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A. Profinite semigroups: introduction / reminders.

B. Separation.



Profinite topologies

Birkhoff, Moore-Smith convergence in general topology (1937)
3 examples of profinite topologies, defined by congruences on algebras:
» p-adic numbers.
> Topologies for free groups.
> Stone's duality of Boolean algebras and Boolean topological spaces
(Hausdorff, compact, with a clopen basis).

Compactness of the completion of the topological algebra follows from the fact
that congruences have finite index.



Semigroups, monoids and groups

Semigroup: set equipped with an associative binary operation.
Monoid: semigroup with a unit element.

Group: monoid in which each element has an inverse.

X denotes a finite alphabet.

XT, [X*]: free semigroup [monoid] on X.
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» direct products,
» subsemigroup,
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» Birkhoff variety of semigroups: class of semigroups closed under
> direct products,
> subsemigroup,

> quotient (homomorphic image).

» A semigroup T satisfies a word identity u = v, with u, v € X, if for every
homomorphism ¢ : X* — T, we have ¢(u) = p(v).

» Equational class = { semigroups satisfying a set of identities }.
Example: commutative semigroups, semilattices.

Theorem (Birkhoff, 1935)

Varieties are exactly equational classes.




The case of finite semigroups

» Many interesting classes of languages, defined by logical or combinatorial
properties, correspond to classes of finite semigroups.

> Eilenberg-like correspondence between classes of lanquages and classes of
finite semigroups.
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The case of finite semigroups

Many interesting classes of languages, defined by logical or combinatorial
properties, correspond to classes of finite semigroups.

Eilenberg-like correspondence between classes of lanquages and classes of
finite semigroups.
Can we capture these classes by identities?

What are the properties of these classes?



Pseudovarieties

Several types of semigroup classes are obtained. We focus on pseudovarieties.

» Pseudovariety: class of finite semigroups closed under
» finite direct products,
> subsemigroup,
> quotient.

> S: all finite semigroups.

» G: all finite groups.

> A: all finite aperiodic (group-free) semigroups.
» V. a generic pseudovariety.



High-level vs. algebraic properties

Logical
Language L Anin(L) Synt(L) deﬁn%bllltg
| Star-free | Counter-free | A | FO(<),LTL |
[Sch65McN-P71,K68]
| Piecewise testable | Very weak +. .. | J | Bool(X1) |
[575]
¢ I'T non ambiguous 2-way part. ord. DA E?E(ézﬂ M,
[Sch76,5chThVO1,ThW98,EVW97, PW97]
| Loc. threshold testable | Forbidden patterns | ACom = LI | FO(<) |

[585,ThW85,8P89]



Birkhoff's theorem fails

> Fact: given a set of identities, the class of finite semigroups satisfying all the
identities of the set is indeed a pseudovariety.
» But: some pseudovarieties are not equational: eg, G, A.

> Remedy: Topology! Instead of considering word identities, replace the free
semigroup X by a suitable topological completion.



Separating abab and abba with a finite group

(1) Build an automaton with the two words [courtesy of J-E. Pin]
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Separating abab and abba with a finite group

(1) Build an automaton with the two words [courtesy of J-E. Pin]

(2) Complete into permutations. The resulting permutation group separates abab
and abba since 1-abab =5 and 1-baba = 7.



A metric on X

> X: fixed finite alphabet.

> A semigroup T separates u,v € X if there is a homomorphism
@ : XT — T such that ¢(u) # o(v).

> Define a pseudo-metric d:

r(u,v) =min{|T|: T separates u and v}.
d(u,v) =27V,



The free profinite semigroup

Reutenauer 1979

For x € X, the sequence x™ is a Cauchy sequence since it evaluates to p(x™) =
o(x)™" = ¢(x)* in all semigroup T with less than n elements.

Does not converge in X.

sW = [Sw]2

» The space (X, d) is not complete.
> Free profinite semigroup FxS: topological completion of (X, d).

> Elements of FxS are called pseudowords.



The free profinite semigroup

Reutenauer 1979

For x € X, the sequence x™ is a Cauchy sequence since it evaluates to p(x™) =
o(x)™" = ¢(x)* in all semigroup T with less than n elements.

Does not converge in X*. It converges in FxS to an idempotent noted x“.

sW = [Sw]2

» The space (X, d) is not complete.
> Free profinite semigroup FxS: topological completion of (X, d).

> Elements of FxS are called pseudowords.
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Main properties of the free profinite semigroup

The metric d can be extended as usual by continuity to FxS.

A sequence of words converges in the metric space (/:_XS, d) iff its projection
on every finite semigroup is ultimately constant.

(FxS,d) is a compact space.

Universal property:
X+t —— BS
%)
T

Every w € FxS can be evaluated in an X-generated semigroup.

p: X —T,

S(w).

Wy
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Main properties of the free profinite semigroup

The metric d can be extended as usual by continuity to FxS.

A sequence of words converges in the metric space (/:_XS, d) iff its projection
on every finite semigroup is ultimately constant.

(FxS,d) is a compact space.
Universal property:

7 ~
Xt ——> FxS
1
\ R )
31 @, continuous
¢ v

T
Every w € FxS can be evaluated in an X-generated semigroup.

p: X —T,

S(w).

Wy



Equational description of pseudovarieties

> A finite semigroup T satisfies u = v, for u, v elements of the free profinite
semigroup, if for every homomorphism ¢ : X* — T, we have $(w) = H(v).

Theorem (Reiterman, 1982)

Pseudovarieties are exactly classes defined by identities in elements of the free
profinite semigroup.

Examples
> S x=x.
» Com: xy = yx.
> G x¥y = yx¥ = y (abbreviated x¥ = 1).
> A x@TL = x@,



Example: commutative p-groups

» A finite group is a p-group if it has p* elements for some k.

> The pseudovariety of commutative p-groups cannot be defined by identities
in terms using w-power.

> Assume it is defined by such identities u = v, plus xy = yx, x*“ = 1.
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Example: commutative p-groups

A finite group is a p-group if it has p* elements for some k.

The pseudovariety of commutative p-groups cannot be defined by identities
in terms using w-power.

Assume it is defined by such identities u = v, plus xy = yx, x“ = 1.

> In u=v, all w-powers can be replaced by 1. So such an identity is

equivalent to a word identity.

If |ul, = |v]|, for all letters a, then u = v is not useful (consequence of
Xy = yx).
Otherwise, u = v fails in some p-group Z/p*Z for k large enough.



Example: unary alphabets

If X = {a}, the pseudowords which are not words form a group.

It suffices to show that any two elements are comparable for the prefix and
suffix quasi-ordering.

> letu,v e FxS: u=limak and v = lim a%, with kn, £n — 0.

Since ak» is prefix and suffix of all a® for n large enough, at the limit u is a
prefix and suffix of v.

Note: the group is infinite (it contains a*** for all k € Z) and even
uncountable.
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The free pro-V semigroup on X

X: fixed finite alphabet.

A semigroup T separates u, v € X if there is a homomorphism
@ XT — T such that ¢(u) # o(v).

Define a pseudo-metric dy:

rv(u,v) =min{|T|: T €V and T separates u and v}.
dy(u,v) =27y,

u ~y v if and only if dy(u, v) = 0 defines a congruence.
Relatively V-free profinite semigroup FxV: completion of (Xt /~y, dv).



Example: nilpotent semigroups

> A semigroup is nilpotent if it has a unique idempotent which is a zero.

» Example: Given k, Nx = {J;, X' U {0}, and

Y — 0 if|xy|=k
Y= xy  otherwise

> Ny separates any two different words of length < k.
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Example: nilpotent semigroups

A semigroup is nilpotent if it has a unique idempotent which is a zero.
Example: Given k, Ny = |J;, X" U {0}, and

Y — 0 if|xy|=k
Y= xy  otherwise

Ny separates any two different words of length < k.

Let N: pseudovariety of nilpotent semigroups defined by x* = 0.

Let u € FxN: u = limp_o0 U, Where u, are words. If |up| is bounded: u is a
word. Otherwise, one can assume (|u,| — 00), so u evaluates to O in every
finite nilpotent semigroup.

FaN = XT U {0}.



Example: semilattices

» A semilattice is a commutative and idempotent semigroup: it satisfies x = x?
and xy = yx.

> Example: (P(X),N).
> Let Sl the pseudovariety of semilattices. Then FxSl ~ (P(X),N).



Reversible automata

An automaton is reversible if, forgetting its initial and final states, it is
deterministic and co-deterministic. Several initial (resp. final) states allowed.

Forbidden configurations in a reversible automaton.

> Reversible language: recognized by a reversible automaton.
» Example: every finite language is reversible.

» Can we decide if a language is reversible?



Reversible languages: decision procedure

Theorem (Pin, 1987)

> A language is reversible if

1. it is closed in X™ in the pro-G topology, and
2. the idempotents of its syntactic monoid commute.

Clearly, 2 is decidable. Can we also decide 17



Computing closures

Theorem (Almeida)

If L C X is recognized by a ¢ : XT — T €V, then
» the closure of L in FxV is equal to $~(p(L)),
» the closure of L in FxV is open.

The closures of V-recognizable languages form a basis of the topology of FxV.

Consequence

For two regular lanquages, their closures do not intersect iff the languages can be
separated by a V-recognizable language.



The Pin-Reutenauer algorithm

We have X* < FG(X) < FxG.

One can compute the closure of L in FxG, or its intersection with FG(X) or
with X*.

For groups, it can be shown that the closures intersect in FxG if and only if
they intersect in FG(X).

The Pin-Reutenauer algorithm computes closures of reqular languages in the
free group FG(X) or in X*.



The Pin-Reutenauer algorithm for groups

In the free group FG(X) endowed with the pro-G topology, for K, L C X
regular:

clrgx) (KL) = clex) (K) - clegx (L),

clrex)(L7) = (L)
Conjectured by Pin and Reutenauer, reduced to another conjecture proved by
Ribes and Zalesskil.
Equivalent to Rhodes’ type Il conjecture, proved by Ash.

Gives an algorithm to effectively compute the closure of a rational language
(in the free group, or the free monoid) for the topology dg.



Closure of a regular lanquage

Theorem (Pin 1991, Pin-Reutenauer 1991)

The closure of a reqular language for dg in X* is still reqular and can be computed
effectively.

Intuitively, the only rule to apply is lim, ... x" = 1. In practice, just two rules,
where v is any word.

u
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An example: L = (ba*b)* (borrowed from J.-E. Pin)

Now, there are a path from 1 to 4 and a loop around 4, both labeled bb. The
closure of L is (ba*b)*.
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The Pin-Reutenauer algorithm for aperiodics

To generalize this algorithm to A (aperiodic semigroups), replace the free
group by the algebra of terms built from X using multiplication and w-power.

Each such term can be interpreted on a profinite semigroup.
F¥ A is the subsemigroup of FxA generated by all such terms.
F¥ A: w-terms modulo equality on aperiodic semigroups.

XT s FEA < FxA



Word problem for FZA.

> Two distinct words can be separated by an aperiodic semigroup.
» But (b(aa)¥)**b and b(a“b)* represent the same element of FEZA.

Theorem (McCammond '01)

Using the following rewriting system, there is a procedure to transform any w-word
into a normal form: two w-words are equal over FxA if and only if they have the
same normal form.

1T (x9)% — x¥
- (xXK)% e x¥ for k =2
XYxY — x¥

() x = x(yx)©

U~ W N

XX +— x¥ +— xx¥
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The rank of w € FZA is the maximum nesting of w-powers in the term in normal
form representing w.



Notation: Closures for profinite topologies

L C T topological semigroup: cl+(L) denotes the closure of L in T.

» We work in pv A, the pseudovariety of aperiodic semigroups.
cl(L) £ clg A(L) el (L) = clega(L)
> The topology on F¥A is the induced topology in FxA:
clu(L) = cl(L) N FEA.

> cl,(L) is countable. Algorithm to compute it?



Notation: algebraic closures

Let T be an w-semigroup, and L C T.

(L), = w-subsemigroup of T generated by L.
(in practice in L C F¢S or L C FZS)



The Pin-Reutenauer algorithm for A

Theorem [Almeida, JC. Costa, Z]

The Pin-Reutenauer procedure for A: For all nonempty rational languages K, L C
Xt

clu(KL) = clu(K) - clu (L), (1)
(L) = (el (L)) (2)

Remarks
» Unfortunately, requires some more work to test whether an intersection of
closures is empty.

> cl,(KL) D cly,(K) - cly,(L) and cl,(LT) 2 {cl, (L)) always hold
(multiplication and w-power are continuous).



The Pin-Reutenauer for A: Case of the product

> cl,(KL) D cly,(K) - clw(L) by continuity of multiplication.

> For the reverse implication, use the fact that A is w-factorial.
Every factor in FxA of an element of FYA is again in F¥A.
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The Pin-Reutenauer for A: Case of the product

clw(KL) 2 cly(K) - clu, (L) by continuity of multiplication.
> For the reverse implication, use the fact that A is w-factortal.
Every factor in FxA of an element of FYA is again in F¥A.

> Proof sketch: take w € cl,(KL).

> There exists w, € KL converging to w in FxA.

> Write w, = xpyn with x, € K and y, € L

» By compactness, one can assume (x,) and (y») convergent to x € cl(K) and
y € cl(L).

Since A is w-factorial and w = xy, we get x,y € FYA.

So x € clu(K), and y € clo,(L), whence w € clo,(K).clo(L).
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The case of the iteration

The interesting inclusion is cl, (L") C {cl,,(L))..

We must prove that an element of cl,, (L") can be written as a finite term as
an w-term, on elements of {cl,,(L))w.
Main problem: a sequence converging to w can have an unbounded number
of factors.
Two ingredients:

1. Induction on the rank of w,

2. Aperiodic languages L,(w) giving a neighborhood basis of w in F¥A. Ln(w)

defined from the normal form of w by replacing all "w” by "> n", with
L7 =L"L*



Two natural questions

1. Automata for term languages.
» (Henckell's algorithm) Given reqular K, L C X™, one can decide whether

c(K)ncl(L) = 2.
» By a weak form of w-reducibility for A, this is equivalent
clu(K)Nco(L) = 2.
Is it possible to test it using automata accepting languages in Fx A?
2. For pseudovarieties enjoying a property called fullness, the PR algorithm is

inherited by taking sub-pseudovarieties.

The pseudovariety S has this property.
Does the Pin-Reutenauer algorithm hold for S and signature ab, a~~1?
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