Model-checking Vector Addition Systems
with one zero-test

Rémi Bonnet, Alain Finkel, Jeréme Leroux, Marc Zeitoun

LSV, ENS Cachan — LaBRI, U. Bordeaux — CNRS — INRIA

LaBRI, September 2011

1/30

Motivation

v

Verification of vector addition systems against temporal logics.

» What can we add to VASS without losing the decidability properties?
» One stack? Motivation for looking at one zero-test.
» One zero-test? Two = Minsky machines ®.

v

Hard: Reachability (Reinhardt '04-08/ Bonnet '11).

v

What about “easy” problems for VASS, if one adds a zero-test?

» Coverability 7 Computation of the cover ?
» LTL model-checking 7

2/30

A .

3/30

Main Tools

Refinement of decidability of reachability set of a VASS.
Well-quasi orders over strings, Higman's Lemma.

Valk & Jentzen's Lemma.

New sets hybrid between the cover and the reachability set.

Karp & Miller's trees.

VAS(S): Vector Addition Systems (with States)

» Automaton with states in finite set @, and with d counters in N.

» Counters can be incremented or decremented, but remain nonnegative.

(1,2)
NG

(_17 _1)

(®,0,0) = (#,1,2) - (#,0,1) = (»,1,3) — (»,4,1) — (#,3,0) — (#,4,2)

4/30

VAS(S): Vector Addition Systems (with States)

» Automaton with states in finite set @, and with d counters in N.

» Counters can be incremented or decremented, but remain nonnegative.

[x(1) = 07]
(1,2)
(_172) (37 _2)
(_17 _1)

(®,0,0) = (#,1,2) - (#,0,1) = (»,1,3) — (»,4,1) — (#,3,0) — (#,4,2)

» In a VASSy, special zero-test transition a., fireable only if x(1) = 0.

4/30

VAS(S): Vector Addition Systems (with States)

» Automaton with states in finite set @, and with d counters in N.

» Counters can be incremented or decremented, but remain nonnegative.

[x(1) = 07]

(1,2)
NG

(_17_1)
(®,0,0) = (#,1,2) - (#,0,1) = (»,1,3) — (»,4,1) — (#,3,0) — (#,4,2)

» In a VASSy, special zero-test transition a., fireable only if x(1) = 0.
» Terminology. ® is a control state / (®,1,2) is a state.
» Notation. VASSy V = (Q, A, a2, 9, (qin, Xin))- VAS V = (A, , xin)

4/30

Model-checking VASS

» Reachability s (g, x) reachable from initial (gjn, x;n)?

» Finiteness Is the state space finite?

» Termination Are all runs finite?

» Place boundedness Does a given counter remain bounded?

» Coverability Given p, x, is there y > x with (qin, Xin) 5 (p,y)?
» LTL model-checking Does an LTL formula over action sequences hold?

Except for reachability, these problems can be solved using Karp-Miller trees.

5/30

Outline

. Adapting the Karp & Miller’s algorithm.
. Outline of the proof.

. Proof details: limits of reachable states.

A~ N =

. Application: LTL model-checking.

6/30

Karp-Miller’s algorithm for VAS

» Computes the downward closure of the reachability set.

Reach(V) = {y € N9 | x;, = y},
Cover(V) = | Reach(V).

7/30

Karp-Miller’s algorithm for VAS

» Computes the downward closure of the reachability set.

Reach(V) = {y € N9 | x;, = y},
Cover(V) = | Reach(V).

7/30

Karp-Miller’s algorithm for VAS

» Computes the downward closure of the reachability set.

Reach(V) = {y € N9 | x;, = y},
Cover(V) = | Reach(V).

Start from initial state.
Unfold the VAS.

Accelerate leaves with smaller ancestor

v

v

v

v

Stop branch if ancestor with same label

v

Acceleration guarantees termination.

7/30

Karp-Miller’s algorithm for VAS

» Computes the downward closure of the reachability set.

Reach(V) = {y € N9 | x;, = y},
Cover(V) = | Reach(V).

Start from initial state.
Unfold the VAS.

Accelerate leaves with smaller ancestor

v

v

v

v

Stop branch if ancestor with same label

v

Acceleration guarantees termination.

7/30

Karp-Miller’s algorithm for VAS

» Computes the downward closure of the reachability set.

Reach(V) = {y € N9 | x;, = y},
Cover(V) = | Reach(V).

Start from initial state.
Unfold the VAS.

Accelerate leaves with smaller ancestor

v

v

v

v

Stop branch if ancestor with same label

v

Acceleration guarantees termination.

7/30

The monotonicity property

» Karp-Miller's algorithm and variants work for well-structured systems.

» The key property is monotonicity of VAS:

(@, x) < (@,2)

8/30

8/30

The monotonicity property

» Karp-Miller's algorithm and variants work for well-structured systems.

» The key property is monotonicity of VAS:

(@, x) < (@,2)

=
N
3

8/30

The monotonicity property

» Karp-Miller's algorithm and variants work for well-structured systems.

» The key property is monotonicity of VAS:
(@, x) < (@,2)
@.y) < (@0

@ Monotonicity fails with one zero-test

Ideas for adapting the Karp-Miller construction

v

First build the Karp-Miller tree, without firing zero test.

v

To proceed, need to fire the zero-test from the leaves of KM tree.

v

Problem: accelerations may have produced on the first component an w

> represents arbitrarily large values and abstracts actual values.
» Hides if possible actual values can be 0.

» — One may not be able to determine if the zero test succeeds or not.

v

We need accurate information in labeling for the first component.

9/30

Two new cover sets

» To compute accurately on first component, we introduce

» Refined cover, parameterized by a set P C {1,...,d} of positions.
» Filtered covers, parameterized by a filter vector f € N,

Reach(V) C RefinedCover(V) C Cover(V),
FilteredCover(V) C Cover(V)

10/30

Refined covers
For a set P C {1,...,d} of positions, let

x(i)=y(i) forieP, (accuracy on P)

x<py if : : : .
x(1) < y(i) fori¢P. (lossiness elsewhere)

The refined cover is

Coverc, (V) = l<,Reach(V),

11/30

Refined covers

For a set P C {1,...,d} of positions, let

x(i)=y(i) forieP, (accuracy on P)

x<py |if : : : .
x(1) < y(i) fori¢P. (lossiness elsewhere)

The refined cover is

Coverc, (V) = l<,Reach(V),

Proposition (BFLZ)
Given two VAS V1, V;, it is undecidable whether Cover<, (V1) = Coverc, (V2).

Proof.

Reduction from Reach(V;) = Reach(},), with extra “total sum" first
component O

11/30

Filtered covers
The f-filtered cover of a VASy/VAS V is ||sReach(V):
d
Filter(M, f) = {x e M| N\[F(i) <w=> x(i) = F(i)] }
i=1

U¢M = | Filter(M, f).

» For f = (w,w,...,w), we have {{M =] M.

» We are interested in |l M for M = Reach(V) and f = (0,w,w, ...

12/30

Filtered covers
The f-filtered cover of a VASg/VAS V is || sReach(V):
d
Filter(M, f) = {x e M| N\[F(i) <w=> x(i) = F(i)] }
i=1

YeM = | FiIter(M,_f).

» For f = (w,w,...,w), we have {{M =] M.
» We are interested in |l M for M = Reach(V) and f = (0,w,w,...,w).

Theorem (BFLZ, "KM progress theorem”)

Given a VAS V and f € N9, we can compute a representation of |}sReach())

What means “compute a representation” here?

12/30

Limits in N?

v

Let w ¢ N and let N, = NU {w}.

Notion of converging sequence (¢,), of elements of N,,,.

v

Generalized componentwise to sequences (x,), of vectors of NI,
Given M C Ng, we write Lim M for the set of limits of M.

v

v

13/30

Limits; eXamp|e

12345

14/30

DA

Limits; eXamp|e

W e e e e

e
12345

14/30

DA

Limits: example

w e e o o

1 2 3 45

» Remark: M C LimM.
» If D is downward closed: D = LimD N N¢.

14/30

Bases for downward closed sets

» Basis of D C Ng: finite set B C Ng such that Lim D = |B.
» [FG-L09]: any downward closed set D C N admits a basis.
» Canonical basis: minimal for C.

» Extends to any downward closed set D C Ng.

[Just because by def., D and D N N¥ have same basis]

15/30

Bases for downward closed sets

» Basis of D C NY: finite set B C N such that LimD = |B.
» [FG-L09]: any downward closed set D C N admits a basis.
» Canonical basis: minimal for C.

» Extends to any downward closed set D C Ng.

[Just because by def., D and D N N? have same basis]

Theorem (KM progress theorem)
Let V be a VAS. Given f € N9, one can compute a basis of |lReach(V).

15/30

Bases for downward closed sets: example

1 2 3 45

16/30

Bases for downward closed sets: example

w e e o o

1 2 3 45 e w

» D
» LimD

16/30

Bases for downward closed sets: example

w e o e o

1 2 3 45 e w

» D
» LimD
» A basis.

16/30

Bases for downward closed sets: example

w e e o o

3 °
2 °®
°
[]
1 2 3 45 Y
» D
» LimD
» A basis.
» The minimal, canonical basis.

16/30

Adapted Karp-Miller algorithm: principle

Theorem (KM progress theorem)
Let V be a VAS. Given f € NZ, one can compute a basis of |lReach(V).

v

We use KM progress theorem to compute the cover of a VASSy V.

v

We apply it only with f = (0,w,w,...,w).

v

KM progress theorem allows to perform meta steps.

v

A meta steps computes in one shot an information similar to that
computed by usual KM algorithm, preserving 0 value on component 1.

17/30

Adapted Karp-Miller algorithm: principle

Theorem (KM progress theorem)

Let V be a VAS. Given f € NZ, one can compute a basis of |lReach(V).

» We use KM progress theorem to compute the cover of a VASSy V,.
» We apply it only with f = (0,w,w, ... ,w).
» KM progress theorem allows to perform meta steps.

» A meta steps computes in one shot an information similar to that
computed by usual KM algorithm, preserving 0 value on component 1.

Meta step (no zero-test) A

17/30

Adapted Karp-Miller algorithm: principle

Theorem (KM progress theorem)

Let V be a VAS. Given f € NZ, one can compute a basis of |lReach(V).

» We use KM progress theorem to compute the cover of a VASSy V,.
» We apply it only with f = (0,w,w, ... ,w).
» KM progress theorem allows to perform meta steps.

» A meta steps computes in one shot an information similar to that
computed by usual KM algorithm, preserving 0 value on component 1.

Meta step (no zero-test)

Zero-test a,

17/30

Adapted Karp-Miller algorithm: principle

Theorem (KM progress theorem)

Let V be a VAS. Given f € NZ, one can compute a basis of |lReach(V).

» We use KM progress theorem to compute the cover of a VASSy V,.
» We apply it only with f = (0,w,w, ... ,w).
» KM progress theorem allows to perform meta steps.

» A meta steps computes in one shot an information similar to that
computed by usual KM algorithm, preserving 0 value on component 1.

Meta step (no zero-test)

Zero-test a,

Meta step (no zero-test)

17/30

Adapted Karp-Miller algorithm: principle

Theorem (KM progress theorem)

Let V be a VAS. Given f € NZ, one can compute a basis of |lReach(V).

» We use KM progress theorem to compute the cover of a VASSy V,.
» We apply it only with f = (0,w,w, ... ,w).
» KM progress theorem allows to perform meta steps.

» A meta steps computes in one shot an information similar to that
computed by usual KM algorithm, preserving 0 value on component 1.

Meta step (no zero-test)

Zero-test a,

Meta step (no zero-test)

Zero-test az

17/30

Adapted Karp-Miller algorithm: principle

Theorem (KM progress theorem)
Let V be a VAS. Given f € NZ, one can compute a basis of |lReach(V).

» We use KM progress theorem to compute the cover of a VASSy V,.
» We apply it only with f = (0,w,w, ... ,w).
» KM progress theorem allows to perform meta steps.

» A meta steps computes in one shot an information similar to that
computed by usual KM algorithm, preserving 0 value on component 1.

Meta step (no zero-test)

Zero- N
ero-test az Corresponds to factorizations

Uazloa, ...
Meta step (no zero-test) 1ot

Zero-test az

17/30

Adapted Karp-Miller algorithm: outline

» We start with x;, € {0} x N1 and 6(a,) € {0} x Z9~1.
» Algorithm first computes a basis of {}Reach();).
> As in Karp-Miller's algorithm, build a tree whose nodes are labeled.

1. Start with tree 7T single root labeled by x;,.
2. For each unprocessed leaf n labeled x:

2.1 Perform standard acceleration at n. Call y the new label.
2.2 Fire the zero-test at n, y, if possible.
2.3 Expand tree at n with the minimal basis of |} Reach(V,(y)).

» Acceleration guarantees termination.

18/30

Adapted Karp-Miller algorithm (finish off)

» The algorithm computes only a basis of ||Reach(V,).

» To compute the cover Cover();), we have to run the usual Karp-Miller
algorithm from the obtained set.

Meta step (no zero-test)

Zero-test N
az Corresponds to factorizations

ujazuza
Meta step (no zero-test) e

Zero-test a,

19/30

Adapted Karp-Miller algorithm (finish off)

» The algorithm computes only a basis of ||Reach(V,).

» To compute the cover Cover();), we have to run the usual Karp-Miller
algorithm from the obtained set.

Meta step (no zero-test)

Zero-test .
az Corresponds to factorizations

ujazurazu
Meta step (no zero-test) e

Zero-test a,

Last stage

19/30

Proof outline of KM progress theorem
We work with M = Lim Reach(V).
1. M is (effectively) recursive.

2. Implies that {(P,y) € 2(L-+@ x N¢ | y € |, M} is recursive.

For given P, build Vp from V with Reach(Vp) = Cover<,(V), making
non-P positions lossy.

3. Implies that {(f,y) € N x N¢ | y € {{M} is recursive.

4. Implies, by Valk & Jantzen's Lemma, that || M has computable basis.

20/30

A note on limit sets

» For M C N9 an algorithm for membership in Lim M vyields an
algorithm for membership in M = N9 N Lim M.

» Conversely, an algorithm for Lim M gives in general more information.

1. It may happen that M recursive, and Lim M not recursive.
To, T1, ... enumeration of TM, and M = {(k, ¢, a(k,?)) | k,£ > 0}
with a(k,) = |{j < k| T; halts in at most ¢ steps on ¢}|

2. Even if Lim M is recursive, it may be impossible to derive an algorithm
for membership in Lim M from one such algorithm for M.

M: reachability set of a lossy counter machine.
Effective algorithm for M, and Lim M recursive,
No algorithm deciding x € Lim M from input LCM and x € N9,

21/30

Limits of reachable states are computable for VAS

Theorem (BFLZ'10)

Given a VAS V and x € N, one can decide if x is a limit of reachable states.

Proof Main ingredients

» Reachability algorithm as an oracle.
» Limits witnessed with pumping argument.

» Pumping argument proved using Higman's Lemma.

22/30

Limits of reachable states are computable for VAS

Theorem (BFLZ'10)

Given a VAS V and x € N¢, one can decide if x is a limit of reachable states.

» Easy direction: Lim Reach(V) is (effectively) co-RE.
» For y € N9, let y[¢] be obtained from y by replacing all w's by ¢.

Lemma (BFLZ'10)
From V and y, one can build V), st.

y € LimReach(V) <= 3¢ € N, y, ¢ Reach(V,).

Proof.
Construction of V,: just make w positions lossy. DJ

23/30

Limits of reachable states for VAS

Theorem (BFLZ'10)

Given a VAS V and x € N, one can decide if x is a limit of reachable states.

24/30

Limits of reachable states for VAS

Theorem (BFLZ'10)

Given a VAS V and x € N, one can decide if x is a limit of reachable states.

» Difficult direction: Lim Reach(V) is (effectively) RE.
» Want recursively enumerable witnesses.

» Witnesses are productive sequences.

24/30

Productive sequences

Productive sequence

7 = (uj)o<i<k is productive for a word aj - - - ay if the words
ugayuf - - aguy, n>1
are all fireable.

Uk

lo n
: ; al : ; an - : ;

> the partial sums 0(ug) + - - - + 6(u;) are nonnegative.

» the word wugajuy - - - akuy is fireable.

Equivalently

25/30

Limits of reachable states for VAS

Lim Reach(V) = {xj» + 6(v) + wd(x) | v € A*,3r productive in V for v}.

» Higman's Lemma on nontrivial ordering on reachable states.

» Allow to find loops of productive witness, and pump.

ai ak
Xip = Y1 — Yk = Xm

upai Up—1dk U
Xin /Z]_"' /Zk—>Xn

» Consequence: Lim Reach(V) is (effectively) RE.

26/30

From LTL to Biichi condition

v

A control state q is Biichi if there is a run visiting g infinitely often.

v

Labeled VASSy: each action a has an associated value y(a) € L*.

Arun w = aja - - € AY induces a trace y(a1)y(az) - - € X¥.

v

LTL model-checking: given ¢ € LTLy and labeled VASSy V, does there
exist a trace w such that w |= ¢?

v

In synchronized product A, x V, check if a final control state is Biichi.

27/30

From Biichi condition to increasing loops

» A gr-loop is a pair (x,y) € {0} x N1 such that (gr, x) * (gr,y).
> A gr-loop is

» increasing if x < y,

> reachable if (gjn, Xin) — (gf, X),

» £-bounded, for £ € {0} x N971, if x < £.

» Remark. A reachable increasing gs-loop witnesses that gy is Biichi.

28/30

Deciding Biichi condition

Proposition (R. Bonnet)

There are reductions 1 < 2 < 3.

1. gr is Biichi along a run where the zero-test is fired co-often.
2. There is a reachable increasing g¢-loop.

3. There is an (-bounded increasing gr-loop, where (gr,) is in the
minimal basis of || sReach(V).

Theorem R. Bonnet [RP'11]

Testing if a state is Biichi is decidable.

Proof.
Property 3 is decidable. But proof uses reachability of VASSy ®. DJ

29/30

Conclusion

v

Generalization of KM algorithm, via limit set of reachable states.

v

Several algorithms for VASSy: LTL, place boundedness, regularity.

v

“Classical” properties of VASS are preserved for VASS,.

Open LTL algorithm relies on reachability for VASS (KM, unavoidable)
and on reachability for VASSy. Can we remove this last dependency?

Open One stack?

v

v

30/30

