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Motivation

◮ Verification of vector addition systems against temporal logics.

◮ What can we add to VASS without losing the decidability properties?
◮ One stack? Motivation for looking at one zero-test.
◮ One zero-test? Two = Minsky machines /.

◮ Hard: Reachability (Reinhardt ’04–08/ Bonnet ’11).

◮ What about “easy” problems for VASS, if one adds a zero-test?
◮ Coverability ? Computation of the cover ?
◮ LTL model-checking ?
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Main Tools

1. Refinement of decidability of reachability set of a VASS.

2. Well-quasi orders over strings, Higman’s Lemma.

3. Valk & Jentzen’s Lemma.

4. New sets hybrid between the cover and the reachability set.

5. Karp & Miller’s trees.
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VAS(S): Vector Addition Systems (with States)

◮ Automaton with states in finite set Q, and with d counters in N.

◮ Counters can be incremented or decremented, but remain nonnegative.

(−1, 2) (3,−2)

(1, 2)

(−1,−1)

(u, 0, 0) → (u, 1, 2) → (u, 0, 1) → (u, 1, 3) → (u, 4, 1) → (u, 3, 0) → (u, 4, 2)
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[x(1) = 0?]
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VAS(S): Vector Addition Systems (with States)

◮ Automaton with states in finite set Q, and with d counters in N.

◮ Counters can be incremented or decremented, but remain nonnegative.

(−1, 2) (3,−2)

[x(1) = 0?]
(1, 2)

(−1,−1)

(u, 0, 0) → (u, 1, 2) → (u, 0, 1) → (u, 1, 3) → (u, 4, 1) → (u, 3, 0) → (u, 4, 2)
◮ In a VASS0, special zero-test transition az , fireable only if x(1) = 0.

◮ Terminology.u is a control state / (u, 1, 2) is a state.

◮ Notation. VASS0 V = 〈Q,A, az , δ, (q in, x in)〉. VAS V = 〈A, δ, x in〉
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Model-checking VASS

◮ Reachability Is (q, x) reachable from initial (qin, x in)?
◮ Finiteness Is the state space finite?
◮ Termination Are all runs finite?
◮ Place boundedness Does a given counter remain bounded?

◮ Coverability Given p, x , is there y > x with (qin, x in)
∗
−→ (p, y )?

◮ LTL model-checking Does an LTL formula over action sequences hold?

Except for reachability, these problems can be solved using Karp-Miller trees.
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Outline

1. Adapting the Karp & Miller’s algorithm.

2. Outline of the proof.

3. Proof details: limits of reachable states.

4. Application: LTL model-checking.
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Karp-Miller’s algorithm for VAS

◮ Computes the downward closure of the reachability set.

Reach(V) =
{

y ∈ N
d | x in

∗
−−→ y

}

,

Cover(V) =


yReach(V).
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◮ Start from initial state.

◮ Unfold the VAS.

◮ Accelerate leaves with smaller ancestor

◮ Stop branch if ancestor with same label

◮ Acceleration guarantees termination.
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{

y ∈ N
d | x in

∗
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Cover(V) =


yReach(V).

1, 0, 2
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◮ Start from initial state.

◮ Unfold the VAS.

◮ Accelerate leaves with smaller ancestor

◮ Stop branch if ancestor with same label

◮ Acceleration guarantees termination.
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The monotonicity property

◮ Karp-Miller’s algorithm and variants work for well-structured systems.

◮ The key property is monotonicity of VAS:

(u, x) 6 (u, z)
(u, y )∗
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The monotonicity property

◮ Karp-Miller’s algorithm and variants work for well-structured systems.

◮ The key property is monotonicity of VAS:

(u, x) 6 (u, z)
(u, y )∗

6 (u, t)∗
/ Monotonicity fails with one zero-test
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Ideas for adapting the Karp-Miller construction

◮ First build the Karp-Miller tree, without firing zero test.

◮ To proceed, need to fire the zero-test from the leaves of KM tree.

◮ Problem: accelerations may have produced on the first component an ω
◮ represents arbitrarily large values and abstracts actual values.
◮ Hides if possible actual values can be 0.

◮ =⇒ One may not be able to determine if the zero test succeeds or not.

◮ We need accurate information in labeling for the first component.
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Two new cover sets

◮ To compute accurately on first component, we introduce
◮ Refined cover, parameterized by a set P ⊆ {1, . . . , d} of positions.
◮ Filtered covers, parameterized by a filter vector f ∈ N

d
ω
.

Reach(V) ⊆ RefinedCover(V) ⊆ Cover(V),

FilteredCover(V) ⊆ Cover(V)
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Refined covers

For a set P ⊆ {1, . . . , d} of positions, let

x 6P y if

{

x(i) = y(i) for i ∈ P , (accuracy on P)

x(i) 6 y(i) for i /∈ P . (lossiness elsewhere)

The refined cover is

Cover6P
(V) = ↓6P

Reach(V),
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Refined covers

For a set P ⊆ {1, . . . , d} of positions, let

x 6P y if

{

x(i) = y(i) for i ∈ P , (accuracy on P)

x(i) 6 y(i) for i /∈ P . (lossiness elsewhere)

The refined cover is

Cover6P
(V) = ↓6P

Reach(V),

Proposition (BFLZ)

Given two VAS V1, V2, it is undecidable whether Cover61(V1) = Cover61(V2).

Proof.

Reduction from Reach(V1) = Reach(V2), with extra “total sum” first
component
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Filtered covers

The f -filtered cover of a VAS0/VAS V is ⇓f Reach(V):

Filter(M , f ) =
{

x ∈ M |

d
∧

i=1

[

f (i) < ω =⇒ x(i) = f (i)
]

}

,

⇓f M =


y Filter(M , f ).

◮ For f = (ω, ω, . . . , ω), we have ⇓f M =↓ M .

◮ We are interested in ⇓f M for M = Reach(V) and f = (0, ω, ω, . . . , ω).
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Filtered covers

The f -filtered cover of a VAS0/VAS V is ⇓f Reach(V):

Filter(M , f ) =
{

x ∈ M |

d
∧

i=1

[

f (i) < ω =⇒ x(i) = f (i)
]

}

,

⇓f M =


y Filter(M , f ).

◮ For f = (ω, ω, . . . , ω), we have ⇓f M =↓ M .

◮ We are interested in ⇓f M for M = Reach(V) and f = (0, ω, ω, . . . , ω).

Theorem (BFLZ, “KM progress theorem”)

Given a VAS V and f ∈ N
d
ω, we can compute a representation of ⇓f Reach(V)

What means “compute a representation” here?
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Limits in N
d
ω

◮ Let ω 6∈ N and let Nω = N ∪ {ω}.

◮ Notion of converging sequence (ℓn)n of elements of Nω.

◮ Generalized componentwise to sequences (xn)n of vectors of Nd
ω.

◮ Given M ⊆ N
d
ω, we write LimM for the set of limits of M .
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Limits: example
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Limits: example

· · ·

· · ·

· · ·

...
...

...
...
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3

1 2 3 4 5

ω

ω

◮ Remark: M ⊆ LimM .

◮ If D is downward closed: D = LimD ∩ N
d .
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Bases for downward closed sets

◮ Basis of D ⊆ N
d
ω: finite set B ⊆ N

d
ω such that LimD = ↓B.

◮ [FG-L09]: any downward closed set D ⊆ N
d admits a basis.

◮ Canonical basis: minimal for ⊆.

◮ Extends to any downward closed set D ⊆ N
d
ω.

[Just because by def., D and D ∩ N
d have same basis]
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ω: finite set B ⊆ N

d
ω such that LimD = ↓B.

◮ [FG-L09]: any downward closed set D ⊆ N
d admits a basis.

◮ Canonical basis: minimal for ⊆.

◮ Extends to any downward closed set D ⊆ N
d
ω.

[Just because by def., D and D ∩ N
d have same basis]

Theorem (KM progress theorem)

Let V be a VAS. Given f ∈ N
d
ω, one can compute a basis of ⇓f Reach(V).
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Bases for downward closed sets: example
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Bases for downward closed sets: example

· · ·

· · ·

· · ·

...
...

...
...

1

2

3

1 2 3 4 5

ω

ω

◮ D

◮ LimD

◮ A basis.

◮ The minimal, canonical basis.
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Adapted Karp-Miller algorithm: principle

Theorem (KM progress theorem)

Let V be a VAS. Given f ∈ N
d
ω, one can compute a basis of ⇓f Reach(V).

◮ We use KM progress theorem to compute the cover of a VASS0 Vz .

◮ We apply it only with f = (0, ω, ω, . . . , ω).

◮ KM progress theorem allows to perform meta steps.

◮ A meta steps computes in one shot an information similar to that
computed by usual KM algorithm, preserving 0 value on component 1.
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Adapted Karp-Miller algorithm: principle

Theorem (KM progress theorem)

Let V be a VAS. Given f ∈ N
d
ω, one can compute a basis of ⇓f Reach(V).

◮ We use KM progress theorem to compute the cover of a VASS0 Vz .

◮ We apply it only with f = (0, ω, ω, . . . , ω).

◮ KM progress theorem allows to perform meta steps.

◮ A meta steps computes in one shot an information similar to that
computed by usual KM algorithm, preserving 0 value on component 1.

Meta step (no zero-test)

Zero-test az

Meta step (no zero-test)

Zero-test az

Corresponds to factorizations
u1azu2az . . .
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Adapted Karp-Miller algorithm: outline

◮ We start with x in ∈ {0} × N
d−1 and δ(az ) ∈ {0} × Z

d−1.

◮ Algorithm first computes a basis of ⇓f Reach(Vz).

◮ As in Karp-Miller’s algorithm, build a tree whose nodes are labeled.

1. Start with tree T single root labeled by x in.

2. For each unprocessed leaf n labeled x :

2.1 Perform standard acceleration at n. Call y the new label.

2.2 Fire the zero-test at n, y , if possible.

2.3 Expand tree at n with the minimal basis of ⇓f Reach(Vz(y)).

◮ Acceleration guarantees termination.
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Adapted Karp-Miller algorithm (finish off)

◮ The algorithm computes only a basis of ⇓f Reach(Vz).

◮ To compute the cover Cover(Vz), we have to run the usual Karp-Miller
algorithm from the obtained set.

Meta step (no zero-test)

Zero-test az

Meta step (no zero-test)

Zero-test az

Corresponds to factorizations
u1azu2az
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Adapted Karp-Miller algorithm (finish off)

◮ The algorithm computes only a basis of ⇓f Reach(Vz).

◮ To compute the cover Cover(Vz), we have to run the usual Karp-Miller
algorithm from the obtained set.

Meta step (no zero-test)

Zero-test az

Meta step (no zero-test)

Zero-test az

Corresponds to factorizations
u1azu2azu

Last stage
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Proof outline of KM progress theorem

We work with M = Lim Reach(V).

1. M is (effectively) recursive.

2. Implies that
{

(P , y) ∈ 2{1,...,d} × N
d
ω | y ∈ ↓6P

M
}

is recursive.

For given P , build VP from V with Reach(VP) = Cover6P
(V), making

non-P positions lossy.

3. Implies that
{

(f , y) ∈ N
d
ω × N

d
ω | y ∈ ⇓f M

}

is recursive.

4. Implies, by Valk & Jantzen’s Lemma, that ⇓f M has computable basis.
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A note on limit sets

◮ For M ⊆ N
d , an algorithm for membership in LimM yields an

algorithm for membership in M = N
d ∩ LimM .

◮ Conversely, an algorithm for LimM gives in general more information.

1. It may happen that M recursive, and LimM not recursive.

T0,T1, . . . enumeration of TM, and M =
{

(k , ℓ, α(k , ℓ)) | k , ℓ > 0
}

with α(k , ℓ) =
∣

∣{j 6 k | Tj halts in at most ℓ steps on ε}
∣

∣

2. Even if LimM is recursive, it may be impossible to derive an algorithm
for membership in LimM from one such algorithm for M .

M : reachability set of a lossy counter machine.

Effective algorithm for M , and LimM recursive,

No algorithm deciding x ∈ LimM from input LCM and x ∈ N
d
ω.
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Limits of reachable states are computable for VAS

Theorem (BFLZ’10)

Given a VAS V and x ∈ N
d
ω, one can decide if x is a limit of reachable states.

Proof Main ingredients

◮ Reachability algorithm as an oracle.

◮ Limits witnessed with pumping argument.

◮ Pumping argument proved using Higman’s Lemma.
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Limits of reachable states are computable for VAS

Theorem (BFLZ’10)

Given a VAS V and x ∈ N
d
ω, one can decide if x is a limit of reachable states.

◮ Easy direction: Lim Reach(V) is (effectively) co-RE.

◮ For y ∈ N
d
ω, let y [ℓ] be obtained from y by replacing all ω’s by ℓ.

Lemma (BFLZ’10)

From V and y , one can build Vy st.

y 6∈ Lim Reach(V) ⇐⇒ ∃ℓ ∈ N, y ℓ /∈ Reach(Vy ).

Proof.

Construction of Vy : just make ω positions lossy.
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Limits of reachable states for VAS

Theorem (BFLZ’10)

Given a VAS V and x ∈ N
d
ω, one can decide if x is a limit of reachable states.
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Limits of reachable states for VAS

Theorem (BFLZ’10)

Given a VAS V and x ∈ N
d
ω, one can decide if x is a limit of reachable states.

◮ Difficult direction: Lim Reach(V) is (effectively) RE.

◮ Want recursively enumerable witnesses.

◮ Witnesses are productive sequences.
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Productive sequences

Productive sequence

π = (ui )06i6k is productive for a word a1 · · · ak if the words

un
0a1u

n
1 · · · akun

k , n > 1

are all fireable.

· · ·

u0 u1 uk

a1 a2

Equivalently

◮ the partial sums δ(u0) + · · ·+ δ(uj ) are nonnegative.

◮ the word u0a1u1 · · · akuk is fireable.
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Limits of reachable states for VAS

Proposition

Lim Reach(V) =
{

x in + δ(v) + ωδ(π) | ∃v ∈ A∗,∃π productive in V for v
}

.

◮ Higman’s Lemma on nontrivial ordering on reachable states.

◮ Allow to find loops of productive witness, and pump.

x in
a1−→ y1 · · ·

ak−→ yk = xm

x in
u0a1−−−→ z1 · · ·

uk−1ak

−−−−→ zk
uk−→ xn

◮ Consequence: Lim Reach(V) is (effectively) RE.
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From LTL to Büchi condition

◮ A control state q is Büchi if there is a run visiting q infinitely often.

◮ Labeled VASS0: each action a has an associated value γ(a) ∈ Σ∗.

A run w = a1a2 · · · ∈ Aω induces a trace γ(a1)γ(a2) · · · ∈ Σω.

◮ LTL model-checking: given ϕ ∈ LTLΣ and labeled VASS0 V, does there
exist a trace w such that w |= ϕ?

◮ In synchronized product Aϕ × V, check if a final control state is Büchi.

27/30



From Büchi condition to increasing loops

◮ A qf -loop is a pair (x , y ) ∈ {0} ×N
d−1 such that (qf , x)

+
−→ (qf , y ).

◮ A qf -loop is

◮ increasing if x 6 y ,
◮ reachable if (qin, x in)

∗
−−→ (qf , x),

◮ ℓ-bounded, for ℓ ∈ {0} × N
d−1
ω , if x 6 ℓ.

◮ Remark. A reachable increasing qf -loop witnesses that qf is Büchi.
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Deciding Büchi condition

Proposition (R. Bonnet)

There are reductions 1 6 2 6 3.

1. qf is Büchi along a run where the zero-test is fired ∞-often.

2. There is a reachable increasing qf -loop.

3. There is an ℓ-bounded increasing qf -loop, where (qf , ℓ) is in the
minimal basis of ⇓f Reach(V).

Theorem R. Bonnet [RP’11]

Testing if a state is Büchi is decidable.

Proof.

Property 3 is decidable. But proof uses reachability of VASS0 /.
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Conclusion

◮ Generalization of KM algorithm, via limit set of reachable states.

◮ Several algorithms for VASS0: LTL, place boundedness, regularity.

◮ “Classical” properties of VASS are preserved for VASS0.

◮ Open LTL algorithm relies on reachability for VASS (KM, unavoidable)
and on reachability for VASS0. Can we remove this last dependency?

◮ Open One stack?
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