Profinite semigroups and separation

Marc Zeitoun, LaBRI, U. Bordeaux, CNRS.

ANR FREC, November 27, 2013

Outline

A. Profinite semigroups: introduction / reminders.

B. Separation.

Profinite topologies

Birkhoff, Moore-Smith convergence in general topology (1937)

3 examples of profinite topologies, defined by congruences on algebras:

- *p*-adic numbers.
- Topologies for free groups.
- Stone's duality of Boolean algebras and Boolean topological spaces (Hausdorff, compact, with a clopen basis).

Compactness of the completion of the topological algebra follows from the fact that congruences have finite index.

Semigroups, monoids and groups

▲ I → I → ○ Q ← 4/34

- Semigroup: set equipped with an associative binary operation.
- Monoid: semigroup with a unit element.
- Group: monoid in which each element has an inverse.
- > X denotes a finite alphabet.
- X^+ , $[X^*]$: free semigroup [monoid] on X.

Birkhoff varieties

▲ 臣 ▶ 臣 ∽ � � 5/34

Birkhoff variety of semigroups: class of semigroups closed under

- direct products,
- subsemigroup,
- quotient (homomorphic image).

Birkhoff varieties

Birkhoff variety of semigroups: class of semigroups closed under

- direct products,
- subsemigroup,
- quotient (homomorphic image).
- A semigroup T satisfies a word identity u = v, with $u, v \in X^+$, if for every homomorphism $\varphi: X^+ \to T$, we have $\varphi(u) = \varphi(v)$.

▲ I → I → ○ Q ← 5/34

Equational class = { semigroups satisfying a set of identities }. Example: commutative semigroups, semilattices.

Birkhoff varieties

Birkhoff variety of semigroups: class of semigroups closed under

- direct products,
- subsemigroup,
- quotient (homomorphic image).
- A semigroup T satisfies a word identity u = v, with $u, v \in X^+$, if for every homomorphism $\varphi: X^+ \to T$, we have $\varphi(u) = \varphi(v)$.

▲ ■ ▶ ■ 𝒴 𝒴 𝒴 𝔄

Equational class = { semigroups satisfying a set of identities }.
Example: commutative semigroups, semilattices.

Theorem (Birkhoff, 1935)

Varieties are exactly equational classes.

The case of finite semigroups

- Many interesting classes of languages, defined by logical or combinatorial properties, correspond to classes of finite semigroups.
- Eilenberg-like correspondence between classes of languages and classes of finite semigroups.

▲ I → I → ○ Q ← 6/34

The case of finite semigroups

- Many interesting classes of languages, defined by logical or combinatorial properties, correspond to classes of finite semigroups.
- Eilenberg-like correspondence between classes of languages and classes of finite semigroups.

▲ I → I → ○ Q ← 6/34

- Can we capture these classes by identities?
- What are the properties of these classes?

Pseudovarieties

Several types of semigroup classes are obtained. We focus on pseudovarieties.

▲ ∃ ► ∃ < <p> < ○ </p>

- Pseudovariety: class of finite semigroups closed under
 - finite direct products,
 - subsemigroup,
 - quotient.
- S: all finite semigroups.
- G: all finite groups.
- A: all finite aperiodic (group-free) semigroups.
- ▶ V: a generic pseudovariety.

High-level vs. algebraic properties

Language <i>L</i>	$\mathcal{A}_{\min}(L)$	Synt(L)	Logical definability
Star-free	Counter-free	А	FO(<), LTL
[Sch65,McN-P71,K68]			
Piecewise testable	Very weak +	J	$Bool(\Sigma_1)$
[S75]			
$\biguplus_f \prod$ non ambiguous	2-way part. ord.	DA	FO ₂ (<), UTL,Σ ₂ ∩Π ₂
[Sch76,SchThV01,ThW98,EVW97,PW97]			
Loc. threshold testable	Forbidden patterns	ACom * LI	FO(∢)

[S85,ThW85,BP89]

Birkhoff's theorem fails

- Fact: given a set of identities, the class of finite semigroups satisfying all the identities of the set is indeed a pseudovariety.
- But: some pseudovarieties are not equational: eg, G, A.
- Remedy: Topology! Instead of considering word identities, replace the free semigroup X⁺ by a suitable topological completion.

▲ I → I → ○ Q ○ 9/34

Separating *abab* and *abba* with a finite group

(1) Build an automaton with the two words [courtesy of J.-É. Pin]

▲ 臣 ▶ 臣 • ⑦ � (℃ 10/34

Separating *abab* and *abba* with a finite group

(1) Build an automaton with the two words [courtesy of J.-É. Pin]

(2) Complete into permutations.

▲ 臣 ▶ 臣 ∽ � � 0/34

Separating *abab* and *abba* with a finite group

(1) Build an automaton with the two words [courtesy of J.-É. Pin]

(2) Complete into permutations. The resulting permutation group separates *abab* and *abba* since $1 \cdot abab = 5$ and $1 \cdot baba = 7$.

A metric on X^+

- > X: fixed finite alphabet.
- A semigroup T separates $u, v \in X^+$ if there is a homomorphism $\varphi: X^+ \to T$ such that $\varphi(u) \neq \varphi(v)$.
- ► Define a pseudo-metric *d*:

$$\begin{cases} r(u, v) = \min\{|T|: T \text{ separates } u \text{ and } v\}.\\ d(u, v) = 2^{-r(u, v)}. \end{cases}$$

▲ ■ ▶ ■ のQ (P 11/34)

The free profinite semigroup

Reutenauer 1979

For $x \in X^+$, the sequence $x^{n!}$ is a Cauchy sequence since it evaluates to $\varphi(x^{n!}) = \varphi(x)^{n!} = \varphi(x)^{\omega}$ in all semigroup T with less than n elements. Does not converge in X^+ .

▲ ■ ▶ ■ 𝒴 𝔍 𝔅 12/34

- The space (X^+, d) is not complete.
- Free profinite semigroup $\hat{F}_X S$: topological completion of (X^+, d) .
- Elements of $\hat{F}_X S$ are called pseudowords.

The free profinite semigroup

Reutenauer 1979

For $x \in X^+$, the sequence $x^{n!}$ is a Cauchy sequence since it evaluates to $\varphi(x^{n!}) = \varphi(x)^{n!} = \varphi(x)^{\omega}$ in all semigroup T with less than n elements. Does not converge in X^+ . It converges in $\hat{F}_X S$ to an idempotent noted x^{ω} .

▲ ■ ▶ ■ 𝒴 𝔍 𝔅 12/34

- The space (X^+, d) is not complete.
- Free profinite semigroup $\hat{F}_X S$: topological completion of (X^+, d) .
- Elements of $\hat{F}_X S$ are called pseudowords.

Main properties of the free profinite semigroup

- The metric *d* can be extended as usual by continuity to $\hat{F}_X S$.
- A sequence of words converges in the metric space (*F*_XS, *d*) iff its projection on every finite semigroup is ultimately constant.
- $(\hat{F}_X S, d)$ is a compact space.
- Universal property:

• Every $w \in \hat{F}_X S$ can be evaluated in an *X*-generated semigroup.

$$\varphi: X \longrightarrow T,$$

 $w_{\varphi} = \hat{\varphi}(w).$

▲ 王 ▶ 王 ∽ � � 13/34

Main properties of the free profinite semigroup

- The metric *d* can be extended as usual by continuity to $\hat{F}_X S$.
- A sequence of words converges in the metric space (*F*_XS, *d*) iff its projection on every finite semigroup is ultimately constant.
- $(\hat{F}_X S, d)$ is a compact space.
- Universal property:

• Every $w \in \hat{F}_X S$ can be evaluated in an *X*-generated semigroup.

$$\varphi: X \longrightarrow T,$$

 $w_{\varphi} = \hat{\varphi}(w).$

▲ 王 ▶ 王 ∽ � � 13/34

Main properties of the free profinite semigroup

- The metric *d* can be extended as usual by continuity to $\hat{F}_X S$.
- A sequence of words converges in the metric space (*F*_XS, *d*) iff its projection on every finite semigroup is ultimately constant.
- $(\hat{F}_X S, d)$ is a compact space.
- Universal property:

• Every $w \in \hat{F}_X S$ can be evaluated in an *X*-generated semigroup.

$$\begin{aligned} \varphi: X \longrightarrow T, \\ w_{\varphi} &= \hat{\varphi}(w). \end{aligned}$$

◆ Ξ ▶ Ξ の Q (13/34)

Equational description of pseudovarieties

A finite semigroup T satisfies u = v, for u, v elements of the free profinite semigroup, if for every homomorphism $\varphi : X^+ \longrightarrow T$, we have $\hat{\varphi}(w) = \hat{\varphi}(v)$.

Theorem (Reiterman, 1982)

Pseudovarieties are exactly classes defined by identities in elements of the free profinite semigroup.

Examples

- $\blacktriangleright S: x = x.$
- Com: xy = yx.
- G: $x^{\omega}y = yx^{\omega} = y$ (abbreviated $x^{\omega} = 1$).
- $\blacktriangleright A: x^{\omega+1} = x^{\omega}.$

Example: commutative *p*-groups

- A finite group is a *p*-group if it has p^k elements for some *k*.
- The pseudovariety of commutative *p*-groups cannot be defined by identities in terms using ω-power.

★ ∃ ► ∃ < <p>♦ € 15/34

Assume it is defined by such identities u = v, plus xy = yx, $x^{\omega} = 1$.

Example: commutative *p*-groups

- A finite group is a *p*-group if it has p^k elements for some *k*.
- The pseudovariety of commutative *p*-groups cannot be defined by identities in terms using ω-power.
- Assume it is defined by such identities u = v, plus xy = yx, $x^{\omega} = 1$.
- ▶ In u = v, all ω -powers can be replaced by 1. So such an identity is equivalent to a word identity.
- ► If $|u|_a = |v|_a$ for all letters *a*, then u = v is not useful (consequence of xy = yx).

▲ ■ ▶ ■ 𝒴 𝔍 𝔅 15/34

• Otherwise, u = v fails in some p-group $\mathbb{Z}/p^k\mathbb{Z}$ for k large enough.

Example: unary alphabets

- If $X = \{a\}$, the pseudowords which are not words form a group.
- It suffices to show that any two elements are comparable for the prefix and suffix quasi-ordering.
- Let $u, v \in \hat{F}_X S$: $u = \lim a^{k_n}$ and $v = \lim a^{\ell_n}$, with $k_n, \ell_n \to \infty$.
- Since a^{k_p} is prefix and suffix of all a^{ℓ_n} for n large enough, at the limit u is a prefix and suffix of v.

▲ ■ ▶ ■ 𝒴 𝔍 𝔅 16/34

▶ Note: the group is infinite (it contains $a^{\omega+k}$ for all $k \in \mathbb{Z}$) and even uncountable.

The free **pro-V** semigroup on X

- ► X: fixed finite alphabet.
- A semigroup T separates $u, v \in X^+$ if there is a homomorphism $\varphi: X^+ \to T$ such that $\varphi(u) \neq \varphi(v)$.
- ► Define a pseudo-metric *d*_V:

$$\begin{cases} r_{\mathsf{V}}(u,v) &= \min\{|T|: T \in \mathsf{V} \text{ and } \mathsf{T} \text{ separates } u \text{ and } v\}.\\ d_{\mathsf{V}}(u,v) &= 2^{-r_{\mathsf{V}}(u,v)}. \end{cases}$$

▲ I → I → ○ Q ← 17/34

- $u \sim_V v$ if and only if $d_V(u, v) = 0$ defines a congruence.
- Relatively V-free profinite semigroup $\hat{F}_X V$: completion of $(X^+/\sim_V, d_V)$.

Example: nilpotent semigroups

- A semigroup is nilpotent if it has a unique idempotent which is a zero.
- Example: Given k, $N_k = \bigcup_{i < k} X^i \cup \{0\}$, and

$$x.y = \begin{cases} 0 & \text{if } |xy| \ge k \\ xy & \text{otherwise} \end{cases}$$

▲ I ► I < </p>

• N_k separates any two different words of length < k.

Example: nilpotent semigroups

- A semigroup is nilpotent if it has a unique idempotent which is a zero.
- Example: Given k, $N_k = \bigcup_{i < k} X^i \cup \{0\}$, and

$$x.y = \begin{cases} 0 & \text{if } |xy| \ge k \\ xy & \text{otherwise} \end{cases}$$

- N_k separates any two different words of length < k.
- Let N: pseudovariety of nilpotent semigroups defined by $x^{\omega} = 0$.
- ▶ Let $u \in \hat{F}_X \mathbb{N}$: $u = \lim_{n \to \infty} u_n$ where u_n are words. If $|u_n|$ is bounded: u is a word. Otherwise, one can assume $(|u_n| \to \infty)$, so u evaluates to 0 in every finite nilpotent semigroup.

$$\blacktriangleright \hat{F}_A \mathbb{N} = X^+ \cup \{0\}.$$

Example: semilattices

A semilattice is a commutative and idempotent semigroup: it satisfies $x = x^2$ and xy = yx.

▲ ■ ▶ ■ 𝒴 𝔍 𝔅 19/34

- ▶ Example: $(\mathcal{P}(X), \cap)$.
- ▶ Let SI the pseudovariety of semilattices. Then \hat{F}_X SI $\approx (\mathcal{P}(X), \cap)$.

Reversible automata

An automaton is reversible if, forgetting its initial and final states, it is deterministic and co-deterministic. Several initial (resp. final) states allowed.

Forbidden configurations in a reversible automaton.

I nar

- Reversible language: recognized by a reversible automaton.
- **•** Example: every finite language is reversible.
- Can we decide if a language is reversible?

Reversible languages: decision procedure

▲ ■ ► ■ 𝒴 𝔍 𝔅 21/34

Theorem (Pin, 1987)

A language is reversible if

- 1. it is closed in X^* in the pro-**G** topology, and
- 2. the idempotents of its syntactic monoid commute.

Clearly, 2 is decidable. Can we also decide 1?

Computing closures

Theorem (Almeida)

If $L \subseteq X^+$ is recognized by a $\varphi: X^+ \to T \in V$, then

- the closure of *L* in $\hat{F}_X V$ is equal to $\hat{\varphi}^{-1}(\varphi(L))$,
- the closure of L in $\hat{F}_X V$ is open.

The closures of V-recognizable languages form a basis of the topology of $\hat{F}_X V$.

Consequence

For two regular languages, their closures do not intersect iff the languages can be separated by a V-recognizable language.

The Pin-Reutenauer algorithm

- We have $X^* \hookrightarrow FG(X) \hookrightarrow \hat{F}_X G$.
- One can compute the closure of *L* in $\hat{F}_X G$, or its intersection with FG(X) or with X^* .
- For groups, it can be shown that the closures intersect in $\hat{F}_X G$ if and only if they intersect in FG(X).
- The Pin-Reutenauer algorithm computes closures of regular languages in the free group FG(X) or in X*.

▲ 王 ▶ 王 ♥ Q @ 23/34

The Pin-Reutenauer algorithm for groups

▶ In the free group FG(X) endowed with the pro-G topology, for $K, L \subseteq X^+$ regular:

$$cl_{FG(X)}(KL) = cl_{FG(X)}(K) \cdot cl_{FG(X)}(L),$$

$$cl_{FG(X)}(L^*) = \langle L \rangle$$

- Conjectured by Pin and Reutenauer, reduced to another conjecture proved by Ribes and Zalesskiĭ.
- Equivalent to Rhodes' type II conjecture, proved by Ash.
- Gives an algorithm to effectively compute the closure of a rational language (in the free group, or the free monoid) for the topology d_{G} .

Theorem (Pin 1991, Pin-Reutenauer 1991)

The closure of a regular language for d_{G} in X^{*} is still regular and can be computed effectively.

Intuitively, the only rule to apply is $\lim_{n\to\infty} x^{n!} = 1$. In practice, just two rules, where u is any word.

▲ ■ ▶ ■ 𝒴 𝔍 Q Q 25/34

Theorem (Pin 1991, Pin-Reutenauer 1991)

The closure of a regular language for d_{G} in X^{*} is still regular and can be computed effectively.

Intuitively, the only rule to apply is $\lim_{n\to\infty} x^{n!} = 1$. In practice, just two rules, where u is any word.

▲ ■ ▶ ■ 𝒴 𝔍 Q Q 25/34

Theorem (Pin 1991, Pin-Reutenauer 1991)

The closure of a regular language for d_{G} in X^{*} is still regular and can be computed effectively.

Intuitively, the only rule to apply is $\lim_{n\to\infty} x^{n!} = 1$. In practice, just two rules, where u is any word.

I DQC

Theorem (Pin 1991, Pin-Reutenauer 1991)

The closure of a regular language for d_{G} in X^{*} is still regular and can be computed effectively.

Intuitively, the only rule to apply is $\lim_{n\to\infty} x^{n!} = 1$. In practice, just two rules, where u is any word.

▲ 臣 ▶ 臣 ∽ � � ♀ 26/34

Now, there are a path from 1 to 4 and a loop around 4, both labeled *bb*.

▲ 王 · · ○ Q · · · 26/34

Now, there are a path from 1 to 4 and a loop around 4, both labeled *bb*.

< E ▶ 臣 ∽ Q Q 26/34

Now, there are a path from 1 to 4 and a loop around 4, both labeled bb. The closure of *L* is $(ba^*b)^*$.

The Pin-Reutenauer algorithm for aperiodics

To generalize this algorithm to A (aperiodic semigroups), replace the free group by the algebra of terms built from X using multiplication and ω-power.

▲ I → I → ○ Q (→ 27/34)

- Each such term can be interpreted on a profinite semigroup.
- $F_X^{\omega} A$ is the subsemigroup of $\hat{F}_X A$ generated by all such terms.
- ► F_X^{ω} A: ω -terms modulo equality on aperiodic semigroups.
- $\blacktriangleright X^+ \hookrightarrow F^{\omega}_X \mathsf{A} \hookrightarrow \hat{F}_X \mathsf{A}.$

Word problem for $F_X^{\omega}A$.

- Two distinct words can be separated by an aperiodic semigroup.
- ▶ But $(b(aa)^{\omega})^{\omega+1}b$ and $b(a^{\omega}b)^{\omega}$ represent the same element of $F_X^{\omega}A$.

Theorem (McCammond '01)

Using the following rewriting system, there is a procedure to transform any ω -word into a normal form: two ω -words are equal over $\hat{F}_X A$ if and only if they have the same normal form.

- 1. $(x^{\omega})^{\omega} \longleftrightarrow x^{\omega}$
- 2. $(x^k)^\omega \longleftrightarrow x^\omega$ for $k \ge 2$
- 3. $x^{\omega}x^{\omega} \longleftrightarrow x^{\omega}$
- 4. $(xy)^{\omega}x \longleftrightarrow x(yx)^{\omega}$
- 5. $x^{\omega}x \longleftrightarrow x^{\omega} \longleftrightarrow xx^{\omega}$

Word problem for $F_X^{\omega}A$.

- Two distinct words can be separated by an aperiodic semigroup.
- ▶ But $(b(aa)^{\omega})^{\omega+1}b$ and $b(a^{\omega}b)^{\omega}$ represent the same element of $F_X^{\omega}A$.

Theorem (McCammond '01)

Using the following rewriting system, there is a procedure to transform any ω -word into a normal form: two ω -words are equal over $\hat{F}_X A$ if and only if they have the same normal form.

1. $(x^{\omega})^{\omega} \longleftrightarrow x^{\omega}$ 2. $(x^{k})^{\omega} \longleftrightarrow x^{\omega}$ for $k \ge 2$ 3. $x^{\omega}x^{\omega} \longleftrightarrow x^{\omega}$ 4. $(xy)^{\omega}x \longleftrightarrow x(yx)^{\omega}$ 5. $x^{\omega}x \longleftrightarrow x^{\omega} \longleftrightarrow xx^{\omega}$

The rank of $w \in F_X^{\omega} A$ is the maximum nesting of ω -powers in the term in normal form representing w.

Notation: Closures for profinite topologies

 $L \subseteq T$ topological semigroup: $cl_T(L)$ denotes the closure of L in T.

▶ We work in pv A, the pseudovariety of aperiodic semigroups.

$$\operatorname{cl}(L) \stackrel{\text{def}}{=} \operatorname{cl}_{\hat{F}_{X}\mathsf{A}}(L) \qquad \qquad \operatorname{cl}_{\omega}(L) \stackrel{\text{def}}{=} \operatorname{cl}_{F_{X}^{\omega}\mathsf{A}}(L)$$

• The topology on $F_X^{\omega} A$ is the induced topology in $\hat{F}_X A$:

 $\operatorname{cl}_{\omega}(L) = \operatorname{cl}(L) \cap F_X^{\omega} A.$

• $cl_{\omega}(L)$ is countable. Algorithm to compute it?

Notation: algebraic closures

Let T be an ω -semigroup, and $L \subseteq T$.

$$\langle L \rangle_{\omega} = \omega$$
-subsemigroup of T generated by L .
(in practice in $L \subseteq F_X^{\omega} S$ or $L \subseteq F_A^{\omega} S$)

▲ 臣 ▶ 臣 ∽ � 健 30/34

The Pin-Reutenauer algorithm for A

Theorem [Almeida, JC. Costa, Z.]

The Pin-Reutenauer procedure for A: For all nonempty rational languages $K, L \subseteq X^+$:

$$cl_{\omega}(KL) = cl_{\omega}(K) \cdot cl_{\omega}(L), \tag{1}$$

$$\operatorname{cl}_{\omega}(L^{+}) = \langle \operatorname{cl}_{\omega}(L) \rangle_{\omega}. \tag{2}$$

Remarks

- Unfortunately, requires some more work to test whether an intersection of closures is empty.
- ► $cl_{\omega}(KL) \supseteq cl_{\omega}(K) \cdot cl_{\omega}(L)$ and $cl_{\omega}(L^+) \supseteq \langle cl_{\omega}(L) \rangle_{\omega}$ always hold (multiplication and ω -power are continuous).

- ► $cl_{\omega}(KL) \supseteq cl_{\omega}(K) \cdot cl_{\omega}(L)$ by continuity of multiplication.
- For the reverse implication, use the fact that A is ω -factorial. Every factor in $\hat{F}_X A$ of an element of $F_X^{\omega} A$ is again in $F_X^{\omega} A$.

- ► $cl_{\omega}(KL) \supseteq cl_{\omega}(K) \cdot cl_{\omega}(L)$ by continuity of multiplication.
- For the reverse implication, use the fact that A is ω -factorial. Every factor in $\hat{F}_X A$ of an element of $F_X^{\omega} A$ is again in $F_X^{\omega} A$.
- ▶ Proof sketch: take $w \in cl_{\omega}(KL)$.
 - There exists $w_n \in KL$ converging to w in $\hat{F}_X A$.

- ► $cl_{\omega}(KL) \supseteq cl_{\omega}(K) \cdot cl_{\omega}(L)$ by continuity of multiplication.
- For the reverse implication, use the fact that A is ω -factorial. Every factor in $\hat{F}_X A$ of an element of $F_X^{\omega} A$ is again in $F_X^{\omega} A$.
- ▶ Proof sketch: take $w \in cl_{\omega}(KL)$.
 - There exists $w_n \in KL$ converging to w in $\hat{F}_X A$.
 - Write $w_n = x_n y_n$ with $x_n \in K$ and $y_n \in L$.

- ► $cl_{\omega}(KL) \supseteq cl_{\omega}(K) \cdot cl_{\omega}(L)$ by continuity of multiplication.
- For the reverse implication, use the fact that A is ω -factorial. Every factor in $\hat{F}_X A$ of an element of $F_X^{\omega} A$ is again in $F_X^{\omega} A$.
- ▶ Proof sketch: take $w \in cl_{\omega}(KL)$.
 - There exists $w_n \in KL$ converging to w in $\hat{F}_X A$.
 - Write $w_n = x_n y_n$ with $x_n \in K$ and $y_n \in L$.
 - ▶ By compactness, one can assume (x_n) and (y_n) convergent to $x \in cl(K)$ and $y \in cl(L)$.

- ► $cl_{\omega}(KL) \supseteq cl_{\omega}(K) \cdot cl_{\omega}(L)$ by continuity of multiplication.
- For the reverse implication, use the fact that A is ω -factorial. Every factor in $\hat{F}_X A$ of an element of $F_X^{\omega} A$ is again in $F_X^{\omega} A$.
- ▶ Proof sketch: take $w \in cl_{\omega}(KL)$.
 - There exists $w_n \in KL$ converging to w in $\hat{F}_X A$.
 - Write $w_n = x_n y_n$ with $x_n \in K$ and $y_n \in L$.
 - By compactness, one can assume (x_n) and (y_n) convergent to $x \in cl(K)$ and $y \in cl(L)$.

▲ I → I → ○ Q (~ 32/34)

Since A is ω -factorial and w = xy, we get $x, y \in F_X^{\omega}A$.

- ► $cl_{\omega}(KL) \supseteq cl_{\omega}(K) \cdot cl_{\omega}(L)$ by continuity of multiplication.
- For the reverse implication, use the fact that A is ω -factorial. Every factor in $\hat{F}_X A$ of an element of $F_X^{\omega} A$ is again in $F_X^{\omega} A$.
- ▶ Proof sketch: take $w \in cl_{\omega}(KL)$.
 - There exists $w_n \in KL$ converging to w in $\hat{F}_X A$.
 - Write $w_n = x_n y_n$ with $x_n \in K$ and $y_n \in L$.
 - By compactness, one can assume (x_n) and (y_n) convergent to $x \in cl(K)$ and $y \in cl(L)$.

- Since A is ω -factorial and w = xy, we get $x, y \in F_X^{\omega} A$.
- So $x \in cl_{\omega}(K)$, and $y \in cl_{\omega}(L)$, whence $w \in cl_{\omega}(K).cl_{\omega}(L)$.

The case of the iteration

- The interesting inclusion is $\operatorname{cl}_{\omega}(L^+) \subseteq \langle \operatorname{cl}_{\omega}(L) \rangle_{\omega}$.
- We must prove that an element of cl_ω(L⁺) can be written as a finite term as an ω-term, on elements of (cl_ω(L))_ω.
- Main problem: a sequence converging to w can have an unbounded number of factors.
- Two ingredients:
 - 1. Induction on the rank of w,
 - 2. Aperiodic languages $L_n(w)$ giving a neighborhood basis of w in $F_X^{\omega}A$. $L_n(w)$ defined from the normal form of w by replacing all " ω " by "> n", with $L^{>n} = L^n L^+$.

▲ ■ ▶ ■ ♥ Q (♥ 33/34)

Two natural questions

1. Automata for term languages.

• (Henckell's algorithm) Given regular $K, L \subseteq X^+$, one can decide whether

 $\operatorname{cl}(K) \cap \operatorname{cl}(L) = \emptyset.$

• By a weak form of ω -reducibility for A, this is equivalent

$$\operatorname{cl}_{\omega}(K) \cap \operatorname{cl}_{\omega}(L) = \emptyset.$$

Is it possible to test it using automata accepting languages in $F_X^{\omega} A$?

 For pseudovarieties enjoying a property called fullness, the PR algorithm is inherited by taking sub-pseudovarieties. The pseudovariety S has this property.

Does the Pin-Reutenauer algorithm hold for S and signature $ab, a^{\omega-1}$?

< E ▶ E のQ (P 34/34)