
Weighted and counter systems

Marc Zeitoun

Joint with Benedikt, Paul, Benjamin

LaBRI, U. Bordeaux, LSV, ENS Cachan, CNRS, INRIA

Barbizon 2011

1/30



Let’s begin with the end

Thank you!

(Pot de départ fin juin)
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Recipe: How to ask for a survey

1. Ask kindly for a talk (don’t be too demanding)

P. Would you like to give a talk for Barbizon?
M. Sure. I’ll be short in time, may I reuse an already prepared talk?
P. Perfect!

2. Wait 10 days

P. A survey would be much better, can you please give a title?
M. . . .
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Counter and Weighted Systems

Counter
(mainly ∞)

Weighted
(∞, Tempo, Mexico)

What for? Represent runs of machines Resources/functions

Motivation MC for ∞ systems, complexity Quantitative MC

Typical questions MC. Reach, cover, TL,. . . MC. Comparison, bound.

Typical tools Linear algebra, unfoldings, wqo Automata, games, algebra

This talk: presentation of weighted automata on words.
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Two popular types of Weighted Automata

1. Probabilistic automata.
2. Min-+ automata.

Can be presented uniformly.
No uniform algorithms for typical questions.
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Minsky machines vs. Probabilistic Automata

I Crux: Counters affect runs in Minsky machines, not in probabilistic automata.
I Runs are aggregated in probabilistic automata to compute a function.

Minsky Prob. Automaton

Guards = 0? None

Updates along transition +1,−1 × α

Semantic of nondeterminism Boolean Sum
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Probabilistic Automata

p

a,1/2

a,1/3

a,1/6

I Weight (probability) of a run: product of all transition weights.
Weight (probability) of a word: sum of weights of all successful runs.

1 2

b, 1

2

a, 1

2

a, 1

b, 1

2

a, 1

2

b, 1

I JAK(ba) = 1/4
I Interpreting (a, b) as (0, 1): JAK(a1 · · · an) = 0.an · · · a1
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3 Questions for Probabilistic Automata

1. Equality: JAK = JBK?
Decidable (Schützenberger’61, Tzeng’92) Minimal automaton.

2. Boundedness: JAK < 1/2?
Undecidable (Paz’71) PCP

From morphisms f , g : {0, 1}∗ → {0, 1}∗, compute 1/2[1− (f (w)− g(w))]

3. 0 value: are there words accepted with arbitrarily small probability?
Undecidable (Gimbert & Oualhadj’10)
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Min-+ Automata

I Costs in N ∪ {∞}.
I Weight (cost) of a run: sum of all transition weights.

Weight (cost) of a word: min of weights of all successful runs.

Weight of a word u = minimal cost for going from Init to Final reading u.

1

JAK(u) = |u|b

a,0

b,+1
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I Costs in N ∪ {∞}.
I Weight (cost) of a run: sum of all transition weights.

Weight (cost) of a word: min of weights of all successful runs.

Weight of a word u = minimal cost for going from Init to Final reading u.

1 2 3

JBK(aaaabaabaaa) = 2

JBK(u): min length of block of a’s

a, b,0 a,+1 a, b,0

b,0 b,0
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From Probabilistic Automata to min-+ Automata

1. Transform product into sum: apply log;high probabilities yield small distances

2. Approximate new sum unsing min: Viterbi’s approximation.

([0, 1],+,×)
− log−−−−→ (R≥0 ∪∞,⊕,+)

Viterbi−−−−−→ (R≥0 ∪∞,min,+).

xy ; − log(xy) = − log(x) +− log(y)

x + y ; − log(x + y)

∣∣∣ log(x + y)−min(− log(x),− log(y))
∣∣∣ ≤ log 2
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The 3 Questions after log-transforming

Probabilistic Min-+

JAK = JBK D JAK = JBK

U

JAK > α U JAK ≤ k

D

0-value U Is JAK bounded?

D

I Limitedness (refinement of boundedness): Is JAK bounded over its support?

Problems very sensitive to underlying semiring.
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Min-+ Automata: Results

I Equality JAK = JBK: Undecidable! [Krob’94].
New and simple proof by Th. Colcombet (Minsky machines).

I Given k, is JAK ≤ k decidable (easy).

I Limitedness: Is JAK bounded on its support? Decidable
Much work, eg [Hashigushi’81, Simon, Leung, Kirsten, Colcombet]

Note: Boundedness in min-+ is more complicated than for VASS:
VASS: ∃B ∀w ∀ρ ∈ Runs(w) : Val(ρ) 6 B.
min-+: ∃B ∀w ∃ρ ∈ Runs(w) : Val(ρ) 6 B.
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Limitedness: Motivation

Finite power property

I Given L regular,
Decide if there exists n ≥ 0 such that L∗ = (ε+ L)n.

I Thomson’s construction for star:

A(L), 0

ε,+1

New automaton is limited iff. L has the finite power property.

I Generalization to multiple counters (Kirsten) ; star-height problem.
I Note: universality is a particular case of limitedness

(=⇒ limitedness is PSPACE-hard).
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Limitedness is decidable

1

a,0

b,+1

2 3 4

a, b,0 a,+1 a, b,0

b,0 b,0

I Transformation monoid: a =


0 ∞ ∞ ∞
∞ 0 ∞ ∞
∞ ∞ 1 ∞
∞ ∞ ∞ 0

 , b =


1 ∞ ∞ ∞
∞ 0 0 ∞
∞ ∞ ∞ 0
∞ ∞ ∞ 0


I Problem: the monoid generated is infinite.
I Solution: Abstract by projecting onto {0, 1,∞}: 0 7→ 0, n 7→ 1, ∞ 7→ ∞.
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Limitedness is decidable

1

a,0

b,+1

2 3 4

a, b,0 a,+1 a, b,0

b,0 b,0

I Loss of precision in the abstraction: aa = a =


0 ∞ ∞ ∞
∞ 0 ∞ ∞
∞ ∞ 1 ∞
∞ ∞ ∞ 0

.

I Add a new value ω meaning “unbounded”.

I New operation # “iterate a large number of times”: a# =


0 ∞ ∞ ∞
∞ 0 ∞ ∞
∞ ∞ ω ∞
∞ ∞ ∞ 0


I Think of (a#b)# as (anb)n for large n.
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Limitedness is decidable

1

a,0

b,+1

2 3 4

a, b,0 a,+1 a, b,0

b,0 b,0

I Algorithm: compute the (#,·) monoid generated by letter matrices.
I If for some matrix M, min(Init,M,Final) = ω: witness of non-limitedness.

Example: (a#b)#a# =


ω ∞ ∞ ∞
∞ 0 ω ω
∞ ∞ ∞ ω
∞ ∞ ∞ 0


I Otherwise: this shows that “regular behaviors” à la (anb)n are limited.

Difficult: show that all behaviors are also limited. Algebraic tools of I. Simon
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Specifying quantitative properties

Develop high-level denotational formalism

I to express easily quantitative properties on words/trees,
I should allow us to compute arithmetic expressions (possibly guarded by logical

conditions written in a standard language (eg., FO or XPath),
I should have an equivalent operational model.
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On words: what remains true for weights?

Boolean: B = ({0, 1},∨,∧, 0, 1)

Languages

L : Σ∗ → {0, 1}AAutomata

E
Rational

Expressions

ϕ MSO sentences

J−K

J−K

J−K

Kleene

Elgot

Trakhtenbrot

Büchi

2-way

pebbles

alternating
...

eXtended

FO + TC
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On words: what remains true for weights?

Series

s : Σ∗ → K
AwAutomata

E wRat

ϕ wMSO

J−K

J−K

J−K

Schützenberger

Quantitative: K = (K ,+,×, 0, 1)
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Expressiveness in the weighted setting

wMSO

wA = wRat

wFO

???

Find a robust class containing both wFO and wAutomata.
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Weighted Expressions

Syntax of WE(L)
Fix L a logic (eg, MSO, FO(<)).

E ::= ϕ | k | E ⊕ E | E ⊗ E |
⊕

x
E |
⊗

x
E

where ϕ ∈ L, k ∈ K , x is a first-order variable.

Semantics
I An expression E without free variables defines a mapping JϕK : Σ+ → K .
I For ϕ ∈ L, we have JϕK(w) ∈ {0, 1} (in the chosen semiring).

I
⊕

x ϕ interpreted as a sum over all positions.
I
⊗

x ϕ interpreted as a product over all positions.
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Weighted expressions: examples

On (N,+,×):

I J
⊕

x a(x)K(u) =
∑

i∈pos(u)

Ja(x)K(u, i) = |u|a recognizable by wA

I J
⊗

y 2K(u) =
∏

i∈pos(u)

J2K(u, i) = 2|u| recognizable by wA

I J
⊗

x
⊗

y 2K(u) =
∏

i∈pos(u)

J
⊗

y 2K(u, i) = (2|u|)|u| = 2|u|
2

not recognizable

w-Automata are not closed under
⊗

.
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Capturing Weighted Automata

Theorem (Droste & Gastin’05)

wAutomata = wRMSO

wRMSO consists of weighted expressions with
I
⊗

x restricted to
∨∧

of constants and boolean formulae.
I A new second order weighted operator,

⊕
X , restricted to boolean formulae.
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Extending instead of Restricting ?

wMSO

wA
= wRat
= wRMSO

WE(FO) ???

Aim: robust class extending both WE(FO) and wAutomata.
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(2-way) Pebble weighted automata

I Automaton with 2-way mechanism and pebbles {1, . . . , r}.
u

⊲ ⊳

I Applicable transitions depend on current (state,letter,pebbles).
(p, a, k,Pebbles,D, q), where D ∈ {←,→, lift, drop}.

I Stack policy: only the most recently dropped pebble may be lifted
I Weak policy: pebble may be lifted only when the head scans its position.
I Note. For Boolean word automata, this does not add expressive power.
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Pebble weighted automata: semantics

Recall from the classical setting:

I Value of a word: sum of all weights of runs on this word.

JAK(w) =
∑

ρ run of A on w

weight(ρ)

I No longer well defined for 2-way pebble automata
(can loop ⇒ can have arbitrarily large runs on a given word).

I Value of a word: sum of all weights of simple runs on this word.

JAK(w) =
∑

ρ simple run of A on w

weight(ρ)

(Other solution would be to restrict to suitable semirings)
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Why pebbles?

I Pebbles can be used to encode a first-order variable (its position).

Σ, 2

I Computes 2|u|
2
: pebbles add expressive power.

I Very same idea: pebble weighted automata are closed under
⊕

x .
Very same idea: by dropping nondeterministically the pebble instead.

I Summary: pebble wA easily bring closure under
⊗

x and
⊕

x .
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1-way pebble weighted automata

The construction for closure under
⊕

x and
⊗

x uses specific automata.

I After a drop, go to the end of the word and reset.
I No other use of ← move.

1-way pebble automata with `-resets
A 1-way pebble automaton is a 2-way pebble automaton st.

I no ← move. Replaced by new move: reset.
I no lift can be immediately followed by a drop,
I each time a pebble is dropped, it gets a credit for ` resets (recursively).

Similar to 1-way automata used by Neven, Schwentick, Vianu 04 for data words.
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Closure properties of 1 way pwA

I 1-way pebble automata are nonlooping (pebble are “progressing”).
I Semantics well-defined as JAK(w) =

∑
ρ run of A on wweight(ρ).

I Still closed under
⊕

x and
⊗

x .
I Closed under ⊕ and ⊗.

Corollary
1-way pebble weighted automata capture WE(MSO).

For the converse, need to enrich the weighted expressions
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Pebble weighted Automata vs WE(MSO)

wMSO

2-pwA
= ???

1-pwA = ???

wA
= wRat
= wRMSO

WE(FO)

Characterization of 1-way and 2-way pebble wA in terms of expressions?
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Weighted transitive closure: TC and BTC

I Boolean setting: MSO ≡ FO(<) + Transitive closure.

I Weighted: for E (x , y) with (at least) two first order free variables, let

En(x , y) =
⊕

x=z0,z1,...,zn=y

(⊗
1≤`≤n E (z`−1, z`)

)
where the sum ranges over seq. of pairwise distinct positions z0, . . . , zn.

x = z0 z4 = yz2 z3 z1

E

E

E
E

I The transitive closure operator is defined by TCxyE =
⊕

n≥1 En.

I Bounded transitive closure BTC: N-TCxyE = TCxy (E ∧ |x − y | ≤ N)
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Expressiveness

Theorem: WE(FO + BTC) = 2-way pebble wA = 1-way pebble wA.
(On commutative semirings)

wMSO

WE(FO + BTC)
= 2-wPA
= 1-wPAwA

= wRat
= wRMSO

WE(FO)
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Related and Further Work

I Other nice framework in min -+: cost functions, S/B-automata
[Th. Colcombet, M. Bojańczyk]

Logics ←→ Automata

I Lack of results for proving non-expressiveness.
I Unbounded steps in transitive closure?
I Weak pebbles vs. strong pebbles?
I Extensions to other structures: Trees (; Benjamin’s talk)
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