greater than t − y (line 4), i.e., when a failure detector of the
class P can be built from a failure detector of the class φy

t (item (3) of Theorem
8). The termination property of the consensus object ensures that all of the correct
processes that invoke cons alg() terminate their operation (observation O2). Let us
now proceed by a case analysis.

• Case (1): We have to show that any correct process decides when the condi-
tion C is d-satisfied for J , where J is the input vector.
In that case, it follows from item (1) of the termination property of the
condition-set agreement object that any invocation cond algo() issued by a

6This write plays the same role as the reliable broadcast of the decided value in message-passing
systems (e.g., see the consensus protocols in [8, 23, 43, 51]). Their aim is to prevent a process from
deadlocking.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINED CONDITIONS AND FAILURE INFORMATION 1589

correct process terminates. This, combined with the observations O1 and O2,
allows us to conclude that any correct process terminates when C is d-satisfied
for J .
• Case (2.a): We have to show that any correct process decides, as soon as a

process decides.
This property is trivially guaranteed by the management of the array DEC [1..n]
and task T 2.
• Case (2.b): We have to show that any correct process decides when fewer

than k processes crash.
If no correct process accesses the condition-set agreement object, the fact that
any correct process decides follows from the observations O1 and O2. So, let
us consider the case where correct processes access the condition object. As
k = 1 + max(0, d − y) and fewer than k processes crash, this means that at
most max(0, d−y) processes crash. Moreover, as t ≥ d, we have t−y ≥ d−y.
It follows (from the properties of the failure detector φy

t) that all of the
processes pi that execute the repeat loop (lines 2–3) and do not crash while
executing that loop, eventually exit it, and we have then #⊥(Vi) ≤ t − y.
They consequently all of access the condition-set agreement object at line 5.
It follows that all of the correct processes (there are more than (n − k) of
them) invoke the condition-set agreement object. Due to item (2.b) of the
termination property of the condition-set agreement object, it follows that
any correct process decides in the k-set agreement protocol.

5.3. Implementation of a condition-set agreement object.

Description of the protocol. A t-fault tolerant protocol implementing a
condition-set agreement object is described in Figure 2. This protocol is instantiated
with a function h associated with a (t− d)-legal condition C. It uses a deterministic
function F () and a predicate P (). The function F () takes a view J as a parameter
and returns a non-⊥ value of the vector J . The value � is a default value not in V
and different from ⊥. It is assumed that the function h is extended to all views J of
C, with at most t− d entries equal to ⊥ as in Definition 4. The predicate P () is true
on all such views:

P (Vi) ≡
(∃I ∈ C such that Vi ≤ I

)
.

Thus, P () is used to test if pi’s current view Vi of the input vector could originate
from a vector of the condition.7

The protocol can be seen as a case analysis. The first step is for pi to check
whether #⊥(Vi) ≤ t− d in order to benefit from the condition. If #⊥(Vi) > t− d, pi

cannot benefit from it and consequently decides a value from its local view Vi at line
18 (the processes executing that line decide at most max(0, d− y) different values).

Otherwise, we have #⊥(Vi) ≤ t − d, and then pi has enough non-⊥ entries in
its view Vi to test if the condition can help it decide. So, pi enters the lines 2–17.
There are three cases. If P (Vi) is satisfied (first case), pi decides the value from the
condition and writes it in the shared array D to help other processes decide (line 4).

If P (Vi) is not satisfied (second case), pi first checks if #⊥(Vi) = t−d. If so (second
case), it knows that no other process will evaluate P to true in the previous line, and

7It is shown in [36] that, for some conditions, there are very efficient ways to compute the
predicate P (). As an example, for the (t − d)-legal condition C1 (defined in section 4.2), we have
P (Vi) ≡ #max(J)(Vi) > (t − d) −#⊥(Vi).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1590 MOSTEFAOUI, RAJSBAUM, RAYNAL, AND TRAVERS

Function cond algo (Vi) % We have #⊥(Vi) ≤ t− y, and Vi ≤ Vj or Vj ≤ Vi for all i, j %

(1) if (#⊥(Vi) ≤ t− d)
(2) then if P (Vi)
(3) then % The processes executing this line decide the same value %
(4) wi ← h(Vi); D[i]← wi; return (wi)
(5) else if (#⊥(Vi) = t− d)
(6) then % The processes executing this line decide the same value %
(7) wi ← F (Vi); D[i]← wi; return (wi)
(8) else % If processes execute these lines, at most k value can be decided %
(9) D[i]← 	;
(10) repeat Di ←snapshot (D) until

(
(∃j : Di[j] �= ⊥,) ∨ (#⊥(Di) < k)

)
;

(11) if (∃j : Di[j] �= ⊥,) then return (Di[j] such that Di[j] �= ⊥,)
(12) else ∀j : if (Di[j] =) then Yi[j]← V [j]
(13) else Yi[j]← ⊥ end if;
(14) wi ← F (Yi); D[i]← wi; return (wi)
(15) end if
(16) end if
(17) end if
(18) else wi ← F (Vi); D[i]← wi; return (wi) % Here (t− d) < (#⊥(Vi) ≤ t− y) %
(19) % The processes executing that line decide at most max(0, d− y)) values %

end if

Fig. 2. A condition protocol.

that any other process pj , with #⊥(Vj) = t − d has Vi = Vj , so it deterministically
decides F (Vi) (line 7).

In the third case, #⊥(Vi) < t − d, and pi writes � in D[i] to indicate it cannot
decide from its local view Vi (so, D[j] = ⊥means that pj has not yet finished executing
its protocol or has crashed). Then, as it cannot decide by itself, pi starts the “best
effort termination” part of the protocol (lines 9–15). It enters a loop (line 10), during
which it looks for a decided value (∃j : Di[j] �= ⊥,�) and decides if there is one (line
11) or a configuration where #⊥(Di) < k (this is the only place where k is used in the
protocol). If the condition (� ∃j : Di[j] �= ⊥,�) ∧ (#⊥(Di) < k) is satisfied, pi builds
a local view of the input vector corresponding to the processes that have executed
at least until line 9. As we will see in the proof, if several such views (Yi, Yj , etc.)
are computed, due to the invocations of snapshot(D) at line 10 that precede their
construction, the associated containment property implies that these views (Yi, Yj ,
etc.) are also ordered by containment. The process pi then decides the value F (Yi).
Let us notice that, as #⊥(Di) < k, the vector Yi has at most k − 1 entries equal to
⊥. It follows that at most k different values can be decided at line 14. Let α be the
number of values decided at line 4, 7, 11, and 18, and let β be the number of values
decided at lines 14. The proof will show that α + β ≤ k.

Correctness proof.
Theorem 4. When instantiated with a (t − d)-legal condition C, the proto-

col described in Figure 2 implements a condition-set agreement object with k = 1 +
max(0, d− y).

Proof. Validity property (a decided value is a value proposed in the input view
of a process). This property follows directly from the fact that both the function h()
and the function F () extract a non-⊥ value from the vector they are applied to.

Agreement property (at most k = 1 + max(0, d− y) different values are decided).
The processes that decide, do it at line 4, 7, 11, 14, or 18. We determine the maxi-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINED CONDITIONS AND FAILURE INFORMATION 1591

mum number of values that are decided by the processes at each of these lines of the
protocol.

• Consider the processes that decide at line 4.
These processes pi are such that (#⊥(Vi) ≤ t− d) and P (Vi) is satisfied. We
show that a single value can be decided at line 4.
Let pi and pj be two processes that decide at line 4. Due to the use of a
snapshot operation, we have either Vi ≤ Vj or Vj ≤ Vi. Let us consider that
Vi ≤ Vj .
We then have (1) #⊥(Vi) ≤ t − d and #⊥(Vj) ≤ t − d, (2) both P (Vi) and
P (Vj) are satisfied, i.e., ∃I1 ∈ C such that Vi ≤ I1 and ∃I2 ∈ C such that
Vi ≤ Vj ≤ I2, (3) and the condition is (t − d)-legal. It follows from these
three items and Lemma 1 that h(Vi) = h(Vj) = h(I1) = h(I2). Consequently,
no more than one value can be decided by the processes executing line 4.
• Consider the processes that decide at line 7.

These processes pi are such that (#⊥(Vi) = t−d) and P (Vi) is not satisfied. In
this case, at most one value is decided at line 7, because, due to the snapshot
containment property, all processes that execute this line have exactly the
same view Vi. Moreover, if a process executes this line, no process executes
line 4. This is because any process pj that executes line 4 has a view Vj such
that (#⊥(Vj) ≤ t − d = #⊥(Vi)), and as we have either Vi < Vj or Vj < Vi,
we conclude that Vi < Vj . Consequently, if pi executes line 7, P (Vi) is false,
and hence P (Vj) is also false as Vi ≤ Vj , by definition of the predicate P ().
• Consider the processes that decide at line 18.

These processes pi are such that (t − y ≥ #⊥(Vi) > t − d). We show that
these processes decide at most max(0, d− y) different values.
Due to the containment property on the vectors provided by the snapshot
operation, any pair of processes pi and pj that execute line 18 are such that
Vi ≤ Vj (or Vj ≤ Vi). We conclude from that observation that the processes
that execute line 18 have at most max(0, (t − y) − (t − d))=max(0, d − y)
different vectors. As F is deterministic, at most max(0, d−y) different values
can be decided by the processes that decide at line 18.
It follows that, when we consider the processes that decide at line 4, 7, or 18,
at most k = 1 + max(0, t− d) different values can be decided.
• Consider the processes that decide at line 11.

A process pi that decides at line 11 decides a value (that it retrieves in D[j])
that has been decided by another process pj (pj has deposited that value in
D[j] at line 4, 7, 14, or 18). Consequently, no additional value can be decided
at line 11.
• Finally, consider the processes that decide at line 14.

Let β be the number of different values decided by the processes that execute
line 14. Let α be the number of values decided by the processes that execute
line 4, 7, or 18. We claim that α + β ≤ k = 1 + max(0, t− d).

It follows from this case analysis that at most k = 1 + max(0, t− d) different values
can be decided, which proves the theorem.

Proof of the claim. Let us consider two time instants t0 and t1 defined as follows:
- t0 = first time instant where #⊥(D) = k − 1 (or +∞ if it never happens),
- t1 = first time instant where ∃ D[j] /∈ {�,⊥} (or +∞ if it never happens).8

8If both t0 and t1 are equal to +∞, no process decides, and the claim is trivially true.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1592 MOSTEFAOUI, RAJSBAUM, RAYNAL, AND TRAVERS

Let us first consider t1 ≤ t0. Let us notice that a process pi stops the repeat loop
of line 10 as soon as (∃ Di[j] /∈ {�,⊥} ∨ #⊥(Di) < k). As the test that (at line 11)
immediately follows the exit of the repeat loop privileges the case (∃ Di[j] /∈ {�,⊥})
with respect to the case (#⊥(Di) < k) when both are satisfied, it follows that pi

immediately executes the return () statement at line 11. Consequently, when t1 ≤ t0,
any process pi that enters the loop of line 10 and then decides, decides at line 11. We
then have β = 0 (no process decides at line 14).

Let us now consider the case t0 < t1. Let us first observe that, since the function
F () is deterministic and each Yi computed at lines 12–13 contains at most (k − 1)
entries equal to ⊥, it follows that the β values decided at line 14 correspond to (at
least) β different Yi vectors, which means (due to line 12) at least β different Di

vectors.
Due to the containment property of the invocations of the snapshot (D) invoca-

tions at line 10, the previous β Di vectors are totally ordered (see the definition of
“<” in section 4.1), e.g., Di1 < Di2 < · · · < Diβ < · · · and contain only ⊥ and �
entries. Moreover, for any pair of such vectors, there is at least one entry which is
equal to ⊥ in one vector and to � in the other. As D is initialized to [⊥, . . . ,⊥] and
there are at least β different Dix, we conclude that at least (β − 1) values � have
been written into D after t0 (because, due to the snapshot (D) operations, we have
#⊥(Di1) ≤ k − 1 at time t0, #⊥(Di2) ≤ k − 2 at time t′0, t′0 > t0, etc.).

Before being decided, the α different values decided at lines 4, 7, and 18 have
been written into the array D (they are decided after t1). Due to the definition of t1,
they have been written into D at or after t1, i.e. (from the case assumption), after t0.

Hence, after t0, α entries of D have been set to proposed values by lines 4, 7, and
18, and (β − 1) entries have been set to �. As, at t0, the number of entries of D
that were equal to ⊥ was equal to (k − 1), it follows that α + (β − 1) ≤ (k − 1), i.e.,
α + β ≤ k, which proves the claim when t0 < t1. End of the proof of the claim.

Termination property (let J be the actual input vector). Every correct process
decides if (1) J ∈ Ct or #⊥(J) ≥ t − d -C is d-satisfied for J-, or (2.a) a process
decides, or (2.b) more than (n− k) correct processes invoke cond algo().

If the input vector Vi, Vi ≤ J , is such that #⊥(Vi) > t−d, the process pi trivially
decides at line 18. When #⊥(Vi) = t− d, the test on line 5 leads to termination. On
another side, if #⊥(Vi) ≤ t− d and J ∈ Ct, then P (Vi) is satisfied, and pi decides at
line 4. So, the case (1) is done.

Let us consider case (2.a). Before deciding a value at line 4, 7, 14, or 18, a process
deposits that value in the array D. It follows that, after a process has decided, the
repeat loop of line 10 always terminates, and any process that executes line 11 decides,
which proves the case.

Let us finally consider case (2.b). Let us assume that more than (n− k) correct
processes invoke the object and no one decides. This means that none of them executes
line 4, 7, or 18. They all, consequently, enter the repeat loop at line 10, from which
we conclude that eventually the predicate #⊥(Di) < k becomes true. It follows that
the correct processes exit the repeat loop and decide.

6. Discussion.

6.1. Initial crashes: No condition is needed. The theorem that follows
considers a particular case, namely, the case where the faulty processes crash before
the protocol starts its execution.

Theorem 5. Consider an execution of the protocol described in Figure 1 instan-
tiated with a failure detector of the class φy

t . Let us assume that more than (t − y)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINED CONDITIONS AND FAILURE INFORMATION 1593

processes have crashed before the protocol starts. The protocol then solves the consen-
sus problem (whatever the (t− d)-legal condition it is instantiated with).

Proof. If more than (t − y) processes have initially crashed, due to the property
of the queryy () invocations at line 3, we have (#⊥(Vi) > t − y) for any process
pi. It follows that, for any process pi, we have propi = CONS (line 4). Due to
the obligation property of the adopt–commit-abort object, every process pi obtains
(commit,CONS). Consequently, all of the processes invoke the underlying consensus
object, which proves the theorem.

Remark 1. The previous theorem considers the case where the faulty processes
have crashed before the protocol starts. It is interesting to observe that a similar result
appears in [16], where a consensus protocol is presented for asynchronous systems
where a majority of processes are correct, and the faulty processes crash before the
protocol starts its execution.

6.2. An always terminating version of the protocol. It is possible to trade
safety for liveness by providing a version of the protocol where every correct process
always decides. This can be obtained at the price of an enlarged set of possibly decided
values. More precisely, let I be an input vector, and let C be the (t−d)-legal condition
the protocol is instantiated with. When I ∈ C, at most k = 1 + max(0, d− y) values
are decided; when I /∈ C, up to k′ = t+1−y values can be decided. Interestingly, this
always terminating version of the protocol provides a new insight into the way the pa-
rameters t, y (power of the failure detection) and d (power of the condition) are related.

In the protocol described in Figure 2, the statement that can prevent a correct
process pi from terminating is the repeat loop at line 10. This occurs when pi enters
lines 9–15, Vi being such that #⊥(Vi) ≤ min(t − y, t − d) (assumption on the input
parameter and line 1), while P (Vi) is equal to false (line 2). The modification to get
an always terminating cond algo() protocol is very simple: It consists in replacing the
lines 9–15 in Figure 2 by a weakened statement that always terminates, namely,

[9-15]’ if (∃j : D[j] �= ⊥) then return (D[j] such that D[j] �= ⊥)
else wi ← F (Vi); D[i]← wi; return (wi)

end if
Theorem 6. Let us consider the protocol depicted in Figure 2 instantiated with a

(t−d)-legal condition C, where lines 9–15 are replaced by the statement [9–15]’. Every
correct process decides. Let I be an input vector. If I ∈ C, at most k = 1+max(0, d−y)
values are decided. If I /∈ C, at most k′ = t + 1− y values can be decided.

Proof. Every correct process trivially terminates, and a decided value comes from
a proposed vector (same proof as in Theorem 4).

As far as the number of values that are decided is concerned, let us first consider
the case where the input vector belongs to the condition. In that case, when a process
pi executes line 2, P (Vi) is trivially satisfied. It follows that the new line [9-15]’ is
never executed. Consequently, Theorem 4 remains valid when I ∈ C, and at most
k = 1 + max(0, d− y) values are then decided.

Considering now the case where the input vector does not belong to the condition,
let us first observe that if a process pi decides at line [9-15]’ a value D[j] such that
D[j] �= ⊥, it does not decide a new value as D[j] is counted as a decided value at line 4,
7, 18 or in the else part of the new if statement. So, let us count the number of values
that can be decided by the processes executing line 4 or the else part of the new line
[9-15]’. For each such process pi, we have #⊥(Vi) ≤ t−max(y, d+1). Moreover (due to
the containment property on the vectors Vi provided by the cond algo() invocations),
we have Vi ≤ Vj (or Vj ≤ Vi) for two processes executing line 4 or the else part of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1594 MOSTEFAOUI, RAJSBAUM, RAYNAL, AND TRAVERS

line [9-15]’. It then follows that there are at most k1 = t−max(y, d + 1) + 1 different
vectors Vi for the processes that execute line 4 or the else part of line [9-15]’. Let
us observe that if a process pj decides at line 4, the same vector Vj will not be used
to decide another value at line [9-15]’. Finally, due to that observation and the fact
that F () is deterministic, at most k1 different values can be decided by the processes
executing line 4 or the else part of line [9-15]’. On the other side, the processes that
execute line 18 decide at most k2 = max(0, d − y) different values (the proof is the
same as the corresponding proof in Theorem 4). Recall that all of the processes that
execute line 7 decide the same value. Finally, summing up, we get k′ = k1 + k2 + 1,
i.e., k′ = (t − max(y, d + 1) + 1) + (max(0, d − y) + 1), which can be simplified to
provide k′ = t + 1− y.

Let us notice that when the input vector does not belong to the condition, the
maximal number of values that can be decided, namely, k′ = t + 1 − y, does not
depend on d. If the information on failure is maximal (y = t), the protocol solves
consensus. At the other extreme, if there is no information on failures (y = 0) and
there is no power provided by the condition, the protocol solves the trivial version of
the set agreement problem, namely, k′ = t + 1.

7. A lower bound. This section presents a lower bound matching Theorem 3.
Theorem 7. When instantiated with a failure detector of the class φy

t and a
(t− d)-legal condition, no protocol solves the condition-based k-set agreement problem
for k ≤ max(0, d− y).

Proof. Assume for contradiction that a protocol solves the k-set agreement prob-
lem for k ≤ max(0, d − y). Hence, d > y and max(0, d − y) = d − y. Partition
the processes in two groups: the main processes p1, . . . , pn−t+d and the secondary
processes, pn−t+d+1, . . . , pn. Consider the executions where the secondary processes
crash before taking any steps. These are executions with at least t − d failures. By
Definition 5, all correct process must decide whatever the input vector. Now, consider
the subset of these executions with at most d−y additional failures. The total number
of failures is at most t − y failures. Recall that any relevant query is invoked with
a set the size of which is greater than (t − y). So, all relevant invocations queryy()
issued by the main processes will include at least one correct process and thus will
return false, and all other invocations return the trivial output. Thus, in these execu-
tions, the failure detector gives no information, and therefore the main processes have
to solve the standard set agreement problem (i.e., terminate for every input vector),
tolerating d− y failures. The results of [6, 28, 29, 50] (more specifically, Corollary 5.5
in [28]) imply that, in one of these executions, at least d − y + 1 different values are
decided, a contradiction.

The following corollaries are direct consequences of the previous theorem. They
consider the extreme cases where there is either no failure detector (i.e., y = 0) or no
condition (i.e., d = t). The first corollary answers an open problem stated in [3, 39].
The second corollary shows the optimality9 of φy

t .
Corollary 1. Let C be a (t − d)-legal condition. There is no condition-based

k-set agreement protocol for C when k ≤ d.
Corollary 2. When considering the family (φy

t)0≤y≤t of failure detector classes,
φy

t , with y = t−k+1, is the weakest that allows solving the k-set agreement problem.

9This result complements another k-set agreement minimality result [27], which shows that,
among the family (Sx)1≤x≤t+1 of perpetual failure detectors (introduced in [44, 52]), Sx is the
weakest to solve the k-set agreement problem for k > t− x + 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINED CONDITIONS AND FAILURE INFORMATION 1595

�P

P

S

�S ≡ �W ≡ Ω

Fig. 3. Relations among Chandra–Toueg’s failure detector classes.

8. Comparing φy
t with Chandra and Toueg’s failure detector classes.

8.1. Chandra and Toueg’s failure detector classes. This section presents
the failure detectors introduced by Chandra and Toueg, used in this paper. These
classes are defined from the following completeness and accuracy properties [8]:
- Strong (Weak) completeness. Eventually, every process that crashes is permanently
suspected by every (some) correct process.
- Perpetual strong accuracy. No process is suspected before it crashes.
- Eventual strong accuracy. There is a time after which no correct process is suspected.
- Perpetual weak accuracy. Some correct process is never suspected.
- Eventual weak accuracy. There is a time after which some correct process is never
suspected.

The classes we are interested in are the following [8]. They are collectively called
“Chandra and Toueg’s failure detector classes” in the rest of the paper.

• P : The class of perfect failure detectors. It includes all of the failure detectors
satisfying strong completeness and perpetual strong accuracy.
• S: The class of strong failure detectors. It includes all of the failure detectors

satisfying strong completeness and perpetual weak accuracy. We have P ⊆ S.
• �P : The class of eventually perfect failure detectors. It includes all of the

failure detectors satisfying strong completeness and eventual strong accuracy.
We have P ⊆ �P .
• �S: The class of eventually strong failure detectors. It includes all of the

failure detectors satisfying strong completeness and eventual weak accuracy.
We have �P ⊆ �S, and S ⊆ �S.

The class �S is the weakest that allows solving the consensus problem and is
equivalent to the class �W in shared memory systems and in message-passing systems
with reliable channels [8, 7]. It has also been shown that �S and the class of leader
failure detectors, denoted Ω, are equivalent in systems where each process initially
knows all of the process identities [7, 11, 41].

Figure 3 summarizes Chandra and Toueg’s failure detector classes. Following
Definition 1, an arrow from A to B means that A ≥ B (any failure detector of the
class A can be used to build a failure detector of the class B). The absence of a path
from A to B means that it is not the case A ≥ B (given any failure detector of the
class A, it is not possible to build a failure detector of the class B). Finally, A ≡ B
if A ≤ B and B ≤ A. The figure follows from [7, 8].

8.2. φy
t with respect to Chandra and Toueg’s failure detector classes.

This section studies the relation between φy
t and the classic failure detectors intro-

duced by Chandra and Toueg. We show that φt
t allows building a perfect failure

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1596 MOSTEFAOUI, RAJSBAUM, RAYNAL, AND TRAVERS

init: suspectedi ← ∅

repeat forever for all j such that pj ∈ ({p1, . . . , pn} \ suspectedi) do
if queryt({pj}) then suspectedi ← suspectedi ∪ {pj} end if

end repeat

Fig. 4. From φt
t to P (algorithm for pi).

detector, namely, P ≤ φt
t (Theorem 8). Therefore, P is equivalent to φt

t as φt
t ≤ P

(from their definitions).
Theorem 8. (1) P ≡ φt

t. Let f denote the actual number of process crashes in a
run. (2) If f ≤ t−y, φy

t , 0 ≤ y ≤ t−1 does not allow building a failure detector of any
of Chandra and Toueg’s failure detector classes (e.g., �S, �P, Ω). (3) If f > t − y,
φy

t , 0 ≤ y ≤ t− 1 allows building a failure detector of the class P.
Proof. Let us first consider item (1). The construction described in Figure 4

constructs a perfect failure detector from a failure detector of the class φt
t. This

construction works as follows. A process that queries the perfect failure detector
obtains the current value of the set suspectedi. As y = t, queryt(S)—where S is
made up of a single process p—eventually returns true if and only if p has crashed.
The strong completeness and strong accuracy properties defining the class P follow.
Moreover, φt

t ≤ P follows directly from their definitions. Therefore, P is equivalent
to φt

t.
For proving item (2), let us first observe that, an implementation that systemat-

ically suspects all of the processes trivially satisfies the completeness property of any
of Chandra and Toueg’s failure detector classes but prevents its accuracy property
from being satisfied. So, assuming that φy

t (0 ≤ y ≤ t − 1) allows implementing the
accuracy property of any of Chandra and Toueg’s failure detector classes, we show
that it does not allow implementing the associated (weak or strong) completeness
property.

Let us consider any run during which no more than x = t−y (1 ≤ x ≤ t) processes
crash. Due to the definition of φy

t , we have the following:
• Any queryt(S), where |S| ≤ t − y = x always returns true whatever the x

(≥ 1) processes composing S. This follows from the triviality property of φy
t ,

|S| ≤ t− y = x.
• Any queryt(S), where |S| > x always returns false whatever the processes

composing S. This follows from the safety property of φy
t , as at least one

process among these processes has not crashed.
These observations show that, when no more than x = t − y (1 ≤ x ≤ t) processes
crash, the boolean value returned by a query depends only on the number of processes
defining S (it depends neither on which processes are in S, nor on the failure pattern).
It follows that, when no more than x = t − y (1 ≤ x ≤ t) processes crash, there is
no way for a process to know if a given process has crashed or not, thereby making
impossible to implement the (weak or strong) completeness property of any of Chandra
and Toueg’s failure detector classes.

The proof of item (3) consists in designing an algorithm that, in runs where
f > t− y, builds a failure detector of the class P from a failure detector of the class
φy

t . Let us first observe that, as f > t − y, there is a set S such as |S| = t − y + 1,
and, after some finite time, queryy(S) returns true forever. The algorithm is the
following.

• Each set suspectedi is initialized to ∅. Initially, each process pi issues queryy

(X) for all of the possible sets X of size |X | = t − y + 1 until such a query

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINED CONDITIONS AND FAILURE INFORMATION 1597

when queryy (S) is invoked by pi:
case (|S| ≤ t− y) then return (true)

(|S| > t) then return (false)
(t− y < |S| ≤ t) then return (S ⊆ suspectedi)

end case

Fig. 5. From P to φy
t (algorithm for pi).

returns true. Due to the fact that all of the queries are relevant (t−y < |X | ≤
t), and the previous observation, this eventually happens. When it occurs, pi

considers the corresponding set (say S) and executes suspectedi ← S.
• Then, for each pj /∈ suspectedi, pi regularly executes queryy(S ∪ {pj}). If

the query returns true, pi can conclude from the property of φy
t that pj has

crashed. It consequently adds pj to suspectedi. Otherwise, pi keeps on issuing
queryy(S ∪ {pj}).

It follows from the definition of S and the safety and liveness properties of φy
t that the

sets suspectedi of the correct processes eventually include all of the crashed processes
and never includes a “not yet” crashed process, i.e., they satisfy the properties that
define the class P of perfect failure detectors [8].

8.3. From Chandra and Toueg’s failure detectors to φy
t . Figure 5 presents

a simple protocol transforming any failure detector of the class P into a failure detector
of the class φy

t . The underlying set suspectedi satisfies (by assumption) the properties
defining the class P . In contrast, we show that there is no protocol transforming any
failure detector of the class φy

t , for y < t, into a failure detector of the class P .
Theorem 9. The protocol of Figure 5 transforms any failure detector of the class

P into a failure detector of the class φy
t for 0 ≤ y ≤ t.

Proof. The triviality property of φy
t is ensured by the first two case statements.

The safety property follows from the fact that, due to the perpetual strong accuracy of
the underlying failure detector, suspectedi contains only crashed processes. Finally,
the liveness property of φy

t follows from the fact that, due to the completeness of
the underlying failure detector, the set suspectedi eventually contains all crashed
processes.

The next theorem states that there is no protocol transforming a failure detector
of the class S, �P , �S, or �W into a failure detector of the class φy

t for 0 < y.
It is surprising that these failure detectors are not strong enough to implement φy

t ,
even when y < t, as in this case φy

t cannot solve consensus (Corollary 2), while these
failure detectors can solve consensus. (In the case of y = t, both φt

t and those failure
detectors can solve consensus.)

Theorem 10. For 1 ≤ y ≤ t, φy
t �≤ S, φy

t �≤ �P, φy
t �≤ �S, and φy

t �≤ �W.
Proof. The impossibility comes from the fact that nothing prevents the sets

suspectedi from containing correct processes for an unbounded amount of time. As
�S < �P and �W < �P , it is sufficient to prove it for �P , as far as �S, �W , and
�P are concerned. The proof for S is verbatim the same as the one for �P (replacing
only �P by S).

The proof consists in assuming (for contradiction) that there is a protocol trans-
forming a failure detector of the class �P into a failure detector of the class φy

t . Let
us consider a run where an infinite sequence of relevant queries is issued, all of the
form queryy(S), for the same S, t − y < |S| ≤ t, and suppose that all processes in
S are initially crashed. The answers returned by the protocol define then a sequence
consisting of a finite prefix of false answers followed by an infinite suffix of true an-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1598 MOSTEFAOUI, RAJSBAUM, RAYNAL, AND TRAVERS

swers (by the safety and liveness property of φy
t). Let τ be a time instant after which

all of the invocations of queryy(S) return true.
However, it could be that no process ever crashes, and no process in S takes a step

until after τ + δ (where δ > 0 is an arbitrary finite period), with �P suspecting each
process exactly as in the previous fault-prone run from the very beginning until τ + δ.

As �P provides each process with the same outputs in both runs until time τ +δ,
it follows that the queries queryy(S) issued between τ and τ + δ returns true in both
runs. This contradicts the safety property of φy

t in the failure-free run.

9. Conclusion. This paper focused on the combination of two approaches to
solve the k-set agreement problem, namely, failure detectors and conditions. It has
proposed novel failure detectors for solving the k-set agreement problem, that, when
combined with a condition, establish a new bridge among asynchronous, synchronous,
and partially synchronous systems with respect to agreement problems.

The paper has presented three main contributions. The first is the new class
of failure detectors denoted φy

t , 0 ≤ y ≤ t. The processes can invoke a primitive
queryy(S) with any set S of process identities. Roughly speaking, queryy(S) returns
true only when all processes in S have crashed, provided t−y < |S| ≤ t. These failure
detectors seem interesting in their own right. They have been thoroughly investigated
and compared to the classical failure detectors introduced by Chandra and Toueg.

The second contribution of the paper is a condition-based protocol that solves the
k-set agreement problem, with k = 1+max(0, t− (x+ y)), for a condition C of power
x and a failure detector of power y, with termination guaranteed for inputs in C. By
“power” we mean the following: C is x-legal if and only if it can be used to solve
x-fault tolerant asynchronous consensus and the failure detector is in the class φy

t ,
0 ≤ y ≤ t. Several noteworthy properties and variants of this protocol (that provides
a new way to solve asynchronous set agreement and, in particular, consensus) have
been studied.

The third contribution is a corresponding lower bound, showing that there is no
φy

t -based k-set agreement protocol for (t− d)-legal conditions with k ≤ max(0, d− y).
It follows from this lower bound that there is no condition-based k-set agreement
protocol such that k ≤ d for any (t− d)-legal condition.

Appendix A. An adopt–commit-abort object implementation.
As announced in the paper, this appendix describes an implementation of an

adopt–commit-abort protocol. The implementation described in Figure 6 is a merge
of the one described in [52] (designed for an asynchronous shared memory system)
and the one described in [43] designed for an asynchronous message-passing system).
It uses two arrays of one-writer multireader atomic registers denoted PHASE1[1..n]
and PHASE2[1..n], both initialized to [⊥, . . . ,⊥]. Then, an entry of such an array
contains a pair or remains equal to ⊥.

The behavior of a process pi can be decomposed into three phases.
• Phase 1 (lines 1–2). A process pi first deposits its input value vi in PHASE1[i]

to make public the fact that vi has been proposed to the adopt–commit-abort
object. Then, it reads (asynchronously) the whole array PHASE1[1..n] to
know if other values have been proposed. The local set set1i is used to keep
these values.
• Phase 2 (lines 3–6). During the second phase, if (from its point of view) no

value different from its value vi has been proposed, pi sets PHASE2[i] to the
pair (single, vi), otherwise it sets PHASE2[i] to the pair (several, vi). Then,
pi determines how many pairs (x, v) have been deposited in PHASE2[1..n].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINED CONDITIONS AND FAILURE INFORMATION 1599

Function adopt commit (vi)

(1) PHASE1[i]← vi;
(2) set1i ← {v | PHASE1[j] = v ∧ v �= ⊥ ∧ 1 ≤ j ≤ n};
(3) if (set1i = {vi}) then PHASE2[i]← (single, vi)
(4) else PHASE2[i]← (several, vi)
(5) end if ;
(6) set2i ← {(x, v) | PHASE2[j] �= ⊥ ∧ PHASE2[j] = (x, v) ∧ 1 ≤ j ≤ n};
(7) case set2i = {(single, v)} then return (commit, v)
(8) set2i = {(single, v), (several, v′), . . . } then return (adopt, v)
(9) (single, v) /∈ set2i then return (abort, vi)
(10)end case.

Fig. 6. A shared memory adopt-commit protocol.

(Let us recall that we have PHASE2[k] = ⊥ until pk deposits a pair in
PHASE2[k].) These non-⊥ values (pairs) are collected in the set set2i.
• Phase 3 (lines 7–10). Finally, pi computes the final value it will return as the

result of its invocation.
– If set2i contains only the pair (single, v), pi returns (commit, v): it

“commits” the value v.
– If set2i contains several pairs and one of them is (single, v), then pi

“adopts” that value v by returning (adopt, v).
– Finally, when set2i does not contain (single, v), pi has seen no value to

be adopted or committed. It consequently “aborts,” returning the value
vi it has initially proposed.

The proof of the termination, validity, and obligation properties of the adopt–
commit-abort object are trivial. A proof of the agreement property for the shared
memory model can be found in [52]. A proof for a message-passing model can be found
in [43] (that proof assumes a majority of correct processes). That proof consists
in showing that, for any pair of processes pi and pj that execute line 6, we have
set2i = {(single, v)} ⇒ (single, v) ∈ set2j (i.e., line 7 and line 9 are “mutually
exclusive”).

Acknowledgments, We would like to thank Rachid Guerraoui for interesting
questions during PODC 2005 that helped us refine our approach, and Matthieu Roy
and Xavier Defago for discussions on the set agreement problem and the implementa-
tion of failure detectors. Finally, we want to thank the anonymous referees for their
very careful reading and valuable comments.

REFERENCES

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, Atomic snapshots
of shared memory, J. ACM, 40 (1993), pp. 873–890.

[2] E. Anceaume, A. Fernandez, A. Mostefaoui, G. Neiger, and M. Raynal, Necessary and
sufficient conditions for transforming limited accuracy failure detectors, J. Comput. Sys-
tem Sci., 68 (2004), pp. 123–133.

[3] H. Attiya and Z. Avidor, Wait-free n-set consensus when inputs are restricted, in Proceedings
of the 16th International Symposium on Distributed Computing (DISC’02), Lecture Notes
Comput. Sci. 2508, D. Malkhai, ed., Springer-Verlag, New York, 2002, pp. 326–338.

[4] H. Attiya and O. Rachman, Atomic snapshots in O(n log n) operations, SIAM J. Comput.,
27 (1998), pp. 319–340.

[5] H. Attiya and J. Welch, Distributed Computing, Fundamentals, Simulation and Advanced
Topics, 2nd ed., Wiley Ser. Parallel Distrib. Comput., Wiley, New York, 2004.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1600 MOSTEFAOUI, RAJSBAUM, RAYNAL, AND TRAVERS

[6] E. Borowsky and E. Gafni, Generalized FLP impossibility results for t-resilient asynchronous
computations, in Proceedings of the 25th ACM Symposium on the Theory of Computing
(STOC’93), ACM Press, 1993, pp. 91–100.

[7] T.D. Chandra, V. Hadzilacos, and S. Toueg, The weakest failure detector for solving con-
sensus, J. ACM, 43 (1996), pp. 685–722.

[8] T.D. Chandra and S. Toueg, Unreliable failure detectors for reliable distributed systems, J.
ACM, 43 (1996), pp. 225–267.

[9] S. Chaudhuri, More choices allow more faults: Set consensus problems in totally asynchronous
systems, Inform. and Comput., 105 (1993), pp. 132–158.

[10] S. Chaudhuri, M. Herlihy, N. Lynch, and M. Tuttle, Tight bounds for k-set agreement, J.
ACM, 47 (2000), pp. 912–943.

[11] F. Chu, Reducing Ω to �W , Inform. Process. Lett., 76 (1998), pp. 293–298.
[12] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos, P. Kouznetsov,

and S. Toueg, The weakest failure detectors to solve certain fundamental problems in
distributed computing, in Proceedings of the 23rd International ACM Symposium on Prin-
ciples of Distributed Computing (PODC’04), ACM Press, 2004, pp. 338–346.

[13] R. De Prisco, D. Malkahi, and M. Reiter, On k-set consensus problems in asynchronous
systems, IEEE Trans. Parallel Distrib. Syst., 12 (2001), pp. 7–21.

[14] C. Dwork, N. Lynch, and L. Stockmeyer, Consensus in the presence of partial synchrony,
J. ACM, 35 (1988), pp. 288–323.

[15] M.J. Fischer and N. Lynch, A lower bound for the time to assure interactive consistency,
Inform. Process. Lett., 71 (1982), pp. 183–186.

[16] M.J. Fischer, N.A. Lynch, and M.S. Paterson, Impossibility of distributed consensus with
one faulty process, J. ACM, 32 (1985), pp. 374–382.

[17] R. Friedman, A. Mostefaoui, S. Rajsbaum, and M. Raynal, Distributed agreement problems
and their connection with error-correcting codes, IEEE Trans. Comput., 56 (2007), pp. 865–
875.

[18] R. Friedman, A. Mostefaoui, and M. Raynal, The notion of veto number for distributed
agreement problems, in Proceedings of the 6th International Workshop on Distributed
Computing (IWDC’04), Lecture Notes Comput. Sci. 3326, N. Das et al., eds., Springer-
Verlag, New York, 2004, pp. 315–325.

[19] E. Gafni, Round-by-round fault detectors: Unifying synchrony and asynchrony, in Proceedings
of the 17th ACM Symposium on Principles of Distributed Computing (PODC’00), ACM
Press, 1998, pp. 143–152.

[20] E. Gafni, R. Guerraoui, and B. Pochon, From a static impossibility to an adaptive lower
bound: The complexity of early deciding set agreement, in Proceedings of the 37th ACM
Symposium on Theory of Computing (STOC’05), ACM Press, 2005.

[21] R. Guerraoui, Indulgent algorithms, in Proceedings of the 19th International ACM Sympo-
sium on Principles of Distributed Computing (PODC’00), ACM Press, 2000, pp. 289–297.

[22] R. Guerraoui, Non-blocking atomic commit in asynchronous systems with failure detectors,
Distrib. Comput., 15 (2002), pp. 17–25.

[23] R. Guerraoui and M. Raynal, The information structure of indulgent consensus, IEEE
Trans. Comput., 53 (2004), pp. 453–466.

[24] R. Guerraoui and M. Raynal, The alpha of asynchronous consensus, Comput. J., 50 (2007),
pp. 53–67.

[25] R. Guerraoui and A. Schiper, Gamma-accurate failure detectors, in Proceedings of the 10th
Workshop on Distributed Algorithms (WDAG’96), Lect. Notes Comput. Sci. 1151, O.
Babaoglu and K. Marzullo, eds., Springer-Verlag, New York, 1996, pp. 269–286.

[26] M.P. Herlihy, Wait-free synchronization, ACM Trans. Program. Lang. Syst., 11 (1991),
pp. 124–149.

[27] M.P. Herlihy and L.D. Penso, Tight bounds for k-set agreement with limited scope accuracy
failure detectors, Distrib. Comput., 18 (2005), pp. 157–166.

[28] M.P. Herlihy and S. Rajsbaum, Algebraic spans, Math. Structures Comput. Sci., 10 (2000),
pp. 549–573.

[29] M.P. Herlihy and N. Shavit, The topological structure of asynchronous computability, J.
ACM, 46 (1999), pp. 858–923.

[30] M.P. Herlihy and J.L. Wing, Linearizability: A correctness condition for concurrent objects,
ACM Trans. Program. Lang. Syst., 12 (1990), pp. 463–492.

[31] M. Hurfin, A. Mostefaoui, and M. Raynal, A versatile family of consensus protocols based
on Chandra and Toueg’s unreliable failure detectors, IEEE Trans. Comput., 51 (2002),
pp. 395–408.

[32] T. Izumi and T. Masuzawa, Condition adaptation in synchronous consensus, IEEE Trans.
Comput., 55 (2006), pp. 843–853.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMBINED CONDITIONS AND FAILURE INFORMATION 1601

[33] L. Lamport and M. Fischer, Byzantine Generals and Transaction Commit Protocols,
manuscript, 1982.

[34] W.-K. Lo and V. Hadzilacos, Using failure detectors to solve consensus in asynchronous
shared memory systems, in Proceedings of the 8th International Workshop on Distributed
Computing (WDAG’94), Lect. Notes Comput. Sci. 857, G. Tel and P. Vitányi, eds.,
Springer-Verlag, New York, 1994, pp. 280–295.

[35] A. Mostefaoui, E. Mourgaya, and M. Raynal, Asynchronous implementation of failure
detectors, in Proceedings of the International IEEE Conference on Dependable Systems
and Networks (DSN’03), IEEE Computer Press, 2003, pp. 351–360.

[36] A. Mostefaoui, S. Rajsbaum, and M. Raynal, Conditions on input vectors for consensus
solvability in asynchronous distributed systems, J. ACM, 50 (2003), pp. 922–954.

[37] A. Mostefaoui, S. Rajsbaum, and M. Raynal, Synchronous condition-based consensus, Dis-
trib. Comput., 18 (2006), pp. 325–343.

[38] A. Mostefaoui, S. Rajsbaum, M. Raynal, and C. Travers, On the computability power
and the robustness of set agreement-oriented failure detector classes, Distrib. Comput., to
appear: DOI 10.1007/s00446-008-0064-2, 2008.

[39] A. Mostefaoui, S. Rajsbaum, M. Raynal, and M. Roy, Condition-based protocols for set
agreement problems, in Proceedings of the 16th International Symposium on Distributed
Computing (DISC’02), Lect. Notes Comput. Sci. 2508, D. Malkhai, ed., Springer-Verlag,
New York, 2002, pp. 48–62.

[40] A. Mostefaoui, S. Rajsbaum, M. Raynal, and M. Roy, Condition-based consensus solv-
ability: A hierarchy of conditions and efficient protocols, Distrib. Comput., 17 (2004),
pp. 1–20.

[41] A. Mostefaoui, S. Rajsbaum, M. Raynal, and C. Travers, From �W to Ω: A simple
bounded quiescent reliable broadcast-based transformation, J. Parallel Distrib. Comput., 67
(2007), pp. 125–129.

[42] A. Mostefaoui, S. Rajsbaum, M. Raynal, and C. Travers, The Combined Power of Condi-
tions and Information on Failures to Solve Asynchronous Set Agreement, Technical report
1897, IRISA, Université de Rennes, Rennes, France, 2008.

[43] A. Mostéfaoui and M. Raynal, Solving consensus using Chandra and Toueg’s unreliable
failure detectors: A general quorum-based approach, in Proceedings of the 13th Interna-
tional Symposium on Distributed Computing (DISC’99), Lect. Notes Comput. Sci. 1693,
P. Jayanti, ed., Springer-Verlag, New York, 1999, pp. 49–63.

[44] A. Mostefaoui and M. Raynal, k-set agreement with limited accuracy failure detectors, in
Proceedings of the 19th International ACM Symposium on Principles of Distributed Com-
puting (PODC’00), ACM Press, 2000, pp. 143–152.

[45] A. Mostefaoui and M. Raynal, Randomized k-set agreement, in Proceedings of the 13th
International ACM Symposium on Parallel Algorithms and Architectures (SPAA’01), ACM
Press, 2001, pp. 291–297.

[46] A. Mostefaoui and M. Raynal, Leader-based consensus, Parallel Process. Lett., 11 (2001),
pp. 95–107.

[47] G. Neiger, Failure detectors and the wait-free hierarchy, in Proceedings of the 14th Interna-
tional ACM Symposium on Principles of Distributed Computing (PODC’95), ACM Press,
1995, pp. 100–109.

[48] Ph. Räıpin Parvédy, M. Raynal, and C. Travers, Strongly-terminating early-stopping
k-set agreement in synchronous systems with general omission failures, in Proceed-
ings of the 13th Colloquium on Structural Information and Communication Complex-
ity (SIROCCO’06), Lect. Notes Comput. Sci. 4056, P. Flocchini and L. Gasieniec, eds.,
Springer-Verlag, New York, 2006, pp. 182–196.

[49] M. Raynal, Consensus in synchronous systems: A concise guided tour, in Proceedings of the
9th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’02),
IEEE Computer Press, 2002, pp. 221–228.

[50] M. Saks and F. Zaharoglou, Wait-free k-set agreement is impossible: The topology of public
knowledge, SIAM J. Comput., 29 (2000), pp. 1449–1483.

[51] A. Schiper, Early consensus in an asynchronous system with a weak failure detector, Distrib.
Comput., 10 (1997), pp. 149–157.

[52] J. Yang, G. Neiger, and E. Gafni, Structured derivations of consensus algorithms for fail-
ure detectors, in Proceedings of the 17th International ACM Symposium on Principles of
Distributed Computing (PODC’98), ACM Press, 1998, pp. 297–308.

[53] Y. Zibin, Condition-based consensus in synchronous systems, in Proceedings of the 17th Inter-
national Symposium on Distributed Computing, Lect. Notes Comput. Sci. 2848, F. Fich.,
ed., Springer-Verlag, New York, 2003, pp. 239–248.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

