Separation by First-Order Logic

Thomas Place and Marc Zeitoun

LaBRI, Université Bordeaux, CNRS

April 28, 2014

A Reduced Problem: Decidable Characterizations

A Reduced Problem: Decidable Characterizations

A Reduced Problem: Decidable Characterizations

Decide the following problem:

Schützenberger'65, McNaughton and Papert'71

For L a regular language, the following are equivalent:

• L is FO-definable.

• The syntactic monoid of L satisfies $u^{\omega+1} = u^{\omega}$.

If the characterization answer is yes for *L*:

• All subparts of the minimal automaton of *L* are **FO**-definable.

If the characterization's answer is no for L:

- We have little information.
- Defining L would require differentiating some u^{ω} and $u^{\omega+1}$.
- Yet: the logic can still express facts on L.

More general than getting a decidable characterization.

Motivations for Separation

• More general: need **FO** techniques applying to all languages.

Motivations for Separation

- More general: need FO techniques applying to all languages.
- Therefore, may give information to solve harder problems.

Motivations for Separation

- More general: need FO techniques applying to all languages.
- Therefore, may give information to solve harder problems.
- For FO, already solved with such motivations by Henckell '88.

Pointlike sets: the finest aperiodic cover of a finite semigroup

The research in this paper is motivated by the open question: "Is the complexity of a finite semigroup S decidable?"

- More general: need **FO** techniques applying to all languages.
- Therefore, may give information to solve harder problems.
- For FO, already solved with such motivations by Henckell '88.

Pointlike sets: the finest aperiodic cover of a finite semigroup

The research in this paper is motivated by the open question: "Is the complexity of a finite semigroup S decidable?"

• Difficult algebraic techniques. Following the lead of the Presentation Lemma (Rhodes), we describe the finest cover on S that can be computed using an aperiodic semigroup and give an explicit relation. The central idea of the proof is that an aperiodic computation can be described by a new blow-up operator HW. The proof also relies on the Rhodes expansion of S and on Zeiger coding.

Guide to the paper

Chapter 1. Elementary definitions and notation should be omitted on first reading and used as a reference as needed.

Chapter 2. The Pl-functor defines pointlike sets in a general setting and shows by an abstract compactness argument that Pl(S) can be computed by an aperiodic semigroup.

Chapter 3. Definition of $C^{\omega}(S)$ and H^{ω} defines $C^{\omega}(S)$, a collection of pointlike sets, in a constructive manner. H^{ω} is the 'blow-up-operator' that we will use in Chapter 5 to show $C^{\omega}(S) = Pl(S)$. It has some examples in the end.

Chapter 4. The Rhodes-expansion defines the tools needed in Chapter 5.

Chapter 5. $C^{\omega}(S) = Pl(S)$ shows the main result by actually constructing a relation $S \xrightarrow{R} CP(S)$ computing $C^{\omega}(S)$ with CP(S) aperiodic. It uses H^{ω} , generalized to \hat{H}^{ω} on $\hat{C}^{\omega}(S)$ 'to get rid of groups by blowing up'.

Several formulations of separation [Almeida'96]

The following are equivalent:

- 1. L_1 and L_2 are not FO-separable.
- 2. For all k, there exist $w_1 \in L_1$, $w_2 \in L_2$ with $w_1 \cong_k w_2$.
- 3. For all aperiodic T and morphism $\beta : A^* \to T$,

 $\beta(L_1) \cap \beta(L_2) \neq \emptyset.$

4. $\overline{L}_1 \cap \overline{L}_2 \neq \emptyset$ (closures taken in the pro-aperiodic semigroup). 5. $\overline{L}_1 \cap \overline{L}_2$ contains an ω -term.

Actually, 5 may be exploited to prove decidability of separation.

Quantifier rank of a formula: Nested depth of quantifiers.

 $\forall x \exists y \ (a(x) \implies \exists z \ (x < z < y \land b(y))) \quad \text{has quantifier rank 3}$

If k fixed: finitely many **FO** properties of rank $k \Rightarrow$ Separation is easy (test them all)

Quantifier rank of a formula: Nested depth of quantifiers.

 $\forall x \exists y \ (a(x) \implies \exists z \ (x < z < y \land b(y)))$ has quantifier rank 3

If k fixed: finitely many **FO** properties of rank $k \Rightarrow$ Separation is easy (test them all)

k-equivalence for FO

Let w_1, w_2 be words:

 $w_1 \cong_k w_2$ iff w_1, w_2 satisfy the same formulas of rank k

All **FO** properties of rank k are unions of classes of \cong_k .

Separable with rank k iff no \cong_k -class intersects both languages

For full **FO** we want to know if there exists such a k \Rightarrow Compute a 'limit' for \cong_k .

Separable with rank k iff no \cong_k -class intersects both languages

For full **FO** we want to know if there exists such a k \Rightarrow Compute a 'limit' for \cong_k .

Separable with rank k iff no \cong_k -class intersects both languages

For full **FO** we want to know if there exists such a k \Rightarrow Compute a 'limit' for \cong_k .

Separable with rank k iff no \cong_k -class intersects both languages

For full **FO** we want to know if there exists such a k \Rightarrow Compute a 'limit' for \cong_k .

Separable with rank k iff no \cong_k -class intersects both languages

For full **FO** we want to know if there exists such a k \Rightarrow Compute a 'limit' for \cong_k .

Separable with rank k iff no \cong_k -class intersects both languages

For full **FO** we want to know if there exists such a k \Rightarrow Compute a 'limit' for \cong_k .

When k gets larger, \cong_k is refined but it never ends

Idea. Abstract \cong_k on a monoid recognizing both L_1 and L_2 .

"Pair" analysis

Recall from Thomas' talk:

FO-indistinguishable pairs for $\alpha : A^* \to M$ $(s_1, s_2) \in I_k[\alpha]$ if

- Smaller and smaller sets: $I_{k+1}[\alpha] \subseteq I_k[\alpha]$
- Limit set: $I[\alpha] = \bigcap_k I_k[\alpha]$.
- Computing these pairs solves separation:

$$(s_1,s_2)\in \mathrm{I}[lpha]\quad\iff\quad lpha^{-1}(s_1) ext{ and } lpha^{-1}(s_2) ext{ not separable}$$

Separation Criterion

L_1, L_2 recognized by $\alpha : A^* \to M$ are not separable iff there are accepting elements $s_1, s_2 \in M$ for L_1, L_2 s.t. $(s_1, s_2) \in I[\alpha]$.

Separation Criterion

L_1, L_2 recognized by $\alpha : A^* \to M$ are not separable iff there are accepting elements $s_1, s_2 \in M$ for L_1, L_2 s.t. $(s_1, s_2) \in I[\alpha]$.

Computing $I[\alpha]$ suffices to solve separation.

2 approaches to compute the relation $I[\alpha]$:

Brute-force:

Algorithm:

- Computing I_k[α] easy for fixed k.
- $I[\alpha] = I_k[\alpha]$ for some k depending on α .
- \Rightarrow Prove a bound $k = f(\alpha)$ and compute $I_k[\alpha]$.

Find an algorithm that bypasses the bound k and computes $I[\alpha]$ directly.

2 approaches to compute the relation $I[\alpha]$:

Brute-force:

Algorithm:

- Computing I_k[α] easy for fixed k.
- $I[\alpha] = I_k[\alpha]$ for some k depending on α .
- \Rightarrow Prove a bound $k = f(\alpha)$ and compute $I_k[\alpha]$.

We use approach 2.

Find an algorithm that bypasses the bound k and computes $I[\alpha]$ directly.

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

1st Property of **FO** $w \cong_k w$

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

1st Property of **FO** $w \cong_k w$

1. Trivial pairs: for all $w \in A^*$ $(\alpha(w), \alpha(w)) \in I[\alpha]$

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

2nd Property of **FO** $w_1 \cong_k w_2$ and $u_1 \cong_k u_2 \implies w_1 u_1 \cong_k w_2 u_2$

1. Trivial pairs: for all $w \in A^*$ $(\alpha(w), \alpha(w)) \in I[\alpha]$

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

2nd Property of **FO** $w_1 \cong_k w_2$ and $u_1 \cong_k u_2 \implies w_1 u_1 \cong_k w_2 u_2$

- 1. Trivial pairs: for all $w \in A^*$ $(\alpha(w), \alpha(w)) \in I[\alpha]$
- 2. Operation •: $(s_1, s_2) \in I[\alpha]$ and $(t_1, t_2) \in I[\alpha] \Rightarrow (s_1t_1, s_2t_2) \in I[\alpha]$
A first (non complete) Algorithm computing $I[\alpha]$

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

 $\begin{array}{c} \text{3rd Property of } \textbf{FO} \\ \forall k \; \exists n \; \forall w_1, w_2 \in A^* \qquad w_1 \cong_k w_2 \Rightarrow (w_1)^n \cong_k (w_2)^{n+1} \end{array}$

- 1. Trivial pairs: for all $w \in A^*$ $(\alpha(w), \alpha(w)) \in I[\alpha]$
- 2. Operation •: $(s_1, s_2) \in I[\alpha]$ and $(t_1, t_2) \in I[\alpha] \Rightarrow (s_1t_1, s_2t_2) \in I[\alpha]$

A first (non complete) Algorithm computing $I[\alpha]$

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

 $\begin{array}{c} \text{3rd Property of } \textbf{FO} \\ \forall k \exists n \ \forall w_1, w_2 \in A^* \qquad w_1 \cong_k w_2 \Rightarrow (w_1)^n \cong_k (w_2)^{n+1} \end{array}$

- 1. Trivial pairs: for all $w \in A^*$ $(\alpha(w), \alpha(w)) \in I[\alpha]$
- 2. Operation •: $(s_1, s_2) \in I[\alpha]$ and $(t_1, t_2) \in I[\alpha] \Rightarrow (s_1t_1, s_2t_2) \in I[\alpha]$
- 3. Operation ω : $(s_1, s_2) \in I[\alpha] \Rightarrow (s_1^{\omega}, s_2^{\omega+1}) \in I[\alpha]$

A first (non complete) Algorithm computing $I[\alpha]$

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

 $\begin{array}{c} \text{3rd Property of } \textbf{FO} \\ \forall k \exists n \ \forall w_1, w_2 \in A^* \qquad w_1 \cong_k w_2 \Rightarrow (w_1)^n \cong_k (w_2)^{n+1} \end{array}$

- 1. Trivial pairs: for all $w \in A^*$ $(\alpha(w), \alpha(w)) \in I[\alpha]$
- 2. Operation •: $(s_1, s_2) \in I[\alpha]$ and $(t_1, t_2) \in I[\alpha] \Rightarrow (s_1t_1, s_2t_2) \in I[\alpha]$
- 3. Operation ω : $(s_1, s_2) \in I[\alpha] \Rightarrow (s_1^{\omega}, s_2^{\omega+1}) \in I[\alpha]$

Correct by definition but not complete

 $\begin{array}{c} \text{3rd Property of } \overline{\textbf{FO}} \\ w_1 \cong_k w_2 \Rightarrow (w_1)^n \cong_k (w_2)^{n+1} \end{array}$

A Generalization: FO-indistinguishable Sets for $\alpha : A^* \rightarrow S$:

•
$$\{s_1, s_2, \dots, s_n\} \in I_k[\alpha]$$
 if
 $\exists \quad w_1 \cong_k w_2 \quad \dots \cong_k w_n$
 $\alpha \downarrow \quad \alpha \downarrow \qquad \qquad \alpha \downarrow$
 $s_1 \quad s_2 \quad \dots \quad s_n$

- Limit set: $I[\alpha] = \bigcap_k I_k[\alpha]$.
- Computing these sets is more general than computing pairs.
 ⇒ also solves separation (and gives much more).

New Objective

We want to compute the set $\mathrm{I}[\alpha]\subseteq 2^M$ such that:

 $S \in I[\alpha]$ iff $S \in I_k[\alpha], \ \forall k \in \mathbb{N}$

New Objective

We want to compute the set $I[\alpha] \subseteq 2^M$ such that:

 $S \in I[\alpha]$ iff $S \in I_k[\alpha], \ \forall k \in \mathbb{N}$

Remark

- With our new definition, we have $I[\alpha] \subseteq 2^M$.
- 2^M is a monoid for the operation $S_1 \cdot S_2 = \{s_1s_2 \mid s_1 \in S_1 \ s_2 \in S_2\}.$

A new (working) Algorithm

Idea : Start with trivial pairs and add more pairs via a fixpoint algorithm.

1st Property of **FO**
$$w \cong_k w$$

1st Property of **FO**
$$w \cong_k w$$

1. Trivial sets: for all $w \in A^* \{\alpha(w)\} \in I[\alpha]$

2nd Property of **FO** $w_1 \cong_k w_2$ and $u_1 \cong_k u_2 \implies w_1 u_1 \cong_k w_2 u_2$

1. Trivial sets: for all $w \in A^* \{\alpha(w)\} \in I[\alpha]$

2nd Property of **FO** $\cong_k w_2$ and $u_1 \cong_k u_2 \implies w_1 u_1 \cong_k w_2 u_2$

- 1. Trivial sets: for all $w \in A^* \{\alpha(w)\} \in I[\alpha]$ 2. Operation •: $S_1 \in I[\alpha]$ and $S_2 \in I[\alpha] \Rightarrow S_1S_2 \in I[\alpha]$

 $\begin{array}{c} \text{3rd Property of } \textbf{FO} \\ w_1 \cong_k w_2 \cdots \cong_k w_m \\ \psi \\ \text{All large concatenations of words in } \{w_1, \cdots, w_m\} \text{ are } \cong_k \text{-equivalent.} \end{array}$

1. Trivial sets: for all $w \in A^* \{\alpha(w)\} \in I[\alpha]$

2. Operation •: $S_1 \in I[\alpha]$ and $S_2 \in I[\alpha] \Rightarrow S_1S_2 \in I[\alpha]$

 $\begin{array}{c} \text{3rd Property of } \textbf{FO} \\ w_1 \cong_k w_2 \cdots \cong_k w_m \\ \downarrow \\ \text{All large concatenations of words in } \{w_1, \cdots, w_m\} \text{ are } \cong_k \text{-equivalent.} \end{array}$

- 1. Trivial sets: for all $w \in A^* \{\alpha(w)\} \in I[\alpha]$
- 2. Operation •: $S_1 \in I[\alpha]$ and $S_2 \in I[\alpha] \Rightarrow S_1S_2 \in I[\alpha]$
- 3. Operation ω : $S \in I[\alpha] \Rightarrow (S^{\omega} \cup S^{\omega+1}) \in I[\alpha]$

 $\begin{array}{c} \text{3rd Property of } \textbf{FO} \\ w_1 \cong_k w_2 \cdots \cong_k w_m \\ \psi \\ \text{All large concatenations of words in } \{w_1, \cdots, w_m\} \text{ are } \cong_k \text{-equivalent.} \end{array}$

- 1. Trivial sets: for all $w \in A^* \{\alpha(w)\} \in I[\alpha]$
- 2. Operation •: $S_1 \in I[\alpha]$ and $S_2 \in I[\alpha] \Rightarrow S_1S_2 \in I[\alpha]$
- 3. Operation ω : $S \in I[\alpha] \Rightarrow (S^{\omega} \cup S^{\omega+1}) \in I[\alpha]$

Correct by definition (e.g., use EF games) Can be proved to be complete

- The algorithm reflects the equation $x^{\omega} = x^{\omega+1}$
- 2 other equivalent ways to characterize FO-definability:
 - All groups are trivial.
 - All \mathcal{H} -classes are trivial.
- The algorithm can be modified to reflect them too:

- The algorithm reflects the equation $x^{\omega} = x^{\omega+1}$
- 2 other equivalent ways to characterize FO-definability:
 - All groups are trivial.
 - All \mathcal{H} -classes are trivial.
- The algorithm can be modified to reflect them too:

New algorithm:

- Trivial sets: for all $w \in A^* \{\alpha(w)\} \in I[\alpha]$
- Operation •: $S_1 \in I[\alpha]$ and $S_2 \in I \Rightarrow S_1S_2 \in I[\alpha]$
- Operation: \mathcal{G} a subgroup of $I[\alpha] \Rightarrow (\bigcup_{S \in \mathcal{G}} S) \in I[\alpha]$

- The algorithm reflects the equation $x^{\omega} = x^{\omega+1}$
- 2 other equivalent ways to characterize FO-definability:
 - All groups are trivial.
 - All \mathcal{H} -classes are trivial.
- The algorithm can be modified to reflect them too:

New algorithm:

- Trivial sets: for all $w \in A^* \{\alpha(w)\} \in I[\alpha]$
- Operation •: $S_1 \in I[\alpha]$ and $S_2 \in I \Rightarrow S_1S_2 \in I[\alpha]$
- Operation: \mathcal{G} a subgroup of $I[\alpha] \Rightarrow (\bigcup_{S \in \mathcal{G}} S) \in I[\alpha]$

• Works also for \mathcal{H} -classes (similar to Henckell's algorithm).

3 variations of the 3rd operation.

- Operation ω : $S \in I[\alpha] \Rightarrow (S^{\omega} \cup S^{\omega+1}) \in I[\alpha]$.
- Operation $H: \mathcal{H}$ an \mathcal{H} -class of $I[\alpha] \Rightarrow (\bigcup_{S \in \mathcal{H}} S) \in I[\alpha]$.
- Operation **G**: \mathcal{G} a subgroup of $I[\alpha] \Rightarrow (\bigcup_{S \in \mathcal{G}} S) \in I[\alpha]$.

Theorem

All variations compute FO-indistinguishable sets, and all maximal ones.

3 variations of the 3rd operation.

- Operation ω : $S \in I[\alpha] \Rightarrow (S^{\omega} \cup S^{\omega+1}) \in I[\alpha]$.
- Operation $H: \mathcal{H}$ an \mathcal{H} -class of $I[\alpha] \Rightarrow (\bigcup_{S \in \mathcal{H}} S) \in I[\alpha]$.
- Operation G: \mathcal{G} a subgroup of $I[\alpha] \Rightarrow (\bigcup_{S \in \mathcal{G}} S) \in I[\alpha]$.

Theorem

All variations compute FO-indistinguishable sets, and all maximal ones.

• From G to
$$\omega$$
: if $\mathcal{G} = \{T_1, \ldots, T_n\}$, then

$$T_1 \cup \cdots \cup T_n \subseteq (T_1^{\omega} \cup T_1^{\omega+1}) \cdots (T_n^{\omega} \cup T_n^{\omega+1})$$

3 variations of the 3rd operation.

- Operation ω : $S \in I[\alpha] \Rightarrow (S^{\omega} \cup S^{\omega+1}) \in I[\alpha]$.
- Operation $H: \mathcal{H}$ an \mathcal{H} -class of $I[\alpha] \Rightarrow (\bigcup_{S \in \mathcal{H}} S) \in I[\alpha]$.
- Operation G: \mathcal{G} a subgroup of $I[\alpha] \Rightarrow (\bigcup_{S \in \mathcal{G}} S) \in I[\alpha]$.

Theorem

All variations compute FO-indistinguishable sets, and all maximal ones.

• From G to
$$\omega$$
: if $\mathcal{G} = \{T_1, \ldots, T_n\}$, then

$$T_1 \cup \cdots \cup T_n \subseteq (T_1^{\omega} \cup T_1^{\omega+1}) \cdots (T_n^{\omega} \cup T_n^{\omega+1})$$

• From ω to H: S^{ω} and $S^{\omega+1}$ are \mathcal{H} -equivalent.

3 variations of the 3rd operation.

- Operation ω : $S \in I[\alpha] \Rightarrow (S^{\omega} \cup S^{\omega+1}) \in I[\alpha]$.
- Operation $H: \mathcal{H}$ an \mathcal{H} -class of $I[\alpha] \Rightarrow (\bigcup_{S \in \mathcal{H}} S) \in I[\alpha]$.
- Operation G: \mathcal{G} a subgroup of $I[\alpha] \Rightarrow (\bigcup_{S \in \mathcal{G}} S) \in I[\alpha]$.

Theorem

All variations compute FO-indistinguishable sets, and all maximal ones.

• From G to
$$\omega$$
: if $\mathcal{G} = \{T_1, \ldots, T_n\}$, then

$$T_1 \cup \cdots \cup T_n \subseteq (T_1^{\omega} \cup T_1^{\omega+1}) \cdots (T_n^{\omega} \cup T_n^{\omega+1})$$

- From ω to H: S^{ω} and $S^{\omega+1}$ are \mathcal{H} -equivalent.
- From H to G: every H-class is of the form R.G with G a group.

• How to prove completeness?

2 Does this work for all logics?

- I How to prove completeness?
 ⇒ Generalizing well-known characterization proof by Wilke
- 2 Does this work for all logics?

- I How to prove completeness?
 ⇒ Generalizing well-known characterization proof by Wilke
- ② Does this work for all logics?
 ⇒ No, this works only for FO (deeply linked to the proof)

Completeness: What we need to prove

Reminder: $I[\alpha] = \bigcap_{k \in \mathbb{N}} I_k[\alpha]$. In particular, for all k, $I[\alpha] \subseteq I_k[\alpha]$.

Completeness: What we need to prove

Reminder: $I[\alpha] = \bigcap_{k \in \mathbb{N}} I_k[\alpha]$. In particular, for all k, $I[\alpha] \subseteq I_k[\alpha]$.

What we prove

For $\ell = |M|(2^{|M|})!$, the algorithm computes all maximal subsets of $I_{\ell}[\alpha]$. In particular, we get the bound of the "brute-force" approach for free.

Proof technique

To every $w \in A^*$, one can associate $Gen_k(w) \in I_k[\alpha]$:

$$Gen_k(w) = \{s \in M \mid \exists w' \cong_k w \text{ s.t. } \alpha(w') = s\}$$

We prove that for all $w \in A^*$, $Gen_{\ell}(w)$ is computed by the algorithm.

 \Rightarrow We start with a $w \in A^*$, we need a way to decompose it in a way that respects the operations of our algorithm.

We have $\alpha : A^* \to M$ with M satisfying $x^{\omega} = x^{\omega+1}$. Let $w \in A^*$, how does **FO** proceeds to detect $\alpha(w)$?

We have $\alpha : A^* \to M$ with M satisfying $x^{\omega} = x^{\omega+1}$. Let $w \in A^*$, how does **FO** proceeds to detect $\alpha(w)$?

Two Cases:

• For all $a \in A$, $\alpha(a)M = M$ and $M\alpha(a) = M$

• There exists $a \in A$ such that $\alpha(a)M \subsetneq M$ or $M\alpha(a) \subsetneq M$

We have $\alpha : A^* \to M$ with M satisfying $x^{\omega} = x^{\omega+1}$. Let $w \in A^*$, how does **FO** proceeds to detect $\alpha(w)$?

Two Cases:

• For all $a \in A$, $\alpha(a)M = M$ and $M\alpha(a) = M$

• There exists $a \in A$ such that $\alpha(a)M \subsetneq M$ or $M\alpha(a) \subsetneq M$

In that Case: $x^{\omega} = x^{\omega+1} \Rightarrow M = \{1_M\}$

We have $\alpha : A^* \to M$ with M satisfying $x^{\omega} = x^{\omega+1}$. Let $w \in A^*$, how does **FO** proceeds to detect $\alpha(w)$?

Two Cases:

- For all $a \in A$, $\alpha(a)M = M$ and $M\alpha(a) = M$
- There exists $a \in A$ such that $\alpha(a)M \subsetneq M$ or $M\alpha(a) \subsetneq M$

 $w = w_0 a w_1 a w_2 a w_3 a w_4 \dots a w_m$

- Adapt induction: the algorithm works for smaller alphabets and smaller semigroups.
- Aperiodicity used only in the base case.

We have

- An algorithm for computing $I[\alpha]$. Therefore, we can answer yes/no to the separation problem for **FO**.
- A bound on the size of the separator: it is possible to compute a separator (in a very non-efficient way).

We have the following results:

- Separation by **FO** is decidable (in EXPTIME).
- Computing an actual separator formula can be done in an elementary way (but still with high complexity).
- Results can be (easily) generalized to infinite words.
Thank you!

Assume $I[\alpha] = \{S_1, \ldots, S_n\}$. By reversing the completeness proof, it is possible to compute $n \operatorname{FO}$ formulas $\varphi_1, \ldots, \varphi_n$ of rank $k = |M|(2^{|M|})!$ such that:

The associated languages are covering: {w | w ⊨ φ₁ ∨ · · · ∨ ⊨ φ_n} = A^{*}.

• For all *i*,
$$w \models \varphi_i \Rightarrow \alpha(w_i) \in S_i$$
.

• The computation is inductive and elementary.

 \Rightarrow All information that can be expressed with **FO** as stated in I[α] is a union of these formulas.