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A Reduced Problem: Decidable Characterizations

Decide the following problem:

Take a regular language L

a
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Can it be defined
with a FO formula ?

Schützenberger’65, McNaughton and Papert’71

For L a regular language, the following are equivalent:

L is FO-definable.

The syntactic monoid of L satisfies uω+1 = uω.
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Why we want more than decidable characterizations

If the characterization answer is yes for L:

All subparts of the minimal automaton of L are FO-definable.

If the characterization’s answer is no for L:

We have little information.

Defining L would require differentiating some uω and uω+1.

Yet: the logic can still express facts on L.
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Separation

Decide the following problem:

Take two regular languages L1, L2
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Motivations for Separation

More general: need FO techniques applying to all languages.

Therefore, may give information to solve harder problems.

For FO, already solved with such motivations by Henckell ’88.

Pointlike sets: the finest aperiodic cover of a finite semigroup

The research in this paper is motivated by the open question: “Is
the complexity of a finite semigroup S decidable?”

Difficult algebraic techniques. Following the lead of the Presentation
Lemma (Rhodes), we describe the finest cover on S that can be
computed using an aperiodic semigroup and give an explicit relation.
The central idea of the proof is that an aperiodic computation can
be described by a new blow-up operator HW. The proof also relies
on the Rhodes expansion of S and on Zeiger coding.
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An already known result: Henckell ’88
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Alternate formulations

Several formulations of separation [Almeida’96]

The following are equivalent:

1. L1 and L2 are not FO-separable.

2. For all k, there exist w1 ∈ L1, w2 ∈ L2 with w1
∼=k w2.

3. For all aperiodic T and morphism β : A∗ → T ,

β(L1) ∩ β(L2) 6= ∅.

4. L1 ∩ L2 6= ∅ (closures taken in the pro-aperiodic semigroup).

5. L1 ∩ L2 contains an ω-term.

Actually, 5 may be exploited to prove decidability of separation.
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FO is hard, let’s make it easy: Quantifier Rank

Quantifier rank of a formula: Nested depth of quantifiers.

∀x∃y (a(x) =⇒ ∃z (x < z < y ∧ b(y))) has quantifier rank 3

If k fixed: finitely many FO properties of rank k ⇒ Separation is easy
(test them all)

k-equivalence for FO

Let w1,w2 be words:

w1
∼=k w2 iff w1,w2 satisfy the same formulas of rank k

All FO properties of rank k are unions of classes of ∼=k .
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Fixed Quantifier Rank k

L1L2

A∗

Let’s add the ∼=k -classes

Separable with rank k iff no ∼=k -class intersects both languages

For full FO we want to know if there exists such a k
⇒ Compute a ’limit’ for ∼=k .

When k gets larger, ∼=k is refined but it never ends

Idea. Abstract ∼=k on a monoid recognizing both L1 and L2.
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“Pair” analysis

Recall from Thomas’ talk:

FO-indistinguishable pairs for α : A∗ → M

(s1, s2) ∈ Ik [α] if

∃ w1 ∼=k w2

s1 s2

α α

Smaller and smaller sets: Ik+1[α] ⊆ Ik [α]

Limit set: I[α] =
⋂

k Ik [α].

Computing these pairs solves separation:

(s1, s2) ∈ I[α] ⇐⇒ α−1(s1) and α−1(s2) not separable
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The Separation Criterion

Separation Criterion

L1, L2 recognized by α : A∗ → M are not separable
iff

there are accepting elements s1, s2 ∈ M for L1, L2 s.t. (s1, s2) ∈ I[α].

Computing I[α] suffices to solve separation.
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Two approaches

2 approaches to compute the relation I[α]:

Brute-force:

Computing Ik [α] easy for
fixed k .

I[α] = Ik [α] for some k
depending on α.

⇒ Prove a bound k = f (α) and
compute Ik [α].

Algorithm:

Find an algorithm that bypasses the
bound k and computes I[α] directly.

We use approach 2.
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A first (non complete) Algorithm computing I[α]

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

1st Property of FO
w ∼=k w

2nd Property of FO
w1
∼=k w2 and u1

∼=k u2 ⇒ w1u1
∼=k w2u2

3rd Property of FO
∀k ∃n ∀w1,w2 ∈ A∗ w1

∼=k w2 ⇒ (w1)n ∼=k (w2)n+1

1. Trivial pairs: for all w ∈ A∗ (α(w), α(w)) ∈ I[α]

2. Operation •: (s1, s2) ∈ I[α] and (t1, t2) ∈ I[α] ⇒ (s1t1, s2t2) ∈ I[α]

3. Operation ω: (s1, s2) ∈ I[α] ⇒ (sω1 , s
ω+1
2 ) ∈ I[α]

Correct by definition but not complete
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Why it does not work

3rd Property of FO
w1
∼=k w2 ⇒ (w1)n ∼=k (w2)n+1

Not general enough

w1
∼=k w2

∼=k · · · ∼=k wm

⇓
All large concatenations of words in {w1, . . . ,wm} are ∼=k -equivalent.

Needs to be replaced
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Need for better analysis

A Generalization: FO-indistinguishable Sets for α : A∗ → S :

{s1, s2, . . . , sn} ∈ Ik [α] if

∃ w1 ∼=k w2 · · · ∼=k wn

s1 s2 · · · sn

α α α

Limit set: I[α] =
⋂

k Ik [α].

Computing these sets is more general than computing pairs.

⇒ also solves separation (and gives much more).
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From Pairs to Sets

New Objective

We want to compute the set I[α] ⊆ 2M such that:

S ∈ I[α] iff S ∈ Ik [α], ∀k ∈ N

Remark

With our new definition, we have I[α] ⊆ 2M .

2M is a monoid for the operation S1 · S2 = {s1s2 | s1 ∈ S1 s2 ∈ S2}.
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A new (working) Algorithm

Idea : Start with trivial pairs and add more pairs via a fixpoint algorithm.

1st Property of FO
w ∼=k w

2nd Property of FO
w1
∼=k w2 and u1

∼=k u2 ⇒ w1u1
∼=k w2u2

3rd Property of FO
w1
∼=k w2 · · · ∼=k wm

⇓
All large concatenations of words in {w1, · · · ,wm} are ∼=k -equivalent.

1. Trivial sets: for all w ∈ A∗ {α(w)} ∈ I[α]

2. Operation •: S1 ∈ I[α] and S2 ∈ I[α] ⇒ S1S2 ∈ I[α]

3. Operation ω: S ∈ I[α] ⇒ (Sω ∪ Sω+1) ∈ I[α]

Correct by definition (e.g., use EF games)
Can be proved to be complete
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Alternate algorithms

The algorithm reflects the equation xω = xω+1

2 other equivalent ways to characterize FO-definability:

All groups are trivial.
All H-classes are trivial.

The algorithm can be modified to reflect them too:

New algorithm:

• Trivial sets: for all w ∈ A∗ {α(w)} ∈ I[α]

• Operation •: S1 ∈ I[α] and S2 ∈ I ⇒ S1S2 ∈ I[α]
• Operation: G a subgroup of I[α] ⇒ (

⋃
S∈G S) ∈ I[α]

Works also for H-classes (similar to Henckell’s algorithm).
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Alternate algorithms

3 variations of the 3rd operation.

Operation ω: S ∈ I[α] ⇒ (Sω ∪ Sω+1) ∈ I[α].

Operation H: H an H-class of I[α] ⇒ (
⋃

S∈H S) ∈ I[α].

Operation G : G a subgroup of I[α] ⇒ (
⋃

S∈G S) ∈ I[α].

Theorem

All variations compute FO-indistinguishable sets, and all maximal ones.

From G to ω: if G = {T1, . . . ,Tn}, then

T1 ∪ · · · ∪ Tn ⊆ (Tω
1 ∪ Tω+1

1 ) · · · (Tω
n ∪ Tω+1

n )

From ω to H: Sω and Sω+1 are H-equivalent.

From H to G : every H-class is of the form R.G with G a group.
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Completeness

1 How to prove completeness?

⇒ Generalizing well-known characterization proof by Wilke

2 Does this work for all logics?

⇒ No, this works only for FO (deeply linked to the proof)
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Completeness: What we need to prove

Reminder: I[α] =
⋂

k∈N Ik [α]. In particular, for all k , I[α] ⊆ Ik [α].

What we prove

For ` = |M|(2|M|)!, the algorithm computes all maximal subsets of I`[α].
In particular, we get the bound of the “brute-force” approach for free.

Proof technique

To every w ∈ A∗, one can associate Genk(w) ∈ Ik [α]:

Genk(w) = {s ∈ M | ∃w ′ ∼=k w s.t. α(w ′) = s}

We prove that for all w ∈ A∗, Gen`(w) is computed by the algorithm.

⇒ We start with a w ∈ A∗, we need a way to decompose it in a way
that respects the operations of our algorithm.
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Wilke Proof of the FO characterization

We have α : A∗ → M with M satisfying xω = xω+1.
Let w ∈ A∗, how does FO proceeds to detect α(w)?

w =

Two Cases:

• For all a ∈ A, α(a)M = M
and Mα(a) = M

• There exists a ∈ A such that
α(a)M ( M or Mα(a) ( M

Two Cases:

• For all a ∈ A, α(a)M = M
and Mα(a) = M

• There exists a ∈ A such that
α(a)M ( M or Mα(a) ( M

In that Case:
xω = xω+1 ⇒ M = {1M}

Two Cases:

• For all a ∈ A, α(a)M = M
and Mα(a) = M

• There exists a ∈ A such that
α(a)M ( M or Mα(a) ( M

w = w0 aw1 aw2 aw3 aw4 awmw = w0 aw1 aw2 aw3 aw4 awm

α(w0) detectable
(Induction on |A|)

w = w0 aw1 aw2 aw3 aw4 awm

α(w0) detectable
(Induction on |A|)

α(aw1) α(aw2) α(aw3) α(aw4) α(awm)

New meta-word on alphabet α(a)M
Use a morphism β : (α(a)M)∗ → α(a)M ( M

Detectable by induction on |M|

Adapt induction: the algorithm works for smaller alphabets and smaller semigroups.

Aperiodicity used only in the base case.
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Summary

We have

1 An algorithm for computing I[α]. Therefore, we can answer yes/no to the
separation problem for FO.

2 A bound on the size of the separator: it is possible to compute a separator
(in a very non-efficient way).
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Conclusion

We have the following results:

Separation by FO is decidable (in EXPTIME).

Computing an actual separator formula can be done in an elementary way
(but still with high complexity).

Results can be (easily) generalized to infinite words.

25 / 27



Thank you!
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Computing a Separator

Assume I[α] = {S1, . . . ,Sn}. By reversing the completeness proof, it is possible
to compute n FO formulas ϕ1, . . . , ϕn of rank k = |M|(2|M|)! such that:

The associated languages are covering: {w | w |= ϕ1 ∨ · · · ∨ |= ϕn} = A∗.

For all i , w |= ϕi ⇒ α(wi ) ∈ Si .

The computation is inductive and elementary.

⇒ All information that can be expressed with FO as stated in I[α] is a union of
these formulas.
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