
Separation by Locally Testable Languages

Thomas Place, Lorijn van Rooijen, Marc Zeitoun

LaBRI Université Bordeaux, CNRS, FRANCE

December 13, 2013

1 / 23

What is Separation?

Fix a class Sep of regular languages.

Input Regular languages L,L′.

Question Does there exist a separator K ∈ Sep for L,L′?

LL′

A∗

K in Sep

2 / 23

What is Separation?

Fix a class Sep of regular languages.

Input Regular languages L,L′.

Question Does there exist a separator K ∈ Sep for L,L′?

LL′

A∗

K in Sep
2 / 23

Separation:
Why should you try it?

3 / 23

Objects we consider

First-Order Logic (FO)

2-Variables FO (FO2)

Piecewise Testable (BΣ1)

Locally Testable (LT)

LTT (FO(+1))

First-Order Logic (FO)

2-Variables FO (FO2)

Piecewise Testable (BΣ1)

Locally Testable (LT)

LTT (FO(+1))

First-Order Logic (FO)

2-Variables FO (FO2)

Piecewise Testable (BΣ1)

Locally Testable (LT)

LTT (FO(+1))

For this talk

Structure Descriptive Formalism

ababcbaa

Words

Trees

ababcbaa

Words

Trees

ababcbaa

Words

Trees

Express Properties

4 / 23

Objects we consider

First-Order Logic (FO)

2-Variables FO (FO2)

Piecewise Testable (BΣ1)

Locally Testable (LT)

LTT (FO(+1))

First-Order Logic (FO)

2-Variables FO (FO2)

Piecewise Testable (BΣ1)

Locally Testable (LT)

LTT (FO(+1))

First-Order Logic (FO)

2-Variables FO (FO2)

Piecewise Testable (BΣ1)

Locally Testable (LT)

LTT (FO(+1))

For this talk

Structure Descriptive Formalism

ababcbaa

Words

Trees

ababcbaa

Words

Trees

ababcbaa

Words

Trees

Express Properties

4 / 23

Objects we consider

First-Order Logic (FO)

2-Variables FO (FO2)

Piecewise Testable (BΣ1)

Locally Testable (LT)

LTT (FO(+1))

First-Order Logic (FO)

2-Variables FO (FO2)

Piecewise Testable (BΣ1)

Locally Testable (LT)

LTT (FO(+1))

First-Order Logic (FO)

2-Variables FO (FO2)

Piecewise Testable (BΣ1)

Locally Testable (LT)

LTT (FO(+1))

For this talk

Structure Descriptive Formalism

ababcbaa

Words

Trees

ababcbaa

Words

Trees

ababcbaa

Words

Trees

Express Properties

4 / 23

Expressiveness of Descriptive Formalisms

2 ways to capture expressiveness:

Level 1. Expressive power. Membership.

Can the formalism express an input language?

∃ϕ, L = L(ϕ)?

Level 2. Discriminating power. Separation.

Can the formalism discriminate between 2 input languages?

∃ϕ, L ⊆ L(ϕ) and L(ϕ) ∩ L′ = ∅?

5 / 23

Expressiveness of Descriptive Formalisms

2 ways to capture expressiveness:

Level 1. Expressive power. Membership.

Can the formalism express an input language?

∃ϕ, L = L(ϕ)?

Level 2. Discriminating power. Separation.

Can the formalism discriminate between 2 input languages?

∃ϕ, L ⊆ L(ϕ) and L(ϕ) ∩ L′ = ∅?

5 / 23

A Reduced Problem: Decidable Characterizations

Decide the following problem:

Take a regular language L

a
a

b

b
b

c

c

a

a
c

a

Take a regular language L

a
a

b

b
b

c

c

a

a
c

a

Is it an LT language ?

6 / 23

A Reduced Problem: Decidable Characterizations

Decide the following problem:

Take a regular language L

a
a

b

b
b

c

c

a

a
c

a

Take a regular language L

a
a

b

b
b

c

c

a

a
c

a

Is it an LT language ?

6 / 23

Why do we study these things ?

Decidable characterization of a formalism F
=

Understanding Expressive Power of F

Ideal Result Form:

L definable in F

L verifies set of properties

Proof = Construction of a Formula,
Hypothesis = Simple Properties

⇒ Normal form for formulas

Simon&Brzozowski ’73, McNaughton ’74

L a regular language, the following are equivalent:
– L is in LT.

– The syntactic monoid of L satisfies

{
ese = esese,
esete = etese

A counterexample always
happen when not in LT.

Simon&Brzozowski ’73, McNaughton ’74

L a regular language, the following are equivalent:

7 / 23

Why do we study these things ?

Decidable characterization of a formalism F
=

Understanding Expressive Power of F

Ideal Result Form:

L definable in F

L verifies set of properties

Proof = Construction of a Formula,
Hypothesis = Simple Properties

⇒ Normal form for formulas

Simon&Brzozowski ’73, McNaughton ’74

L a regular language, the following are equivalent:
– L is in LT.

– The syntactic monoid of L satisfies

{
ese = esese,
esete = etese

A counterexample always
happen when not in LT.

Simon&Brzozowski ’73, McNaughton ’74

L a regular language, the following are equivalent:

7 / 23

Why do we study these things ?

Decidable characterization of a formalism F
=

Understanding Expressive Power of F

Ideal Result Form:

L definable in F

L verifies set of properties

Proof = Construction of a Formula,
Hypothesis = Simple Properties

⇒ Normal form for formulas

Simon&Brzozowski ’73, McNaughton ’74

L a regular language, the following are equivalent:
– L is in LT.

– The syntactic monoid of L satisfies

{
ese = esese,
esete = etese

A counterexample always
happen when not in LT.

Simon&Brzozowski ’73, McNaughton ’74

L a regular language, the following are equivalent:

7 / 23

Why do we study these things ?

Decidable characterization of a formalism F
=

Understanding Expressive Power of F

Ideal Result Form:

L definable in F

L verifies set of properties

Proof = Construction of a Formula,
Hypothesis = Simple Properties

⇒ Normal form for formulas

Simon&Brzozowski ’73, McNaughton ’74

L a regular language, the following are equivalent:
– L is in LT.

– The syntactic monoid of L satisfies

{
ese = esese,
esete = etese

A counterexample always
happen when not in LT.

Simon&Brzozowski ’73, McNaughton ’74

L a regular language, the following are equivalent:

– L is in LT.

– The syntactic monoid of L satisfies

{
ese = esese,
esete = etese

7 / 23

Why do we study these things ?

Decidable characterization of a formalism F
=

Understanding Expressive Power of F

Ideal Result Form:

L definable in F

L verifies set of properties

Proof = Construction of a Formula,
Hypothesis = Simple Properties

⇒ Normal form for formulas

Simon&Brzozowski ’73, McNaughton ’74

L a regular language, the following are equivalent:
– L is in LT.

– The syntactic monoid of L satisfies

{
ese = esese,
esete = etese

A counterexample always
happen when not in LT.

Simon&Brzozowski ’73, McNaughton ’74

L a regular language, the following are equivalent:

– L is in LT.

– The syntactic monoid of L satisfies

{
ese = esese,
esete = etese

A counterexample that always
happens when not in LT.

7 / 23

Why would we want more ?

L

a
a

b

b
b

c

c

a

a
c

a

L

a
a

b

b
b

c

c

a

a
c

a

If the characterization answer is yes

– All subparts of the automata are in LT
(provided it is minimal).

If the characterization’s answer is no
– We know very little.

– Maybe interesting things can still be said.

8 / 23

Here comes Separation

Decide the following problem:

Take two regular languages L,L′

a

a

a

a b b b

a

Take two regular languages L,L′

a

a
L

L′
a

b ab b

b

a

a

Can L be separated from L′

with an LT language?

L

L′

A∗

in LTin LT

Separation is more general than characterization: L′ = A∗ \ L

9 / 23

Here comes Separation

Decide the following problem:

Take two regular languages L,L′

a

a

a

a b b b

a

Take two regular languages L,L′

a

a
L

L′
a

b ab b

b

a

a

Can L be separated from L′

with an LT language?

LL′

A∗

in LTin LT

Separation is more general than characterization: L′ = A∗ \ L

9 / 23

Here comes Separation

Decide the following problem:

Take two regular languages L,L′

a

a

a

a b b b

a

Take two regular languages L,L′

a

a
L

L′
a

b ab b

b

a

a

Can L be separated from L′

with an LT language?

LL′

A∗

in LT

in LT

Separation is more general than characterization: L′ = A∗ \ L

9 / 23

Here comes Separation

Decide the following problem:

Take two regular languages L,L′

a

a

a

a b b b

a

Take two regular languages L,L′

a

a
L

L′
a

b ab b

b

a

a

Can L be separated from L′

with an LT language?

L′ = A∗ \ L L

L′

A∗

in LTin LT

Separation is more general than characterization: L′ = A∗ \ L
9 / 23

Here comes Separation

Decide the following problem:

Take two regular languages L,L′

a

a

a

a b b b

a

Take two regular languages L,L′

a

a
L

L′
a

b ab b

b

a

a

Can L be separated from L′

with an LT language?

L′ = A∗ \ L L

L′

A∗

in LT

in LT

Separation is more general than characterization: L′ = A∗ \ L
9 / 23

A more General Problem than Characterization

a

a
L

L′

a

b a b b

b

a

a

Build single automaton
for both languages

a b
b

a

b

b

a

a

bb

a

aa

b

Problem is now

What properties of this automaton
can be expressed as LT languages?

10 / 23

A more General Problem than Characterization

a

a
L

L′

a

b a b b

b

a

a

Build single automaton
for both languages

a b
b

a

b

b

a

a

bb

a

aa

b

Problem is now

What properties of this automaton
can be expressed as LT languages?

10 / 23

Advantages & Difficulties of Separation

Need techniques applying to all languages, not just to LT ones
⇒ More general results, usable in broader context.

We do not have the separator in hand.
⇒ No canonical tool (like the syntactic monoid).

Computational complexity can be higher than for membership.

Many classes already solved for separation, including LT, LTT
but involved algebraic+topological, non-constructive proofs.

11 / 23

Advantages & Difficulties of Separation

Need techniques applying to all languages, not just to LT ones
⇒ More general results, usable in broader context.

We do not have the separator in hand.
⇒ No canonical tool (like the syntactic monoid).

Computational complexity can be higher than for membership.

Many classes already solved for separation, including LT, LTT
but involved algebraic+topological, non-constructive proofs.

11 / 23

Advantages & Difficulties of Separation

Need techniques applying to all languages, not just to LT ones
⇒ More general results, usable in broader context.

We do not have the separator in hand.
⇒ No canonical tool (like the syntactic monoid).

Computational complexity can be higher than for membership.

Many classes already solved for separation, including LT, LTT
but involved algebraic+topological, non-constructive proofs.

11 / 23

Advantages & Difficulties of Separation

Need techniques applying to all languages, not just to LT ones
⇒ More general results, usable in broader context.

We do not have the separator in hand.
⇒ No canonical tool (like the syntactic monoid).

Computational complexity can be higher than for membership.

Many classes already solved for separation, including LT, LTT
but involved algebraic+topological, non-constructive proofs.

11 / 23

Separation by LT languages

12 / 23

Locally Testable Languages

LT = Boolean combinations of

uA∗, A∗u, A∗uA∗

Membership based on presence/absence of suffixes/prefixes/infixes.

Example A = {a, b}

(ab)+ = aA∗ ∩ A∗b ∩ A∗ \ (A∗aaA∗ ∪A∗bbA∗)

#∗a#∗b#∗ is not LT.

#ka#kb#k and #kb#ka#k have same “windows” of size k.

13 / 23

k-windows

k-window at position i:

bacccaabcbaabba

i

aabcba6-window at i:

LT languages determined by (dis)allowed k-windows.

For (ab)+, take k = 2.

(ab)+ = aA∗ ∩ A∗b ∩ A∗ \ (A∗aaA∗ ∪A∗bbA∗)

u ≡k w if u,w have the same k-windows.

L is LT ⇐⇒ L is a union of ≡k-classes.

14 / 23

k-windows

k-window at position i:

bacccaabcbaabba

i

aabcba6-window at i:

LT languages determined by (dis)allowed k-windows.

For (ab)+, take k = 2.

(ab)+ = aA∗ ∩ A∗b ∩ A∗ \ (A∗aaA∗ ∪A∗bbA∗)

u ≡k w if u,w have the same k-windows.

L is LT ⇐⇒ L is a union of ≡k-classes.

14 / 23

k-windows

k-window at position i:

bacccaabcbaabba

i

aabcba6-window at i:

LT languages determined by (dis)allowed k-windows.

For (ab)+, take k = 2.

(ab)+ = aA∗ ∩ A∗b ∩ A∗ \ (A∗aaA∗ ∪A∗bbA∗)

u ≡k w if u,w have the same k-windows.

L is LT ⇐⇒ L is a union of ≡k-classes.

14 / 23

Separation for LT

LT[k] =
{
L | L is a union of ≡k-classes

}
.

LT =
⋃
k

LT[k].

Deciding LT[k] separation of regular languages for fixed k?

Easy: [L]≡k
= smallest LT[k] language containing L.

L

[L]≡k

For LT: no such smallest LT language.

15 / 23

Separation for LT

LT[k] =
{
L | L is a union of ≡k-classes

}
.

LT =
⋃
k

LT[k].

Deciding LT[k] separation of regular languages for fixed k?

Easy: [L]≡k
= smallest LT[k] language containing L.

L

[L]≡k

For LT: no such smallest LT language.

15 / 23

Separation for LT

LT[k] =
{
L | L is a union of ≡k-classes

}
.

LT =
⋃
k

LT[k].

Deciding LT[k] separation of regular languages for fixed k?

Easy: [L]≡k
= smallest LT[k] language containing L.

L[L]≡k

For LT: no such smallest LT language.

15 / 23

Separation for LT

LT[k] =
{
L | L is a union of ≡k-classes

}
.

LT =
⋃
k

LT[k].

Deciding LT[k] separation of regular languages for fixed k?

Easy: [L]≡k
= smallest LT[k] language containing L.

L[L]≡k

For LT: no such smallest LT language.

15 / 23

Separation for LT: Proof ideas

Semi-algorithm: enumerate all LT languages K and test

L ⊆ K ⊆ A∗ \ L′

Need semi-algorithm to witness for non-separability.

Restricting to a finite number of separators decidability.

16 / 23

Separation for LT: Proof ideas

Semi-algorithm: enumerate all LT languages K and test

L ⊆ K ⊆ A∗ \ L′

Need semi-algorithm to witness for non-separability.

Restricting to a finite number of separators decidability.

16 / 23

Witnesses of non-separability

u ≡k w if u,w have the same k-windows.

L

L′

[L]≡1
[L]≡2
[L]≡3

When do we stop?

17 / 23

Witnesses of non-separability

u ≡k w if u,w have the same k-windows.

L

L′

[L]≡1
[L]≡2
[L]≡3

When do we stop?

17 / 23

Witnesses of non-separability

u ≡k w if u,w have the same k-windows.

L

L′

[L]≡1

[L]≡2
[L]≡3

When do we stop?

17 / 23

Witnesses of non-separability

u ≡k w if u,w have the same k-windows.

L

L′

[L]≡1

[L]≡2
[L]≡3

When do we stop?

17 / 23

Witnesses of non-separability

u ≡k w if u,w have the same k-windows.

L

L′

[L]≡1

[L]≡2

[L]≡3

When do we stop?

17 / 23

Witnesses of non-separability

u ≡k w if u,w have the same k-windows.

L

L′

[L]≡1
[L]≡2

[L]≡3

When do we stop?

17 / 23

Witnesses of non-separability

u ≡k w if u,w have the same k-windows.

L

L′

[L]≡1
[L]≡2

[L]≡3

When do we stop?

17 / 23

Bounding the window

L,L′ are not separable iff.

∀k ∃w ∈ L, ∃w′ ∈ L′ w ≡k w
′.

Abstraction k-witnesses of non-separability: tuples (i, f, i′, f ′)

A

A′

i f

i′ f ′
≡k

L,L′ are k-separable ⇐⇒ {k-witnesses} = ∅.

{k + 1-witnesses} ⊆ {k-witnesses}.
Stabilization index?

18 / 23

Bounding the window

L,L′ are not separable iff.

∀k ∃w ∈ L, ∃w′ ∈ L′ w ≡k w
′.

Abstraction k-witnesses of non-separability: tuples (i, f, i′, f ′)

A

A′

i f

i′ f ′
≡k

L,L′ are k-separable ⇐⇒ {k-witnesses} = ∅.

{k + 1-witnesses} ⊆ {k-witnesses}.
Stabilization index?

18 / 23

k-loops

Main technique for LT:
k large
w ∈ L, w′ ∈ L′
w ≡k w

′
=⇒

for all `, build
z ∈ L, z′ ∈ L′
z ≡` z

′

z, z′ built by pumping infixes labeling loops in A, A′.
k-loop = infix that can be pumped

labeling loops in A, A′,
occurring inside k/2-window.

19 / 23

k-loops

Main technique for LT:
k large
w ∈ L, w′ ∈ L′
w ≡k w

′
=⇒

for all `, build
z ∈ L, z′ ∈ L′
z ≡` z

′

z, z′ built by pumping infixes labeling loops in A, A′.
k-loop = infix that can be pumped

labeling loops in A, A′,
occurring inside k/2-window.

· · ·
u0 unu1 un−1

α1 α2 αn−1 αn

19 / 23

k-loops

Main technique for LT:
k large
w ∈ L, w′ ∈ L′
w ≡k w

′
=⇒

for all `, build
z ∈ L, z′ ∈ L′
z ≡` z

′

z, z′ built by pumping infixes labeling loops in A, A′.
k-loop = infix that can be pumped

labeling loops in A, A′,
occurring inside k/2-window.

Lemma (Pumping)

If k > 4|Q||Q′|, ∃ a k-loop within k/4 consecutive positions.

19 / 23

k-loops

Building z ∈ L, z′ ∈ L′ such that z ≡` z
′

Insert smallest k-loops in w and w′ whenever possible.

w = u0 · u1 . . . un−1 · un
z = u0 · α`

1 · u1α`
2 · · ·α`

n−1 · un−1 · α`
n · un

and same for w′ with u′i, α
′
i.

Lemma (Recall: k > 4|Q||Q′|)

1 w ≡k w
′ =⇒ Same sets of triples

{(αi, ui, αi+1) | i}, and
{(α′j , u′j , α′j+1) | j}.

2 Therefore, z and z′ are not distinguishable by ≡`.

20 / 23

k-loops

Building z ∈ L, z′ ∈ L′ such that z ≡` z
′

Insert smallest k-loops in w and w′ whenever possible.

w = u0 · u1 . . . un−1 · un
z = u0 · α`

1 · u1α`
2 · · ·α`

n−1 · un−1 · α`
n · un

and same for w′ with u′i, α
′
i.

Lemma (Recall: k > 4|Q||Q′|)

1 w ≡k w
′ =⇒ Same sets of triples

{(αi, ui, αi+1) | i}, and
{(α′j , u′j , α′j+1) | j}.

2 Therefore, z and z′ are not distinguishable by ≡`.

20 / 23

Algorithms

Alg 1: Test all separators up to window size k = 4|Q|.|Q′|+ 1.

Alg 2: Test for common pattern occurring in both A and A′

· · ·
u0 upu1 up−1

α1 α2 αp−1 αp

with same tuples (αi,ui,αi+1), (u0,α1), (αp,up).

Theorem

1 L,L′ not LT-separatable iff A, A′ have a common pattern.

2 Common pattern can be detected in Nexptime.

3 Common pattern detection is NP-hard
Compare with: testing if L is in LT is Ptime.

21 / 23

Locally Threshold Testable Languages

LTT = LT + ability to count infixes up to threshold.

Example At least 7 occurrences of ab.

u ≡d
k w if u,w have same number of k-windows, up to thr. d.

For fixed d, previous bound on k still works.

Existence of threshold can be expressed in Presburger logic.

Theorem

1 L,L′ not LTT-separatable iff A, A′ have a common pattern.

2 A common pattern can be detected in 2-Nexpspace.

3 Common pattern detection is NP-hard
Compare with: testing if L is in LTT is Ptime.

22 / 23

Locally Threshold Testable Languages

LTT = LT + ability to count infixes up to threshold.

Example At least 7 occurrences of ab.

u ≡d
k w if u,w have same number of k-windows, up to thr. d.

For fixed d, previous bound on k still works.

Existence of threshold can be expressed in Presburger logic.

Theorem

1 L,L′ not LTT-separatable iff A, A′ have a common pattern.

2 A common pattern can be detected in 2-Nexpspace.

3 Common pattern detection is NP-hard
Compare with: testing if L is in LTT is Ptime.

22 / 23

Locally Threshold Testable Languages

LTT = LT + ability to count infixes up to threshold.

Example At least 7 occurrences of ab.

u ≡d
k w if u,w have same number of k-windows, up to thr. d.

For fixed d, previous bound on k still works.

Existence of threshold can be expressed in Presburger logic.

Theorem

1 L,L′ not LTT-separatable iff A, A′ have a common pattern.

2 A common pattern can be detected in 2-Nexpspace.

3 Common pattern detection is NP-hard
Compare with: testing if L is in LTT is Ptime.

22 / 23

Conclusion

Summary

Separability by LT and LTT is decidable, elementary tools.

Complexity bounds (not tight).

Some more results for context-free input languages.

Recent and further work

Same scheme can be adapted for Sep = BΣ1(<), FO2(<), FO

Other important classes, eg, quantifier alternation hierarchies.

Other structures: eg, trees, VPAs.

Generic results to transfer decidability of separability.

Links between membership and separation.

23 / 23

	The Separation Problem
	What is Separation ?

	Locally testable languages
	Witnesses of non-separability
	k-loops
	Patterns

