Separation by Locally Testable Languages

Thomas Place, Lorijn van Rooijen, Marc Zeitoun
LaBRI Université Bordeaux, CNRS, FRANCE

December 13, 2013

23

What is Separation?

Fix a class Sep of regular languages.
Input Regular languages L, L'.

Question Does there exist a separator K € Sep for L, L'?
A*

0

What is Separation?

Fix a class Sep of regular languages.
Input Regular languages L, L'.

Question Does there exist a separator K € Sep for L, L'?

2/23

Separation:
Why should you try it?

Objects we consider

Structure

Words
ababcbaa

Trees

Descriptive Formalism

First-Order Logic (FO)
2-Variables FO (FO.)
Piecewise Testable (B%;)
Locally Testable (LT)
LTT (FO(+1))

Objects we consider

Structure Descriptive Formalism

Express Properties

>

Words
ababcbaa

First-Order Logic (FO)
2-Variables FO (FO.)
Piecewise Testable (B%;)
Locally Testable (LT)
LTT (FO(+1))

Trees

Objects we consider

Structure Descriptive Formalism

Express Properties

>

Words
ababcbaa

o
Q 9
Q Q0

Locally Testable (LT)
LTT (FO(+1))

For this talk

Expressiveness of Descriptive Formalisms

2 ways to capture expressiveness:

o Level 1. Expressive power. Membership.

Can the formalism express an input language?

Jp, L= L(p)?

Expressiveness of Descriptive Formalisms

2 ways to capture expressiveness:

o Level 1. Expressive power. Membership.

Can the formalism express an input language?

Jp, L= L(p)?

o Level 2. Discriminating power. Separation.

Can the formalism discriminate between 2 input languages?

Jp, L CL(p) and L(p)NL = &7

5/23

A Reduced Problem: Decidable Characterizations

Decide the following problem:

Take a regular language L

6/23

A Reduced Problem: Decidable Characterizations

Decide the following problem:

Take a regular language L

%l Is it an LT language 7

6/23

Why do we study these things ?

Decidable characterization of a formalism F

Understanding Expressive Power of F

~

23

Why do we study these things ?

Decidable characterization of a formalism F

Understanding Expressive Power of F

~—

Ideal Result Form:

L definable in F

Tl

L verifies set of properties

~

Why do we study these things ?

Decidable characterization of a formalism F

Understanding Expressive Power of F

~—

Ideal Result Form:

Proof = Construction of a Formula, L definable in F
Hypothesis = Simple Properties l

= Normal form for formulas L verifies set of properties

~

23

Why do we study these things ?

I Decidahle charactorization af 2 formaliem T I

Simon&Brzozowski '73, McNaughton '74

L a regular language, the following are equivalent:

—Lisin LT.

. . - ese = esese
— The syntactic monoid of L satisfies { ’

esete = etese

ties

~

23

Why do we study these things ?

I Decidahle charactorization af 2 formaliem T I

Simon&Brzozowski '73, McNaughton '74

L a regular language, the following are equivalent:

—Lisin LT.

. . - ese = esese,
— The syntactic monoid of L satisfies { ’

esete = etese

/j

A counterexample that always
happens when not in LT.

ties

~

23

Why would we want more 7

If the characterization answer is yes @
— All subparts of the automata are in LT

(provided it is minimal).

If the characterization's answer is no &
— We know very little.
— Maybe interesting things can still be said.

Here comes Separation

Decide the following problem:

Take two regular languages L, L’

L OO~

a

L' b()ab()b

23

Here comes Separation

Decide the following problem:

Take two regular languages L, L’

L OO~

a

L' b()ab()b

P

Can L be separated from L’
with an LT language?

A*

0

Here comes Separation

Decide the following problem:

Take two regular languages L, L’

L OO~

a

L' b()ab()b

P

Can L be separated from L’
with an LT language?

in LT

23

Here comes Separation

Decide the following problem:

Take two regular languages L, L’

L OO~

a

L' b()ab()b

P

Can L be separated from L’
with an LT language?

Separation is more general than characterization: L/ = A*\ L

Here comes Separation

Decide the following problem:

Take two regular languages L, L’

L -0 0O~
L v

ab b

P

Can L be separated from L’
with an LT language?

in LT

Separation is more general than characterization: L/ = A*\ L

23

A more General Problem than Characterization

10/23

A more General Problem than Characterization

a
L m
Build single automaton
for both Ianguages

Problem is now

What properties of this automaton
can be expressed as LT languages?

10/23

Advantages & Difficulties of Separation

@ Need techniques applying to all languages, not just to LT ones
= More general results, usable in broader context.

11/23

Advantages & Difficulties of Separation

@ Need techniques applying to all languages, not just to LT ones
= More general results, usable in broader context.

@ We do not have the separator in hand.
= No canonical tool (like the syntactic monoid).

11/23

Advantages & Difficulties of Separation

@ Need techniques applying to all languages, not just to LT ones
= More general results, usable in broader context.

@ We do not have the separator in hand.
= No canonical tool (like the syntactic monoid).

o Computational complexity can be higher than for membership.

11/23

Advantages & Difficulties of Separation

@ Need techniques applying to all languages, not just to LT ones
= More general results, usable in broader context.

@ We do not have the separator in hand.
= No canonical tool (like the syntactic monoid).

o Computational complexity can be higher than for membership.

% Many classes already solved for separation, including LT, LTT
but involved algebraic+topological, non-constructive proofs.

11/23

Separation by LT languages

Locally Testable Languages

LT = Boolean combinations of

uA”*, Aru, AfuA*

Membership based on presence/absence of suffixes/prefixes/infixes.

Example A = {a,b}
(ab)™ = ad* N A n A"\ (A*aaA* U A*bbA*)
#*a#*b#" is not LT.
#F 4R bR and #5045 a#F have same “windows” of size k.

13/23

k-windows

@ k-window at position i:
i

bacccaab@baabba

l

6-window at 7: aabcba

14 /23

k-windows

@ k-window at position i:
i

bacccaab@baabba

l

6-window at i: aabcba
@ LT languages determined by (dis)allowed k-windows.
For (ab)™, take k = 2.

(@)t = ad* N A N A"\ (A%aad* U A*bbAY)

14 /23

k-windows

@ k-window at position i:
i

bacccaab@baabba

l

6-window at i: aabcba
@ LT languages determined by (dis)allowed k-windows.
For (ab)™, take k = 2.

(@)t = ad* N A N A"\ (A%aad* U A*bbAY)

uw=,w if wu,w have the same k-windows.

Lis LT <= L is a union of =j-classes.

14 /23

Separation for LT

o LT[k] = {L | L is a union of Ek-classes}.
LT = [JLT[R).
k

e Deciding LT[k] separation of regular languages for fixed k7

Separation for LT

o LT[k] = {L | L is a union of Ek-classes}.
LT = [JLT[R).
k

e Deciding LT[k] separation of regular languages for fixed k7
Easy: [L]=, = smallest LT[k] language containing L.

15/23

Separation for LT

o LT[k] = {L | L is a union of Ek-classes}.
LT = [JLT[R).
k

e Deciding LT[k] separation of regular languages for fixed k7
Easy: [L]=, = smallest LT[k] language containing L.

15/23

Separation for LT

o LT[k] = {L | L is a union of Ek—classes}.
LT = [JLT[R).
k

e Deciding LT[k] separation of regular languages for fixed k7
Easy: [L]=, = smallest LT[k] language containing L.

@ For LT: no such smallest LT language.

15/23

Separation for LT: Proof ideas

@ Semi-algorithm: enumerate all LT languages K and test

L C K C A"\L

16 /23

Separation for LT: Proof ideas

@ Semi-algorithm: enumerate all LT languages K and test

L C K C A"\L

@ Need semi-algorithm to witness for non-separability.

@ Restricting to a finite number of separators ~~ decidability.

16 /23

Witnesses of non-separability

u=pw if wu,w have the same k-windows.

Witnesses of non-separability

u=pw if wu,w have the same k-windows.

17/23

Witnesses of non-separability

u=pw if wu,w have the same k-windows.

17/23

Witnesses of non-separability

u=pw if wu,w have the same k-windows.

17/23

Witnesses of non-separability

u=pw if wu,w have the same k-windows.

17/23

Witnesses of non-separability

u=pw if wu,w have the same k-windows.

[L]=

3

17/23

Witnesses of non-separability

[L]=

3

if u,w have the same k-windows.

—

When do we stop?

17/23

Bounding the window

e L, L' are not separable iff.

Vk Jwel, el w=puw.

Bounding the window

e L, L' are not separable iff.

Vk Jwel, el w=puw.

@ Abstraction k-witnesses of non-separability: tuples (i, f, ', f')

o L,L are k-separable <= {k-witnesses} = &.
o {k+ 1-witnesses} C {k-witnesses}.

@ Stabilization index?

18/23

k-loops

@ Main technique for LT:

k large for all £, build
wel, wel — zeL, Zel
w =, w 2=y 2

19/23

k-loops

@ Main technique for LT:

k large for all £, build
wel, wel — zeL, Zel
w =, w 2=y 2

@ 2,2’ built by pumping infixes labeling loops in A, A’.
@ k-loop = infix that can be pumped

o labeling loops in A, A’,
e occurring inside k/2-window.

aq g Ap—1 Qp

ISR o K o B N o

uo Uy

19/23

k-loops

@ Main technique for LT:

k large for all £, build
wel, wel — zeL, Zel
w =, w 2=y 2

@ 2,2’ built by pumping infixes labeling loops in A, A’.
@ k-loop = infix that can be pumped

o labeling loops in A, A’,
e occurring inside k/2-window.

Lemma (Pumping)
Ifk > 4|Q||Q’], 3 a k-loop within k/4 consecutive positions. J

19/23

k-loops

Building z € L,2' € L’ such that z =, 2/
@ Insert smallest k-loops in w and w’ whenever possible.
W=Uy "UlL...Unp-1"Up

J4 Y4 Y4 y4
Z=UQ O ULyt Oy Up—1 * Q- Up,

and same for w’ with u}, o/.

20/23

k-loops

Building z € L,2' € L’ such that z =, 2/

@ Insert smallest k-loops in w and w’ whenever possible.

W=Uy "UlL...Unp-1"Up

y4
n—1"Un—1"Qp " Up

and same for w’ with u}, o/.

Lemma (Recall: & > 4|Q||Q'|)

Q@ w =, w = Same sets of triples

@ Therefore, z and 2z’ are not distinguishable by =,.

{(vj, ui, vjp1) | i}, and
{(e, uj, 05 41) | 5}

20/23

Algorithms

@ Alg 1: Test all separators up to window size k = 4|Q|.|Q’| + 1.

@ Alg 2: Test for common pattern occurring in both A and A’

(%1 (%) Op—1 ap
UuQ (5% Up—1 Up

with same tuples (aj,u;,ci41), (uo,01), (ap,up).

Theorem

@ L,L' not LT-separatable iff A, A’ have a common pattern.
@ Common pattern can be detected in NEXPTIME.

© Common pattern detection is NP-hard
Compare with: testing if L is in LT is PTIME.

21/23

Locally Threshold Testable Languages

@ LTT = LT + ability to count infixes up to threshold.
Example At least 7 occurrences of ab.

o u= _k w if u, w have same number of k-windows, up to thr. d.

Locally Threshold Testable Languages

@ LTT = LT + ability to count infixes up to threshold.
Example At least 7 occurrences of ab.

o u= _k w if u, w have same number of k-windows, up to thr. d.

For fixed d, previous bound on £ still works.

Existence of threshold can be expressed in Presburger logic.

Locally Threshold Testable Languages

@ LTT = LT + ability to count infixes up to threshold.
Example At least 7 occurrences of ab.

o u= _k w if u, w have same number of k-windows, up to thr. d.

@ For fixed d, previous bound on £ still works.

@ Existence of threshold can be expressed in Presburger logic.

Theorem

©Q L, L' not LTT-separatable iff A, A" have a common pattern.
@ A common pattern can be detected in 2-NEXPSPACE.

© Common pattern detection is NP-hard
Compare with: testing if L is in LTT is PTIME.

Conclusion

Summary
@ Separability by LT and LTT is decidable, elementary tools.
e Complexity bounds (not tight).

@ Some more results for context-free input languages.

Recent and further work

@ Same scheme can be adapted for Sep = BY; (<), FO%(<), FO
Other important classes, eg, quantifier alternation hierarchies.
Other structures: eg, trees, VPAs.

Generic results to transfer decidability of separability.

Links between membership and separation.

23/23

	The Separation Problem
	What is Separation ?

	Locally testable languages
	Witnesses of non-separability
	k-loops
	Patterns

