Separation by Locally Testable Languages

Thomas Place, Lorijn van Rooijen, Marc Zeitoun

LaBRI Université Bordeaux, CNRS, FRANCE

December 13, 2013

What is Separation?

Fix a class **Sep** of regular languages.

Input Regular languages L, L'.

Question Does there exist a separator $K \in$ **Sep** for L, L'?

What is Separation?

Fix a class Sep of regular languages.

Input Regular languages L, L'.

Question Does there exist a separator $K \in$ **Sep** for L, L'?

Separation: Why should you try it?

Objects we consider

Objects we consider

Objects we consider

Expressiveness of Descriptive Formalisms

2 ways to capture expressiveness:

• Level 1. Expressive power.

Membership.

Can the formalism express an input language?

$$\exists \varphi, \ L = L(\varphi)?$$

Expressiveness of Descriptive Formalisms

2 ways to capture expressiveness:

• Level 1. Expressive power.

Membership.

Can the formalism express an input language?

$$\exists \varphi, \ L = L(\varphi)?$$

• Level 2. Discriminating power. Separation. Can the formalism discriminate between 2 input languages?

$$\exists \varphi, \quad L \subseteq L(\varphi) \text{ and } L(\varphi) \cap L' = \varnothing?$$

A Reduced Problem: Decidable Characterizations

Decide the following problem:

A Reduced Problem: Decidable Characterizations

Decide the following problem:

Decidable characterization of a formalism $\ensuremath{\mathcal{F}}$

Understanding Expressive Power of ${\mathcal F}$

If the characterization answer is yes - All subparts of the automata are in LT (provided it is minimal).

If the characterization's answer is no 😕

- We know very little.
- Maybe interesting things can still be said.

Here comes Separation

Decide the following problem:

in LT

Separation is more general than characterization: $L' = A^* \setminus L$

Separation is more general than characterization: $L' = A^* \setminus L$

A more General Problem than Characterization

A more General Problem than Characterization

Problem is now

What properties of this automaton can be expressed as LT languages?

Need techniques applying to all languages, not just to LT ones
 ⇒ More general results, usable in broader context.

- Need techniques applying to all languages, not just to LT ones
 ⇒ More general results, usable in broader context.
- We do not have the separator in hand.
 ⇒ No canonical tool (like the syntactic monoid).

- Need techniques applying to all languages, not just to LT ones
 ⇒ More general results, usable in broader context.
- We do not have the separator in hand.
 ⇒ No canonical tool (like the syntactic monoid).
- Computational complexity can be higher than for membership.

- Need techniques applying to all languages, not just to LT ones
 ⇒ More general results, usable in broader context.
- We do not have the separator in hand.
 ⇒ No canonical tool (like the syntactic monoid).
- Computational complexity can be higher than for membership.
- ↔ Many classes already solved for separation, including LT, LTT but involved algebraic+topological, non-constructive proofs.

Separation by LT languages

LT = Boolean combinations of

$$uA^*$$
, A^*u , A^*uA^*

Membership based on presence/absence of suffixes/prefixes/infixes.

Example
$$A = \{a, b\}$$

 $(ab)^+ = aA^* \cap A^*b \cap A^* \setminus (A^*aaA^* \cup A^*bbA^*)$
 $\#^*a\#^*b\#^*$ is not LT.
 $\#^ka\#^kb\#^k$ and $\#^kb\#^ka\#^k$ have same "windows" of size k .

k-windows

• *k*-window at position *i*:

k-windows

• *k*-window at position *i*:

$$\begin{array}{c}
i \\
\downarrow \\
baccc \mathbf{a} a b \mathbf{c} b a \\
\downarrow \\
6-window at i: a a b c b a
\end{array}$$

• LT languages determined by (dis)allowed k-windows.

For
$$(ab)^+$$
, take $k = 2$.

 $(ab)^+ = aA^* \cap A^*b \cap A^* \setminus (A^*aaA^* \cup A^*bbA^*)$

k-windows

• *k*-window at position *i*:

$$baccc abcba abba \\ \downarrow \\ baccc abcba abba \\ \downarrow \\ 6-window at i: aabcba$$

• LT languages determined by (dis)allowed k-windows.

For
$$(ab)^+$$
, take $k = 2$.

 $(ab)^+ = aA^* \cap A^*b \cap A^* \setminus (A^*aaA^* \cup A^*bbA^*)$

 $u \equiv_k w$ if u, w have the same k-windows. L is LT $\iff L$ is a union of \equiv_k -classes.

•
$$LT[k] = \left\{ L \mid L \text{ is a union of } \equiv_k \text{-classes} \right\}.$$

 $LT = \bigcup_k LT[k].$

• Deciding LT[k] separation of regular languages for fixed k?

•
$$LT[k] = \left\{ L \mid L \text{ is a union of } \equiv_k \text{-classes} \right\}.$$

 $LT = \bigcup_k LT[k].$

Deciding LT[k] separation of regular languages for fixed k?
 Easy: [L]_{≡k} = smallest LT[k] language containing L.

•
$$LT[k] = \left\{ L \mid L \text{ is a union of } \equiv_k \text{-classes} \right\}.$$

 $LT = \bigcup_k LT[k].$

Deciding LT[k] separation of regular languages for fixed k?
 Easy: [L]_{≡k} = smallest LT[k] language containing L.

•
$$LT[k] = \left\{ L \mid L \text{ is a union of } \equiv_k \text{-classes} \right\}.$$

 $LT = \bigcup_k LT[k].$

Deciding LT[k] separation of regular languages for fixed k?
 Easy: [L]_{≡k} = smallest LT[k] language containing L.

• For LT: no such smallest LT language.

 \bullet Semi-algorithm: enumerate all LT languages K and test

$$L \subseteq K \subseteq A^* \setminus L'$$

 \bullet Semi-algorithm: enumerate all LT languages K and test

$$L \subseteq K \subseteq A^* \setminus L'$$

- Need semi-algorithm to witness for non-separability.
- Restricting to a finite number of separators \rightsquigarrow decidability.

 $u \equiv_k w$ if u, w have the same k-windows.

When do we stop?

Bounding the window

• L, L' are not separable iff.

$$\forall k \quad \exists w \in L, \ \exists w' \in L' \quad w \equiv_k w'.$$

Bounding the window

• L, L' are not separable iff.

$$\forall k \qquad \exists w \in L, \ \exists w' \in L' \qquad w \equiv_k w'.$$

• Abstraction k-witnesses of non-separability: tuples (i, f, i', f')

- L, L' are k-separable $\iff \{k \text{-witnesses}\} = \emptyset$.
- $\{k+1\text{-witnesses}\} \subseteq \{k\text{-witnesses}\}.$
- Stabilization index?

• Main technique for LT:

$$\begin{cases} k \text{ large} \\ w \in L, \ w' \in L' \\ w \equiv_k w' \end{cases} \implies \begin{cases} \text{for all } \ell, \text{ build} \\ z \in L, \ z' \in L' \\ z \equiv_\ell z' \end{cases}$$

• Main technique for LT:

$$\begin{cases} k \text{ large} \\ w \in L, \ w' \in L' \\ w \equiv_k w' \end{cases} \implies \begin{cases} \text{ for all } \ell, \text{ build} \\ z \in L, \ z' \in L' \\ z \equiv_\ell z' \end{cases}$$

- z,z' built by pumping infixes labeling loops in $\mathcal{A},\ \mathcal{A}'.$
- k-loop = infix that can be pumped
 - labeling loops in \mathcal{A} , \mathcal{A}' ,
 - occurring inside k/2-window.

• Main technique for LT:

$$\begin{cases} k \text{ large} \\ w \in L, \ w' \in L' \\ w \equiv_k w' \end{cases} \implies \begin{cases} \text{ for all } \ell, \text{ build} \\ z \in L, \ z' \in L' \\ z \equiv_\ell z' \end{cases}$$

- z,z' built by pumping infixes labeling loops in $\mathcal{A},\ \mathcal{A}'.$
- k-loop = infix that can be pumped
 - labeling loops in \mathcal{A} , \mathcal{A}' ,
 - occurring inside k/2-window.

Lemma (Pumping)

If k > 4|Q||Q'|, $\exists a k$ -loop within k/4 consecutive positions.

Building $z \in L, z' \in L'$ such that $z \equiv_{\ell} z'$

• Insert smallest k-loops in w and w' whenever possible.

$$w = u_0 \cdot u_1 \dots u_{n-1} \cdot u_n$$
$$z = u_0 \cdot \alpha_1^{\ell} \cdot u_1 \alpha_2^{\ell} \cdots \alpha_{n-1}^{\ell} \cdot u_{n-1} \cdot \alpha_n^{\ell} \cdot u_n$$

and same for w' with u'_i , α'_i .

Building $z \in L, z' \in L'$ such that $z \equiv_{\ell} z'$

• Insert smallest k-loops in w and w' whenever possible.

$$w = u_0 \cdot u_1 \dots u_{n-1} \cdot u_n$$
$$z = u_0 \cdot \alpha_1^{\ell} \cdot u_1 \alpha_2^{\ell} \cdots \alpha_{n-1}^{\ell} \cdot u_{n-1} \cdot \alpha_n^{\ell} \cdot u_n$$

and same for w' with u'_i , α'_i .

Lemma (Recall: k > 4|Q||Q'|)

2 Therefore, z and z' are not distinguishable by \equiv_{ℓ} .

Algorithms

- Alg 1: Test all separators up to window size k = 4|Q|.|Q'| + 1.
- \bullet Alg 2: Test for common pattern occurring in both ${\cal A}$ and ${\cal A}'$

with same tuples $(\alpha_i, u_i, \alpha_{i+1})$, (u_0, α_1) , (α_p, u_p) .

Theorem

- **1** L, L' not LT-separatable iff A, A' have a common pattern.
- **2** Common pattern can be detected in NEXPTIME.
- Common pattern detection is NP-hard Compare with: testing if L is in LT is PTIME.

Locally Threshold Testable Languages

- LTT = LT + ability to count infixes up to threshold.
 Example At least 7 occurrences of *ab*.
- $u \equiv_k^d w$ if u, w have same **number** of k-windows, up to thr. d.

Locally Threshold Testable Languages

- LTT = LT + ability to count infixes up to threshold.
 Example At least 7 occurrences of *ab*.
- $u \equiv_k^d w$ if u, w have same **number** of k-windows, up to thr. d.
- For fixed d, previous bound on k still works.
- Existence of threshold can be expressed in Presburger logic.

Locally Threshold Testable Languages

- LTT = LT + ability to count infixes up to threshold.
 Example At least 7 occurrences of *ab*.
- $u \equiv_k^d w$ if u, w have same **number** of k-windows, up to thr. d.
- For fixed d, previous bound on k still works.
- Existence of threshold can be expressed in Presburger logic.

Theorem

- **1** L, L' not LTT-separatable iff A, A' have a common pattern.
- **2** A common pattern can be detected in **2-NEXPSPACE**.
- Common pattern detection is NP-hard Compare with: testing if L is in LTT is PTIME.

Conclusion

Summary

- Separability by LT and LTT is decidable, elementary tools.
- Complexity bounds (not tight).
- Some more results for context-free input languages.

Recent and further work

- Same scheme can be adapted for Sep = $B\Sigma_1(<)$, FO²(<), FO
- Other important classes, eg, quantifier alternation hierarchies.
- Other structures: eg, trees, VPAs.
- Generic results to transfer decidability of separability.
- Links between membership and separation.