The separation problem for languages of finite words

Thomas Place, Lorijn van Rooijen, Marc Zeitoun

 $\mathsf{LaBRI} \ \cdot \ \mathsf{Univ}. \ \mathsf{Bordeaux} \ \cdot \ \mathsf{CNRS}$

July 2013 - ALFA'13

Separation problem

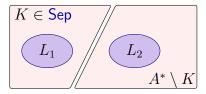
• $L_1, L_2 \in \mathcal{C}$ are Sep-separable if $\exists K \in \text{Sep}, L_1 \subseteq K, L_2 \cap K = \emptyset$.

Separation problem

• $L_1, L_2 \in \mathcal{C}$ are Sep-separable if $\exists K \in \text{Sep}, L_1 \subseteq K, L_2 \cap K = \emptyset$.

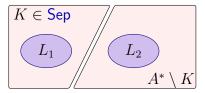
Separation problem

• $L_1, L_2 \in \mathcal{C}$ are Sep-separable if $\exists K \in \text{Sep}, L_1 \subseteq K, L_2 \cap K = \emptyset$.



Separation problem

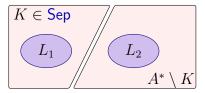
• $L_1, L_2 \in \mathcal{C}$ are Sep-separable if $\exists K \in \text{Sep}, L_1 \subseteq K, L_2 \cap K = \emptyset$.



Sep = fixed class of languages (closed under complement).

Separation problem

• $L_1, L_2 \in \mathcal{C}$ are Sep-separable if $\exists K \in \text{Sep}, L_1 \subseteq K, L_2 \cap K = \emptyset$.



Sep = fixed class of languages (closed under complement).

- No minimal separator for in general.
- **Example**: $(a^2)^*$ and $a(a^2)^*$ are disjoint but not FO(<)-separable.

Separation problem: some questions

O Decision problem

"Given $L_1, L_2 \in \mathcal{C}$, decide whether they are Sep-separable"

Separation problem: some questions

Decision problem

"Given $L_1, L_2 \in \mathcal{C}$, decide whether they are Sep-separable"

Note: If C complement-closed and $L \in C$:

 $L \in \mathsf{Sep} \iff (L, A^* \setminus L)$ Sep-separable

That is, Sep-membership reduces to Sep-separability.

Separation problem: some questions

Decision problem

"Given $L_1, L_2 \in \mathcal{C}$, decide whether they are Sep-separable"

Note: If C complement-closed and $L \in C$:

 $L \in \mathsf{Sep} \iff (L, A^* \setminus L)$ Sep-separable

That is, Sep-membership reduces to Sep-separability.

- **2** Computation of a separator.
- **Omplexity**: How costly is it to decide? to compute a separator?

Some motivations

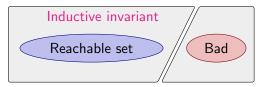
- 2 Generic proof outline
- 3 Case studies: classes of separators
- Open problems

Why separation?

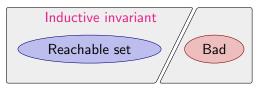
• Captures the discriminating power of logics. More accurate than expressive power.

- Captures the discriminating power of logics. More accurate than expressive power.
- Separation everywhere!

- Captures the discriminating power of logics. More accurate than expressive power.
- Separation everywhere!
 - In math (topology, Hahn-Banach, optimization),
 - Automatic verification: interpolation.



- Captures the discriminating power of logics. More accurate than expressive power.
- Separation everywhere!
 - In math (topology, Hahn-Banach, optimization),
 - Automatic verification: interpolation.



- Reachability in VASS (J. Leroux's proof).
- Algorithmic effectiveness, eg, interpolation techniques.

Why separation?

- Captures the discriminating power of logics. More accurate than expressive power.
- Separation everywhere!
 - In math (topology, Hahn-Banach, optimization),
 - Automatic verification: interpolation.
 - Approximate query answering, [Czerwiński–Martens–Masopust13]
 - XML schemas.

[idem]

- Captures the discriminating power of logics. More accurate than expressive power.
- Separation everywhere!
 - In math (topology, Hahn-Banach, optimization),
 - Automatic verification: interpolation.
 - Approximate query answering, [Czerwiński–Martens–Masopust13]
 - XML schemas. [idem]
 - Semigroup theory: specific reductions membership ≤ separation.
 Separation for some classes entails membership for larger classes.

Separation problem: profinite approach

- Assume C = Reg and Sep is a variety of languages.
 - **Ex**: FO-, FO²-definable, piecewise-testable, locally testable.

Separation problem: profinite approach

- Assume $C = \operatorname{Reg}$ and Sep is a variety of languages.
 - **Ex**: FO-, FO²-definable, piecewise-testable, locally testable.
- $\hat{F}_A(Sep)$ = relatively Sep-free profinite semigroup over A.
- Theorem [Almeida96] L_1, L_2 Sep-separable $\iff \overline{L}_1 \cap \overline{L}_2 = \emptyset$. $\overline{L} = \text{ closure of } L \text{ in } \hat{F}_A(Sep).$

Separation problem: profinite approach

- Assume C = Reg and Sep is a variety of languages.
 - **Ex**: FO-, FO²-definable, piecewise-testable, locally testable.
- $\hat{F}_A(Sep)$ = relatively Sep-free profinite semigroup over A.
- Theorem [Almeida96] L_1, L_2 Sep-separable $\iff \overline{L}_1 \cap \overline{L}_2 = \emptyset$. $\overline{L} = \text{ closure of } L \text{ in } \hat{F}_A(Sep).$

• An approach for separation: "computing" closures.

Separation problem vs. profinite approach

- Testing $\overline{L}_1 \cap \overline{L}_2 = \emptyset$ not easy in general.
- Already solved for separator languages recognized by
 - groups
 - aperiodic monoids
 - J- and R-trivial monoids
 - locally testable monoids

[Ash91, RZ92, Auinger04, Auinger-Steinberg05]

[Henckell88, Henckell-Rhodes-Steinberg10]

[Almeida-Z.95,Almeida-Costa-Z.08]

[Steinberg01, Costa-Nogueira10]

Separation problem vs. profinite approach

- Testing $\overline{L}_1 \cap \overline{L}_2 = \emptyset$ not easy in general.
- Already solved for separator languages from several classes.
- Drawbacks Only provides a yes/no answer. No separator in the "yes" case. Requires involved tools (profinite semigroup theory).

Some motivations

2 Generic proof outline

3 Case studies: classes of separators

Open problems

Generic proof outline

• Separation is RE when Sep is RE and \subseteq , \cap against C decidable.

Generic proof outline

- Separation is RE when Sep is RE and \subseteq , \cap against C decidable.
- Need: RE witness for non-separability.

Generic proof outline

- Separation is RE when Sep is RE and \subseteq , \cap against C decidable.
- Need: RE witness for non-separability.
- 2 approaches for getting such a witness.

Witnesses of non-separability: 2 approaches

• For layered classes of separators: index up to which to test.

- Examples of layered classes:
 - FO-definable
 - Piecewise-testable
 - Locally testable

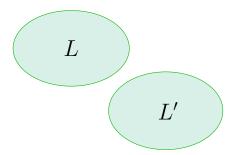
 $\begin{array}{l} \mbox{formulas of quantifier depth}\leqslant n.\\ \mbox{pieces of length}\leqslant n.\\ \mbox{windows of length}\leqslant n. \end{array}$

Witnesses of non-separability: 2 approaches

• For layered classes of separators: index up to which to test.

- Examples of layered classes:
 - FO-definable
 - Piecewise-testable
 - Locally testable

formulas of quantifier depth $\leq n$. pieces of length $\leq n$. windows of length $\leq n$.

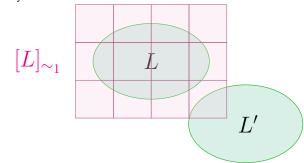


Witnesses of non-separability: 2 approaches

• For layered classes of separators: index up to which to test.

- Examples of layered classes:
 - FO-definable
 - Piecewise-testable
 - Locally testable

formulas of quantifier depth $\leq n$. pieces of length $\leq n$. windows of length $\leq n$.

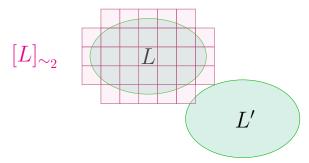


Witnesses of non-separability: 2 approaches

• For layered classes of separators: index up to which to test.

- Examples of layered classes:
 - FO-definable
 - Piecewise-testable
 - Locally testable

formulas of quantifier depth $\leq n$. pieces of length $\leq n$. windows of length $\leq n$.

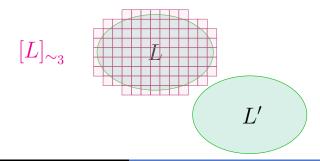


Witnesses of non-separability: 2 approaches

• For layered classes of separators: index up to which to test.

- Examples of layered classes:
 - FO-definable
 - Piecewise-testable
 - Locally testable

 $\begin{array}{l} \mbox{formulas of quantifier depth}\leqslant n.\\ \mbox{pieces of length}\leqslant n.\\ \mbox{windows of length}\leqslant n. \end{array}$



Witnesses of non-separability: 2 approaches

- For layered classes of separators: index up to which to test.
 - Non-separability by languages up to index n is RE.
 - Reduction to a computable sufficient index N.

 \rightsquigarrow Brute force algorithm.

Witnesses of non-separability: 2 approaches

• For layered classes of separators: index up to which to test.

- Non-separability by languages up to index n is RE.
- Reduction to a computable sufficient index N.

 \rightsquigarrow Brute force algorithm.

Witnesses as common patterns in automata recognizing L₁, L₂.
 ~> Practical algorithms.

Bounding index for layered classes: ingredients

- L_1, L_2 are not separable iff.
 - $(\mathcal{P}) \qquad \forall n \quad \exists w_1 \in L_1, \ \exists w_2 \in L_2 \quad w_1 \sim_n w_2.$

Bounding index for layered classes: ingredients

- L_1, L_2 are not separable iff.
 - $(\mathcal{P}) \qquad \forall n \quad \exists w_1 \in L_1, \ \exists w_2 \in L_2 \quad w_1 \sim_n w_2.$

- Entails suitable decompositions of w_1, w_2 .
- For computable index $N \ge f(L_1, L_2)$, pump decomposition factors
 - without changing syntactical values wrt. L_1, L_2 .
 - entailing (\mathcal{P}) .

Bounding index for layered classes: ingredients

- L_1, L_2 are not separable iff.
 - $(\mathcal{P}) \qquad \forall n \quad \exists w_1 \in L_1, \ \exists w_2 \in L_2 \quad w_1 \sim_n w_2.$

- Entails suitable decompositions of w_1, w_2 .
- For computable index $N \ge f(L_1, L_2)$, pump decomposition factors
 - without changing syntactical values wrt. L_1, L_2 .
 - entailing (\mathcal{P}) .
- Byproduct: decompositions yield common patterns.

Meta theorem

Theorem One can compute $N = f(L_1, L_2)$ st. TFAE:

- L_1 and L_2 are Sep-separable.
- L_1 and L_2 are Sep[N]-separable.
- The language $[L_1]_{\sim N}$ separates L_1 from L_2 .
- $(\mathcal{A}_1, \mathcal{A}_2)$ have no witness of non Sep-separability.

Meta theorem

Theorem One can compute $N = f(L_1, L_2)$ st. TFAE:

- L_1 and L_2 are Sep-separable.
- L_1 and L_2 are Sep[N]-separable.
- The language $[L_1]_{\sim N}$ separates L_1 from L_2 .
- $(\mathcal{A}_1,\mathcal{A}_2)$ have no witness of non Sep-separability.
- N comes from pumping arguments

(pigeonhole principle, Ramsey's theorem, Simon's FFT).

• Witness = pattern with same shape (depends on Sep).

Outline

- Some motivations
- 2 Generic proof outline
- 3 Case studies: classes of separators
- Open problems

Piecewise testable languages

- Want to separate regular by piecewise testable languages.
- u is a piece of v if

$$u = a_1 \cdots a_n$$
 $v = v_0 a_1 v_1 \cdots v_{n-1} a_n v_n$, $a_i \in A$, $v_i \in A^*$.

Piecewise testable languages

- Want to separate regular by piecewise testable languages.
- u is a piece of v if

 $u = a_1 \cdots a_n$ $v = v_0 a_1 v_1 \cdots v_{n-1} a_n v_n$, $a_i \in A$, $v_i \in A^*$.

- $u, v \sim_n$ -equivalent if they have the same pieces up to length n.
- A piecewise-testable language is a union of \sim_n -classes.

Piecewise testable languages

- Want to separate regular by piecewise testable languages.
- u is a piece of v if

 $u = a_1 \cdots a_n$ $v = v_0 a_1 v_1 \cdots v_{n-1} a_n v_n$, $a_i \in A$, $v_i \in A^*$.

- $u, v \sim_n$ -equivalent if they have the same pieces up to length n.
- A piecewise-testable language is a union of \sim_n -classes.
- Are $(ab)^+$ and $(ba)^+$ PT-separable?

Piecewise testable languages

- Want to separate regular by piecewise testable languages.
- u is a piece of v if

$$u = a_1 \cdots a_n \qquad v = v_0 a_1 v_1 \cdots v_{n-1} a_n v_n, \qquad a_i \in A, \qquad v_i \in A^*.$$

- $u, v \sim_n$ -equivalent if they have the same pieces up to length n.
- A piecewise-testable language is a union of \sim_n -classes.
- Are $(ab)^+$ and $(ba)^+$ PT-separable? No $\forall n \in \mathbb{N}, \ (ab)^n \sim_n (ba)^n$.

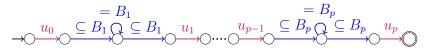
PT-separability

Theorem From NFAs A_1, A_2 , one determines in $\mathsf{PTIME}(|Q_1|, |Q_2|, |A|)$ whether $L(\mathcal{A}_1)$ and $L(\mathcal{A}_2)$ are PT -separable.

- Recall: semi-algorithm for testing separability.
- Need a witness for non-separability.
- 2 independent, different proofs with different motivations
 - Czerwiński-Martens-Masopust [ICALP'13, talk on Wednesday].
 - Place-van Rooijen–Zeitoun [MFCS'13].

Patterns for non-PT-separability: (\vec{u}, \vec{B}) -paths

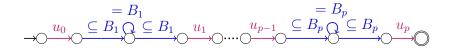
A (\vec{u}, \vec{B}) -path in \mathcal{A} is a successful path, of the form:



 $u_i =$ words, $B_i =$ subalphabets.

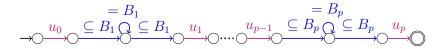
PT-separability in PTIME: ingredients

Proposition 1 $L(A_1)$ and $L(A_2)$ are **not PT-separable iff** $\exists (\vec{u}, \vec{B})$ such that both A_1 and A_2 have a (\vec{u}, \vec{B}) -path.



PT-separability in PTIME: ingredients

Proposition 1 $L(A_1)$ and $L(A_2)$ are **not PT-separable iff** $\exists (\vec{u}, \vec{B})$ such that both A_1 and A_2 have a (\vec{u}, \vec{B}) -path.



Proposition 2 One can determine in $\text{PTIME}(|Q_1|, |Q_2|, |A|)$ whether $\exists \ (\vec{u}, \vec{B})$ such that both \mathcal{A}_1 and \mathcal{A}_2 have a (\vec{u}, \vec{B}) -path.

Separation by $FO^2(<)$ -definable languages

Same power: FO²(<), Unambiguous Languages, Δ_2 , $\Sigma_2 \cap \Pi_2$, DA, UTL

[Schützenberger, Schwentick-Therien-Vollmer, Pin-Weil, Therien-Wilke]

Separation by $FO^2(<)$ -definable languages

Same power: FO²(<), Unambiguous Languages, Δ_2 , $\Sigma_2 \cap \Pi_2$, DA, UTL

[Schützenberger, Schwentick-Therien-Vollmer, Pin-Weil, Therien-Wilke]

Layers: $u \cong_k v$ if u, v belong to the same unambiguous products of size $\leqslant k$.

Separation by $FO^2(<)$ -definable languages

Same power: FO²(<), Unambiguous Languages, Δ_2 , $\Sigma_2 \cap \Pi_2$, DA, UTL

[Schützenberger, Schwentick-Therien-Vollmer, Pin-Weil, Therien-Wilke]

Layers: $u \cong_k v$ if

u, v belong to the same unambiguous products of size $\leqslant k$.

- Meta-theorem holds. (Forbidden patterns require precomputation.)
- NEXPSPACE from NFAs.
- Decidability result is new: DA has decidable 2-pointlike sets.

Separation by LT and LTT languages

• Locally testable language LT:

finite boolean combination of uA^* , A^*uA^* , A^*u .

• Locally threshold testable language LTT:

in addition, can count up to some threshold.

- Ex. $(ab)^+$ is LT $\#^*a\#^*b\#^*$ is not LT.
- Layers: $u \equiv_n v$ if u and v have the same n-windows.

Separation by LT and LTT languages

- Meta-theorem holds.

with same triples $(\alpha_i, u_i, \alpha_{i+1})$.

• From NFAs, between NP and NEXPTIME for LT. Compare to: Membership is PTIME from DFA

Pin05]

• Can be adapted for LTT.

Open problems

- Other logics: FO, $FO^2(+1)$, modular predicates,...
- Other separators: positive varieties, lattices of languages, etc.
- Other separated: Separating non-regular languages.
 Reg-separation of CF languages [Szymanski–Williams76]
- Other structures (infinite words, trees).

Open problems

- Other logics: FO, $FO^2(+1)$, modular predicates,...
- Other separators: positive varieties, lattices of languages, etc.
- Other separated: Separating non-regular languages. Reg-separation of CF languages [Szymanski–Williams76]
- Other structures (infinite words, trees).
- Complexity issues (time, size of separators).
- Efficient computation of separators.

Open problems

- Other logics: FO, $FO^2(+1)$, modular predicates,...
- Other separators: positive varieties, lattices of languages, etc.
- Other separated: Separating non-regular languages. Reg-separation of CF languages [Szymanski–Williams76]
- Other structures (infinite words, trees).
- Complexity issues (time, size of separators).
- Efficient computation of separators.
- Algebraic interpretation?
- Links between separation and decidability?

Questions?