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a b s t r a c t

The adaptive M-renaming problem consists of providing processes with a new name
taken from a name space whose size M depends only on the number p of processes that
participate in the renaming (and not on the total number n of processes that could ask
for a new name). The k-set agreement problem allows each process that proposes a value
to decide a proposed value in such a way that at most k different values are decided. In
an asynchronous system prone to up to t process crash failures, and where processes can
cooperate by accessing atomic read/write registers only, the best that can be done is a
renaming space of sizeM = p+ t . In the same setting, the k-set agreement problem cannot
be solved when t ≥ k.
This paper focuses on the way a solution to the adaptive renaming problem can help

in solving the k-set agreement problem when t ≥ k. It has two contributions. Considering
the case k = t (1 ≤ t < n), the first contribution is a t-resilient algorithm that solves the
k-set agreement problem from any adaptive (p+ k− 1)-renaming algorithm. The second
contribution considers the case k < t . It shows that there is no such wait-free algorithm
when k < n/2 (wait-freemeans t = n−1). So, while a solution to the adaptive (p+k−1)-
renaming problem allows t-resiliently solving the k-set agreement problem despite t = k
failures, when k < t such an additional power becomes useless for the values of n > 2k
(i.e. adaptive (p + k − 1)-renaming allows progressing from k > t to k = t , but does not
allow bypassing the ‘‘k = t ’’ frontier when n > 2k).

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Renaming and set agreement. Renaming and set agreement are among the basic problems that lie at the core of
computability in asynchronous systems prone to process crashes. The renaming problem (introduced in [3]) consists of
designing an algorithm that allows processes (that do not crash) to obtain new names from a new name space that is as
small as possible, and such that no two processes acquire the same new name. In the following M denotes the size of the
new name space, and a corresponding algorithm is called anM-renaming algorithm.
The renaming problem has initially been introduced from a theoretical point of view [3]. The aim was to state a non-

trivial coordination problem that, unlike the consensus problem, can be solved despite process crashes. It appeared then
that the renaming problem is an instance of a more general resource allocation problem (a new name is a ‘‘slot/token/etc.’’
that can be attributed to a single process) [7].
A wait-free algorithm is an algorithm that allows each process that does not crash to terminate in a finite number of

computation steps, whatever the behavior of the other processes (i.e., despite the fact that all the other processes are
extremely slow, or even have crashed) [17]. It has been shown that, in a systemof n processes that can communicate through
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atomic read/write registers only, the smallest new name space that a wait-free renaming algorithm can produce is bounded
from below byM = 2n−1 [20]. More generally, in an asynchronous systemwhere up to t processesmay crash, the smallest
value ofM is n+ t (the wait-free case corresponds to t = n− 1).
The k-set agreement problem has been introduced in [11]. It is a paradigm of coordination problems encountered in

distributed computing and is defined as follows. Each process is assumed to propose a value. The problem consists in
designing an algorithm such that (1) each process that does not crash decides a value (termination), (2) a decided value
is a proposed value (validity), and (3) no more than k different values are decided (agreement). (The well-known consensus
problem is the same as the 1-set agreement problem.) The parameter k can be seen as the coordination degree (or the
difficulty) associated with the corresponding instance of the problem. The smaller k, the more coordination among the
processes: k = 1 means the strongest possible coordination, while k = nmeans no coordination.
It has been shown in [9,20,29] that, in an asynchronous systemmade up of processes that communicate through atomic

registers only, and where up to t processes may crash, there is no wait-free k-set agreement algorithm for k ≤ t . However,
when k > t the problem can be trivially solved (a predefined set of k processes write their proposal, and a process decides
the first proposal it reads).
Randomized or failure detector-based algorithmshave beenproposed to circumvent the previous impossibility result [18,

23,24]. An algorithm that wait-free solves the (n − 1)-set agreement problem in a system of n crash-prone asynchronous
processes from (2n− 2)-renaming objects is described in [13].
Asynchronous computability. An important issue in fault-tolerant asynchronous computing is the determination of the
respective power of an object type with respect to another object type (an object type corresponds to a problem). This
question has received a lot of attention, mainly in the context of the consensus problem where a major advance has been
the introduction of the consensus number notion1 that allows ranking the synchronization power of base object types (atomic
registers, queues, test&set objects, compare&swap objects, etc.) with respect to the consensus problem [17]. This has given
rise to the well-known Herlihy’s hierarchy [17].
Due to its very definition, the consensus number notion is irrelevant for studying the respective power of object

types (problems) that are too weak to solve the consensus problem. These problems are usually called subconsensus
types/problems. Renaming and k-set agreement (for k 6= 1) are subconsensus problems. So, an important issue of
asynchronous computability consists in establishing connections (or absence of connection) between subconsensus
problems. Several results in that direction have recently been established (e.g., [2,14–16,25,27]). In a very interesting way,
it is shown in [15] (using arguments from combinatorial topology) that the renaming problem is strictly less powerful than
the set agreement problem in the round-by-round model of asynchronous computation (as defined in [12]).
Adaptive renaming. A renaming algorithm is adaptive if the size of the new name space depends only on the number p
of processes that ask for a new name (and not on the total number n of processes). Several adaptive algorithms have been
designed such that the size of the new name space isM = 2p− 1 (e.g., [4,5,8]) (these adaptive algorithms are consequently
optimalwith respect to the size of the newname space [20]). Thismeans that if ‘‘today’’ p′ processes acquire newnames, their
new names belong to the interval [1..2p′ − 1]. If ‘‘tomorrow’’ p′′ additional processes acquire new names, these processes
will have their new names in the interval [1..2p− 1]where p = p′ + p′′.
Recently, with the aim of circumventing the M = 2p − 1 lower bound, researchers have investigated the use of base

objects stronger than atomic registers in order to solve the renaming problem. Following this line of research, it has been
shown in [25] that, as soon as k-test&set objects can be used, the adaptive renaming problem can be wait-free solved with
a new name space the size of which is sizeM = 2p− d pk e.

2 Among the processes that access it, a k-test&set object ensures
that at least one and at most k processes obtain the value 1 (they win), while all the other processes obtain the value 0 (they
lose) (the usual test&set object is a 1-test&set object). It has also been shown in [14] that the adaptive renaming problem
can be wait-free solved with a new name space of size M = p + k − 1 as soon as k-set agreement objects can be used.
According to the base objects they use, respectively, both algorithms are optimal [16] with respect to the size of their new
name space.
Content of thepaper.Whenwe consider asynchronous systemswhere the processes communicate through atomic registers
only, the k-set agreement problem can be (easily) solved when k > t , and is impossible to solve when k ≤ t . Moreover,
as shown in [15] (and indicated above) the non-adaptive version of the renaming problem is strictly less powerful than
the k-set agreement problem, and is consequently useless to solve that problem. So, an important question that remains
to be answered is the following one: ‘‘Can solutions to the adaptive renaming problem help solving the k-set agreement
problem?’’ To answer that question, the paper considers two cases: k = t , and k < t . (Let us recall that an algorithm is t-
resilient if it always preserves its safety and liveness properties when no more than t processes commit failures. The notion
of t-resilience boils down to the wait-free notion when t = n− 1.)

• Considering first the case k = t , the paper presents a t-resilient algorithm that solves the k-set agreement problem from
atomic registers and an adaptive (p+ k− 1)-renaming object. This has two consequences:

1 The consensus number of an object type (defined by a sequential specification) is the maximum number of processes for which objects of that type
plus atomic registers can wait-free solve the consensus problem.
2 The adaptive renaming algorithm presented in [25] is actually based on k-set agreement objects. But it can easily be observed that these objects can
be replaced by k-test&set objects without affecting the behavior of the renaming algorithm.



1330 E. Gafni et al. / Theoretical Computer Science 410 (2009) 1328–1335

– Enriching an asynchronous read/write system with an adaptive (p + k − 1)-renaming algorithm allows progressing
from k > t to k = t .

– Differently from the non-adaptive renaming problem, the adaptive (p + k − 1)-renaming problem and the k-set
agreement problem are wait-free equivalent (a wait-free algorithm going from the k-set agreement problem to the
adaptive (p+ k− 1)-renaming is presented in [14]).

• The paper then considers the case k < t . It establishes a lower bound for that case, namely, there is no algorithm (based
on atomic registers and adaptive (p+k−1)-renaming objects) that can wait-free solve the k-set agreement object when
k < n/2.

So, while a solution to the adaptive (p + k − 1)-renaming problem allows solving the k-set agreement problem despite
t = k failures, if k < t such an additional power is useless when k < n/2: an adaptive (p+ k− 1)-renaming object allows
progressing from k > t to k = t , but does not allow bypassing the ‘‘k = t ’’ frontier when n > 2k. (Proving – or disproving
– that, when k < t , the result still holds when n/2 ≤ k < n− 1 remains an open problem. We conjecture the impossibility
result is still true.)
After presenting the computation model (Section 2), the paper is composed of two sections. Section 3 considers the case

k = t and presents the t-resilient algorithm. Section 4 considers the case k < t and presents the lower bound result. Finally,
Section 5 concludes the paper.

2. Basic computation model

Process model.We consider systems made up of n asynchronous processes p1, . . . , pn, where the integer i is the index of
pi. Π denotes the set of indexes, i.e. Π = {1, . . . , n}. Asynchronousmeans that there is no bound on the time it takes for a
process to execute a computation step. A process may crash (halt prematurely). After it has crashed a process executes no
step. A process executes correctly its algorithm until it possibly crashes. The integer t , 0 ≤ t < n, denotes an upper bound
on the number of processes that may crash; t is known by the processes. A process that does not crash in a run is correct in
that run; otherwise, it is faulty in that run.
Communication model. The processes cooperate by accessing atomic read/write registers. Atomicmeans that each read or
write operation appears as if it has been executed instantaneously at some time between its begin and end events [21,22].
Each atomic register is a one-writer/multi-readers (1WnR) register. This means that a single process (statically determined)
can write it. Atomic registers are denoted with uppercase letters. The atomic registers are structured into arrays. X[1..n]
being such an array, X[i] denotes the register of that array that pi only is allowed to write. A process can have local registers.
Such registers are denoted with lowercase letters with the process index appearing as a subscript (e.g., winneri is a local
register of pi).
The processes are provided with an atomic snapshot operation [1] denoted snapshot(X), where X[1..n] is an array of

atomic registers. It allows a process pi to atomically read the whole array. This means that the execution of a snapshot()
operation appears as if it has been executed instantaneously at some point in time between its begin and end events. Such
an operation can be built from 1WnR atomic registers [1]. To our knowledge the best snapshot() implementation requires
O(n log(n)) read/write operations on base atomic registers [6].
Notions of t-resilience and wait-freedom. As indicated in the introduction, an algorithm is t-resilient if it copes with up
to t process failures. In our context, this means that it satisfies its safety and liveness (termination) properties despite up to
t process crashes. A wait-free algorithm is an (n− 1)-resilient algorithm.
Adaptive renaming. In the renaming problem, each process pi has an initial name denoted idi. Differently from the process
indexes, idi is initially known only by pi. These names are from a very large name space, i.e., max(id1, . . . , idn) >> n. A
renaming algorithm is adaptivewith respect to the size of its newname space, if that size depends on the number of processes
that actually participate in the renaming algorithm. A process participates in an algorithm as soon as it haswritten an atomic
register used by that algorithm. Let us remark that an adaptive renaming algorithm cannot systematically assign the new
name i to pi. This is because, if only pn wants to acquire a new name, the new name space is [1..n], which depends on the
number of processes instead of depending on the number of participating processes (here a single process). More generally,
the following symmetry requirement is usually considered for the adaptive renaming problem [7]: the code executed by pi
with name id is the same as the code executed by process pj with name id. This means that the process indexes can be used
only for addressing purposes.
As indicated in the introduction, if p processes participate in an adaptive renaming algorithm based on atomic registers

only, the best that can be done is a name space of sizeM = 2p− 1. More generally, let rename(idi) be the operation issued
by a process pi to acquire a new name. The adaptive renaming problem is defined by the following properties:

• Termination. If a correct process invokes rename(), it obtains a new name.
• Uniqueness. No two processes obtain the same new name.
• Validity. A new name belongs to [0..f (p)], where f is an increasing integer function and p (1 ≤ p ≤ n) is the number of
processes that have invoked rename().

This means that if, at time τ ′, p′ processes have invoked rename() and obtained new names, these names belong to the set
[0..f (p′)]. Moreover (as noted in the introduction), if at a later time τ ′′ > τ ′ (when each of the p′ previous processes has
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Fig. 1. From (p+ k− 1)-renaming to k-set agreement, for k = t , ∀t (code for pi).

crashed or obtained a new name), p′′ additional processes invoke rename(), their new names belong to the set [0..f (p)]
where p = p′ + p′′. More generally, adaptiveM-renaming is whenM = f (p).

3. From an adaptive (p+ k − 1)-renaming to k-set agreement

Considering an asynchronous systemmade up of n processes, where up to t (1 ≤ t < n) of themmay crash, cooperating
through 1WnR one-write atomic registers, plus an adaptive (p+ k− 1)-renaming object, this section presents and proves
correct an algorithm that builds a k-set agreement object, when k = t and at least n− t correct processes participate in the
k-set agreement algorithm.
Default value. The value⊥ denotes a default value that can appear only in the algorithms described in the paper.

3.1. Principles and description of the t-resilient algorithm

The principle of the transformation algorithm rests on two simple ideas.

1. First, use the underlying adaptive renaming object to partition the participating processes into two groups: the processes
the name ofwhich is smaller or equal to t (thewinners); and the processes the nameofwhich is greater than t (the losers).
So, there are at most t winners.

2. Then, direct a process pi to decide a value proposed by a winner. If pi does not see winner processes, direct it to decide
the value proposed by a process that has proposed a value but not yet obtained a new name.

To make these ideas operational, the shared memory is composed of two arrays of 1WnR one-write atomic registers.

• The array PROP[1..n], initialized to [⊥, . . . ,⊥], is such that PROP[i]will contain the value (denoted vi) proposed by pi to
the set agreement problem. A process pi becomes participating as soon as PROP[i] 6= ⊥.
• The aim of the array RENAMED[1..n], also initialized to [⊥, . . . ,⊥], is to allow the processes to benefit from the renaming
object. When a process pi has obtained a new name, RENAMED[i] is set to 1 if its new name is smaller or equal to t (pi is
then a winner), while RENAMED[i] is set to 0 if pi is a loser. It trivially follows that RENAMED[i] 6= ⊥ means that pi has
acquired a new name.

The behavior of a process pi is described in Fig. 1. A process pi invokes kset_proposet(vi)where vi is the value it proposes to
the k-set agreement problem. It decides a value when it executes the return(v) statement (line 10) where v is the value it
decides. The way it implements the previous design ideas can be decomposed in two stages.

1. The first stage is composed of the lines 01–04. After it has deposited its proposal (line 01), obtained a new name (line
02), and updated RENAMED[i] accordingly (line 03), a process pi atomically reads the whole array RENAMED (using the
snapshot() operation) until it sees that at least n− t processes have acquired new names (line 04).

2. The second stage, composed of the lines 05–10, is the decision stage. If pi sees a winner, it decides the value proposed by
that winner process (lines 05, 06 and 10). If pi sees no winner, it decides the value proposed by a process that (from its
point of view) has not yet obtained a new name.

3.2. Proof of the algorithm

The proof considers that (1) k = t , i.e. the size of the newname space of the underlying adaptive renaming isM = p+t−1
when p processes participate, and (2) at least (n− t) correct processes participate in the k-set agreement problem.
Notation and observation. Let renamedi be the last value of renamedi when pi exits the repeat loop at line 04. As a process
px writes RENAMED[x] at most once, we have renamedi[x] 6= ⊥ ∧ renamedj[x] 6= ⊥⇒ renamedi[x] =renamedj[x]. Let us
define renamedi ≤ renamedj as ∀x : renamedi[x] 6= ⊥ ⇒ renamedi[x] =renamedj[x]. Due to the atomicity property of
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Fig. 2. Timing scenario.

the snapshot() operation (line 04), we have ∀i, j: renamedi ≤ renamedj ∨ renamedj ≤ renamedi (this is sometimes called
the containment property provided by the snapshot() operation).

Lemma 1. Let pi be a process that decides. Ifwinnersi = ∅ at line 06, then seti 6= ∅ (when pi executes line 08).

Proof. Let pi be a process that decides and has previously executed line 07. That process is such that∀x ∈ Π : renamedi[x] =
⊥ or 0. Let Ri = {x : renamedi[x] = 0}, and α = |Ri|. Moreover, let r = |{x : PROP[x] 6= ⊥}| where the value of PROP[x]
is the value read by pi at line 07. (See Fig. 2, where the time instants are such that τ0 < τ3 < τ4.) We show that α < r ,
from which the claim follows (namely, there is a process py such that PROP[y] 6= ⊥ ∧ renamedi[y] = ⊥when pi executes
line 07).

1. Let us first consider the processes px of the set Ri, i.e., such that renamedi[x] = 0. These processes have obtained new
names in a name space [1..M] before time τ0.We can conclude from the text of the algorithm that the newname obtained
by each of these processes px (a loser) is such that new_namex > t (lines 02 and 03). As there are α such processes we
have t + α ≤ M .

2. Let ρ be the number of processes that started participating in the renaming before τ0. We have seen (item 1) that M is
the greatest name obtained by a process of Ri and that name has been obtained before τ0. As the renaming algorithm is
adaptive, we haveM ≤ ρ + t − 1.

3. As the ρ processes started participating in the renaming before before τ0, they updated their entry in PROP to a non-⊥
value before τ0, and consequently we have ρ ≤ r .

4. It follows from the previous items that t + α ≤ M ≤ ρ + t − 1 ≤ r + t − 1, from which we conclude α < r , that
terminates the proof of the lemma. �Lemma 1

Lemma 2. Each correct process decides a value.

Proof. As there are at least n − t correct processes that participate in the set agreement problem, no process can block
forever at line 04. There two cases.

• If pi is such that winnersi 6= ∅ (line 06), it trivially decides at line 10.
• If pi is such that winnersi = ∅ (line 06), it executes line 08. Due to Lemma 1, the set seti is not empty. Consequently, the
entry `i from which pi decides is well-defined (it does exist).

It follows that each correct process decides. �Lemma 2
Lemma 3. The number of values that are decided is at most t, and a decided value is a proposed value.

Proof. If no process ever executes line 05, the agreement and validity property are trivially satisfied. So, let us assume that
at least one process executes line 05. Moreover, let renamed be the smallest array value obtained by a process when it exits
the repeat loop at line 04. We consider two cases.

• ∃x: renamed[x] = 1.
In that case there is at least one winner, namely, px. Due to the containment property, renamedi[x] = 1 for any process
pi that decides. It follows from that observation and the lines 05–06 that any process that decides, does decide the value
proposed by a winner process. As at most t processes can obtain a new name comprised between 1 and t (lines 02–03),
it follows that there are at most t winners. Consequently, no more than t different values can be decided.
• ∀x: renamed[x] 6= 1.
In that case, let R = {x : renamed[x] = 0} (hence, all other entries of renamed are equal to⊥). Due to the exit condition
of the repeat loop (line 04), we have |R| ≥ n − t , from which it follows that |Π \ R| ≤ t . We claim (claim C) that
any process pi that decides, decides a value proposed by a process py such that y ∈ Π \ R. Combining this claim with
|Π \ R| ≤ t , we conclude that at most t different values can be decided.
Proof of the claim C . Let pi be a process that decides. It decides the value in PROP[y]where y has been determined at line
06 or line 08.
– pi selects y at line 06. In that case, pi decides the value proposed by a process py such that renamedi[y] = 1. As

renamed≤ renamedi (snapshot containment property), and renamed does not contain the value 1, we conclude that
y /∈ R, and the claim C follows.

– pi selects y at line 08. In that case, pi decides a value proposed by a process py such that renamedi[y] = ⊥. As
renamedi[y] = ⊥ and renamed ≤ renamedi, we conclude from the definition of R that y /∈ R, which proves the
claim C . �Lemma 3
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Theorem 1. The algorithm described in Fig. 1 is a t-resilient t-set agreement algorithm.

Proof. The proof follows directly from Lemmas 3 and 2. �Theorem 1

3.3. From k-test&set to k-set agreement

In the k-test&set problem, the processes invoke an operation k_test&set(), and obtain the value 1 (winner) or the value
0 (loser). The values returned to the processes satisfy the following property: there are at least one and at most kwinners.
In a very interesting way, the algorithm described in Fig. 1 allows solving the k-set agreement problem from any solution

to the k-test&set problem, when k = t , ∀t . The only modification consists in replacing the lines 02–03 by the following
statement: RENAMED[i] ← k_test&set().

4. An impossibility result

This section proves that, when k < n/2, the k-set agreement problem cannot be wait-free solved from atomic registers
and a solution to the adaptive (p+ k− 1)-renaming problem if k < t .

Theorem 2. The k-set agreement problem cannot be wait-free solved (i.e., for t = n − 1), in asynchronous systems made up of
atomic registers and a solution to the adaptive (p+ k− 1)-renaming problem, for n ≥ 2k+ 1.

Notation. The proof uses the following notations:

• fk: the function p→ 2p− d pk e.
• gk: the function p→ min(2p− 1, p+ k− 1).
• (n, k)-TS: the k-test&set problem with up to n participating processes. (At least one and most k processes are winners.)
• (n, k)-SA: the k-set agreement problem with up to n participating processes.
• (n, fk)-AR: the adaptiveM-renaming problem withM = fk(p) (where p ≤ n is the number of processes that participate
in the renaming).
• (n, gk)-AR: the adaptiveM-renaming problem withM = gk(p) (where p ≤ n is the number of processes that participate
in the renaming).
• Any solution to the (n, `)-XX problem (where XX is TS, SA, or AR, and ` is k, fk or gk) defines a corresponding (n, `)-XX
object. So say indifferently ‘‘(n, `)-XX problem’’ or ‘‘(n, `)-XX object’’.

Let us observe that ∀p, ∀k, we have f1(p) ≤ gk(p). This means that any solution to (n, f1)-AR is a solution to (n, gk)-AR
(Observation O1).

Proof. The proof consists in showing the following: ∀k, ∀n ≥ 2k + 1: there is no wait-free algorithm (i.e. an algorithm
working for t = n − 1) that solves (n, k)-SA from (n, gk)-AR. The proof is by contradiction. Let us assume that there is an
algorithmA that solves (n, k)-SA from (n, gk)-ARwith n ≥ 2k+1. The (2, 1)-SA problem is key in proving the contradiction.
We have the following.

1. On one hand.
• The (2, 1)-TS problem and the (2, 1)-SA problem are equivalent [13].
• There is a wait-free construction of (n, k)-TS objects from (2, 1)-TS objects [13].
• The (n, f1)-AR problem can be wait-free solved from (n, 1)-TS objects [25].
• For any k ≥ 1, the (n, gk)-AR problem can be wait-free solved from (n, f1)-AR objects (observation O1).
• Due to the assumption, the algorithmA solves the (n, k)-SA problem from (n, gk)-AR objects with n ≥ 2k+ 1, when
t = n− 1.
• It follows that, when t = n− 1 and n ≥ 2k+ 1, it is possible to solve the (n, k)-SA problem from (2, 1)-SA objects.

2. On the other hand.
• It is shown in [19] that k ≥ jb t+1m c +min

(
j, (t + 1)modm

)
is a necessary requirement for having a t-resilient k-set

agreement algorithm for n processes, when these processes share atomic registers and (m, j)-SA objects (objects that
allow solving j-set agreement amongm processes).
• Let us consider the case where the (m, j)-SA objects are (2, 1)-SA objects. Taking t = n − 1, we have k ≥
b
t+1
2 c +min

(
1, (t + 1)mod 2

)
, from which we obtain the necessary requirement k ≥ b n2c.

• It follows that, for t = n− 1, k ≥ b n2c (i.e., n ≤ 2k) is a necessary requirement for solving the (n, k)-SA problem from
(2, 1)-SA objects and atomic registers.

3. The previous items 1 and 2 contradict each other. It follows that the initial assumption (existence of the wait-free
algorithmA) cannot hold, which proves the theorem. �Theorem 2
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Fig. 3. Towards a wait-free hierarchy for subconsensus problems (t = n− 1).

5. Conclusion

5.1. The content of the paper

The k-set agreement problem cannot be solved in asynchronous shared memory systems made up of atomic registers
only, and where up to t processes may crash, as soon as k ≤ t . The paper has investigated the additional power provided by
an (p + k − 1)-renaming algorithm when one wants to solve the k-set agreement problem despite k ≤ t . It has presented
two contributions.
The first is a t-resilient algorithm, based on a solution to the adaptive(p+k−1)-renaming problem, that solves the k-set

agreement problem when k = t . The second is an impossibility result showing that, in an asynchronous shared memory
system made up of atomic registers and a solution to the (p+ k− 1)-renaming problem, there are values of n for which it
is not possible to wait-free solve the k-set agreement problem when k < t . Showing this impossibility for any value of n
remains an open problem.
For the interested reader, an algorithm building an adaptive (p + k − 1)-renaming object from a failure detector of the

classΩk
∗
is presented in [26]. (This algorithm is a simple extension of an algorithm described in [7] that builds an (p+k−1)-

renaming object from atomic registers only. The class of failure detectorsΩk
∗
, introduced in [28], extends the class of leader

failure detectors, denotedΩ , that has been introduced in [10].)

5.2. Towards a picture for the wait-free case

The paper has considered the t-resilient case for the design of a k-set agreement algorithm from an adaptive (p+ k−1)-
renaming object (Section 3), and the wait-free case (t = n − 1) for the lower bound result. This last section presents a
global picture for the wait-free case. It depicts a simple hierarchy for the four subconsensus problems that are the adaptive
M-renaming problem with M = fk(p), the adaptive M-renaming problem with M = gk(p), the k-set agreement problem
and the k-test&set problem (more development can be found in [16]).
In addition to the notations introduced in Section 4, we use here the following ones. (x, y)-XX � (x′, y′)-YY means that

there is a wait-free algorithm that solves the (x′, y′)-YY problem from (x, y)-XX objects and atomic registers. (x, y)-XX '
(x′, y′)-YYmeans that (x, y)-XX� (x′, y′)-YY and (x′, y′)-YY� (x, y)-XX. Let us notice that f1 = g1, for p ∈ [1..n]: fn−1 = gn−1
and gk < fk when k ∈ [2..n− 2] (3) (Observation O2).
Global picture. Although the adaptive renaming problem on the one side, and the k-set agreement and k-test&set problems
on the other side, seem to be of different nature, they can be ranked in a single hierarchy. More specifically, combining the
result of this paper with results of other papers [13,14,19,25] provides us with Fig. 3 that shows that these problems can
be ranked in three distinct levels (denoted 1, 2 and 3): (n, k)-SA is stronger than (n, gk)-AR (this is denoted with a bold
arrow), that in turn is stronger than(n, fk)-AR, (n, k)-TS, (k+ 1, k)-TS, and (k+ 1, k)-SA. Moreover, these four problems are
equivalent for any pair (n, k).
Interestingly, it is easy to see that, when n = k + 1, the levels 3, 2 and 1 of previous hierarchy collapse, and all the

problems become equivalent. It is also easy to see that, when k = 1 and n > k+1, the levels 2 and 1merge (due to f1 = g1),

3 hk < `k means that ∀p : 1 ≤ p ≤ n, hk(p) ≤ `k(p) and there is a value of p such that hk(p) < `k(p).
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while the (n, 1)-SA problem remains stronger (this follows from the fact that (n, 1)-SA is the consensus problem, while the
consensus number (definition in Footnote 1) of the (n, 1)-TS object is 2 [17]. Except for the slim arrows from level 1 to level
2 and from level 2 to level 3, the hierarchy is strict. More explicitly, we have the following.

• Equivalences. The equivalences stated in level 1 are established in [16,25].
• Bold arrows (going down).
– From level 4 to level 3: trivial transformation from (n+ 1, k)-SA to (n, k)-SA.
– From level 3 to level 2: transformation (n, k)-SA� (n, gk)-AR in [14].
– From level 2 to level 1: from the fact that ∀k : 1 ≤ k ≤ n− 1: gk ≤ fk.
– From level 1 to level 0: trivial transformation from (n, k)-TS to (n, k+ 1)-TS.

• Slim arrows (going up).
– From level 1 to level 2: follows from f1 = g1 (case k = 1) and fn−1 = gn−1 (case k = n− 1).
– From level 1/2 to level 3: when n = k+ 1, (n, k)-SA is (k+ 1, k)-SA (and both are then equivalent to (k+ 1, gk)-AR).

• Impossibility.
– From level 3 (resp., 0) to level 4 (resp., 1): proved in [19].
– From level 2 to level 3 for k < n/2: Theorem 2.
– From level 1 to level 2 for k 6= 1, n− 1: follows from ∀k : 1 < k < n− 1: gk < fk.

Remark. Let us notice that the hierarchy described in Fig. 3 is far from being complete. More research remains to be done
in the area of problem equivalence and problem transformation. As an example, the relation linking the (n, k)-SA problem
and the (n− 2, k− 1)-SA problem is such an intriguing open problem.
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