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A. Profinite semigroups: introduction / reminders.

B. Separation.
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Profinite topologies

Birkhoff, Moore-Smith convergence in general topology (1937)
3 examples of profinite topologies, defined by congruences on algebras:

I p-adic numbers.
I Topologies for free groups.
I Stone’s duality of Boolean algebras and Boolean topological spaces

(Hausdorff, compact, with a clopen basis).
Compactness of the completion of the topological algebra follows from the fact
that congruences have finite index.
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Semigroups, monoids and groups

I Semigroup: set equipped with an associative binary operation.
I Monoid: semigroup with a unit element.
I Group: monoid in which each element has an inverse.
I X denotes a finite alphabet.
I X+, [X ∗]: free semigroup [monoid] on X .
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Birkhoff varieties

I Birkhoff variety of semigroups: class of semigroups closed under
I direct products,
I subsemigroup,
I quotient (homomorphic image).

I A semigroup T satisfies a word identity u = v , with u, v ∈ X+, if for every
homomorphism ϕ : X+ → T , we have ϕ(u) = ϕ(v).

I Equational class = { semigroups satisfying a set of identities }.
Example: commutative semigroups, semilattices.

Theorem (Birkhoff, 1935)
Varieties are exactly equational classes.
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The case of finite semigroups

I Many interesting classes of languages, defined by logical or combinatorial
properties, correspond to classes of finite semigroups.

I Eilenberg-like correspondence between classes of languages and classes of
finite semigroups.

I Can we capture these classes by identities?
I What are the properties of these classes?
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Pseudovarieties

Several types of semigroup classes are obtained. We focus on pseudovarieties.
I Pseudovariety: class of finite semigroups closed under

I finite direct products,
I subsemigroup,
I quotient.

I S: all finite semigroups.
I G: all finite groups.
I A: all finite aperiodic (group-free) semigroups.
I V: a generic pseudovariety.
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High-level vs. algebraic properties

Language L Amin(L) Synt(L)
Logical

definability

Star-free Counter-free A FO(<), LTL
[Sch65,McN-P71,K68]

Piecewise testable Very weak + . . . J Bool(Σ1)

[S75]

⊎
f

∏
non ambiguous 2-way part. ord. DA FO2(<),

UTL,Σ2 ∩ Π2
[Sch76,SchThV01,ThW98,EVW97,PW97]

Loc. threshold testable Forbidden patterns ACom ∗ LI FO(l)

[S85,ThW85,BP89]
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Birkhoff’s theorem fails

I Fact: given a set of identities, the class of finite semigroups satisfying all the
identities of the set is indeed a pseudovariety.

I But: some pseudovarieties are not equational: eg, G, A.
I Remedy: Topology! Instead of considering word identities, replace the free

semigroup X+ by a suitable topological completion.
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Separating abab and abba with a finite group

(1) Build an automaton with the two words [courtesy of J.-É. Pin]

1 2 3
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(2) Complete into permutations. The resulting permutation group separates abab
and abba since 1·abab = 5 and 1·baba = 7.



10/34

Separating abab and abba with a finite group

(1) Build an automaton with the two words [courtesy of J.-É. Pin]

1 2 3

4

5

6

7

a b

a

b

b

a

a

a

a

a

b

b

b

b

(2) Complete into permutations.

The resulting permutation group separates abab
and abba since 1·abab = 5 and 1·baba = 7.



10/34

Separating abab and abba with a finite group

(1) Build an automaton with the two words [courtesy of J.-É. Pin]

1 2 3

4

5

6

7

a b

a

b

b

a

a

a

a

a

b

b

b

b

(2) Complete into permutations. The resulting permutation group separates abab
and abba since 1·abab = 5 and 1·baba = 7.



11/34

A metric on X+

I X : fixed finite alphabet.
I A semigroup T separates u, v ∈ X+ if there is a homomorphism

ϕ : X+ → T such that ϕ(u) 6= ϕ(v).
I Define a pseudo-metric d :{

r(u, v) = min
{
|T | : T separates u and v

}
.

d(u, v) = 2−r(u,v).
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The free profinite semigroup

Reutenauer 1979
For x ∈ X+, the sequence xn! is a Cauchy sequence since it evaluates to ϕ(xn!) =
ϕ(x)n! = ϕ(x)ω in all semigroup T with less than n elements.
Does not converge in X+.

It converges in F̂XS to an idempotent noted xω .

. . .
s s2 s3 sn−1

sn

sn+1

sω = [sω]2

I The space (X+, d) is not complete.
I Free profinite semigroup F̂XS: topological completion of (X+, d).
I Elements of F̂XS are called pseudowords.
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Main properties of the free profinite semigroup

I The metric d can be extended as usual by continuity to F̂XS.
I A sequence of words converges in the metric space (F̂XS, d) iff its projection

on every finite semigroup is ultimately constant.
I (F̂XS, d) is a compact space.
I Universal property:

X+ F̂XS

T

ϕ

ı

∃! ϕ̂, continuous

I Every w ∈ F̂XS can be evaluated in an X -generated semigroup.

ϕ : X −→ T ,

wϕ = ϕ̂(w).
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Equational description of pseudovarieties

I A finite semigroup T satisfies u = v , for u, v elements of the free profinite
semigroup, if for every homomorphism ϕ : X+ −→ T , we have ϕ̂(w) = ϕ̂(v).

Theorem (Reiterman, 1982)
Pseudovarieties are exactly classes defined by identities in elements of the free
profinite semigroup.

Examples
I S: x = x .
I Com: xy = yx .
I G: xωy = yxω = y (abbreviated xω = 1).
I A: xω+1 = xω .
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Example: commutative p-groups

I A finite group is a p-group if it has pk elements for some k .
I The pseudovariety of commutative p-groups cannot be defined by identities

in terms using ω-power.
I Assume it is defined by such identities u = v , plus xy = yx , xω = 1.

I In u = v , all ω-powers can be replaced by 1. So such an identity is
equivalent to a word identity.

I If |u|a = |v |a for all letters a, then u = v is not useful (consequence of
xy = yx ).

I Otherwise, u = v fails in some p-group Z/pkZ for k large enough.
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Example: unary alphabets

I If X = {a}, the pseudowords which are not words form a group.
I It suffices to show that any two elements are comparable for the prefix and

suffix quasi-ordering.
I Let u, v ∈ F̂XS: u = lim akn and v = lim a`n , with kn, `n →∞.
I Since akp is prefix and suffix of all a`n for n large enough, at the limit u is a

prefix and suffix of v .
I Note: the group is infinite (it contains aω+k for all k ∈ Z) and even

uncountable.
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The free pro-V semigroup on X

I X : fixed finite alphabet.
I A semigroup T separates u, v ∈ X+ if there is a homomorphism

ϕ : X+ → T such that ϕ(u) 6= ϕ(v).
I Define a pseudo-metric dV:{

rV(u, v) = min
{
|T | : T ∈ V and T separates u and v

}
.

dV(u, v) = 2−rV(u,v).

I u ∼V v if and only if dV(u, v) = 0 defines a congruence.
I Relatively V-free profinite semigroup F̂XV: completion of (X+/∼V, dV).
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Example: nilpotent semigroups

I A semigroup is nilpotent if it has a unique idempotent which is a zero.
I Example: Given k , Nk =

⋃
i<k X

i ∪ {0}, and

x .y =

{
0 if |xy | > k
xy otherwise

I Nk separates any two different words of length < k .

I Let N: pseudovariety of nilpotent semigroups defined by xω = 0.
I Let u ∈ F̂XN: u = limn→∞ un where un are words. If |un| is bounded: u is a

word. Otherwise, one can assume (|un| → ∞), so u evaluates to 0 in every
finite nilpotent semigroup.

I F̂AN = X+ ∪ {0}.
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Example: semilattices

I A semilattice is a commutative and idempotent semigroup: it satisfies x = x2

and xy = yx .
I Example: (P(X ),∩).
I Let Sl the pseudovariety of semilattices. Then F̂XSl ≈ (P(X ),∩).
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Reversible automata
An automaton is reversible if, forgetting its initial and final states, it is
deterministic and co-deterministic. Several initial (resp. final) states allowed.

p

q

r

q

r

p

a

a

a

a

Forbidden configurations in a reversible automaton.

I Reversible language: recognized by a reversible automaton.
I Example: every finite language is reversible.
I Can we decide if a language is reversible?
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Reversible languages: decision procedure

Theorem (Pin, 1987)
I A language is reversible if

1. it is closed in X ∗ in the pro-G topology, and
2. the idempotents of its syntactic monoid commute.

Clearly, 2 is decidable. Can we also decide 1?
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Computing closures

Theorem (Almeida)
If L ⊆ X+ is recognized by a ϕ : X+ → T ∈ V, then

I the closure of L in F̂XV is equal to ϕ̂−1(ϕ(L)),
I the closure of L in F̂XV is open.

The closures of V-recognizable languages form a basis of the topology of F̂XV.

Consequence
For two regular languages, their closures do not intersect iff the languages can be
separated by a V-recognizable language.
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The Pin-Reutenauer algorithm

I We have X ∗ ↪→ FG (X ) ↪→ F̂XG.
I One can compute the closure of L in F̂XG, or its intersection with FG (X ) or

with X ∗.
I For groups, it can be shown that the closures intersect in F̂XG if and only if

they intersect in FG (X ).
I The Pin-Reutenauer algorithm computes closures of regular languages in the

free group FG (X ) or in X ∗.
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The Pin-Reutenauer algorithm for groups

I In the free group FG (X ) endowed with the pro-G topology, for K , L ⊆ X+

regular:

clFG(X )(KL) = clFG(X )(K ) · clFG(X )(L),

clFG(X )(L
∗) = 〈L〉

I Conjectured by Pin and Reutenauer, reduced to another conjecture proved by
Ribes and Zalesskĭı.

I Equivalent to Rhodes’ type II conjecture, proved by Ash.
I Gives an algorithm to effectively compute the closure of a rational language

(in the free group, or the free monoid) for the topology dG.
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Closure of a regular language

Theorem (Pin 1991, Pin-Reutenauer 1991)
The closure of a regular language for dG in X ∗ is still regular and can be computed
effectively.

Intuitively, the only rule to apply is limn→∞ xn! = 1. In practice, just two rules,
where u is any word.

p q
u

u

1

p q
u

u

1
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An example: L = (ba+b)+ (borrowed from J.-É. Pin)

1 2

3

4

b
a

a

b

b

1

1

Now, there are a path from 1 to 4 and a loop around 4, both labeled bb. The
closure of L is (ba∗b)∗.
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The Pin-Reutenauer algorithm for aperiodics

I To generalize this algorithm to A (aperiodic semigroups), replace the free
group by the algebra of terms built from X using multiplication and ω-power.

I Each such term can be interpreted on a profinite semigroup.
I Fω

X A is the subsemigroup of F̂XA generated by all such terms.
I Fω

X A: ω-terms modulo equality on aperiodic semigroups.
I X+ ↪→ Fω

X A ↪→ F̂XA.
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Word problem for F ω
XA.

I Two distinct words can be separated by an aperiodic semigroup.
I But (b(aa)ω)ω+1b and b(aωb)ω represent the same element of Fω

X A.

Theorem (McCammond ’01)
Using the following rewriting system, there is a procedure to transform any ω-word
into a normal form: two ω-words are equal over F̂XA if and only if they have the
same normal form.

1. (xω)ω ←→ xω

2. (xk)ω ←→ xω for k > 2
3. xωxω ←→ xω

4. (xy)ωx ←→ x(yx)ω

5. xωx ←→ xω ←→ xxω

The rank of w ∈ Fω
X A is the maximum nesting of ω-powers in the term in normal

form representing w .
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Notation: Closures for profinite topologies

L ⊆ T topological semigroup: clT (L) denotes the closure of L in T .
I We work in pv A, the pseudovariety of aperiodic semigroups.

cl(L) def
= clF̂XA(L) clω(L)

def
= clFω

X A(L)

I The topology on Fω
X A is the induced topology in F̂XA:

clω(L) = cl(L) ∩ Fω
X A.

I clω(L) is countable. Algorithm to compute it?
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Notation: algebraic closures

Let T be an ω-semigroup, and L ⊆ T .

〈L〉ω = ω-subsemigroup of T generated by L.
(in practice in L ⊆ Fω

X S or L ⊆ Fω
A S)
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The Pin-Reutenauer algorithm for A

Theorem [Almeida, JC. Costa, Z.]
The Pin-Reutenauer procedure for A: For all nonempty rational languages K , L ⊆
X+:

clω(KL) = clω(K ) · clω(L), (1)
clω(L+) = 〈clω(L)〉ω. (2)

Remarks
I Unfortunately, requires some more work to test whether an intersection of

closures is empty.
I clω(KL) ⊇ clω(K ) · clω(L) and clω(L+) ⊇ 〈clω(L)〉ω always hold

(multiplication and ω-power are continuous).
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The Pin-Reutenauer for A: Case of the product

I clω(KL) ⊇ clω(K ) · clω(L) by continuity of multiplication.
I For the reverse implication, use the fact that A is ω-factorial.

Every factor in F̂XA of an element of Fω
X A is again in Fω

X A.

I Proof sketch: take w ∈ clω(KL).

I There exists wn ∈ KL converging to w in F̂XA.
I Write wn = xnyn with xn ∈ K and yn ∈ L.
I By compactness, one can assume (xn) and (yn) convergent to x ∈ cl(K) and

y ∈ cl(L).
I Since A is ω-factorial and w = xy , we get x , y ∈ Fω

X A.
I So x ∈ clω(K), and y ∈ clω(L), whence w ∈ clω(K).clω(L).
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The case of the iteration

I The interesting inclusion is clω(L+++) ⊆ 〈clω(L)〉ω .
I We must prove that an element of clω(L+++) can be written as a finite term as

an ω-term, on elements of 〈clω(L)〉ω .
I Main problem: a sequence converging to w can have an unbounded number

of factors.
I Two ingredients:

1. Induction on the rank of w ,
2. Aperiodic languages Ln(w) giving a neighborhood basis of w in Fω

X A. Ln(w)
defined from the normal form of w by replacing all ”ω” by ”> n”, with
L>n = LnL+ .
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Two natural questions

1. Automata for term languages.
I (Henckell’s algorithm) Given regular K , L ⊆ X+ , one can decide whether

cl(K) ∩ cl(L) = ∅.

I By a weak form of ω-reducibility for A, this is equivalent

clω(K) ∩ clω(L) = ∅.

Is it possible to test it using automata accepting languages in Fω
X A?

2. For pseudovarieties enjoying a property called fullness, the PR algorithm is
inherited by taking sub-pseudovarieties.
The pseudovariety S has this property.
Does the Pin-Reutenauer algorithm hold for S and signature ab, aω−1?
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