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First-Order Logic for Words

We consider first-order logic with only the linear order '<.'

abbbcaaaca
0123456789 J

» A word is as a sequence of labeled positions that can be quantified.
» Unary predicates a(x), b(z), c(z), ... testing the label of a position.
» One binary predicate: the linear-order z < y.

Example: every a comes after some b
Ve a(z) = Jy (b(y) A (y < z)) J
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First Problem: Decidable Characterizations

Decide the following problem:

(Take a regular language L)
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First Problem: Decidable Characterizations

Decide the following problem:

(Take a regular language L)

Can it be defined
with an FO formula?

Schitzenberger'65, McNaughton and Papert'71
For L a regular language, the following are equivalent:

» L is FO-definable.

» The syntactic monoid of L satisfies u~ 1! = u«.




Why we want more than decidable characterizations

If the characterization answer is yes for L:

» All subparts of the minimal automaton of L are FO-definable.

If the characterization's answer is no for L:

» We have little information.
» Defining L would require differentiating some «* and u~*1.
» Yet: the logic can still express facts on L.



Separation

Decide the following problem:

(Take two regular languages L1, Lz‘
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Separation

Characterization can be formally reduced to separation

(Take two regular languages L1, Lo | [Can I, be separated from L2]

with an FO formula?

At

FO-separable from complement
=
FO-definable
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Motivations for Separation

» More general: need FO techniques applying to all languages.
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Motivations for Separation

» More general: need FO techniques applying to all languages.
» Therefore, may give information to solve harder problems.
» For FO, already solved with such motivations by Henckell '88.

Pointlike sets: the finest aperiodic cover of a finite semigroup

The research in this paper is motivated by the open question: “Is the
complexity of a finite semigroup S decidable?"

» Difficult algebraic techniques. Following the lead of the Presentation
Lemma (Rhodes), we describe the finest cover on S that can be
computed using an aperiodic semigroup and give an explicit relation.
The central idea of the proof is that an aperiodic computation can be
described by a new ‘blow-up operator’ HW. The proof also relies on the
Rhodes expansion of S and on Zeiger coding.
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An already known result: Henckell '88

Guide to the paper

Chapter 1. Elementary definitions and notation should be omitted on first reading
and used as a reference as needed.

Chapter 2. The Pl-functor defines pointlike sets in a general setting and shows by
an abstract compactness argument that PI1(S) can be computed by an aperiodic
semigroup.

Chapter 3. Definition of C“(S) and H“ defines C*(S), a collection of pointlike
sets, in a constructive manner. H* is the ‘blow-up-operator’ that we will use in
Chapter 5 to show C“(S)=PI(S). It has some examples in the end.

Chapter 4. The Rhodes-expansion defines the tools needed in Chapter 5.

Chapter 5. C”(S)=PI(S) shows the main result by actually constructing a rela-
tion X CP(S) computing C%(S) with CP(S) aperiodic. It uses H*, generalized
to 4% on C“(S} ‘to get rid of groups by blowing up’.
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Alternate formulations of separation

Formulations of separation [Almeida'96] [AlmeidaCostaZ13]
The following are equivalent:

1. Ly, and L, are not FO-separable.

2. For all k, there exist wy € Ly, wy € Ly With wy = wo.

3. For all aperiodic 7" and morphism 3 : At — T,

B(L1) N B(Ly) # 0.

4. LiyNLy #0 (closures taken in the pro-aperiodic semigroup).
5. L1 N Ly contains an w-term.

Actually, 5 may be exploited to prove decidability of separation.
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What was already known

Separation already solved for interesting classes:

» First-order definable,
» Piecewise testable,
» Locally (threshold) testable.

Drawbacks:

» Difficult algebraic proofs.
» No insight of an actual separator.
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Contributions

New, elementary proofs for already known cases.

Single “proof canvas''.

Extension to other logics (FO?, quantifier alternation within FO?).
Generalization to logics not closed under negation: X,.

Transfer theorems: separation for ¥, = characterization for X5.
Results can be lifted to the profinite interpretation.

vV V.V v v Yy

Canvas: given a : AT — S, fixpoint algorithm answering separability
for all input languages recognized by «.
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FO is hard, let's make it easy: Quantifier Rank

Quantifier rank of a formula: Nested depth of quantifiers.

Vady (a(x) = 3z (r <z <yAb(y))) has quantifier rank 3

If £ fixed: finitely many FO properties of rank k
= Separation is easy (test them all).
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FO is hard, let's make it easy: Quantifier Rank

Quantifier rank of a formula: Nested depth of quantifiers.

Vady (a(x) = 3z (r <z <yAb(y))) has quantifier rank 3

If £ fixed: finitely many FO properties of rank k
= Separation is easy (test them all).

k-equivalence for FO
Let wq, wo be words:

wy = we iff wy, wo satisfy the same formulas of rank &

All FO properties of rank k are unions of classes of ;.

12/33



Fixed Quantifier Rank &

A+

)

Let's add the =;.-classes
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Fixed Quantifier Rank &

A+

4
A' N\
D
4
Separable with rank & iff no =;-class intersects both languages

For full FO we want to know if there exists such a &
= Compute a 'limit' for ;.
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Fixed Quantifier Rank &

Separable with rank & iff no =;-class intersects both languages

For full FO we want to know if there exists such a &
= Compute a 'limit' for ;.

When k gets larger, & is refined but it never ends

Idea. Abstract =, on a finite semigroup recognizing both L; and L.

13/33



“Pair'' analysis
Fix o : AT — S. Compute I[a], k-indistinguishable pairs.

FO-indistinguishable pairs for a: At — S

(s1,82) € lgla] if

3 wyp = W2
S1 52

» Smaller and smaller sets: I 11[a] C lg[a].
» Limit set: lja] =, Ix[a].
» Computing these pairs solves separation:

(s1,82) € l[a] — a~!(s1) and a~!(ss) not separable
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“Pair'' analysis

» Smaller and smaller sets: l;,;1[a] C I;[o]
» Limit set: Ija] =, Ix[a].

What have we gained?

We work with finite semigroups = the refinement stabilizes.
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“Pair'' analysis

» Smaller and smaller sets: l;,;1[a] C I;[o]
» Limit set: Ija] =, Ix[a].

What have we gained?

We work with finite semigroups = the refinement stabilizes.

It may happen that I, 1[a] = l;[«] before stabilization.
It may happen that

> (r,s) €l]a],

> (s,t) €[],

> but (r,t) € l[a] (no transitivity).
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The Separation Criterion

Separation Criterion
Ly, L, recognized by o : AT — S are not separable
iff
there are accepting elements sy, s5 € S for Ly, Ly s.t. (s1, $2) € l[a].
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The Separation Criterion

Separation Criterion
Ly, L, recognized by o : AT — S are not separable
iff
there are accepting elements sy, s5 € S for Ly, Ly s.t. (s1, $2) € l[a].

Computing I[«a] suffices to solve separation.
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Two approaches to compute |[a]

Brute-force Algorithm

» Computing I;[] easy for fixed k. | Algorithm bypassing the bound k:

Direct fixpoint computation of I[«].
> |[a] = lx[a] for k depending on «.

» = Prove a bound k = f(«),
Compute I [«].
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Two approaches to compute |[a]

Brute-force Algorithm

» Computing I;[] easy for fixed k. | Algorithm bypassing the bound k:

Direct fixpoint computation of I[«].
> |[a] = lx[a] for k depending on «.

» = Prove a bound k = f(«),
Compute I [«].

We use approach 2.
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A first (non complete) Algorithm computing I[«]

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

[1 st Property of FO]

w = w
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A first (non complete) Algorithm computing I[a]

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

3rd Property of FO
Yk 3In Ywi,wy € AT wy g wo = (wq)" g (we)"

1. Trivial pairs: for allw € A (a(w), a(w)) € la]

2. Operation o (81,52) S ”Oé] and (tl,tz) S |[Oé] = (81t1,52t2) S |[Oé]

3. Operation w: (s1,s2) € l[a] = (s¢,s5™) € o]

Correct by definition but not complete
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Why it does not work

[ 3rd Property of FO ]
n+1

wy 2y we = (w1)" =g (w2)
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Why it does not work

Not general enough

h

[ 3rd Property of FO ]
n+1

wy 2y we = (w1)" =g (w2)

| Needs to be replaced |

N
wy Sg we Zy - Zg Wiy

All large concatenations of words in {wy, ..., w,,} are =;-equivalent.
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Need for better analysis

A Generalization: FO-indistinguishable Sets for oo : AT — S:

> {s1,82,...,8n} € lg[a] if
3 w1 gk w2 e gk W,
S1 52 Sn

» Limit set: lja] =, Ix[a].
» Computing these sets is more general than computing pairs.
= also solves separation (and gives much more).
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From Pairs to Sets

New Objective

We want to compute the set I[a] C 27 such that:

T € l[o] iff T € I[a], Vk €N
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From Pairs to Sets

New Objective

We want to compute the set I[a] C 2° such that:

T € l[o] iff T € I[a], Vk €N

Remark
» With our new definition, we have I[a] C 2.
» 25 is a semigroup for the operation Ty - Tp = {t1to | t; € T} to € Th}.
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A new (working) Algorithm

Idea : Start with trivial pairs and add more pairs via a fixpoint algorithm.

w = w

[1 st Property of FO]
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A new (working) Algorithm

Idea : Start with trivial pairs and add more pairs via a fixpoint algorithm.

3rd Property of FO
w1 S wa - Zp Wiy
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A new (working) Algorithm

Idea : Start with trivial pairs and add more pairs via a fixpoint algorithm.

3rd Property of FO
w1 S wa - Zp Wiy

4

All large concatenations of words in {wy, - - ,w,, } are =-equivalent.

1. Trivial sets: forallw € AT {a(w)} € l]a]
2. Operation «: T} € l[a] and T» € l[a] = ThT> € l[¢]
3. Operation w: T € l[a] = (T¥ UT“*1) € l[a]

Correct by definition (e.g., use EF games)
Can be proved to be complete
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Alternate algorithms

» The algorithm reflects the equation z+ = z**!
» 2 other equivalent ways to characterize FO-definability:

» All groups are trivial.
» All H-classes are trivial.

» The algorithm can be modified to reflect them too:
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Alternate algorithms

» The algorithm reflects the equation z+ = z**!
» 2 other equivalent ways to characterize FO-definability:

» All groups are trivial.
» All H-classes are trivial.

» The algorithm can be modified to reflect them too:

New algorithm:

e Operation: G a subgroup of lja] = (Upcg T) € l[a]

» Works also for H-classes (similar to Henckell's algorithm).

23/33



Alternate algorithms

3 variations of the 3rd operation.

» Operation w: T € l[a] = (T¥ UT“™) € l[a].

» Operation [1: H an H-class of l[a] = (Upcy T) € l[al.

» Operation G: G a subgroup of l[a] = (Upeg T) € l[af.
Theorem

All variations compute FO-indistinguishable sets, and all maximal ones.
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Completeness: Generalizing Wilke's proof

Reminder: I[a] = ),y Ikla]. In particular, for all k, lja] C Ix[a].
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Completeness: Generalizing Wilke's proof

Reminder: l[a] = N,y Ik[a]. In particular, for all &, 1ja] C Ix[a].

What we prove

For ¢ = |A|2!5°, the algorithm computes all maximal subsets of I,[a.
In particular, we get the bound of the “brute-force'' approach for free.

Proof technique

To every w € A, one can associate Geny(w) € lg[a]:

Geng(w) ={s € S| I = ws.t alw)=s}
We prove that for all w € AT, Gen,(w) is computed by the algorithm.

= We start with a w € A", we need a way to decompose it in a way that
respects the operations of our algorithm.
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Wilke's Proof for characterization of FO

We have o : AT — S with S satisfying z = z**1.
Let w € AT, how does FO proceeds to detect o(w)?
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Wilke's Proof for characterization of FO

We have o : AT — S with S satisfying z = z**1.
Let w € AT, how does FO proceeds to detect o(w)?

Two Cases: W == serssssssssssssssssssssssssssssaaans
Va € A,
a(a)S = S and Sa(a) =S

da € A,
a(a)S ¢ SorSala) C S
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Wilke's Proof for characterization of FO

We have o : AT — S with S satisfying z = z**1.
Let w € AT, how does FO proceeds to detect o(w)?

TWO CaSGSZ W == = sssssssssssssssssssssssassnnsnnnnnns
y Va € A,
" afa)S =Sand Sa(a) =S In that Case:
, daea, 1 =29+ = § = {1}
" afa)SC SorSala) CS
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Wilke's Proof for characterization of FO

We have o : AT — S with S satisfying z = z**1.
Let w € AT, how does FO proceeds to detect o(w)?

Two Cases: W = Wy QW] AW QW3 AWesrnrsrs AWy,

Va € A,
a(a)S = S and Sa(a) =S

Ja € A,
ala)S € SorSafa) S
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Wilke's Proof for characterization of FO

We have o : AT — S with S satisfying z = z**1.
Let w € AT, how does FO proceeds to detect o(w)?

a(wp) detectable
(Induction on |A|)

Two Cases: w =[Wo] AW AW QW3 QWes=ssssn AW,
y Va € A,
" «afa)S=Sand Sala) =S
> da € A,
" ala)S C SorSafa) S
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Wilke's Proof for characterization of FO

We have o : AT — S with S satisfying z = z**1.
Let w € AT, how does FO proceeds to detect a(w)?

a(wp) detectable
(Induction on |A|)

Two Cases: W =[Wo oW1 [QW3[AW3[GW}------ (@]
Va € A,

1. a(a)S = S and Sa(a) = § ]a(awl)Ha(awg)Ha(mgg)Ha(aw@‘ ]a(awm)‘
e A New meta-word on alphabet «(a)S

o(a)§ & Sor Sa(a) & § New morphism 5 : (a(a)S)* = a(a)S € S

Detectable by induction on | S|
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Wilke's Proof for characterization of FO

We have o : AT — S with S satisfying z = z**1.
Let w € AT, how does FO proceeds to detect a(w)?

a(wp) detectable
(Induction on |A|)

Two Cases: W =[Wo oW1 [QW3[AW3[GW}------ (@]
Va € A,
1 (@S = S and Sa(a) = 5 | 2lewdlatawsa{aws)alawd)] jaawm)
o a€ A, New meta-word on alphabet a(a)S
a(a)S & Sor Sa(a) & § New morphism 5 : (a(a)S)* = a(a)S € S
Detectable by induction on | S|

» One can adapt induction in our case.
» Aperiodicity used only in the base case.
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Completeness proof: induction

» a: AT — S surjective, S: subsemigroup of 2°.
» Sat(S): add all T* U T**1, and close by subsemigroup.
> So = {{s} | s € S}: singletons.
So C Sat(Sp) € ---  Sat’ (Sy) = Sat* T (Sy) X sat(sy)

Goal: show that |Sat™(S) = l[a].
Induction on

» the number of the elements of the base semigroup:

Is|=J x.

Xes

» the size | 4| of the alphabet.
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Completeness proof: induction

Main proposition
» S: subsemigroup of 2°. and 3 : Bt — S surjective morphism.

» Then, one can compute FO-formulas {¢, ..., ¢, } such that

» The languages L(¢p;) form a partition of B,
» For all 7,

LB(L(g:))] € ISat™(S)

Consequences

1. Entails that I[a] C |Sat”"(a(AT)), ie, completeness.
2. Separators for languages recognized by « can be chosen as |J; L(y;).
3. Constructive: formulas of controlled rank.
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Recap for FO-separation

We have

1. Algorithm computing I[a] = yes/no answer for FO-separation.
2. Bound on the size of the separator.
3. Inductive computation of a separator.
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More general analysis

» Goal: handle logics which are not closed under complement.
> Egs 22

Jxy .o 3z, Yyr .. Yy @, where ¢ quantifier-free
» Now use a non-symmetrical relation:
s St
if

Vi) € s of rank k
a”l(s) CL(Y) = a '(t)NL(Y) # 2

@ <, is not transitive.
To compute “chains'', one needs more precise information.

» With FO, we worked in a finite universe, 2°.
Here we work with infinite set S+.
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More general analysis

» For X, one can compute all chains.
» For X5, one can compute all chains fixed length.
Fixpoint algorithm, by induction on length.
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More general analysis

» For X, one can compute all chains.
» For X5, one can compute all chains fixed length.
Fixpoint algorithm, by induction on length.

Theorem

Let L be a regular language and o : At — S be its syntactic morphism.
Then, L is definable in 5 iff o satisfies:

s¥ < s¥ts” forall (t,s) € 1™2[a]

» Actually generic for all levels.
» We have an algorithm for computing 1*2[a],
= decidable characterization of 3.
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Conclusion

We have the following results:

Separation by FO is decidable (in EXPTIME).
Computing an actual separator formula done in an elementary way.

>
>
» Results can be (easily) generalized to infinite words.
» Can be extended to other classes, e.g., 3.

>

Transfer results: separation for ¥, = characterization for 5.

Question: can we compute chains for other levels of the alternation hierarchy?
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Thank you!
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