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Let's begin with the end

Thank you!

(Pot de départ fin juin)

2/30



Recipe: How to ask for a survey

1. Ask kindly for a talk (don't be too demanding)

P. Would you like to give a talk for Barbizon?
M. Sure. I'll be short in time, may | reuse an already prepared talk?
P. Perfect!
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Recipe: How to ask for a survey

1. Ask kindly for a talk (don't be too demanding)

P. Would you like to give a talk for Barbizon?

M. Sure. I'll be short in time, may | reuse an already prepared talk?
P. Perfect!

2. Wait 10 days

P. A survey would be much better, can you please give a title?
M. ...
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Counter and Weighted Systems

Counter Weighted
(mainly oo) (oo, Tempo, Mexico)
What for? Represent runs of machines Resources/functions
Motivation MC for oo systems, complexity Quantitative MC
Typical questions MC. Reach, cover, TL,... MC. Comparison, bound.
Typical tools Linear algebra, unfoldings, wqo = Automata, games, algebra

This talk: presentation of weighted automata on words.
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Two popular types of Weighted Automata

1. Probabilistic automata.
2. Min-+ automata.

Can be presented uniformly.
No uniform algorithms for typical questions.
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Minsky machines vs. Probabilistic Automata

» Crux: Counters affect runs in Minsky machines, not in probabilistic automata.

» Runs are aggregated in probabilistic automata to compute a function.

Guards
Updates along transition

Semantic of nondeterminism

Minsky ‘ Prob. Automaton

=07 ‘ None
+1,-1 X «
Boolean Sum



Probabilistic Automata




Probabilistic Automata

> Weight (probability) of a run: product of all transition weights.
word: sum of weights of all successful runs.

oo
N|—= =
=N

> [A](ba) =1/4
> Interpreting (a, b) as (0, 1): [A](a1---an) =0.a,- a1
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3 Questions for Probabilistic Automata

1. Equality: [A] = [B]?
Decidable (Schiitzenberger'61, Tzeng'92) Minimal automaton.
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3 Questions for Probabilistic Automata

1. Equality: [A] = [B]?
Decidable (Schiitzenberger'61, Tzeng'92) Minimal automaton.

2. Boundedness: [A] < 1/2?
Undecidable (Paz'71) PCP

From morphisms f, g : {0,1}* — {0,1}*, compute 1/2[1 — (f(w) — g(w))]

3. 0 value: are there words accepted with arbitrarily small probability?
Undecidable (Gimbert & Oualhadj'10)
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Min-+ Automata

> Costs in NU {oo}.
> Weight (cost) of a run: sum of all transition weights.

word: min of weights of all successful runs.

Weight of a word u = minimal cost for going from Init to Final reading u.

a0

b,+1

[Al(u) = [uls
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Min-+ Automata

> Costs in NU {oo}.
> Weight (cost) of a run: sum of all transition weights.

word: min of weights of all successful runs.
Weight of a word u = minimal cost for going from Init to Final reading u.

a, b0 a,+1 a, b0

b,0 b,0

[B](aaaabaabaaa) = 2
[B](u): min length of block of a's



From Probabilistic Automata to min-+ Automata

1. Transform product into sum: apply log~»high probabilities yield small distances

—1
([O* 1]’+,X) ﬂ (REOUOO’@7+)

xy ~+ — log(xy) = —log(x) + —log(y)
X+ y~ —log(x+y)
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From Probabilistic Automata to min-4+ Automata

1. Transform product into sum: apply log~»high probabilities yield small distances

2. Approximate new sum unsing min: Viterbi's approximation.

—1
([O* 1]a+7 X) & (REO U OO’EB7+)

xy ~+ — log(xy) = —log(x) + —log(y)
X+ y~ —log(x+y)

:§£1E525k21> (H§}30 U oo, min, %—).

log(x + y) — min(—log(x), —log(y))| < log2

10/30



The 3 Questions after log-transforming

Probabilistic ‘ Min-+
[A]=[B] D [A] =[B]
[A]>a U [A]<k

Ovalue U Is [-A] bounded?

> Limitedness (refinement of boundedness): Is [.A] bounded over its support?
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The 3 Questions after log-transforming

Probabilistic ‘ Min-+
[Al=[8]D [A]=[8] U
[A] >a U  [A] <k D

Ovalue U Is [.A] bounded? D

> Limitedness (refinement of boundedness): Is [.A] bounded over its support?

Problems very sensitive to underlying semiring.
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Min-+ Automata: Results

» Equality [AA] = [B]: Undecidable! [Krob'94].
New and simple proof by Th. Colcombet (Minsky machines).

> Given k, is [A] < k decidable (easy).

> Limitedness: Is [A] bounded on its support? Decidable
Much work, eg [Hashigushi'81, Simon, Leung, Kirsten, Colcombet]
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> Given k, is [A] < k decidable (easy).

> Limitedness: Is [A] bounded on its support? Decidable
Much work, eg [Hashigushi'81, Simon, Leung, Kirsten, Colcombet]

Note: Boundedness in min-+ is more complicated than for VASS:

VASS: 3B VYw Vp € Runs(w) :  Val(p) < B.
min-+: 3B Yw 3p € Runs(w) :  Val(p) < B.
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Limitedness: Motivation

Finite power property
» Given L regular,
Decide if there exists n > 0 such that L* = (¢ + L)".
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Limitedness: Motivation

Finite power property
» Given L regular,
Decide if there exists n > 0 such that L* = (¢ + L)".

» Thomson's construction for star:

e,+1

New automaton is limited iff. L has the finite power property.

» Generalization to multiple counters (Kirsten) ~» star-height problem.

» Note: universality is a particular case of limitedness
(= limitedness is PSPACE-hard).
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Limitedness is decidable

a,0

b,+1

» Transformation monoid: a =

888 r
IR
4 8ol
ocod 4

0
00
00

oo
> Problem: the monoid generated is infinite.

» Solution: Abstract by projecting onto {0,1,00}: 0+ 0, n+— 1, co — oo.

14/30
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Limitedness is decidable

a0
b,+1
0 o
S . co 0
Loss of precision in the abstraction: aa = a =
S lNee

Add a new value w meaning “unbounded”.
New operation # “iterate a large number of times”: a# =

Think of (a¥b)# as (a"b)" for large n.

8 ~8 8
SRR

IR

8 €83
SRR



Limitedness is decidable

a,0

b,+1

> Algorithm: compute the (#,-) monoid generated by letter matrices.
> If for some matrix M, min(Init, M, Final) = w: witness of non-limitedness.
>~ 0 w w

Example: (a”b)#a? = S

oo oo oo 0
> Otherwise: this shows that “regular behaviors” a la (a"h)" are limited.

Difficult: show that all behaviors are also limited. Algebraic tools of I. Simon

14/30



Specifying quantitative properties

Develop high-level denotational formalism

> to express easily quantitative properties on words/trees,

» should allow us to compute arithmetic expressions (possibly guarded by logical
conditions written in a standard language (eg., FO or XPath),

» should have an equivalent operational model.

15/30



On words: what remains true for weights?

eXtended
Rational
Kleene Expressions
[-]
- L
Automata A -] L zafg_u)a?(e)sl}
2-way
pebbles -1
alternating
FO + TC
Elgot
Trakhtenbrot ¥ MSO sentences
Biichi

Boolean: B = ({0,1},V,A,0,1)
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On words: what remains true for weights?

Schiitzenberger E  wRat
[-]
wAutomata A = 5;§:e*riiK
[-]
®  wMSO

Quantitative: K = (K, +, x,0,1)

16/30



Expressiveness in the weighted setting
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Expressiveness in the weighted setting
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Find a robust class containing both wFO and wAutomata.

DA



Weighted Expressions

Syntax of WE(L)
Fix £ a logic (eg, MSO, FO(<)).

Ex=p|k|E®E|EQE|P EIQR E
where p € L, k € K, x is a first-order variable.

Semantics

> An expression E without free variables defines a mapping [¢] : =7 — K.
> For p € L, we have [¢](w) € {0,1} (in the chosen semiring).
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Weighted Expressions

Syntax of WE(L)
Fix £ a logic (eg, MSO, FO(<)).

Ex=p|k|E®E|EQE|P EIQR E
where p € L, k € K, x is a first-order variable.

Semantics

> An expression E without free variables defines a mapping [¢] : =7 — K.
> For p € L, we have [¢](w) € {0,1} (in the chosen semiring).

> (D, ¢ interpreted as a sum over all positions.

> &, @ interpreted as a product over all positions.
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Weighted expressions: examples

On (N, +, x):
> [D, a(x)](v) = Z [a()](u, i) = |u|a recognizable by wA

i€pos(u)
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Weighted expressions: examples

On (N, +, x):
> [D, a(x)](v) = Z [a()](u, i) = |u|a recognizable by wA
i€pos(u)
> [®, 2](u) = H [2](u, i) = 2! recognizable by wA
i€pos(u)
» [, ®, 2[(v H [®, 2](u,i)= (2luhylul = plul® not recognizable
i€pos(u)

w-Automata are not closed under ().

19/30



Capturing Weighted Automata

Theorem (Droste & Gastin'05)
wAutomata = wRMSO

wRMSO consists of weighted expressions with
> &, restricted to \/ /\ of constants and boolean formulae.
> A new second order weighted operator, @, restricted to boolean formulae.
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Extending instead of Restricting ?

21/30

Aim: robust class extending both WE(FO) and wAutomata.

[m]

=

DA



(2-way) Pebble weighted automata

» Automaton with 2-way mechanism and pebbles {1,...,r}.

u
D> <
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(2-way) Pebble weighted automata

» Automaton with 2-way mechanism and pebbles {1,...,r}.
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» Applicable transitions depend on current (state,letter,pebbles).
(p, a, k, Pebbles, D, q), where D € {+, —, lift,drop}.
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(2-way) Pebble weighted automata

» Automaton with 2-way mechanism and pebbles {1,...,r}.

u
> ? (3) @ S

» Applicable transitions depend on current (state,letter,pebbles).
(p, a, k, Pebbles, D, q), where D € {+, —, lift,drop}.
» Stack policy: only the most recently dropped pebble may be lifted
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(2-way) Pebble weighted automata

v

Automaton with 2-way mechanism and pebbles {1,...,r}.

@ e S —

v

Applicable transitions depend on current (state,letter,pebbles).
(p, a, k, Pebbles, D, q), where D € {«+, —, lift,drop}.
Stack policy: only the most recently dropped pebble may be lifted

v

v

Weak policy: pebble may be lifted only when the head scans its position.
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(2-way) Pebble weighted automata

v

Automaton with 2-way mechanism and pebbles {1,...,r}.

u
> @ 2 4

v

Applicable transitions depend on current (state,letter,pebbles).
(p, a, k, Pebbles, D, q), where D € {«+, —, lift,drop}.
Stack policy: only the most recently dropped pebble may be lifted

v

v

Weak policy: pebble may be lifted only when the head scans its position.

v

Note. For Boolean word automata, this does not add expressive power.
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Pebble weighted automata: semantics

Recall from the classical setting:

> Value of a word: sum of all weights of runs on this word.

[Al(w) = > weight(p)

p run of Aon w

> No longer well defined for 2-way pebble automata
(can loop = can have arbitrarily large runs on a given word).
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Pebble weighted automata: semantics

Recall from the classical setting:

> Value of a word: sum of all weights of runs on this word.

[Al(w) = > weight(p)

p run of Aon w

> No longer well defined for 2-way pebble automata
(can loop = can have arbitrarily large runs on a given word).

» Value of a word: sum of all weights of simple runs on this word.

[A](w) = > weight(p)

p simple run of A on w

(Other solution would be to restrict to suitable semirings)
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Why pebbles?

> Pebbles can be used to encode a first-order variable (its position).

¥,2

)

8.
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Why pebbles?

» Pebbles can be used to encode a first-order variable (its position).

za 27 *, = )
() Q ()
0 \ » S \ »
_/
\\\\7 7 o /

» Computes olul®. pebbles add expressive power.
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Why pebbles?

> Pebbles can be used to encode a first-order variable (its position).

» Computes olul®. pebbles add expressive power.
> Very same idea: pebble weighted automata are closed under @, .

by dropping nondeterministically the pebble instead.
> Summary: pebble wA easily bring closure under (), and ..

24/30



1-way pebble weighted automata

The construction for closure under @, and ), uses specific automata.

» After a drop, go to the end of the word and reset.
» No other use of <+~ move.

1-way pebble automata with /-resets

A 1-way pebble automaton is a 2-way pebble automaton st.

» no < move. Replaced by new move: reset.
» no lift can be immediately followed by a drop,

> each time a pebble is dropped, it gets a credit for £ resets (recursively).

Similar to 1-way automata used by Neven, Schwentick, Vianu 04 for data words.
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Closure properties of 1 way pwA

1-way pebble automata are nonlooping (pebble are “progressing”).
Semantics well-defined as [AJ(w) =3_ ., of 4 on wWeight(p).
Still closed under @@, and &), .

Closed under & and ®.

vV v v v
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Closure properties of 1 way pwA

1-way pebble automata are nonlooping (pebble are “progressing”).
Semantics well-defined as [A](w) =, .1 of 4 on wWeight(p).
Still closed under @@, and ), .

Closed under & and ®.

Corollary

1-way pebble weighted automata capture WE(MSO).

vV V. VvV Vv

For the converse, need to enrich the weighted expressions
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Pebble weighted Automata vs WE(MSO)

27/30

[m]

=

Characterization of 1-way and 2-way pebble wA in terms of expression

s?
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Weighted transitive closure: TC and BTC

» Boolean setting: MSO = FO(<) + Transitive closure.
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Weighted transitive closure: TC and BTC

» Boolean setting: MSO = FO(<) + Transitive closure.
> Weighted: for E(x, y) with (at least) two first order free variables, let

En(x7y) = @x:zo,zl,.“,z,,:y <®1§Z§n E(ZZ*L Zg))

where the sum ranges over seq. of pairwise distinct positions z, ..., z,.

> The transitive closure operator is defined by TC,, E =, ., E".

> Bounded transitive closure BTC: N-TC,, E = TC,,(E A |x —y| < N)

28/30



Expressiveness

Theorem: WE(FO + BTC) = 2-way pebble wA = 1-way pebble wA.

(On commutative semirings)

WE(FO + BTC)

= 2-wPA
= 1-wPA

29/30
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Related and Further Work

» Other nice framework in min-+: cost functions, S/B-automata
[Th. Colcombet, M. Bojanczyk]

Logics +— Automata

» Lack of results for proving non-expressiveness.

» Unbounded steps in transitive closure?

v

Weak pebbles vs. strong pebbles?

» Extensions to other structures: Trees (~ Benjamin's talk)
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