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A Reduced Problem: Decidable Characterizations

Decide the following problem:

Take a regular language L

27



A Reduced Problem: Decidable Characterizations

Decide the following problem:

Take a regular language L

—

Can it be defined
with a FO formula ?

27



A Reduced Problem: Decidable Characterizations

Decide the following problem:

Take a regular language L

—

Can it be defined
with a FO formula ?

Schiitzenberger'65, McNaughton and Papert'71
For L a regular language, the following are equivalent:

o L is FO-definable.

@ The syntactic monoid of L satisfies u

w—+1

= u¥.
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Why we want more than decidable characterizations

If the characterization answer is yes for L:

@ All subparts of the minimal automaton of L are FO-definable.

If the characterization’s answer is no for L:

@ We have little information.

o Defining L would require differentiating some u* and u®~*!.

@ Yet: the logic can still express facts on L.
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Separation

Decide the following problem:

Take two regular languages L1, Lo

Can L; be separated from L,
with a FO formula ?

=

FO-definable

More general than getting a decidable characterization.
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Motivations for Separation

@ More general: need FO techniques applying to all languages.
@ Therefore, may give information to solve harder problems.
@ For FO, already solved with such motivations by Henckell '88.

Pointlike sets: the finest aperiodic cover of a finite semigroup

The research in this paper is motivated by the open question: “Is
the complexity of a finite semigroup S decidable?”

o Difficult algebraic techniques. Following the lead of the Presentation
Lemma (Rhodes), we describe the finest cover on S that can be
computed using an aperiodic semigroup and give an explicit relation.
The central idea of the proof is that an aperiodic computation can
be described by a new blow-up operator HW. The proof also relies
on the Rhodes expansion of S and on Zeiger coding.



An already known result: Henckell '88

Guide to the paper

Chapter 1. Elementary definitions and notation should be omitted on first reading
and used as a reference as needed.

Chapter 2. The Pl-functor defines pointlike sets in a general setting and shows by
an abstract compactness argument that PI(S) can be computed by an aperiodic
semigroup.

Chapter 3. Definition of C*(S) and H" defines C“(§), a collection of pointlike
sets, in a constructive manner. H“ is the ‘blow-up-operator’ that we will use in
Chapter 5 to show C¥“(S)=PI(S). It has some examples in the end.

Chapter 4. The Rhodes-expansion defines the tools needed in Chapter 5.

Chapter 5. C¥(S)=PI(S) shows the main result by actually constructing a rela-
tion S —— CP(S) computing C¥(S) with CP(S) aperiodic. It uses HY, generalized
to A% on C¥(S) ‘to get rid of groups by blowing up’.
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Alternate formulations

Several formulations of separation [Almeida’96]

The following are equivalent:
1. Ly and L; are not FO-separable.
2. For all k, there exist wy € L1, wo € Ly with wy =5 ws.
3. For all aperiodic T and morphism g: A* — T,

B(L1) N B(L2) # 0.

4. LiNly# (B (closures taken in the pro-aperiodic semigroup).
5. L1 N Ly contains an w-term.

Actually, 5 may be exploited to prove decidability of separation.

27



FO is hard, let's make it easy: Quantifier Rank

Quantifier rank of a formula: Nested depth of quantifiers.

Vx3dy (a(x) = Jz (x <z <y Ab(y))) has quantifier rank 3

If k fixed: finitely many FO properties of rank k = Separation is easy
(test them all)
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FO is hard, let's make it easy: Quantifier Rank

Quantifier rank of a formula: Nested depth of quantifiers.
Vx3dy (a(x) = Jz (x <z <y Ab(y))) has quantifier rank 3

If k fixed: finitely many FO properties of rank k = Separation is easy
(test them all)
k-equivalence for FO
Let wq, wy be words:
w1 =, wy iff wy, wy satisfy the same formulas of rank k

All FO properties of rank k are unions of classes of =.
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Fixed Quantifier Rank k

A*

)

Let's add the =, -classes

10/27
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Separable with rank k iff no 22,-class intersects both languages
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For full FO we want to know if there exists such a k
= Compute a 'limit’ for .
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Fixed Quantifier Rank k

Separable with rank k iff no 22,-class intersects both languages

For full FO we want to know if there exists such a k
= Compute a 'limit’ for .

When k gets larger, =2 is refined but it never ends

Idea. Abstract =, on a monoid recognizing both L; and Lj.

10/27



“Pair” analysis

Recall from Thomas' talk:
FO-indistinguishable pairs for a : A* — M
(51,52) € Ik[a] if

3 w1 =, wo
S1 52

e Smaller and smaller sets: I 1[a] C Ix[q]
o Limit set: I[a] =, Ik[e].
@ Computing these pairs solves separation:

(s1,) €1la] <= a I(s1) and a~}(s) not separable

11/27



The Separation Criterion

Separation Criterion
Ly, Ly recognized by a : A* — M are not separable
iff
there are accepting elements si, s, € M for L1, Ly s.t. (s1,52) € I[a].
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The Separation Criterion

Separation Criterion

Ly, Ly recognized by ao : A* — M are not separable
iff

there are accepting elements si, s, € M for L1, Ly s.t. (s1,52) € I[a].

Computing I[a] suffices to solve separation.
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Two approaches

2 approaches to compute the relation I[«]:

Brute-force: Algorithm:
e Computing Ix[a] easy for Find an algorithm that bypasses the
fixed k. bound k and computes I[a] directly.

e I[a] = Ix[a] for some k
depending on a.

@ = Prove a bound k = f(«) and
compute Ix[a].
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Two approaches

2 approaches to compute the relation I[«]:

Brute-force: Algorithm:
e Computing Ix[a] easy for Find an algorithm that bypasses the
fixed k. bound k and computes I[a] directly.

e I[a] = Ix[a] for some k
depending on a.

@ = Prove a bound k = f(«) and
compute Ix[a].

We use approach 2.
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A first (non complete) Algorithm computing I[a]

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

1st Property of FO

w = w
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A first (non complete) Algorithm computing I[a]

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

3rd Property of FO
Vk dn VYwi, wyr € A* w1 = wr = (Wl)n = (W2)n+1

1. Trivial pairs: for all w € A* (a(w), a(w)) € I[o]

2. Operation e: (51,52) € I[a] and (tl, t'g) S I[Oé] = (51t1,52t2) S I[a]

3. Operation w: (s1,52) € I[a] = (s¢,s5™) € I[a]

Correct by definition but not complete
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Why it does not work

3rd Property of FO
wi & wp = (wr)" =y (wo)™
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Why it does not work

Not general enough

3rd Property of FO
w1 =g wo = ()" =y (W)

n+1

| Needs to be replaced |

¥

wy S wo Sy Sy Wiy

4

All large concatenations of words in {wjy, ..., wn} are =y-equivalent.
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Need for better analysis

A Generalization: FO-indistinguishable Sets for o : A* — S:

o {s1,%,...,sn} € Ix[a] if

51 52 e Sn

e Limit set: I[a] = ), Ik[a].

@ Computing these sets is more general than computing pairs.

= also solves separation (and gives much more).

16
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From Pairs to Sets

New Objective
We want to compute the set I[a] C 2™ such that:

S ella] iff S € Ix[a], Yk e N

17 /27



From Pairs to Sets

New Objective
We want to compute the set I[a] C 2™ such that:

S ella] iff S € Ix[a], Yk e N

Remark

e With our new definition, we have I[a] C 2M.

e 2M is a monoid for the operation S; - S, = {515, | 51 € S1 5 € S}
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A new (working) Algorithm
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A new (working) Algorithm

Idea : Start with trivial pairs and add more pairs via a fixpoint algorithm.

3rd Property of FO
Wi =g Wo s S Wi

4

All large concatenations of words in {wjy, -+, wp} are = -equivalent.

1. Trivial sets: for all w € A* {a(w)} € I[¢]
2. Operation «: 51 € I[a] and S; € I[a] = 515 € I[o]
3. Operation w: S € I[a] = (S¥ U S¥T) € I[a]

Correct by definition (e.g., use EF games)
Can be proved to be complete
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Alternate algorithms

@ The algorithm reflects the equation x* = x“*!

@ 2 other equivalent ways to characterize FO-definability:

o All groups are trivial.
o All H-classes are trivial.

@ The algorithm can be modified to reflect them too:
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Alternate algorithms

@ The algorithm reflects the equation x* = x“*!

@ 2 other equivalent ways to characterize FO-definability:

o All groups are trivial.
o All H-classes are trivial.

@ The algorithm can be modified to reflect them too:

New algorithm:

e Operation: G a subgroup of I[a] = (Uscg S) € I[]

@ Works also for H-classes (similar to Henckell's algorithm).

19/27



Alternate algorithms

3 variations of the 3rd operation.

e Operation w: S € I[a] = (S¥ U S¥“*t1) € I[al].
@ Operation H: H an H-class of I[a] = (Usey S) € I[a.
@ Operation G: G a subgroup of I[a] = (Uscg S) € I[a].

Theorem

All variations compute FO-indistinguishable sets, and all maximal ones.
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Alternate algorithms

3 variations of the 3rd operation.

e Operation w: S € I[a] = (S¥ U S¥“*t1) € I[al].
@ Operation H: H an H-class of I[a] = (Usey S) € I[a.
@ Operation G: G a subgroup of I[a] = (Uscg S) € I[a].

Theorem
All variations compute FO-indistinguishable sets, and all maximal ones.

@ From G tow: if G={Ty,..., T,}, then

TiU---UT, C(TYUTE) . (TE U TEH

e From w to H: S* and S“*! are H-equivalent.
@ From H to G: every H-class is of the form R.G with G a group.

20 /27



Completeness

@ How to prove completeness?

@ Does this work for all logics?
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Completeness

@ How to prove completeness?
= Generalizing well-known characterization proof by Wilke

@ Does this work for all logics?
= No, this works only for FO (deeply linked to the proof)
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Completeness: What we need to prove

Reminder: I[a] = [,y Ik[a]. In particular, for all k, I[a] C Ix[a].

What we prove

For £ = |[M|(2/M)1, the algorithm computes all maximal subsets of Ij[a].

In particular, we get the bound of the “brute-force” approach for free.

Proof technique

To every w € A*, one can associate Geng(w) € Ix[a]:

Geng(w) ={s e M| v 2 wost. a(w’) =s}
We prove that for all w € A*, Geny(w) is computed by the algorithm.

= We start with a w € A*, we need a way to decompose it in a way
that respects the operations of our algorithm.




Wilke Proof of the FO characterization

We have a : A* — M with M satisfying x* = x¥*1.
Let w € A*, how does FO proceeds to detect a(w)?
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Wilke Proof of the FO characterization

We have a : A* — M with M satisfying x* = x¥*1.
Let w € A*, how does FO proceeds to detect a(w)?

Two Cases: W = ssssssssssssssssnssssnnnnnnnnnnnnnns

eForallac A a(a)M =M

and Ma(a) =M In that Case:

w — w1 —
e There exists a € A such that =X = M= {lm}

a(a)M C M or Ma(a) ¢ M
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Wilke Proof of the FO characterization

We have a : A* — M with M satisfying x* = x¥*1.
Let w € A*, how does FO proceeds to detect a(w)?

a(wp) detectable
(Induction on |A|)

Two Cases: W =[Wp] aW1 W2 AW3 QWgsxssssannnsn awm
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We have a : A* — M with M satisfying x* = x¥*1.
Let w € A*, how does FO proceeds to detect a(w)?

a(wp) detectable
(Induction on |A|)

Two Cases: w =[Wo[ aWi[aWo[aWs[aWa} - - - - - - -

e Forallac A a(a)M =M
and Ma(a) = M (a) [a(am)]a(aws)[a(aws)[a(aws)]  [a(awm)]
New meta-word on alphabet a(a)M

® There exists a € A such that [ Use a morphism 3 : (a(a)M)* — a(a)M ¢ M
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Wilke Proof of the FO characterization

We have a : A* — M with M satisfying x* = x¥*1.
Let w € A*, how does FO proceeds to detect a(w)?

a(wp) detectable
(Induction on |A|)

Two Cases: w =[Wo[aWi[BWo[aW3[aWa} « s e vunsnas
e Foralla € A a(a)M =M [a(aw1)][a(awz)Hoa(am,)“a(am;)] [a(awm)]

and Ma(a) =M

New meta-word on alphabet a(a)M
® There exists a € A such that [ Use a morphism 3 : (a(a)M)* — a(a)M ¢ M
a(a)M € M or Ma(a) C M Detectable by induction on |M)|

@ Adapt induction: the algorithm works for smaller alphabets and smaller semigroups.

@ Aperiodicity used only in the base case.
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Summary

We have

© An algorithm for computing I[a]. Therefore, we can answer yes/no to the
separation problem for FO.

@ A bound on the size of the separator: it is possible to compute a separator
(in a very non-efficient way).
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Conclusion

We have the following results:

@ Separation by FO is decidable (in EXPTIME).

@ Computing an actual separator formula can be done in an elementary way
(but still with high complexity).

@ Results can be (easily) generalized to infinite words.
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Thank you!
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Computing a Separator

Assume I[a] = {S51,...,S,}. By reversing the completeness proof, it is possible
to compute n FO formulas ¢y, . .., @, of rank k = |M|(2/M)! such that:

@ The associated languages are covering: {w | w = @1V -V |E pp} = A%
@ Foralli,wkE p; = a(w;) €5,

@ The computation is inductive and elementary.

= All information that can be expressed with FO as stated in I[a] is a union of
these formulas.
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