Model-checking Vector Addition Systems with one zero-test

Rémi Bonnet, Alain Finkel, Jerôme Leroux, Marc Zeitoun LSV, ENS Cachan — LaBRI, U. Bordeaux — CNRS — INRIA

LaBRI, September 2011

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Motivation

Verification of vector addition systems against temporal logics.

What can we add to VASS without losing the decidability properties?

- ▶ One stack? Motivation for looking at one zero-test.
 ▶ One zero-test? Two = Minsky machines ☺.
- ▶ Hard: Reachability (Reinhardt '04–08/ Bonnet '11).

What about "easy" problems for VASS, if one adds a zero-test?

- Coverability ? Computation of the cover ?
- LTL model-checking ?

Main Tools

- 1. Refinement of decidability of reachability set of a VASS.
- 2. Well-quasi orders over strings, Higman's Lemma.
- 3. Valk & Jentzen's Lemma.
- 4. New sets hybrid between the cover and the reachability set.

5. Karp & Miller's trees.

VAS(S): Vector Addition Systems (with States)

- Automaton with states in finite set Q, and with d counters in \mathbb{N} .
- Counters can be incremented or decremented, but remain nonnegative.

 $(\bullet,0,0) \rightarrow (\bullet,1,2) \rightarrow (\bullet,0,1) \rightarrow (\bullet,1,3) \rightarrow (\bullet,4,1) \rightarrow (\bullet,3,0) \rightarrow (\bullet,4,2)$

VAS(S): Vector Addition Systems (with States)

- Automaton with states in finite set Q, and with d counters in \mathbb{N} .
- Counters can be incremented or decremented, but remain nonnegative.

 $(\bullet,0,0) \rightarrow (\bullet,1,2) \rightarrow (\bullet,0,1) \rightarrow (\bullet,1,3) \rightarrow (\bullet,4,1) \rightarrow (\bullet,3,0) \rightarrow (\bullet,4,2)$

▶ In a VASS₀, special zero-test transition a_z , fireable only if x(1) = 0.

VAS(S): Vector Addition Systems (with States)

- Automaton with states in finite set Q, and with d counters in \mathbb{N} .
- Counters can be incremented or decremented, but remain nonnegative.

 $(\bullet,0,0) \rightarrow (\bullet,1,2) \rightarrow (\bullet,0,1) \rightarrow (\bullet,1,3) \rightarrow (\bullet,4,1) \rightarrow (\bullet,3,0) \rightarrow (\bullet,4,2)$

- ▶ In a VASS₀, special zero-test transition a_z , fireable only if x(1) = 0.
- ▶ Terminology. is a control state / (●, 1, 2) is a state.
- ▶ Notation. VASS₀ $\mathcal{V} = \langle Q, A, a_z, \delta, (q_{in}, x_{in}) \rangle$. VAS $\mathcal{V} = \langle A, \delta, x_{in} \rangle$

▲母 ▲ 目 ▲ 目 ▲ 目 ● の Q (~

Model-checking VASS

- Reachability
- Finiteness
- Termination
- Place boundedness
- Coverability
- LTL model-checking

Is (q, x) reachable from initial (q_{in}, x_{in}) ? Is the state space finite? Are all runs finite? Does a given counter remain bounded? Given p, x, is there $y \ge x$ with $(q_{in}, x_{in}) \xrightarrow{*} (p, y)$?

Does an LTL formula over action sequences hold?

Except for reachability, these problems can be solved using Karp-Miller trees.

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- 1. Adapting the Karp & Miller's algorithm.
- 2. Outline of the proof.
- 3. Proof details: limits of reachable states.
- 4. Application: LTL model-checking.

• Computes the downward closure of the reachability set.

$$\mathsf{Reach}(\mathcal{V}) = \big\{ \mathbf{y} \in \mathbb{N}^d \mid \mathbf{x}_{in} \xrightarrow{*} \mathbf{y} \big\},\\ \mathsf{Cover}(\mathcal{V}) = \big| \mathsf{Reach}(\mathcal{V}).$$

• Computes the downward closure of the reachability set.

$$\mathsf{Reach}(\mathcal{V}) = \big\{ \mathbf{y} \in \mathbb{N}^d \mid \mathbf{x}_{in} \xrightarrow{*} \mathbf{y} \big\},\\ \mathsf{Cover}(\mathcal{V}) = \big| \mathsf{Reach}(\mathcal{V}).$$

Computes the downward closure of the reachability set.

$$\mathsf{Reach}(\mathcal{V}) = \big\{ \mathbf{y} \in \mathbb{N}^d \mid \mathbf{x}_{in} \xrightarrow{*} \mathbf{y} \big\},\\ \mathsf{Cover}(\mathcal{V}) = \big| \mathsf{Reach}(\mathcal{V}).$$

- Start from initial state.
- Unfold the VAS.
- Accelerate leaves with smaller ancestor
- Stop branch if ancestor with same label

• Computes the downward closure of the reachability set.

$$\mathsf{Reach}(\mathcal{V}) = \big\{ \mathbf{y} \in \mathbb{N}^d \mid \mathbf{x}_{in} \xrightarrow{*} \mathbf{y} \big\},\\ \mathsf{Cover}(\mathcal{V}) = \big| \mathsf{Reach}(\mathcal{V}).$$

- Start from initial state.
- Unfold the VAS.
- Accelerate leaves with smaller ancestor
- Stop branch if ancestor with same label

• Computes the downward closure of the reachability set.

$$\mathsf{Reach}(\mathcal{V}) = \big\{ \mathbf{y} \in \mathbb{N}^d \mid \mathbf{x}_{in} \xrightarrow{*} \mathbf{y} \big\},\\ \mathsf{Cover}(\mathcal{V}) = \big| \mathsf{Reach}(\mathcal{V}).$$

- Start from initial state.
- Unfold the VAS.
- Accelerate leaves with smaller ancestor
- Stop branch if ancestor with same label

The monotonicity property

- ► Karp-Miller's algorithm and variants work for well-structured systems.
- The key property is monotonicity of VAS:

The monotonicity property

- ► Karp-Miller's algorithm and variants work for well-structured systems.
- The key property is monotonicity of VAS:

The monotonicity property

- ► Karp-Miller's algorithm and variants work for well-structured systems.
- The key property is monotonicity of VAS:

 $\ensuremath{\textcircled{}}$ Monotonicity fails with one zero-test

Ideas for adapting the Karp-Miller construction

- First build the Karp-Miller tree, without firing zero test.
- ► To proceed, need to fire the zero-test from the leaves of KM tree.
- \blacktriangleright Problem: accelerations may have produced on the first component an ω
 - represents arbitrarily large values and abstracts actual values.
 - Hides if possible actual values can be 0.
- $\blacktriangleright \Longrightarrow$ One may not be able to determine if the zero test succeeds or not.
- ► We need accurate information in labeling for the first component.

Two new cover sets

► To compute accurately on first component, we introduce

- Refined cover, parameterized by a set $P \subseteq \{1, \ldots, d\}$ of positions.
- Filtered covers, parameterized by a filter vector $\mathbf{f} \in \mathbb{N}^d_{\omega}$.

$$\mathsf{Reach}(\mathcal{V}) \subseteq \mathsf{RefinedCover}(\mathcal{V}) \subseteq \mathsf{Cover}(\mathcal{V}),$$

 $\mathsf{FilteredCover}(\mathcal{V}) \subseteq \mathsf{Cover}(\mathcal{V})$

イロト (日本 (日本 (日本)) 日 うんの

Refined covers

For a set $P \subseteq \{1, \ldots, d\}$ of positions, let

$$x \leq_P y \quad \text{if} \quad \begin{cases} x(i) = y(i) & \text{for } i \in P, \\ x(i) \leq y(i) & \text{for } i \notin P. \end{cases} \quad (\text{accuracy on } P) \\ (\text{lossiness elsewhere}) \end{cases}$$

The refined cover is

$$\mathsf{Cover}_{\leqslant_{P}}(\mathcal{V}) = \downarrow_{\leqslant_{P}}\mathsf{Reach}(\mathcal{V}),$$

Refined covers

For a set $P \subseteq \{1, \ldots, d\}$ of positions, let

$$x \leq_P y$$
 if $\begin{cases} x(i) = y(i) & \text{for } i \in P, \\ x(i) \leq y(i) & \text{for } i \notin P. \end{cases}$ (accuracy on P)
(lossiness elsewhere)

The refined cover is

$$\mathsf{Cover}_{\leqslant_{\mathcal{P}}}(\mathcal{V}) = {\downarrow_{\leqslant_{\mathcal{P}}}}\mathsf{Reach}(\mathcal{V}),$$

Proposition (BFLZ)

Given two VAS \mathcal{V}_1 , \mathcal{V}_2 , it is undecidable whether $\text{Cover}_{\leq 1}(\mathcal{V}_1) = \text{Cover}_{\leq 1}(\mathcal{V}_2)$.

Proof.

Reduction from $\mathsf{Reach}(\mathcal{V}_1)=\mathsf{Reach}(\mathcal{V}_2),$ with extra "total sum" first component

Filtered covers

The *f*-filtered cover of a VAS₀/VAS \mathcal{V} is $\Downarrow_f \text{Reach}(\mathcal{V})$:

$$\mathsf{Filter}(\boldsymbol{M}, \boldsymbol{f}) = \Big\{ \boldsymbol{x} \in \boldsymbol{M} \mid \bigwedge_{i=1}^{d} \big[\boldsymbol{f}(i) < \omega \Longrightarrow \boldsymbol{x}(i) = \boldsymbol{f}(i) \big] \Big\},\$$
$$\Downarrow_{\boldsymbol{f}} \boldsymbol{M} = \bigcup \mathsf{Filter}(\boldsymbol{M}, \boldsymbol{f}).$$

▶ For $f = (\omega, \omega, ..., \omega)$, we have $\Downarrow_f M = \downarrow M$.

▶ We are interested in $\Downarrow_f M$ for $M = \text{Reach}(\mathcal{V})$ and $f = (0, \omega, \omega, \dots, \omega)$.

◆□ → ◆□ → ◆三 → ◆三 → ● ◆ ●

Filtered covers

The *f*-filtered cover of a VAS₀/VAS \mathcal{V} is $\Downarrow_f \text{Reach}(\mathcal{V})$:

$$\mathsf{Filter}(\boldsymbol{M}, \boldsymbol{f}) = \Big\{ \boldsymbol{x} \in \boldsymbol{M} \mid \bigwedge_{i=1}^{d} \big[\boldsymbol{f}(i) < \omega \Longrightarrow \boldsymbol{x}(i) = \boldsymbol{f}(i) \big] \Big\},\$$
$$\Downarrow_{\boldsymbol{f}} \boldsymbol{M} = \bigcup \mathsf{Filter}(\boldsymbol{M}, \boldsymbol{f}).$$

► For
$$\mathbf{f} = (\omega, \omega, \dots, \omega)$$
, we have $\Downarrow_{\mathbf{f}} \mathbf{M} = \downarrow \mathbf{M}$.

▶ We are interested in $\Downarrow_f M$ for $M = \text{Reach}(\mathcal{V})$ and $f = (0, \omega, \omega, \dots, \omega)$.

Theorem (BFLZ, "KM progress theorem")

Given a VAS \mathcal{V} and $f \in \mathbb{N}^d_{\omega}$, we can compute a representation of $\Downarrow_f \operatorname{Reach}(\mathcal{V})$

What means "compute a representation" here?

Limits in N^d_{ω}

- Let $\omega \notin \mathbb{N}$ and let $\mathbb{N}_{\omega} = \mathbb{N} \cup \{\omega\}$.
- Notion of converging sequence $(\ell_n)_n$ of elements of \mathbb{N}_{ω} .
- Generalized componentwise to sequences $(x_n)_n$ of vectors of \mathbb{N}^d_{ω} .

• Given $M \subseteq \mathbb{N}^d_{\omega}$, we write Lim M for the set of limits of M.

Limits: example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Limits: example

Limits: example

• Remark: $M \subseteq LimM$.

• If **D** is downward closed: $D = LimD \cap \mathbb{N}^d$.

Bases for downward closed sets

- ▶ Basis of $D \subseteq \mathbb{N}^d_{\omega}$: finite set $B \subseteq \mathbb{N}^d_{\omega}$ such that Lim $D = \downarrow B$.
- ▶ [FG-L09]: any downward closed set $D \subseteq \mathbb{N}^d$ admits a basis.
- Canonical basis: minimal for \subseteq .
- Extends to any downward closed set D ⊆ N^d_ω. [Just because by def., D and D ∩ N^d have same basis]

Bases for downward closed sets

- ▶ Basis of $D \subseteq \mathbb{N}^d_{\omega}$: finite set $B \subseteq \mathbb{N}^d_{\omega}$ such that Lim $D = \downarrow B$.
- [FG-L09]: any downward closed set $D \subseteq \mathbb{N}^d$ admits a basis.
- ► Canonical basis: minimal for ⊆.
- Extends to any downward closed set D ⊆ N^d_ω.
 [Just because by def., D and D ∩ N^d have same basis]

Theorem (KM progress theorem)

Let \mathcal{V} be a VAS. Given $f \in \mathbb{N}^d_{\omega}$, one can compute a basis of $\Downarrow_f \operatorname{Reach}(\mathcal{V})$.

► D

► D ► Lim D

- ► D
- ► Lim D
- ► A basis.

・ロト ・御ト ・ヨト ・ヨト

э

- ► D
- ► Lim D
- A basis.
- ► The minimal, canonical basis.

Theorem (KM progress theorem)

Let \mathcal{V} be a VAS. Given $f \in \mathbb{N}^d_{\omega}$, one can compute a basis of $\Downarrow_f \operatorname{Reach}(\mathcal{V})$.

- We use KM progress theorem to compute the cover of a VASS₀ V_z .
- We apply it only with $f = (0, \omega, \omega, \dots, \omega)$.
- ► KM progress theorem allows to perform meta steps.
- A meta steps computes in one shot an information similar to that computed by usual KM algorithm, preserving 0 value on component 1.

Theorem (KM progress theorem)

Let \mathcal{V} be a VAS. Given $f \in \mathbb{N}^d_{\omega}$, one can compute a basis of $\Downarrow_f \operatorname{Reach}(\mathcal{V})$.

- We use KM progress theorem to compute the cover of a VASS₀ V_z .
- We apply it only with $f = (0, \omega, \omega, \dots, \omega)$.
- ► KM progress theorem allows to perform meta steps.
- A meta steps computes in one shot an information similar to that computed by usual KM algorithm, preserving 0 value on component 1.

Meta step (no zero-test)

Theorem (KM progress theorem)

Let \mathcal{V} be a VAS. Given $f \in \mathbb{N}^d_{\omega}$, one can compute a basis of $\Downarrow_f \operatorname{Reach}(\mathcal{V})$.

- We use KM progress theorem to compute the cover of a VASS₀ V_z .
- We apply it only with $f = (0, \omega, \omega, \dots, \omega)$.
- ► KM progress theorem allows to perform meta steps.
- A meta steps computes in one shot an information similar to that computed by usual KM algorithm, preserving 0 value on component 1.

Meta step (no zero-test)

Zero-test

Theorem (KM progress theorem)

Let \mathcal{V} be a VAS. Given $f \in \mathbb{N}^d_{\omega}$, one can compute a basis of $\Downarrow_f \operatorname{Reach}(\mathcal{V})$.

- We use KM progress theorem to compute the cover of a VASS₀ V_z .
- We apply it only with $f = (0, \omega, \omega, \dots, \omega)$.
- ► KM progress theorem allows to perform meta steps.
- A meta steps computes in one shot an information similar to that computed by usual KM algorithm, preserving 0 value on component 1.

Theorem (KM progress theorem)

Let \mathcal{V} be a VAS. Given $f \in \mathbb{N}^d_{\omega}$, one can compute a basis of $\Downarrow_f \operatorname{Reach}(\mathcal{V})$.

- We use KM progress theorem to compute the cover of a VASS₀ V_z .
- We apply it only with $f = (0, \omega, \omega, \dots, \omega)$.
- ► KM progress theorem allows to perform meta steps.
- A meta steps computes in one shot an information similar to that computed by usual KM algorithm, preserving 0 value on component 1.

Theorem (KM progress theorem)

Let \mathcal{V} be a VAS. Given $f \in \mathbb{N}^d_{\omega}$, one can compute a basis of $\Downarrow_f \operatorname{Reach}(\mathcal{V})$.

- We use KM progress theorem to compute the cover of a VASS₀ V_z .
- We apply it only with $f = (0, \omega, \omega, \dots, \omega)$.
- KM progress theorem allows to perform meta steps.
- A meta steps computes in one shot an information similar to that computed by usual KM algorithm, preserving 0 value on component 1.

Adapted Karp-Miller algorithm: outline

- We start with $x_{in} \in \{0\} \times \mathbb{N}^{d-1}$ and $\delta(a_z) \in \{0\} \times \mathbb{Z}^{d-1}$.
- Algorithm first computes a basis of $\Downarrow_f \operatorname{Reach}(\mathcal{V}_z)$.
- As in Karp-Miller's algorithm, build a tree whose nodes are labeled.
- 1. Start with tree \mathcal{T} single root labeled by \mathbf{x}_{in} .
- 2. For each unprocessed leaf *n* labeled *x*:
 - 2.1 Perform standard acceleration at n. Call y the new label.
 - 2.2 Fire the zero-test at n, y, if possible.
 - 2.3 Expand tree at *n* with the minimal basis of $\Downarrow_f \operatorname{Reach}(\mathcal{V}_z(\mathbf{y}))$.

Adapted Karp-Miller algorithm (finish off)

- The algorithm computes only a basis of $\Downarrow_f \operatorname{Reach}(\mathcal{V}_z)$.
- ▶ To compute the cover $Cover(V_z)$, we have to run the usual Karp-Miller algorithm from the obtained set.

Adapted Karp-Miller algorithm (finish off)

- The algorithm computes only a basis of $\Downarrow_f \operatorname{Reach}(\mathcal{V}_z)$.
- ▶ To compute the cover $Cover(V_z)$, we have to run the usual Karp-Miller algorithm from the obtained set.

Proof outline of KM progress theorem

- We work with $M = \text{Lim Reach}(\mathcal{V})$.
 - 1. *M* is (effectively) recursive.
 - Implies that {(P, y) ∈ 2^{1,...,d} × N^d_ω | y ∈ ↓_{≤P}M} is recursive.
 For given P, build V_P from V with Reach(V_P) = Cover_{≤P}(V), making non-P positions lossy.
 - 3. Implies that $\{(f, y) \in \mathbb{N}^d_\omega \times \mathbb{N}^d_\omega \mid y \in \bigcup_f M\}$ is recursive.

4. Implies, by Valk & Jantzen's Lemma, that $\Downarrow_f M$ has computable basis.

A note on limit sets

- ▶ For $M \subseteq \mathbb{N}^d$, an algorithm for membership in Lim M yields an algorithm for membership in $M = \mathbb{N}^d \cap \text{Lim } M$.
- Conversely, an algorithm for Lim *M* gives in general more information.
- 1. It may happen that M recursive, and $\lim M$ not recursive.

 $T_0, T_1, \dots \text{ enumeration of TM, and } \boldsymbol{M} = \{(k, \ell, \alpha(k, \ell)) \mid k, \ell \ge 0\}$ with $\alpha(k, \ell) = |\{j \le k \mid T_j \text{ halts in at most } \ell \text{ steps on } \varepsilon\}|$

2. Even if $\lim M$ is recursive, it may be impossible to derive an algorithm for membership in $\lim M$ from one such algorithm for M.

M: reachability set of a lossy counter machine.

Effective algorithm for M, and Lim M recursive,

No algorithm deciding $\mathbf{x} \in \text{Lim } \mathbf{M}$ from input LCM and $\mathbf{x} \in \mathbb{N}^d_{\omega}$.

Limits of reachable states are computable for VAS

Theorem (BFLZ'10)

Given a VAS \mathcal{V} and $x \in \mathbb{N}^d_{\omega}$, one can decide if x is a limit of reachable states.

Proof Main ingredients

- Reachability algorithm as an oracle.
- Limits witnessed with pumping argument.
- Pumping argument proved using Higman's Lemma.

Limits of reachable states are computable for VAS

Theorem (BFLZ'10)

Given a VAS \mathcal{V} and $x \in \mathbb{N}^d_{\omega}$, one can decide if x is a limit of reachable states.

- Easy direction: Lim Reach(\mathcal{V}) is (effectively) co-RE.
- ▶ For $y \in \mathbb{N}^d_{\omega}$, let $y[\ell]$ be obtained from y by replacing all ω 's by ℓ .

Lemma (BFLZ'10)

From \mathcal{V} and \mathbf{y} , one can build $\mathcal{V}_{\mathbf{y}}$ st.

 $\mathbf{y} \notin \text{Lim Reach}(\mathcal{V}) \iff \exists \ell \in \mathbb{N}, \ \mathbf{y}_{\ell} \notin \text{Reach}(\mathcal{V}_{\mathbf{y}}).$

Proof.

Construction of \mathcal{V}_{y} : just make ω positions lossy.

Limits of reachable states for VAS

Theorem (BFLZ'10)

Given a VAS \mathcal{V} and $x \in \mathbb{N}^d_{\omega}$, one can decide if x is a limit of reachable states.

Limits of reachable states for VAS

Theorem (BFLZ'10)

Given a VAS \mathcal{V} and $\mathbf{x} \in \mathbb{N}^d_{\omega}$, one can decide if \mathbf{x} is a limit of reachable states.

- ▶ Difficult direction: Lim Reach(V) is (effectively) RE.
- ► Want recursively enumerable witnesses.
- Witnesses are productive sequences.

Productive sequences

Productive sequence

 $\pi = (u_i)_{0 \leqslant i \leqslant k}$ is productive for a word $a_1 \cdots a_k$ if the words

$$u_0^n a_1 u_1^n \cdots a_k u_k^n, \qquad n \ge 1$$

are all fireable.

Equivalently

- the partial sums $\delta(u_0) + \cdots + \delta(u_j)$ are nonnegative.
- the word $u_0 a_1 u_1 \cdots a_k u_k$ is fireable.

Limits of reachable states for VAS

Proposition

 $\mathsf{Lim}\,\mathsf{Reach}(\mathcal{V}) = \big\{ \mathsf{x}_{in} + \delta(\mathsf{v}) + \omega\delta(\pi) \mid \exists \mathsf{v} \in \mathsf{A}^*, \exists \pi \text{ productive in } \mathcal{V} \text{ for } \mathsf{v} \big\}.$

- Higman's Lemma on nontrivial ordering on reachable states.
- Allow to find loops of productive witness, and pump.

$$\begin{array}{c} x_{in} \xrightarrow{a_1} y_1 \cdots \xrightarrow{a_k} y_k = x_m \\ x_{in} \xrightarrow{u_0 a_1} z_1 \cdots \xrightarrow{u_{k-1} a_k} z_k \xrightarrow{u_k} x_n \end{array}$$

• Consequence: Lim Reach(\mathcal{V}) is (effectively) RE.

From LTL to Büchi condition

- A control state q is Büchi if there is a run visiting q infinitely often.
- Labeled VASS₀: each action a has an associated value γ(a) ∈ Σ*.
 A run w = a₁a₂ ··· ∈ A^ω induces a trace γ(a₁)γ(a₂) ··· ∈ Σ^ω.
- ► LTL model-checking: given $\varphi \in LTL_{\Sigma}$ and labeled VASS₀ \mathcal{V} , does there exist a trace w such that $w \models \varphi$?
- ▶ In synchronized product $A_{\varphi} \times V$, check if a final control state is Büchi.

From Büchi condition to increasing loops

- ▶ A q_f -loop is a pair $(x, y) \in \{0\} \times \mathbb{N}^{d-1}$ such that $(q_f, x) \xrightarrow{+} (q_f, y)$.
- A q_f-loop is
 - increasing if $x \leq y$,
 - ▶ reachable if $(q_{in}, x_{in}) \xrightarrow{*} (q_f, x)$,
 - ℓ -bounded, for $\ell \in \{0\} \times \mathbb{N}^{d-1}_{\omega}$, if $x \leq \ell$.
- **Remark**. A reachable increasing q_f -loop witnesses that q_f is Büchi.

イロト (日本 (日本 (日本)) 日 うんの

Deciding Büchi condition

Proposition (R. Bonnet)

There are reductions $1 \leqslant 2 \leqslant 3$.

- 1. q_f is Büchi along a run where the zero-test is fired ∞ -often.
- 2. There is a reachable increasing q_f -loop.
- There is an *ℓ*-bounded increasing *q_f*-loop, where (*q_f*, *ℓ*) is in the minimal basis of ↓_f Reach(*V*).

Theorem R. Bonnet [RP'11]

Testing if a state is Büchi is decidable.

Proof.

Property 3 is decidable. But proof uses reachability of VASS_0 $\circledast.$

Conclusion

- Generalization of KM algorithm, via limit set of reachable states.
- Several algorithms for VASS₀: LTL, place boundedness, regularity.
- ▶ "Classical" properties of VASS are preserved for VASS₀.
- Open LTL algorithm relies on reachability for VASS (KM, unavoidable) and on reachability for VASS₀. Can we remove this last dependency?
- Open One stack?