
UN
CO

RR
EC

TE
D
PR

OO
F

TCS: 7622 Model 3G pp. 1–12 (col. fig: nil)

ARTICLE IN PRESS
Theoretical Computer Science xx (xxxx) xxx–xxx

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Narrowing power vs efficiency in synchronous set agreement:
Relationship, algorithms and lower boundI

Achour Mostéfaoui, Michel Raynal ∗, Corentin Travers
IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

a r t i c l e i n f o

Article history:
Received 22 July 2008
Received in revised form 9 March 2009
Accepted 1 September 2009
Communicated by G. Ausiello

Keywords:
Consensus
Efficiency
Lower bound
Round-based algorithm
Set agreement
Synchronous system
t-resilience

a b s t r a c t

The k-set agreement problem is a generalization of the uniform consensus problem: each
process proposes a value, and each non-faulty process has to decide a value such that a
decided value is a proposed value, and at most k different values are decided. It has been
shown that any algorithm that solves the k-set agreement problem in synchronous systems
that can suffer up to t crash failures requires b tk c + 1 rounds in the worst case. It has also
been shown that it is possible to design early deciding algorithmswhere no process decides
and halts after min(b fk c+ 2, b

t
k c+ 1) rounds, where f is the number of actual crashes in a

run (0 ≤ f ≤ t).
This paper explores a new direction to solve the k-set agreement problem in a syn-

chronous system. It considers that the system is enriched with base objects (denoted as
[m, `]_SA objects) that allow solving the `-set agreement problem in a set of m processes
(m < n). The paper

∧
makes several contributions. It first proposes a synchronous k-set

agreement algorithm that benefits from such underlying base objects. This algorithm re-
quires O(t`mk) rounds, more precisely, b

t
∆
c + 1 rounds, where∆ = mb k

`
c + (kmod `). The

paper then shows that this bound, that involves all the parameters that characterize both
the problem (k) and its environment (t ,m and `), is a lower bound. The proof of this lower
bound sheds additional light on the deep connection between synchronous efficiency and
asynchronous computability. Finally, the paper extends its investigation to the early decid-
ing case. It presents a k-set agreement algorithm that directs the processes to decide and
stop by round min(b f

∆
c + 2, b t

∆
c + 1). These bounds generalize the bounds previously

established for solving the k-set agreement problem in pure synchronous systems.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction 1

Context of the work. The k-set agreement problem generalizes the uniform consensus problem (that corresponds to the 2

case k = 1).
∧
This problem has been introduced by S. Chaudhuri to investigate how the number of choices (k) allowed

∧
for the 3

processes is related to the maximum number (t) of processes that can crash during a run [8]. The problem can be defined 4

as follows. Each of the n processors (processes) defining the system starts with a value (called a ‘‘proposed’’ value). Each 5

process that does not crash has to decide on a value (termination), in such a way that a decided value is a proposed value 6

(validity), and no more than k different values are decided (agreement).1 7

I A preliminary version of this paper has appeared in the proceedings of the Int’l Conference on Distributed Computing and Networking (ICDCN 2008).
An extended version of this paper has been invited for publication in TCS as one of the best papers presented at the conference after being submitted to
the standard TCS refereeing procedure.
∗ Corresponding author. Tel.: +33 299 84 71 88
E-mail addresses: achour@irisa.fr (A. Mostéfaoui), raynal@irisa.fr (M. Raynal), ctravers@irisa.fr (C. Travers).

1 This paper considers the crash failure model. The reader interested
∧
in the k-set agreement problem in more severe send/receive/general omission

failure models can consult the introductory survey [29].

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.09.002

Please cite this article in press as: A. Mostéfaoui, et al., Narrowing power vs efficiency in synchronous set agreement: Relationship, algorithms and lower
bound, Theoretical Computer Science (2009), doi:10.1016/j.tcs.2009.09.002

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:achour@irisa.fr
mailto:raynal@irisa.fr
mailto:ctravers@irisa.fr
http://dx.doi.org/10.1016/j.tcs.2009.09.002

UN
CO

RR
EC

TE
D
PR

OO
F

TCS: 7622

ARTICLE IN PRESS
2 A. Mostéfaoui et al. / Theoretical Computer Science xx (xxxx) xxx–xxx

Whenwe consider asynchronous systems, the problem can trivially be solvedwhen k > t . Differently, it has been shown1

that there is no solution in these systems as soon as k ≤ t [6,19,30]. (The asynchronous consensus impossibility, case k = 1,2

was demonstrated before, using a different technique [12].2) Several approaches have been proposed to circumvent the3

impossibility to solve the k-set agreement problem in asynchronous systems (e.g., probabilistic protocols [27], unreliable4

failure detectors with limited scope accuracy [17,26], or conditions associated with input vectors [24]).5

The situation is different in synchronous systemswhere the k-set agreement problem can always be solved, whatever the6

respective values of t and k. This has an inherent cost, namely, the smallest number of rounds (time complexity measured7

in communication steps) that have to be executed in the worst case scenario is lower bounded by b tkc + 1 [9]. (That bound8

generalizes the t + 1 lower bound associated with the consensus problem [1,3,11,22].)9

Although failures do occur, they are rare in practice. For the uniform consensus problem (k = 1), this observation has10

motivated the design of early deciding synchronous protocols [10,21,28], i.e., protocols that can cope with up to t process11

crashes, but decide in less than t + 1 rounds in favorable circumstances (e.g., when there are few failures). More precisely,12

these protocols allow the processes to decide in min(f + 2, t + 1) rounds, where f is the number of processes that crash13

during a run, 0 ≤ f ≤ t , which has been shown to be optimal (the worst scenario being when there is exactly one crash per14

round) [7,20,32].15

In a very interesting way, it has also been shown that the early deciding lower bound for the k-set agreement problem16

is min(b fkc + 2, b
t
kc + 1) [14]. This lower bound, not only generalizes the corresponding uniform consensus lower bound,17

but also shows an ‘‘inescapable tradeoff’’ among the number t of faults tolerated, the number f of actual faults, the degree k18

of coordination we want to achieve, and the best running time achievable. It is important to notice that, when compared to19

consensus, k-set agreement divides the running time by k (e.g., allowing two values to be decided halves the running time).20

Related work (1). To our knowledge, two approaches have been proposed and investigated to circumvent the
∧
min(b fkc+ 2,21

b
t
kc + 1) lower bound associated with the synchronous k-set agreement problem.22

The first is the fast failure detector approach that has been proposed and developed in [2] to expedite decision in syn-23

chronous consensus. That approach assumes a special hardware that allows a process to detect the crash of any process at24

most d time units after the crash occurred, where d < D, D being themaximummessage delay provided by the synchronous25

system. Both d and D are a priori known by the processes. A fast failure detector-based consensus algorithm that terminates26

in D + fd is proposed in [2], where it is also shown that D + fd is a lower bound for any algorithm based on a fast failure27

detector.3 To our knowledge, this approach has been considered only for the consensus problem.28

A second approach that has been proposed to circumvent the min(f + 2, t + 1) lower bound is the use of conditions29

[25]. That approach considers that the values proposed by the processes define an input vector with one entry per process.30

Basically, a condition Cdt (t and d are two parameters that allow defining instances of the condition) is a set of input vectors I31

such that ∀I ∈ Cdt , there is a value that appears in I more than t − d times. A deterministic way to define which value has to32

appear enough times in a vector I (e.g., the maximal value of the vector [23]) allows defining a hierarchy of conditions such33

that C0t ⊂ · · · ⊂ C
x
t ⊂ · · · ⊂ C

t
t (where C

t
t is the condition including all the input vectors).34

[25] presents two main results. Let I be the input vector of the considered run, and Cdt be a condition. The first result is35

a synchronous consensus algorithm that allows the processes to decide in (1) one round when I ∈ Cdt and f = 0, (2) two36

rounds when I ∈ Cdt and f ≤ t − d, (3) min(d+ 1, f + 2, t + 1) rounds when I ∈ C
d
t and f > t − d, and (4) min(f + 2, t + 1)37

when I /∈ Cdt . The second result is a proof showing that min(d+1, f +2, t+1) rounds are necessary in the worst case when38

I ∈ Cdt (and I /∈ C
d−1
t).39

An extension of this condition-based approach (combinedwith the use of appropriate failure detectors) to solve the k-set40

agreement problem in asynchronous systems has been considered in [24]. It is shown that k > d is a necessary and sufficient41

requirement for obtaining an asynchronous k-set agreement algorithm based on a condition Cdt .42

Problem addressed in the paper. The paper is about the efficiency (measured in terms of the number of rounds required43

to decide) of synchronous set agreement algorithms. As it has just been shown, fast failure detectors and conditions are44

two ways to circumvent the synchronous lower bound. The paper investigates a third approach. That approach is based on45

base objects that allow narrowing the set of proposed values. Their aim is to play a part similar to fast failure detectors or46

conditions, i.e., allow expediting decision.47

Let us consider as a simple example a test&set object. This object has consensus number 2 [16], whichmeans that it allows48

solving consensus in an asynchronous systemmade up of two processes (where one of them can crash), but not in a system49

made up of n > 2 processes (where up to n− 1 can crash).4 Is it possible to use such base objects to speed up synchronous50

set agreement in a systemmade up of n processes where up to t may crash? More generally, let [m, `]_SA denote an object51

2 The impossibility to solve consensus in asynchronous systems is usually named ‘‘FLP result’’ according to the names of its authors [12].
3 Without a fast failure detector, the cost would be D×min(f + 2, t + 1).
4 The consensus number of a concurrent object type is the maximum number of processes that can solve consensus (despite any number of process
crashes) using only atomic registers and objects of that type. The consensus number of test&set objects, queues, and stacks is 2 [16].

Please cite this article in press as: A. Mostéfaoui, et al., Narrowing power vs efficiency in synchronous set agreement: Relationship, algorithms and lower
bound, Theoretical Computer Science (2009), doi:10.1016/j.tcs.2009.09.002

UN
CO

RR
EC

TE
D
PR

OO
F

TCS: 7622

ARTICLE IN PRESS
A. Mostéfaoui et al. / Theoretical Computer Science xx (xxxx) xxx–xxx 3

that allows solving `-set agreement in a synchronous system of m processes.5 As fast failure detectors or conditions, these 1

objects are assumed given for free. So, the previous question becomes: 2

• Is it possible to benefit from [m, `]_SA objects to build a t-resilient synchronous [n, k]_SA object (i.e., a k-set agreement 3

object that has to cope with up to t process crashes)? 4

• If such a construction is possible, is its cost smaller than b tkc+1, or smaller thanmin(b
f
kc+2, b

t
kc+1) if we are interested 5

in an early deciding [n, k]_SA object? 6

If m, `, n and k are such that there is an integer a with n ≤ am and a` ≤ k, it is possible to solve the k-set agreement 7

problemwithout exchanging any value (i.e., in 0 round!)whatever the value of t . This is trivially obtained by partitioning the 8

n processes into a subsets of at mostm processes, and using in each subset a [m, `]_SA object in order that each process be 9

provided with a decided value. So, the interesting cases are when the valuesm, `, n and k do not allow a trivial partitioning 10

such as the previous one. 11

Another way to present the previous question is the following: how many crashes can we tolerate when we want to 12

build a synchronous [10, 3]_SA object from [2, 1]_SA objects, if one wants to decide in at most one round? In at most two 13

rounds? In at most three rounds? 14

So, the point investigated in the paper is amathematical one, namely the computational power of [m, `]_SA objectswhen 15

one wants to solve the k-set agreement problem in a set of n processes. 16

From amore practical point of view, we can see the system as made up of clusters ofm processes, such that an operation 17

involving only processes of a given cluster can be performed very efficiently, i.e., in a time that is smaller than the maximal 18

message transfer delay involving processes belonging to different clusters. One can see each [m, `]_SA object as a hardwired 19

object accessible by a set of m processes only. That is the sense in which the sentence ‘‘the [m, `]_SA objects are given for 20

free’’ should be
∧
understood. 21

Related work (2). In [18], Herlihy and Rajsbaum are interested in the same question as ours in an asynchronous context: in 22

which circumstances can [m, `]_SA objects help implement an [n, k]_SA object? Aswewill see, the lower bound established 23

in the paper is a reduction to their lower bound (via a simulation due to Gafni [13]). This is an unusual case where a 24

synchronous lower bound is proved from an asynchronous lower bound. 25

Results. The paper presents the following results. 26

• It first presents a synchronous message-passing algorithm that builds an [n, k]_SA object from [m, `]_SA objects. This 27

algorithm works for any values of n, k,m, and ` (assuming, of course, n > k andm > `). 28

• The paper then shows that the number of rounds (Rt) of the previous algorithm varies as Θ(t`mk). This means that (1) Rt 29

decreases when the coordination degree k increases (i.e., when less synchronization is required), or when the number 30

of processesm involved in each underlying object increases, and (2) Rt increases when the underlying object is less and 31

less powerful (i.e., when ` increases) or when the number of process crashes that the algorithm has to tolerate increases. 32

More precisely, we have: 33

Rt =

⌊
t

m
⌊ k
`

⌋
+ (kmod `)

⌋
+ 1. 34

Whenwe consider the previous example of building, in a synchronous system, a [10, 3]_SA object from [2, 1]_SA objects, 35

we can conclude that Rt = 1 requires t < 6, while Rt = 2 allows t = 9. Moreover, as there are only n = 10 processes, 36

there is no value of t that can entail an execution inwhich Rt = 3 are required (for it to occur,we should have 12 ≤ t < 18 37

and n > t). 38

To have a better view of Rt , it is interesting to look at special cases. 39

– Case 1. Build a consensus object in a synchronous system from [1, 1]_SA base objects or [m,m]_SA objects (i.e., from 40

base objects that have no power). It is easy to see that Rt = t+1 (that is thewell-known lower bound for synchronous 41

t-resilient consensus). 42

– Case 2. Build an [n, k]_SA object in a synchronous system from [1, 1]_SA base objects or [m,m]_SA objects (base 43

objects without power). It is easy to see that Rt = b tkc + 1, (that is the lower bound for synchronous t-resilient k-set 44

agreement). 45

– Case 3. Build a synchronous consensus from [m, 1]_SA base objects (i.e., consensus objects). In that case Rt = b tmc+1. 46

– Case 4. Build a synchronous [n, `]_SA object from [m, `]_SA base objects. In that case, Rt = b tmc + 1. 47

– Case 5. Build a synchronous [n, k]_SA object from [m, 1]_SA base objects (i.e., consensus objects). We then have 48

Rt = b tmkc + 1. 49

5 Objects such as [m, `]_SA objects have been used in [18] (under the name (m, `)-consensus objects) to solve the k-set agreement problem in
asynchronous systems prone to process crash failures.

Please cite this article in press as: A. Mostéfaoui, et al., Narrowing power vs efficiency in synchronous set agreement: Relationship, algorithms and lower
bound, Theoretical Computer Science (2009), doi:10.1016/j.tcs.2009.09.002

UN
CO

RR
EC

TE
D
PR

OO
F

TCS: 7622

ARTICLE IN PRESS
4 A. Mostéfaoui et al. / Theoretical Computer Science xx (xxxx) xxx–xxx

These particular instances show clearly how the coordination degree and the size of the base objects (measured by1

the value m) affect the maximal number of rounds executed by the algorithm and consequently allow expediting the2

decision.3

• The paper then shows that the value Rt is optimal when one wants to build, in a synchronous system, an [n, k]_SA object4

from [m, `]_SA base objects. This optimality result generalizes previous lower bounds proved for special cases such as5

consensus [1,11,21], and set agreement [9].6

The optimality proof relies on two theorems, one from Gafni [13], the other from Herlihy and Rajsbaum [18]. Gafni’s7

theorem establishes a deep connection between solvability in asynchronous system and lower bounds (efficiency) in8

synchronous systems. The Herlihy and Rajsbaum
∧
theorem is based on the impossibility to solve some set agreement9

problems in asynchronous systems.10

• Finally, the paper extends the algorithm to the early decision case. More specifically, the maximal number of rounds of11

the early deciding version of the algorithm is the following:12

Rf = min
(⌊
f
∆

⌋
+ 2,

⌊
t
∆

⌋
+ 1

)
where∆ = m

⌊
k
`

⌋
+ (kmod `).13

It is easy to see that this early decision bound generalizes the lower bounds that are known for the special consensus and14

set agreement cases.15

This paper is an endeavor to capture the essence of the synchronous set agreement and provide the reader with a better16

understanding of it. To that end, it considers design simplicity as a first-class citizen when both designing algorithms and17

proving lower bound results.18

As already noticed, the lower bound proof relies on previous theorems.We do think that Gafni’s theorem [13] (that states19

that an asynchronous system with at most t ′ crashes can implement the first b tt ′ c rounds of a synchronous system with up20

to t failures) is a fundamental theorem of fault-tolerant distributed computing. The lower bound proof of this paper
∧
shows21

an application of this powerful theorem.22

Roadmap. The paper is made up of 6 sections. Section 2 introduces the system model and definitions. Section 3 presents23

the algorithm that builds an [n, k]_SA object from [m, `]_SA objects in Rt synchronous rounds. Section 4 proves that Rt is a24

lower bound on the number of rounds for any synchronous algorithm that builds an [n, k]_SA object from [m, `]_SA objects.25

Section 5 considers the early decision case. Finally, Section 6 concludes the paper.26

2. Computation model and the set agreement problem27

The k-set agreement problem. The problemhas been informally stated in the Introduction: every process pi proposes a value vi28

and each correct process has to decide on a value in relation to the set of proposed values. More precisely, the k-set agreement29

problem [8] is defined by the following three properties (as we can see 1-set agreement is the uniform consensus problem):30

• Termination: Every correct process eventually decides.31

• Validity: If a process decides v, then v was proposed by some process.32

• Agreement: No more than k different values are decided.33

Process model. The system model consists of a finite set of n processes, namely,Π = {p1, . . . , pn}. A process is a sequence34

of steps (execution of a base atomic operation). A process is faulty during an execution if it stops executing steps (after it has35

crashed a process executes no step). As already indicated, t is an upper bound on the number of faulty processes, while f36

denotes the number of processes that crash during a particular run, 0 ≤ f ≤ t < n. (Without loss of generality we consider37

that the execution of a step by a process takes no time.)38

In the following, we implicitly assume k ≤ t . This is because k-set agreement can trivially be solved in synchronous or39

asynchronous systems when t < k [8].40

Communication/coordination model. The processes communicate by sending and receiving messages through channels.41

Every pair of processes pi and pj is connected by a channel. The sending of a message and the reception of a message are42

atomic operations. The underlying communication system is assumed to be failure-free: there is no creation, alteration, loss43

or duplication of messages.44

In addition to messages, the processes can coordinate by accessing [m, `]_SA objects. Such an object is a one-shot object45

that can be accessed by at most m processes. Its power is to solve the `-set agreement problem among m processes. Let us46

observe that, for 1 ≤ m ≤ n, an [m, n]_SA object is a trivial object that has no coordination power.47

Round-based synchrony. The system is synchronous. This means that each of its runs consists of a sequence of rounds. Those48

are identified by the successive integers 1, 2, etc. For the processes, the current round number appears as a global variable49

r that they can read, and whose progress is given for free: it is managed by an external entity. A round is made up of two50

main consecutive phases:51

Please cite this article in press as: A. Mostéfaoui, et al., Narrowing power vs efficiency in synchronous set agreement: Relationship, algorithms and lower
bound, Theoretical Computer Science (2009), doi:10.1016/j.tcs.2009.09.002

UN
CO

RR
EC

TE
D
PR

OO
F

TCS: 7622

ARTICLE IN PRESS
A. Mostéfaoui et al. / Theoretical Computer Science xx (xxxx) xxx–xxx 5

• A send phase in which each process sends zero or one message to each other process.6 If a process crashes during the 1

send phase of a round, an arbitrary subset of the processes to which it sent messages will receive these messages. 2

• A receive phase in which each process receives messages. The fundamental property of the synchronous model lies in 3

the fact that a message sent by a process pi to a process pj at round r , is received by pj at the very same round r if pi does 4

not crash during the round r (if pj crashes during the round r , the message can be or not received by pj).7 5

Before or after a phase, a process can execute local computations (e.g., process the messages it received during the current 6

round). It can also invoke an underlying [m, `]_SA base object. 7

3. A synchronous [n, k]_SA algorithm 8

This section presents a simple algorithm that, when atmost t processesmay crash, builds an [n, k]_SA object if the system 9

provides the n processes with round-based synchrony and [m, `]_SA base objects. 10

Notation. In all the rest of the paper we are using the following notations: 11

• α = b k
`
c and β = kmod ` (i.e., k = α`+ β), 12

• ∆ = αm+ β = m
⌊ k
`

⌋
+ (kmod `),8 13

• Rt = b t∆c + 1 =
⌊

t
m
⌊
k
`

⌋
+(kmod `)

⌋
+ 1. 14

3.1. The algorithm 15

The algorithm is pretty simple. It is described in Fig. 1. A process pi invokes the operation propose`,mk,n (vi)where vi is the 16

value it proposes. That value is initially stored in the local variable esti (line 01), that afterwards will contain the current 17

estimate of pi’s decision value (line 10). The process terminates when it executes the return(esti) statement. 18

Each process executes Rt rounds (line 02). During any round r , only ∆ processes are allowed to send their current 19

estimates. These processes are called the senders of round r . When r = 1, they are the processes p1, . . . , p∆, during the 20

second round the processes p∆+1, . . . , p2∆, and so on (lines 04–05). 21

The ∆ senders of a round r are partitioned into d∆me subsets of m processes (the last subset containing possibly less 22

than m processes), and each subset uses an [m, `]_SA object to narrow the set of its current estimates (lines 06–07). 23

After this ‘‘narrowing’’, each sender process sends its new current estimate to all the processes. A process pi accesses an 24

[m, `]_SA object by invoking the operation propose(esti). The d∆me [m, `]_SA objects used during a round r are in the array 25

SA[r, 0..d∆me − 1].
9 Finally, when during a round, a process pi receives estimates, it updates esti accordingly (line 10). 26

It is important to see that, if at least one sender process does not crash during a round, at most k = α`+β estimates are 27

sent during that round, which means that k-set agreement is guaranteed as soon as there is a round during which an active 28

process does not crash. 29

3.2. Proof of the algorithm 30

Lemma 1. Let nc[r] be the number of processes that crash during the round r. There is a round r such that r ≤ Rt and nc[r] < ∆. 31

Proof. Let t = α′∆+ β ′ with α′ = b t
∆
c and β ′ = t mod∆. The proof is by contradiction. let us assume that, ∀ r ≤ Rt , we 32

have nc[r] ≥ ∆. We then have: 33

Rt∑
r=1

nc[r] ≥ ∆× Rt = ∆
(⌊
t
∆

⌋
+ 1

)
= ∆

(
α′ +

⌊
β ′

∆

⌋
+ 1

)
= ∆× α′ +∆ > t. 34

Consequently, there are more than t processes that crash: a contradiction. �Lemma 1 35

Lemma 2. At any round r, at most k different estimate values are sent by the processes. 36

6 It is easy to see that this model has the same power as the model where, at each round, each process has to send the samemessage to all the processes
[3,22,31].
7 Let us observe that this synchronous model is very general: if, during a round r , a process first sends a message to all and then crashes, an arbitrary
subset of the processes receive the message.
8 A function J(u) = `

⌊ u
m

⌋
+ min(`, umodm) − 1, is used in [18]. While ∆ and the formula J(u) share some ‘‘shape’’, it is easy to see that they are

different and cannot be compared.
9 Actually, only Rtb∆m c base [m, `]_SA objects are needed. This follows from the following observation: during each round r , if β 6= 0, the ‘‘last’’ β sender
processes do not need to use such an [m, `]_SA object because β ≤ `. (Let us recall that 0 ≤ β < ` and∆ is defined as α m+ β .)

Please cite this article in press as: A. Mostéfaoui, et al., Narrowing power vs efficiency in synchronous set agreement: Relationship, algorithms and lower
bound, Theoretical Computer Science (2009), doi:10.1016/j.tcs.2009.09.002

UN
CO

RR
EC

TE
D
PR

OO
F

TCS: 7622

ARTICLE IN PRESS
6 A. Mostéfaoui et al. / Theoretical Computer Science xx (xxxx) xxx–xxx

Fig. 1. [n, k]_SA object from [m, `]_SA objects in a synchronous system (code for pi).

Proof. Let us recall that k = α `+ β (Euclidean division of k by `) and∆ = α m+ β = m
⌊ k
`

⌋
+ (kmod `).1

Due to the lines 04—05, at most∆ processes are senders at each round r . These∆ sender processes are partitioned into2

α = b∆mc sets of exactly m processes plus a set of β processes. As each underlying [m, `]_SA object used during the round3

r outputs at most ` estimates values from among the (at most) m values it is proposed, it follows that at most α` + β = k4

estimate values can be output by these objects, which proves the lemma. �Lemma 25

Lemma 3. [Agreement] At most k different values are decided by the processes.6

Proof. At any round the number of senders is at most∆ (lines 04–05). Moreover, due to Lemma 1, there is at least one round7

r ≤ Rt during which a correct process is a sender. If follows from Lemma 2, line 08 and line 10, that, at the end of such a8

round r , the estimates of the processes contain at most k distinct values. �Lemma 39

Theorem 1. The algorithm described in Fig. 1 is a synchronous t-resilient k-set agreement algorithm.10

Proof. The termination property follows directly from the synchrony of the model: a process that does not crash executes11

Rt rounds. The validity property follows directly from the initialization of the estimate values esti, the correctness of the12

underlying [m, `]_SA objects (line 07), and the fact that the algorithm exchanges only esti values. Finally, the agreement13

property is Lemma 3. �Theorem 114

4. Lower bound on the number of rounds15

This section proves that the previous algorithm is optimal with respect to the number of rounds. The proof of this lower16

bound is based on (1) a deep connection relating synchronous efficiency and asynchronous computability in presence of17

failures [13], and (2) an impossibility result in asynchronous set agreement [18].18

4.1. Notation and previous results19

This section uses the following notations.20

• Sn,t [∅] denotes the classical round-based synchronous system model made up of n processes, where up to t processes21

may crash [3,22,31].22

• Sn,t [m, `] is the Sn,t [∅] systemmodel enrichedwith [m, `]_SA objects. This is themodel defined in Section 2 (n processes,23

at most t process crashes, coordination possible through [m, `]_SA objects).24

• ASn,t [∅] denotes the classical shared memory asynchronous system model, as described in standard textbooks [3,22].25

The system is made of n processes, at most t of them may crash. Processes communicate by reading and writing atomic26

shared registers.27

• ASn,t [m, `] denotes the asynchronous system model ASn,t [∅] enriched with [m, `]_SA objects. (From a computability28

point of view,ASn,t [∅] is weaker thanASn,t [m, `].)29

The following theorems are central in proving that Rt is a lower bound.30

Gafni’s theorem. This first theorem is on the simulation, on an asynchronous system, of a round-based algorithm designed31

for the Sn,t [∅] model. Let A be a round-based t-resilient n-process synchronous distributed algorithm. The meaning of the32

words ‘‘it is possible to simulate’’ used in the theorem can be informally defined as follows. Let S(A) denote an asynchronous33

k-resilient n-process distributed algorithm that takes A as input (S(A) stands for simulation of A). The theorem states that34

there is an algorithm S such that S(A) produces a round-based run whose outputs during the first b tkc rounds could have

Please cite this article in press as: A. Mostéfaoui, et al., Narrowing power vs efficiency in synchronous set agreement: Relationship, algorithms and lower
bound, Theoretical Computer Science (2009), doi:10.1016/j.tcs.2009.09.002

UN
CO

RR
EC

TE
D
PR

OO
F

TCS: 7622

ARTICLE IN PRESS
A. Mostéfaoui et al. / Theoretical Computer Science xx (xxxx) xxx–xxx 7

Fig. 2. Generic algorithm solving a decision task in Sn,t [∅].

been produced by the first b tkc rounds of A run in a synchronous system.
10 Said in another way, at an appropriate abstraction 1

level, the outputs of the first b tkc rounds of S(A) inASn,k[∅] could have been produced by the first b tkc rounds of A in Sn,t [∅]. 2

Theorem 2 (Gafni [13]). Let n > t ≥ k > 0. It is possible to simulate inASn,k[∅] the first b tkc rounds of any algorithm designed 3

for Sn,t [∅] system model. 4

Let us now explain the meaning of the word ‘‘simulate’’ in a more operational way. Let us first observe that, at each 5

round r of a run of an algorithm designed for Sn,t [∅], each process pi (that has not crashed) receives a set of messages (reci), 6

performs local computation, and prepares a message (mi) that will be sent during the send phase of the round r + 1. Thus, 7

a deterministic synchronous algorithm is fully described at each process pi by a function computei() that, at each round r , 8

updates the local state of pi from its previous state and the set of messages it has received in the current round. Moreover, 9

computei() returns a pair 〈di,mi〉 where di is a decision value or ⊥ (if no decision has yet been determined), and mi is the 10

message to be sent by pi in round r + 1. A generic synchronous algorithm for a decision task is described in Fig. 2. 11

Let us observe that, for a deterministic synchronous algorithm A, executed in Sn,t [∅], the state of pi after R rounds is fully 12

determined by its initial state and its history, i.e., the sequence of the sets of messages (rec1i , . . . , rec
R
i) it has received during 13

each round (from 1 to R). Hence, simulating R rounds of A means emulating the send and receive phases, for each process 14

and each round r , 1 ≤ r ≤ R. Operationally, the round r send and receive phases of the generic algorithm are replaced by an 15

invocation of simulate(), that takes as a parameter a messagemi and returns a set recri made of pairs 〈pj,mj〉. The simulation 16

is correct if there exists a R rounds run of A in Sn,t [∅] in which, for each process pi, (1) the messages sets rec1i , . . . , rec
R
i are 17

received by pi in the corresponding rounds r , 1 ≤ r ≤ R, and (2) if ∃r, 1 ≤ r ≤ R, such that pi /∈ recri , then pi has failed by 18

the end of the round r . The round-based synchronous communication pattern and the fact that at most t processes fail in 19

any run of Sn,t [∅] defines allowable sequences of sets rec1i , . . . , rec
R
i as follows

11: 20

• ∀pi ∈ Π, r, 1 ≤ r ≤ R : |recri | ≥ n− t , 21

• ∀pi, pj, r, 1 ≤ r ≤ R : recr+1j ⊆ recri . 22

In addition, in order to benefit from the simulation of A in the base model ASn,k[∅], at least one process that does not fail 23

must not fail in the emulated synchronous run. More precisely: 24

• |{pi : pi ∈ recRi }| ≥ k+ 1 . 25

The simulation algorithmdescribed in [13] for the asynchronous systemASn,k[∅] ensures the three properties above subject 26

to the constraint R ≤
⌊ t
k

⌋
. 27

The next corollary is a simple extension of Gafni’s theorem suited to our needs. 28

Corollary 1. Let n > t ≥ k > 0, and let A an algorithm designed for Sn,t [m, `] system model that solves the x-set-agreement 29

problem in at most R ≤
⌊ t
k

⌋
rounds. There exists an algorithm A′ that solves the x-set-agreement problem inASn,k[m, `]. 30

Proof. Without loss of generality, let us assume that A follows the generic pattern as described in Fig. 2. In Sn,t [m, `], 31

during each round, a process can access [m, `]_SA objects when it updates its local state. This means that each execution of 32

computei()may invoke the propose() operation on base [m, `]_SA objects. 33

The systemmodelASn,k[m, `] also provides processes with base [m, `]_SA objects. Hence, R-rounds runs of algorithm A 34

can be simulated inASn,k[m, `] as follows. The send and receive phases are emulated with the simulation algorithmwhose 35

10 The ‘‘simulation of a distributed algorithm, designed for a systemmodel, in a different systemmodel’’ is an important notion encountered in distributed
computing. Among these simulations, one of the most famous is the so-called ‘‘synchronizer concept’’ that is an asynchronous algorithm that allows any
failure-free synchronous algorithm to be run on the top of a failure-free asynchronous system [4]. When failures are considered, simulations becomemore
involved, or can even be impossible. The interested reader may consult the specialized literature (e.g., [3,5,22]) where simulation-related impossibility
results and simulations in presence of failures are presented.
11 recri ⊆ rec

r ′
j is a shorthand for {pk : ∃〈pk,mk〉 ∈ rec

r
j } ⊆ {pk′ : ∃〈pk′ ,mk′ 〉 ∈ rec

r ′
j }. Similarly, pk ∈ reci means ∃〈p,m〉 ∈ reci such that p = pk .

Please cite this article in press as: A. Mostéfaoui, et al., Narrowing power vs efficiency in synchronous set agreement: Relationship, algorithms and lower
bound, Theoretical Computer Science (2009), doi:10.1016/j.tcs.2009.09.002

UN
CO

RR
EC

TE
D
PR

OO
F

TCS: 7622

ARTICLE IN PRESS
8 A. Mostéfaoui et al. / Theoretical Computer Science xx (xxxx) xxx–xxx

existence and correctness are guaranteed by Theorem 2, while the propose() operation on the [m, `]_SA objects are directly1

supplied byASn,k[m, `].2

As R ≤
⌊ t
k

⌋
, Gafni’s simulation guarantees that at least one correct process pi in the base model ASn,k[m, `] has not3

failed by the end of round R in the emulated synchronous run. Since in every synchronous t-resilient run of A, every process4

that does not fail computes a decision by the end of round R, pi obtains a valid decision value di by the end of the emulation5

of the first R rounds. By the specification of the k-set-agreement problem, this decision is also a valid decision for any other6

process pj. Hence, pi writes its decision di in shared memory to help other processes to decide before returning that value.7

Since pi is correct, every correct process that fails in the simulated synchronous run eventually observes the value written8

by pi and consequently eventually decides. �Corollary 19

The Herlihy–Rajsbaum
∧
theorem. Finally, the theorem that follows characterizes the ‘‘computability power’’ of a system10

ASn,t [∅] augmented with [m, `]_SA objects. Expressed with our terminology, it answers the following question: ‘‘Which11

are the values of K < n for which there is no implementation of a [n, K]_SA object inASn,t [m, `]?’’12

Theorem 3 (Herlihy–Rajsbaum [18]). Let Jm,` be the function u→ `
⌊ u
m

⌋
+min(`, umodm) − 1. There is no algorithm that13

solves the K-set agreement problem, with K = Jm,`(t + 1), inASn,t [m, `].14

4.2. The lower bound15

Theorem 4. Let 1 ≤ ` ≤ m < n and 1 ≤ k ≤ t < n. Any algorithm that solves the k-set agreement problem in Sn,t [m, `] has16

at least one run in which at least one process does not decide before the round Rt =
⌊

t
m
⌊
k
`

⌋
+(kmod `)

⌋
+ 1.17

Proof. The proof is by contradiction. Let us assume that there is an algorithm A that solves the k-set agreement problem18

in at most R < Rt rounds in Sn,t [m, `] (this means that any process decides by at most R rounds, or crashes before). We19

consider two cases.20

• k < `. We have then R < Rt = b tkc + 1.21

1. As k < `, the `-set agreement can be solved inASn,k[∅]. It follows that, as far as set agreement is concerned,ASn,k[∅]22

andASn,k[m, `] have the same computational power.23

2. As A solves the k-set-agreement problem in at most R ≤
⌊ t
k

⌋
rounds in system model Sn,t [m, `], it follows from the24

corollary of Gafni’s theorem that the k-set agreement problem can be solved inASn,k[m, `].25

3. Combining the two previous items, we obtain an algorithm that solves the k-set agreement problem inASn,k[∅]. This26

contradicts the impossibility to solve the k-set agreement problem inASn,k[∅] [6,19,30], which proves the theorem27

for the case k < `.28

• k ≥ `. Let us recall the definition∆ = m
⌊ k
`

⌋
+ (kmod `) = α m+ β . We then have R < Rt =

⌊ t
∆

⌋
+ 1.29

1. A solves the k-set-agreement problem within at most R ≤
⌊ t
∆

⌋
rounds in system model Sn,t [m, `]. By Corollary 1,30

there exists an algorithm that solves the k-set-agreement problem in system modelASn,∆[m, `].31

2. Considering the argument used in the Herlihy–Rajsbaum
∧
theorem, we have the following:32

Jm,`(∆+ 1) = `
⌊
∆+ 1
m

⌋
+min

(
`, (∆+ 1)modm

)
− 1,33

= `

⌊
α m+ β + 1

m

⌋
+min

(
`, (α m+ β + 1)modm

)
− 1,34

= `

(
α +

⌊
β + 1
m

⌋)
+min

(
`, (β + 1)modm

)
− 1.35

Let us observe that ` ≤ m. Moreover, as β = kmod `, we also have β < `. To summarize: β < ` ≤ m. There are two36

cases to consider.37

(a)m = β + 1. Observe that this implies that ` = m and `− 1 = β .38

Jm,`(∆+ 1) = `(α + 1)+min
(
`,mmodm

)
− 1,39

= ` α + `− 1 = ` α + β = k.40

(b)m > β + 1:41

Jm,`(∆+ 1) = ` α +min
(
`, (β + 1)modm

)
− 1,42

= ` α + β + 1− 1 = k.43

In both cases, Jm,`(∆ + 1) = k. It follows from the Herlihy–Rajsbaum
∧
theorem that there is no algorithm that solves44

the Jm,`(∆+ 1)-set agreement problem (i.e., the k-set agreement problem) inASn,∆[m, `].45

3. The two previous items contradict each other, thereby proving the theorem for the case k < `. �Theorem 446

Please cite this article in press as: A. Mostéfaoui, et al., Narrowing power vs efficiency in synchronous set agreement: Relationship, algorithms and lower
bound, Theoretical Computer Science (2009), doi:10.1016/j.tcs.2009.09.002

UN
CO

RR
EC

TE
D
PR

OO
F

TCS: 7622

ARTICLE IN PRESS
A. Mostéfaoui et al. / Theoretical Computer Science xx (xxxx) xxx–xxx 9

Fig. 3. Early deciding [n, k]_SA object from [m, `]_SA objects in a synchronous system (code for pi).

5. Early decision 1

This section extends the algorithm described in Fig. 1 in order to obtain an
∧
early deciding algorithm. As announced in 2

the Introduction, the resulting algorithm allows the processes to decide by round Rf = min
(
b
f
∆
c + 2, b t

∆
c + 1

)
, where 3

∆ = mb k
`
c + (kmod `). 4

In the algorithm described in Fig. 1, decision and halting of a process pi are a single atomic action, namely, a process 5

atomically decides and halts when it executes the statement return(esti) on line 12. Differently, in the algorithm developed 6

in this section, ‘‘pi decides’’ and ‘‘pi stops’’ are two distinct events. A process first decides by executing the statement 7

decide(esti), and then stops when it executes the statement halt(). 8

5.1. The early deciding algorithm 9

This algorithm is described in Fig. 3. It is obtained by enriching the base algorithm in a relatively simple way: a few 10

new statements are added to obtain early decision. These are the new lines prefixed with the letter A, B or C. None of the 11

other lines is modified, except line 12 (relabeled 12’) that has now to take into account the fact that decision and halting are 12

distinct base operations. 13

Base principle. The design principles of the enriched algorithm are as follows. A process pi that is a sender during a round r ′ 14

and participates in the next round r ′+1 (so, it has not crashed by the end of r ′), sends to all the processes a control message 15

(denoted commit) during the round r ′+1 (additional lines B1–B4). In that way, pi informs all the processes that the estimate 16

value it sent during the previous round r ′ was received by all the processes (this follows from the communication synchrony 17

property). Consequently, pi decides it and halts (line B4). 18

Moreover, as at most k different values are sent during a round (Lemma 2), and at least one process (namely, pi) sent a 19

value to all during r ′, it follows from the fact that pi participates to the round r ′ + 1 that the estimates of all the processes 20

contain at most k different values at the end of r ′. Consequently, a process that receives a commitmessage during a round 21

r ′ + 1 can decide the value of its estimate at the end of the round r ′ (additional line C1). 22

Always ensuring early decision and halting. Considering the base algorithm enriched with the lines prefixed by B and C it is 23

easy to see that, if at least one process in p1, . . . , p∆ does not crash, the processes decide in two rounds. If all the processes 24

p1, . . . , p∆ crash and at least one process in p∆+1, . . . , p2∆ does not crash, the decision is obtained in at most 3 rounds etc. 25

Unfortunately, the previous addition of statements is not sufficient to ensure early decision in all failure scenarios. As an 26

example, let us consider the following scenario in which all the processes p1, . . . , p∆ have initially crashed, except one of 27

them, say pi. That process pi executes the first round (sending its estimates to all the processes at line 08, and consequently 28

esti is the only estimate value present in the system at the end of the first round), and proceeds to the second round during 29

which it sends commit to all the processes in p∆+1, . . . , p2∆ and then crashes before sending commit to the other processes 30

(line B2). Moreover, no other process crashes. It follows that the processes p∆+1, . . . , p2∆ early decide during the second 31

round (line C1), while the other processes do not. In order to ensure that they decide as soon as possible, a simple solution 32

Please cite this article in press as: A. Mostéfaoui, et al., Narrowing power vs efficiency in synchronous set agreement: Relationship, algorithms and lower
bound, Theoretical Computer Science (2009), doi:10.1016/j.tcs.2009.09.002

UN
CO

RR
EC

TE
D
PR

OO
F

TCS: 7622

ARTICLE IN PRESS
10 A. Mostéfaoui et al. / Theoretical Computer Science xx (xxxx) xxx–xxx

consists in adding the lines prefixed by A: a process that has received a commitmessage during a round r (it has then decided1

during that round at line C1), forwards this commitmessage during the next round r + 1 and then halts (lines A1–A4).2

The final algorithm described in Fig. 3 is such that:3

• Decision and halting during the same round: If a process pi decides and halts during the same round r , this occurs at line4

B3. In that case, it follows from line C1 that pi has sent its estimate to all during the round r − 1.5

• Decision halting at different rounds: If a process pi decides during a round r and halts during a round r ′, we have the6

following: it decides at line D1 during r and halts at line A3 during r ′ = r + 1.7

5.2. Proof and early decision8

Notation.9

• Let SENDERS[r] be the set of the processes pi such that pi is a sender during the round r (i.e., (r − 1)∆+ 1 ≤ i ≤ r∆).10

• Let EST [0] be the set of proposed values, and EST [r] be the set of the values contained in the esti local variables of the11

processes that decide during r or proceed to r + 1.12

Lemma 4 (Agreement). At most k different values are decided by the processes.13

Proof. If no process decides at line B3 or C1, the proof is the same as in Lemma 3. So, let us consider the case where at least14

one process decides at line B3 or C1. Let us observe that if a process decides at line C1 during a round r , there is necessarily15

a process that sent a commit message at line B3 during a round r ′ ≤ r (maybe this message arrives after having been16

forwarded from round to round). This means that there is a round r ′′ < r ′ during which a process px has sent its estimate17

value to all (line 08), and at least one commit message sent by px (line C2) during r ′′ + 1 ≤ r ′ ≤ r has been received. We18

conclude from the synchronous model that the estimate value sent by px during r ′′ has been received by all the processes.19

This constitutes observation O1.20

Lemma 2 states that t any round at most k different estimates values are sent by the processes. It is easy to see that this21

remains true when considering the algorithm of Fig. 3. This constitutes observation O2.22

It follows from O1 and O2 that there are at most k different values present in the system at the end of r , i.e., |EST [r]| ≤ k.23

As EST [r+1] ⊆ EST [r], it follows from the claim that there are at most k values in the variables estx when a process decides.24

As a value that is decided is a value that is in an esti variable of a process pi that participates in a round r ′ ≥ r , it follows that25

no more than k different values are decided. �Lemma 426

Lemma 5 (Early Decision). No process decides after the round Rf = min
(
b
f
∆
c+2, Rt

)
, where f denotes the number of processes27

that crash during the run.28

Proof. As for the base algorithm, the proof that no process executes more than Rt rounds follows from the code of the29

algorithm. Consequently, the proof consists in showing that no process decides after the round b f
∆
c + 2. Let rf be the first30

round that has a correct sender, i.e., k ∈ SENDERS[rf]. As ∆ is the number of processes that can send values in a round, it31

follows that rf ≤ b
f
∆
c + 1. We consider two cases.32

• pk receives a commitmessage at a round r ≤ rf −1. In that case, pk decides during r (at line C1) and forwards the commit33

message at the beginning of the round r+1 ≤ rf ≤ b
f
∆
c+1. It follows that all the processes receive this commitmessage34

during the round r + 1. Consequently, all the non-crashed processes that have not yet decided, decide at line C1 during35

the round r + 1 ≤ rf ≤ b
f
∆
c + 1.36

• pk does not receive a commitmessage at a round r ≤ rf − 1. As pk is correct and k ∈ SENDERS[rf], it sends its estimate37

value esti to all the processes during the round rf (line 08) and decides at line B3 during the round rf + 1. Moreover,38

during the round rf + 1, it sends a commitmessage to all the processes (line B2) and halts (line B3). As pk is correct, all39

the non-crashed processes receive this message during the round rf + 1, and decide (if not yet done) during that round40

(line C1). The fact that rf + 1 ≤ b
f
∆
c + 2 completes the proof of that case. �Lemma 541

Theorem 5. The algorithmdescribed in Fig.3 is a synchronous t-resilient k-set agreement algorithm.Moreover, no process decides42

after the round Rf = min
(
b
f
∆
c + 2, Rt

)
, and a process halts at most one round after it has decided.43

Proof. The proof of the validity property is as in Theorem 1. The agreement property has been proved in Lemma 4. The early44

deciding property has been proved in Lemma 5. Finally, it follows from lines B2–B3 on one side, and C1 plus A1–A4 on the45

other side, that a process halts at most one round after it has decided. If a process decides at line 12’, it decides and halts46

during the same round (namely, the round Rt). �Theorem 547

5.3. Remark48

It is important to remark that, in the algorithmdescribed in Fig. 3, amessage carries only an estimate value or the constant49

value commit. Said differently, no message carries information such as the number or the identities of crashed processes as50

currently known by the message sender. Using such an additional information could allow designing an algorithm in which51

a process both decides and halts by round Rf = min
(
b
f
∆
c + 2, b t

∆
c + 1

)
.52

Please cite this article in press as: A. Mostéfaoui, et al., Narrowing power vs efficiency in synchronous set agreement: Relationship, algorithms and lower
bound, Theoretical Computer Science (2009), doi:10.1016/j.tcs.2009.09.002

UN
CO

RR
EC

TE
D
PR

OO
F

TCS: 7622

ARTICLE IN PRESS
A. Mostéfaoui et al. / Theoretical Computer Science xx (xxxx) xxx–xxx 11

6. Conclusion 1

The paper has investigated a new approach to circumvent the b tkc+ 1 lower bound associated with the k-set agreement 2

problem in synchronous systems that can suffer up to t crash failures. 3

Assuming that the system is composed of clusters ofm processes such that the `-set agreement can be efficiently solved 4

within each cluster (i.e., with a negligible cost with respect to the inter-cluster communication), the paper has shown that it 5

is possible to solve the synchronous k-set agreement problem in Rt =
⌊

t
m
⌊
k
`

⌋
+(kmod `)

⌋
+1 rounds (a round being counted 6

as an inter-cluster communication). When considering early decision, it has been shown that a very simple addition of 7

two statements to the base algorithm produces an early deciding algorithm in which no process decides and halts after 8

Rf = min
(
b
f
∆
c + 2, b t

∆
c + 1

)
rounds (where ∆ = mb k

`
c + (kmod `)), f being the actual number of crashes in a run 9

(0 ≤ f ≤ t). 10

The paper has also shown that the bound Rt =
⌊

t
m
⌊
k
`

⌋
+(kmod `)

⌋
+ 1 is a lower bound. This shows an inherent tradeoff 11

relating the ‘‘narrowing’’ power of the base objects that are used and the cost of any k-set synchronous agreement algorithm. 12

In that sense, the paper generalizes the previous Rt = b tkc + 1 lower bound that ‘‘implicitly’’ considers base object without 13

narrowingpower. In a very interestingway, this optimality proof relies on two important theoremsof distributed computing. 14

One (due to Gafni) is on the number of rounds of a synchronous algorithm that can be simulated in an asynchronous system 15

prone to failures. The second (due to Herlihy and Rajsbaum) states an impossibility on asynchronously solving the k-set 16

agreement problem from some base objects. In that sense, the paper shows another link connecting possibility/impossibility 17

results in asynchronous systems and efficiency in synchronous systems. 18

This paper leaves open some problems (suggested by a referee). One concerns the lower bound for the
∧
early deciding 19

case. We think that Rf is the corresponding lower bound but have no proof of it. Moreover, it is not clear if the technique 20

used in the paper can be extended to proof it or if another technique has to be used. An answer to this question could be 21

based on extending the topological approach that has been introduced in [15] to prove the classical min
(
b
f
kc + 2, b

t
kc + 1

)
22

lower bound. 23

Another open problem concerns the resilience of the underlying base [m, `]-SA objects. The paper has implicitly assumed 24

that these objects are (m− 1)-resilient (also called wait-free): an object invocation by a correct process always terminates 25

(i.e., despite the crash of any subset of them− 1 other processes that access this object). A generalization would consist in 26

considering more general [m, `]-SA objects, namely t ′-resilient [m, `]-SA objects with 1 ≤ t ′ ≤ m− 1. 27

Acknowledgments 28

The authors want to thank YoramMoses for constructive comments on a draft of this paper that helped improve both its 29

presentation and its content. They also want to thank the referees for their constructive comments that helped improve the 30

presentation and the content of the paper. 31

Appendix 32

Q1

n Total number of processes
t Upper bound on the number of faulty processes
f Actual number of faulty processes
m Number of processes accessing the same [m, `]-SA object
` Narrowing power of

∧
an [m, `]-SA object

k Maximal number of values that can be decided

α =
⌊ k
`

⌋
β = kmod `
k = α`+ β
∆ = α m+ β = m

⌊ k
`

⌋
+ (kmod `)

Rt =
⌊ t
∆

⌋
+ 1 =

⌊
t

m
⌊
k
`

⌋
+(kmod `)

⌋
+ 1

Rf = min
(⌊ f

∆

⌋
+ 2,

⌊ t
∆

⌋
+ 1

)
33

References 34

[1] M.K. Aguilera, S. Toueg, A simple bivalency proof that t-resilient consensus requires t + 1 rounds, Information Processing Letters 71 (1999) 155–178. 35

[2] M.K. Aguilera, G. Le Lann, S. Toueg, On the impact of fast failure detectors on real-time fault-tolerant systems, in: Proc. 16th Symposium onDistributed 36

Computing, DISC’02, in: LNCS, vol. 2508, Springer-Verlag, 2002, pp. 354–369. 37

[3] H. Attiya, J.Welch, Distributed Computing, Fundamentals, Simulation andAdvanced Topics, second edition, in:Wiley Series on Parallel andDistributed 38

Computing, 2004, p. 414. 39

[4] B. Awerbuch, Complexity of network synchronization, Journal of the ACM 32 (4) (1985) 804–823. 40

[5] R. Bazzi, G. Neiger, Simplifying fault-tolerance: Providing the abstraction of crash failures, Journal of the ACM 48 (3) (2001) 499–554. 41

[6] E. Borowsky, E. Gafni, Generalized FLP impossibility results for t-resilient asynchronous computations, in: Proc. 25th ACM Symposium on Theory of 42

Distributed Computing, STOC’93, ACM Press, 1993, pp. 91–100. 43

[7] B. Charron-Bost, A. Schiper, Uniform consensus is harder than consensus, Journal of Algorithms 51 (1) (2004) 15–37. 44

[8] S. Chaudhuri, More choices allow more faults: Set consensus problems in totally asynchronous systems, Information and Computation 105 (1993) 45

132–158. 46

[9] S. Chaudhuri, M. Herlihy, N. Lynch, M. Tuttle, Tight bounds for k-set agreement, Journal of the ACM 47 (5) (2000) 912–943. 47

Please cite this article in press as: A. Mostéfaoui, et al., Narrowing power vs efficiency in synchronous set agreement: Relationship, algorithms and lower
bound, Theoretical Computer Science (2009), doi:10.1016/j.tcs.2009.09.002

UN
CO

RR
EC

TE
D
PR

OO
F

TCS: 7622

ARTICLE IN PRESS
12 A. Mostéfaoui et al. / Theoretical Computer Science xx (xxxx) xxx–xxx

[10] D. Dolev, R. Reischuk, R. Strong, Early stopping in byzantine agreement, Journal of the ACM 37 (4) (1990) 720–741.1

[11] M.J. Fischer, N.A. Lynch, A lower bound on the time to assure interactive consistency, Information Processing Letters 14 (4) (1982) 183–186.2

[12] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of distributed consensus with one faulty process, Journal of the ACM 32 (2) (1985) 374–382.3

[13] E. Gafni, Round-by-round fault detectors: Unifying synchrony and asynchrony, in: Proc. 17th ACMSymposiumon Principles of Distributed Computing,4

PODC’98, ACM Press, 1998, pp. 143–152.5

[14] E. Gafni, R. Guerraoui, B. Pochon, From a static impossibility to an adaptive lower bound: The complexity of early deciding set agreement, in: Proc.6

37th ACM Symposium on Theory of Computing, STOC 2005, ACM Press, 2005, pp. 714–722.7

[15] R. Guerraoui, M. Herlihy, B. Pochon, A topological trzatment of early-deciding set-agreement, Theoretical Computer Science, 2009 (in press).Q28

[16] M.P. Herlihy, Wait-free synchronization, ACM Transactions on Programming Languages and Systems 13 (1) (1991) 124–149.9

[17] M.P. Herlihy, L.D. Penso, Tight bounds for k-set agreementwith limited scope accuracy failure detectors, Distributed Computing 18 (2) (2005) 157–166.10

[18] M.P. Herlihy, S. Rajsbaum, Algebraic spans, Mathematical Structures in Computer Science 10 (4) (2000) 549–573.11

[19] M.P. Herlihy, N. Shavit, The topological structure of asynchronous computability, Journal of the ACM 46 (6) (1999) 858–923.12

[20] I. Keidar, S. Rajsbaum, A simple proof of the uniform consensus synchronous lower bound, Information Processing Letters 85 (2003) 47–52.13

[21] L. Lamport, M. Fischer, Byzantine generals and transaction commit protocols, Unpublished manuscript, 16 pages, April 1982.14

[22] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Pub., San Francisco, CA, 1996, p. 872.15

[23] A. Mostéfaoui, S. Rajsbaum, M. Raynal, Conditions on input vectors for consensus solvability in asynchronous distributed systems, Journal of the ACM16

50 (6) (2003) 922–954.17

[24] A. Mostéfaoui, S. Rajsbaum,M. Raynal, C. Travers, The combined power of conditions and failure detectors to solve asynchronous set agreement, SIAM18

Journal of Computing 38 (4) (2008) 1574–1601.19

[25] A. Mostéfaoui, S. Rajsbaum, M. Raynal, Synchronous condition-based consensus, Distributed Computing 18 (5) (2006) 325–343.20

[26] A. Mostéfaoui, M. Raynal, k-set agreement with limited accuracy failure detectors, in: Proc. 19th ACM Symposium on Principles of Distributed21

Computing, PODC’00, ACM Press, 2000, pp. 143–152.22

[27] A. Mostéfaoui, M. Raynal, Randomized set agreement, in: Proc. 13th ACM Symposium on Parallel Algorithms and Architectures, SPAA’01, ACM Press,23

2001, pp. 291–297.24

[28] M. Raynal, Consensus in synchronous systems: A concise guided tour, in: Proc. 9th IEEE Pacific Rim Int’l Symposium on Dependable Computing,25

PRDC’02, IEEE Computer Press, 2002, pp. 221–228.26

[29] M. Raynal, C. Travers, Synchronous set agreement: A concise guided tour (with open problems), in: Proc. 12th Int’l IEEE Pacific Rim Dependable27

Computing Symposium, PRDC’2006, IEEE Computer Press, 2006, pp. 267–274.28

[30] M. Saks, F. Zaharoglou, Wait-free k-set agreement is impossible: The topology of public knowledge, SIAM Journal on Computing 29 (5) (2000)29

1449–1483.30

[31] N. Santoro, Design and Analysis of Distributed Algorithms, in: Wiley Series on Parallel and Distributed Computing, 2007, p. 589.31

[32] X. Wang, Y.M. Teo, J. Cao, A bivalency proof of the lower bound for uniform consensus, Information Processing Letters 96 (2005) 167–174.32

Please cite this article in press as: A. Mostéfaoui, et al., Narrowing power vs efficiency in synchronous set agreement: Relationship, algorithms and lower
bound, Theoretical Computer Science (2009), doi:10.1016/j.tcs.2009.09.002

	Narrowing power vs efficiency in synchronous set agreement: Relationship, algorithms and lower bound
	Introduction
	Computation model and the set agreement problem
	A synchronous [n,k]_SA algorithm
	The algorithm
	Proof of the algorithm

	Lower bound on the number of rounds
	Notation and previous results
	The lower bound

	Early decision
	The early deciding algorithm
	Proof and early decision
	Remark

	Conclusion
	Acknowledgments
	Appendix
	References

	ikona:
	1:
	2:
	3:
	4:
	8:
	9:
	11:

	animtiph:
	1:
	2:
	3:
	4:
	5:
	6:
	7:
	8:
	9:
	10:
	11:
	12:
	13:
	14:

	TooltipField:

