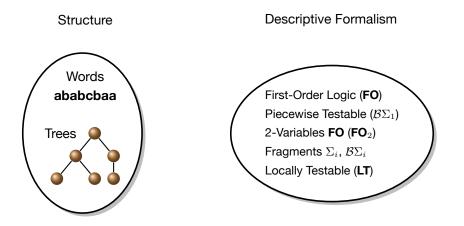
The separation problem

Thomas Place and Marc Zeitoun

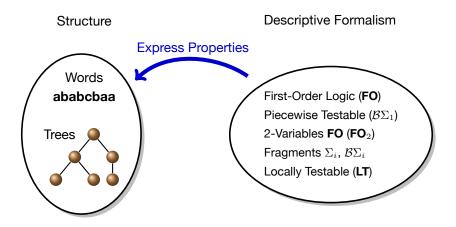
LaBRI, Université Bordeaux, CNRS

May 23, 2014 Séminaire Automates, LIAFA

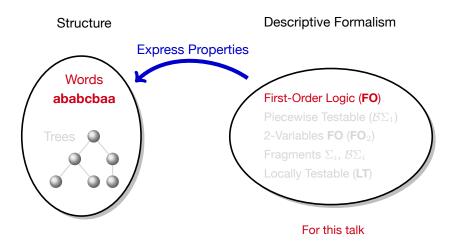
Objects we consider



Objects we consider



Objects we consider



First-Order Logic for Words

We consider first-order logic with only the linear order '<.'

 $a \ b \ b \ b \ c \ a \ a \ a \ c \ a$

First-Order Logic for Words

We consider first-order logic with only the linear order '<.'

a b b b c a a a c a 0 1 2 3 4 5 6 7 8 9

- A word is as a sequence of labeled positions that can be quantified.
- Unary predicates $a(x), b(x), c(x), \ldots$ testing the label of a position.
- One binary predicate: the linear-order x < y.

First-Order Logic for Words

We consider first-order logic with only the linear order '<.'

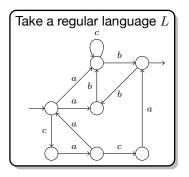
a b b b c a a a c a 0 1 2 3 4 5 6 7 8 9

- A word is as a sequence of labeled positions that can be quantified.
- Unary predicates $a(x), b(x), c(x), \ldots$ testing the label of a position.
- One binary predicate: the linear-order x < y.

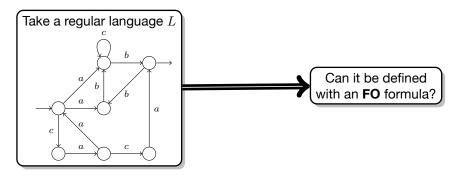
Example: every *a* comes after some *b*

 $\forall x \; a(x) \Rightarrow \exists y \; (b(y) \land (y < x))$

First Problem: Decidable Characterizations

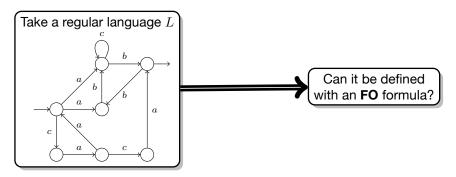


First Problem: Decidable Characterizations



First Problem: Decidable Characterizations

Decide the following problem:



Schützenberger'65, McNaughton and Papert'71

For L a regular language, the following are equivalent:

- L is FO-definable.
- The syntactic monoid of L satisfies $u^{\omega+1} = u^{\omega}$.

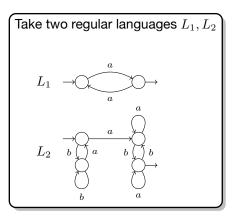
Why we want more than decidable characterizations

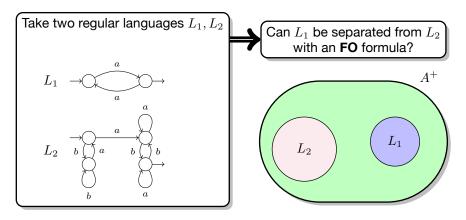
If the characterization answer is yes for *L*:

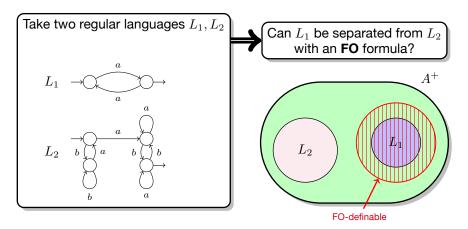
► All subparts of the minimal automaton of *L* are **FO**-definable.

If the characterization's answer is no for *L*:

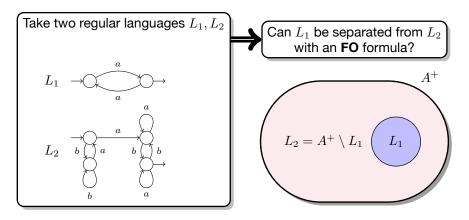
- We have little information.
- Defining L would require differentiating some u^{ω} and $u^{\omega+1}$.
- Yet: the logic can still express facts on *L*.



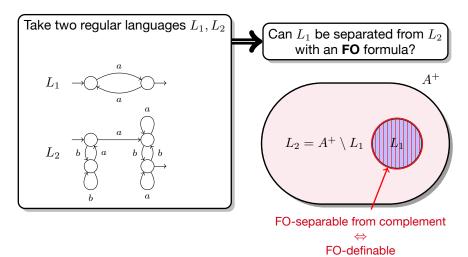




Characterization can be formally reduced to separation



Characterization can be formally reduced to separation



More general: need FO techniques applying to all languages.

- More general: need FO techniques applying to all languages.
- > Therefore, may give information to solve harder problems.

- More general: need FO techniques applying to all languages.
- Therefore, may give information to solve harder problems.
- ► For FO, already solved with such motivations by Henckell '88.

Pointlike sets: the finest aperiodic cover of a finite semigroup

The research in this paper is motivated by the open question: "Is the complexity of a finite semigroup S decidable?"

- More general: need FO techniques applying to all languages.
- Therefore, may give information to solve harder problems.
- ► For FO, already solved with such motivations by Henckell '88.

Pointlike sets: the finest aperiodic cover of a finite semigroup

The research in this paper is motivated by the open question: "Is the complexity of a finite semigroup S decidable?"

Difficult algebraic techniques. Following the lead of the Presentation Lemma (Rhodes), we describe the finest cover on S that can be computed using an aperiodic semigroup and give an explicit relation. The central idea of the proof is that an aperiodic computation can be described by a new 'blow-up operator' HW. The proof also relies on the Rhodes expansion of S and on Zeiger coding.

An already known result: Henckell '88

Guide to the paper

Chapter 1. Elementary definitions and notation should be omitted on first reading and used as a reference as needed.

Chapter 2. The Pl-functor defines pointlike sets in a general setting and shows by an abstract compactness argument that Pl(S) can be computed by an aperiodic semigroup.

Chapter 3. Definition of $C^{\omega}(S)$ and H^{ω} defines $C^{\omega}(S)$, a collection of pointlike sets, in a constructive manner. H^{ω} is the 'blow-up-operator' that we will use in Chapter 5 to show $C^{\omega}(S) = Pl(S)$. It has some examples in the end.

Chapter 4. The Rhodes-expansion defines the tools needed in Chapter 5.

Chapter 5. $C^{\omega}(S) = Pl(S)$ shows the main result by actually constructing a relation $S \xrightarrow{R} CP(S)$ computing $C^{\omega}(S)$ with CP(S) aperiodic. It uses H^{ω} , generalized to \hat{H}^{ω} on $\hat{C}^{\omega}(S)$ 'to get rid of groups by blowing up'.

Alternate formulations of separation

Formulations of separation [Almeida'96] [AlmeidaCostaZ13]

The following are equivalent:

- 1. L_1 and L_2 are not FO-separable.
- 2. For all k, there exist $w_1 \in L_1$, $w_2 \in L_2$ with $w_1 \cong_k w_2$.
- 3. For all aperiodic T and morphism $\beta: A^+ \to T$,

 $\beta(L_1) \cap \beta(L_2) \neq \emptyset.$

*L*₁ ∩ *L*₂ ≠ Ø (closures taken in the pro-aperiodic semigroup).
 *L*₁ ∩ *L*₂ contains an ω-term.

Actually, 5 may be exploited to prove decidability of separation.

What was already known

Separation already solved for interesting classes:

- First-order definable,
- Piecewise testable,
- Locally (threshold) testable.

Drawbacks:

- Difficult algebraic proofs.
- No insight of an actual separator.

Contributions

- New, elementary proofs for already known cases.
- Single ``proof canvas''.
- Extension to other logics (FO², quantifier alternation within FO²).
- Generalization to logics not closed under negation: Σ₂.
- Transfer theorems: separation for $\Sigma_2 \Rightarrow$ characterization for Σ_3 .
- Results can be lifted to the profinite interpretation.

Canvas: given $\alpha : A^+ \to S$, fixpoint algorithm answering separability for all input languages recognized by α .

FO is hard, let's make it easy: Quantifier Rank

Quantifier rank of a formula: Nested depth of quantifiers.

 $\forall x \exists y \ (a(x) \implies \exists z \ (x < z < y \land b(y))) \quad \text{has quantifier rank } 3$

If k fixed: finitely many **FO** properties of rank $k \Rightarrow$ Separation is easy (test them all).

FO is hard, let's make it easy: Quantifier Rank

Quantifier rank of a formula: Nested depth of quantifiers.

 $\forall x \exists y \; (a(x) \implies \exists z \; (x < z < y \land b(y))) \quad \text{has quantifier rank } 3$

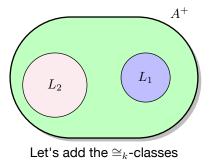
If k fixed: finitely many **FO** properties of rank $k \Rightarrow$ Separation is easy (test them all).

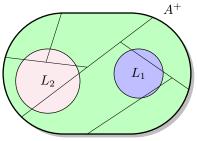
k-equivalence for **FO**

Let w_1, w_2 be words:

 $w_1 \cong_k w_2$ iff w_1, w_2 satisfy the same formulas of rank k

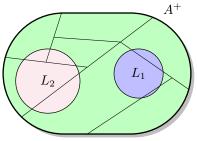
All **FO** properties of rank k are unions of classes of \cong_k .





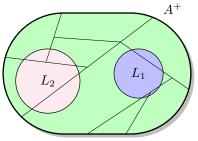
Separable with rank k iff no \cong_k -class intersects both languages

For full **FO** we want to know if there exists such a k \Rightarrow Compute a 'limit' for \cong_k .



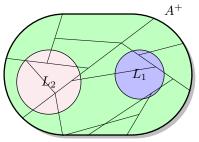
Separable with rank k iff no \cong_k -class intersects both languages

For full **FO** we want to know if there exists such a k \Rightarrow Compute a 'limit' for \cong_k .



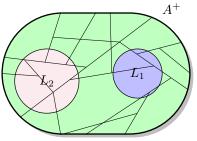
Separable with rank k iff no \cong_k -class intersects both languages

For full **FO** we want to know if there exists such a k \Rightarrow Compute a 'limit' for \cong_k .



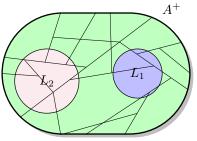
Separable with rank k iff no \cong_k -class intersects both languages

For full **FO** we want to know if there exists such a k \Rightarrow Compute a 'limit' for \cong_k .



Separable with rank k iff no \cong_k -class intersects both languages

For full **FO** we want to know if there exists such a k \Rightarrow Compute a 'limit' for \cong_k .



Separable with rank k iff no \cong_k -class intersects both languages

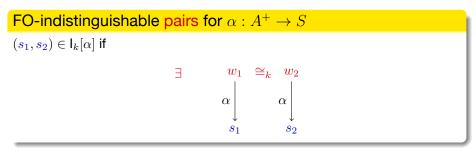
For full **FO** we want to know if there exists such a k \Rightarrow Compute a 'limit' for \cong_k .

When k gets larger, \cong_k is refined but it never ends

Idea. Abstract \cong_k on a finite semigroup recognizing both L_1 and L_2 .

"Pair" analysis

Fix $\alpha: A^+ \to S$. Compute $I_k[\alpha]$, k-indistinguishable pairs.



- Smaller and smaller sets: $I_{k+1}[\alpha] \subseteq I_k[\alpha]$.
- Limit set: $I[\alpha] = \bigcap_k I_k[\alpha]$.
- Computing these pairs solves separation:

$$(s_1, s_2) \in \mathsf{I}[lpha] \qquad \Longleftrightarrow \qquad lpha^{-1}(s_1) \text{ and } lpha^{-1}(s_2) \text{ not separable}$$

"Pair" analysis

- ▶ Smaller and smaller sets: $I_{k+1}[\alpha] \subseteq I_k[\alpha]$
- Limit set: $I[\alpha] = \bigcap_k I_k[\alpha]$.

What have we gained?

We work with finite semigroups \Rightarrow the refinement stabilizes.

"Pair" analysis

- Smaller and smaller sets: $I_{k+1}[\alpha] \subseteq I_k[\alpha]$
- Limit set: $I[\alpha] = \bigcap_k I_k[\alpha]$.

What have we gained?

We work with finite semigroups \Rightarrow the refinement stabilizes.

It may happen that $I_{k+1}[\alpha] = I_k[\alpha]$ before stabilization.

It may happen that

- $\blacktriangleright \ (r,s) \in \mathsf{I}[\alpha],$
- $\blacktriangleright \ (s,t) \in \mathbf{I}[\alpha],$
- but $(r,t) \notin I[\alpha]$ (no transitivity).

The Separation Criterion

Separation Criterion

 L_1, L_2 recognized by $\alpha : A^+ \to S$ are not separable iff there are accepting elements $s_1, s_2 \in S$ for L_1, L_2 s.t. $(s_1, s_2) \in I[\alpha]$.

The Separation Criterion

Separation Criterion

 $\begin{array}{l} L_1,L_2 \text{ recognized by } \alpha: A^+ \to S \text{ are not separable} \\ \text{iff} \\ \text{there are accepting elements } s_1,s_2 \in S \text{ for } L_1,L_2 \text{ s.t. } (s_1,s_2) \in \mathsf{I}[\alpha]. \end{array}$

Computing $I[\alpha]$ suffices to solve separation.

Two approaches to compute $I[\alpha]$

Brute-force

- Computing $I_k[\alpha]$ easy for fixed k.
- $I[\alpha] = I_k[\alpha]$ for k depending on α .
- ► ⇒ Prove a bound $k = f(\alpha)$, Compute $I_k[\alpha]$.

Algorithm

Algorithm bypassing the bound *k*: Direct fixpoint computation of $I[\alpha]$. Two approaches to compute $I[\alpha]$

Brute-force

- Computing $I_k[\alpha]$ easy for fixed k.
- $I[\alpha] = I_k[\alpha]$ for k depending on α .
- ► ⇒ Prove a bound $k = f(\alpha)$, Compute $I_k[\alpha]$.

Algorithm

Algorithm bypassing the bound *k*: Direct fixpoint computation of $I[\alpha]$.

We use approach 2.

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

1st Property of FO
$w \cong_k w$

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

 $\begin{array}{c} \textbf{1st Property of FO} \\ w \cong_k w \end{array}$

1. Trivial pairs: for all $w \in A^+$ $(\alpha(w), \alpha(w)) \in I[\alpha]$

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

2nd Property of**FO** $w_1 \cong_k w_2 \text{ and } u_1 \cong_k u_2 \implies w_1 u_1 \cong_k w_2 u_2$

1. Trivial pairs: for all $w \in A^+$ $(\alpha(w), \alpha(w)) \in I[\alpha]$

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

2nd Property of **FO** $w_1 \cong_k w_2$ and $u_1 \cong_k u_2 \implies w_1 u_1 \cong_k w_2 u_2$

- **1**. Trivial pairs: for all $w \in A^+$ $(\alpha(w), \alpha(w)) \in I[\alpha]$
- **2.** Operation •: $(s_1, s_2) \in I[\alpha]$ and $(t_1, t_2) \in I[\alpha] \Rightarrow (s_1t_1, s_2t_2) \in I[\alpha]$

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

 $\begin{array}{c} \text{3rd Property of FO} \\ \forall k \ \exists n \ \forall w_1, w_2 \in A^+ \quad w_1 \cong_k w_2 \Rightarrow (w_1)^n \cong_k (w_2)^{n+1} \end{array} \end{array}$

- 1. Trivial pairs: for all $w \in A^+$ $(\alpha(w), \alpha(w)) \in I[\alpha]$
- **2.** Operation •: $(s_1, s_2) \in I[\alpha]$ and $(t_1, t_2) \in I[\alpha] \Rightarrow (s_1t_1, s_2t_2) \in I[\alpha]$

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

 $\begin{array}{c} \textbf{3rd Property of FO} \\ \forall k \; \exists n \; \forall w_1, w_2 \in A^+ \quad w_1 \cong_k w_2 \Rightarrow (w_1)^n \cong_k (w_2)^{n+1} \end{array}$

- 1. Trivial pairs: for all $w \in A^+$ $(\alpha(w), \alpha(w)) \in I[\alpha]$
- **2.** Operation •: $(s_1, s_2) \in I[\alpha]$ and $(t_1, t_2) \in I[\alpha] \Rightarrow (s_1t_1, s_2t_2) \in I[\alpha]$
- **3.** Operation ω : $(s_1, s_2) \in \mathsf{I}[\alpha] \Rightarrow (s_1^{\omega}, s_2^{\omega+1}) \in \mathsf{I}[\alpha]$

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

 $\begin{array}{c} \textbf{3rd Property of FO} \\ \forall k \; \exists n \; \forall w_1, w_2 \in A^+ \quad w_1 \cong_k w_2 \Rightarrow (w_1)^n \cong_k (w_2)^{n+1} \end{array}$

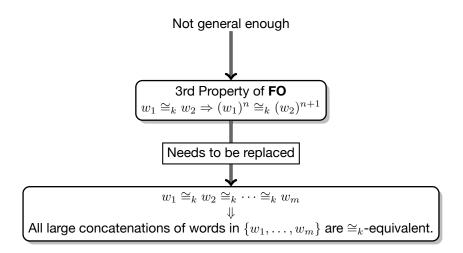
- 1. Trivial pairs: for all $w \in A^+$ $(\alpha(w), \alpha(w)) \in I[\alpha]$
- **2.** Operation •: $(s_1, s_2) \in I[\alpha]$ and $(t_1, t_2) \in I[\alpha] \Rightarrow (s_1t_1, s_2t_2) \in I[\alpha]$
- **3.** Operation ω : $(s_1, s_2) \in \mathsf{I}[\alpha] \Rightarrow (s_1^{\omega}, s_2^{\omega+1}) \in \mathsf{I}[\alpha]$

Correct by definition but not complete

Why it does not work

 $\left[\begin{array}{c} \text{3rd Property of } \mathbf{FO} \\ w_1 \cong_k w_2 \Rightarrow (w_1)^n \cong_k (w_2)^{n+1} \end{array} \right]$

Why it does not work



Need for better analysis

A Generalization: FO-indistinguishable Sets for $\alpha: A^+ \to S$:

►
$$\{s_1, s_2, \dots, s_n\} \in \mathsf{I}_k[\alpha] \text{ if}$$

 $\exists \qquad w_1 \cong_k w_2 \qquad \cdots \cong_k w_n$
 $\alpha \downarrow \qquad \alpha \downarrow \qquad \alpha \downarrow$
 $s_1 \qquad s_2 \qquad \cdots \qquad s_n$

- Limit set: $I[\alpha] = \bigcap_k I_k[\alpha]$.
- ► Computing these sets is more general than computing pairs.
 ⇒ also solves separation (and gives much more).

From Pairs to Sets

New Objective

```
We want to compute the set I[\alpha] \subseteq 2^S such that:
```

 $T \in \mathsf{I}[\alpha] \text{ iff } T \in \mathsf{I}_k[\alpha], \ \forall k \in \mathbb{N}$

From Pairs to Sets

New Objective

We want to compute the set $I[\alpha] \subseteq 2^S$ such that:

 $T \in \mathsf{I}[\alpha]$ iff $T \in \mathsf{I}_k[\alpha], \ \forall k \in \mathbb{N}$

Remark

- With our new definition, we have $I[\alpha] \subseteq 2^S$.
- ▶ 2^S is a semigroup for the operation $T_1 \cdot T_2 = \{t_1 t_2 \mid t_1 \in T_1 \ t_2 \in T_2\}.$

Idea : Start with trivial pairs and add more pairs via a fixpoint algorithm.

 $\begin{array}{c} \textbf{1st Property of FO} \\ w \cong_k w \end{array}$

Idea : Start with trivial pairs and add more pairs via a fixpoint algorithm.

 $\begin{array}{c} \text{1st Property of } \mathbf{FO} \\ w \cong_k w \end{array}$

1. Trivial sets: for all $w \in A^+ \{\alpha(w)\} \in I[\alpha]$

Idea : Start with trivial pairs and add more pairs via a fixpoint algorithm.

 $\left(\begin{array}{c} 2 \text{nd Property of } \textbf{FO} \\ w_1 \cong_k w_2 \text{ and } u_1 \cong_k u_2 \Rightarrow w_1 u_1 \cong_k w_2 u_2 \end{array} \right)$

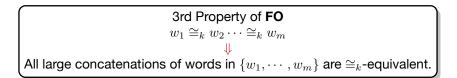
1. Trivial sets: for all $w \in A^+ \{\alpha(w)\} \in I[\alpha]$

Idea : Start with trivial pairs and add more pairs via a fixpoint algorithm.

 $\left(\begin{array}{c} \text{2nd Property of } \textbf{FO} \\ w_1 \cong_k w_2 \text{ and } u_1 \cong_k u_2 \Rightarrow w_1 u_1 \cong_k w_2 u_2 \end{array} \right)$

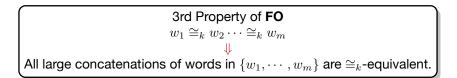
- **1**. Trivial sets: for all $w \in A^+ \{\alpha(w)\} \in I[\alpha]$
- **2**. Operation •: $T_1 \in I[\alpha]$ and $T_2 \in I[\alpha] \Rightarrow T_1T_2 \in I[\alpha]$

Idea : Start with trivial pairs and add more pairs via a fixpoint algorithm.



- **1**. Trivial sets: for all $w \in A^+ \{\alpha(w)\} \in I[\alpha]$
- **2**. Operation •: $T_1 \in I[\alpha]$ and $T_2 \in I[\alpha] \Rightarrow T_1T_2 \in I[\alpha]$

Idea : Start with trivial pairs and add more pairs via a fixpoint algorithm.



- **1**. Trivial sets: for all $w \in A^+ \{\alpha(w)\} \in I[\alpha]$
- **2**. Operation •: $T_1 \in I[\alpha]$ and $T_2 \in I[\alpha] \Rightarrow T_1T_2 \in I[\alpha]$
- **3**. Operation ω : $T \in I[\alpha] \Rightarrow (T^{\omega} \cup T^{\omega+1}) \in I[\alpha]$

Idea : Start with trivial pairs and add more pairs via a fixpoint algorithm.

 $\begin{array}{c} \text{ 3rd Property of } \textbf{FO} \\ w_1 \cong_k w_2 \cdots \cong_k w_m \\ \Downarrow \\ \text{All large concatenations of words in } \{w_1, \cdots, w_m\} \text{ are } \cong_k \text{-equivalent.} \end{array}$

- **1**. Trivial sets: for all $w \in A^+ \{\alpha(w)\} \in I[\alpha]$
- **2**. Operation •: $T_1 \in I[\alpha]$ and $T_2 \in I[\alpha] \Rightarrow T_1T_2 \in I[\alpha]$
- **3**. Operation ω : $T \in \mathsf{I}[\alpha] \Rightarrow (T^{\omega} \cup T^{\omega+1}) \in \mathsf{I}[\alpha]$

Correct by definition (e.g., use EF games) Can be proved to be complete

- The algorithm reflects the equation $x^{\omega} = x^{\omega+1}$
- > 2 other equivalent ways to characterize **FO**-definability:
 - All groups are trivial.
 - ► All *H*-classes are trivial.
- The algorithm can be modified to reflect them too:

- The algorithm reflects the equation $x^{\omega} = x^{\omega+1}$
- > 2 other equivalent ways to characterize **FO**-definability:
 - All groups are trivial.
 - All *H*-classes are trivial.
- The algorithm can be modified to reflect them too:

New algorithm:

- Trivial sets: for all $w \in A^+ \{\alpha(w)\} \in I[\alpha]$
- Operation •: $T_1 \in \mathsf{I}[\alpha]$ and $T_2 \in \mathsf{I} \Rightarrow T_1T_2 \in \mathsf{I}[\alpha]$
- Operation: \mathcal{G} a subgroup of $I[\alpha] \Rightarrow (\bigcup_{T \in \mathcal{G}} T) \in I[\alpha]$

- The algorithm reflects the equation $x^{\omega} = x^{\omega+1}$
- > 2 other equivalent ways to characterize **FO**-definability:
 - All groups are trivial.
 - ► All *H*-classes are trivial.
- The algorithm can be modified to reflect them too:

New algorithm:

- Trivial sets: for all $w \in A^+ \{\alpha(w)\} \in I[\alpha]$
- Operation •: $T_1 \in I[\alpha]$ and $T_2 \in I \Rightarrow T_1T_2 \in I[\alpha]$
- Operation: \mathcal{G} a subgroup of $I[\alpha] \Rightarrow (\bigcup_{T \in \mathcal{G}} T) \in I[\alpha]$

▶ Works also for *H*-classes (similar to Henckell's algorithm).

3 variations of the 3rd operation.

- Operation ω : $T \in I[\alpha] \Rightarrow (T^{\omega} \cup T^{\omega+1}) \in I[\alpha]$.
- ▶ Operation *H*: \mathcal{H} an \mathcal{H} -class of $I[\alpha] \Rightarrow (\bigcup_{T \in \mathcal{H}} T) \in I[\alpha]$.
- Operation *G*: \mathcal{G} a subgroup of $I[\alpha] \Rightarrow (\bigcup_{T \in \mathcal{G}} T) \in I[\alpha]$.

Theorem

All variations compute FO-indistinguishable sets, and all maximal ones.

Completeness: Generalizing Wilke's proof

Reminder: $I[\alpha] = \bigcap_{k \in \mathbb{N}} I_k[\alpha]$. In particular, for all k, $I[\alpha] \subseteq I_k[\alpha]$.

Completeness: Generalizing Wilke's proof

Reminder: $I[\alpha] = \bigcap_{k \in \mathbb{N}} I_k[\alpha]$. In particular, for all k, $I[\alpha] \subseteq I_k[\alpha]$.

What we prove

For $\ell = |A|2^{|S|^2}$, the algorithm computes all maximal subsets of $I_{\ell}[\alpha]$. In particular, we get the bound of the "brute-force" approach for free.

Proof technique

To every $w \in A^+$, one can associate $Gen_k(w) \in I_k[\alpha]$:

$$Gen_k(w) = \{s \in S \mid \exists w' \cong_k w \text{ s.t. } \alpha(w') = s\}$$

We prove that for all $w \in A^+$, $Gen_{\ell}(w)$ is computed by the algorithm.

 \Rightarrow We start with a $w \in A^+$, we need a way to decompose it in a way that respects the operations of our algorithm.

We have $\alpha : A^+ \to S$ with S satisfying $x^{\omega} = x^{\omega+1}$. Let $w \in A^+$, how does **FO** proceeds to detect $\alpha(w)$?

We have $\alpha : A^+ \to S$ with S satisfying $x^{\omega} = x^{\omega+1}$. Let $w \in A^+$, how does **FO** proceeds to detect $\alpha(w)$?

Two Cases: 1. $\forall a \in A, \\ \alpha(a)S = S \text{ and } S\alpha(a) = S$ 2. $\exists a \in A, \\ \alpha(a)S \subsetneq S \text{ or } S\alpha(a) \subsetneq S$

We have $\alpha : A^+ \to S$ with S satisfying $x^{\omega} = x^{\omega+1}$. Let $w \in A^+$, how does **FO** proceeds to detect $\alpha(w)$?

Two Cases: 1. $\forall a \in A, \\ \alpha(a)S = S \text{ and } S\alpha(a) = S$ 2. $\exists a \in A, \\ \alpha(a)S \subsetneq S \text{ or } S\alpha(a) \subsetneq S$ $w = \dots \\ \text{In that Case:} \\ x^{\omega} = x^{\omega+1} \Rightarrow S = \{1_S\}$

We have $\alpha: A^+ \to S$ with S satisfying $x^{\omega} = x^{\omega+1}$. Let $w \in A^+$, how does **FO** proceeds to detect $\alpha(w)$?

Two Cases:

1.
$$\forall a \in A, \\ \alpha(a)S = S \text{ and } S\alpha(a) = S$$

2. $\exists a \in A, \\ \alpha(a)S \subsetneq S \text{ or } S\alpha(a) \subsetneq S$

 $w = w_0 a w_1 a w_2 a w_3 a w_4 \dots a w_m$

We have $\alpha: A^+ \to S$ with S satisfying $x^{\omega} = x^{\omega+1}$. Let $w \in A^+$, how does **FO** proceeds to detect $\alpha(w)$? $\alpha(w_0)$ detectable (Induction on |A|) $w = \underbrace{\mathbf{w}_0}^{\mathbf{v}} a w_1 \ a w_2 \ a w_3 \ a w_4 \dots a w_m$ Two Cases: 1. $\forall a \in A, \\ \alpha(a)S = S \text{ and } S\alpha(a) = S$ 2. $\exists a \in A, \\ \alpha(a)S \subsetneq S \text{ or } S\alpha(a) \subsetneq S$

1.

2.

We have $\alpha: A^+ \to S$ with S satisfying $x^{\omega} = x^{\omega+1}$. Let $w \in A^+$, how does **FO** proceeds to detect $\alpha(w)$? $\alpha(w_0)$ detectable (Induction on |A|) $w = w_0 a w_1 a w_2 a w_3 a w_4 \dots a w_m$ Two Cases: $\forall a \in A,$ $\alpha(aw_1) \alpha(aw_2) \alpha(aw_3) \alpha(aw_4)$ $\alpha(aw_m)$ $\alpha(a)S = S$ and $S\alpha(a) = S$ New meta-word on alphabet $\alpha(a)S$ $\exists a \in A,$ $\alpha(a)S \subseteq S$ or $S\alpha(a) \subseteq S$ New morphism $\beta : (\alpha(a)S)^* \to \alpha(a)S \subseteq S$ Detectable by induction on |S|

We have $\alpha: A^+ \to S$ with S satisfying $x^{\omega} = x^{\omega+1}$. Let $w \in A^+$, how does **FO** proceeds to detect $\alpha(w)$? $\alpha(w_0)$ detectable (Induction on |A|) $w = w_0 a w_1 a w_2 a w_3 a w_4 \dots a w_m$ Two Cases: $\forall a \in A,$ $\alpha(aw_1) \alpha(aw_2) \alpha(aw_3) \alpha(aw_4)$ $\alpha(aw_m)$ $\alpha(a)S = S$ and $S\alpha(a) = S$ New meta-word on alphabet $\alpha(a)S$ 2. $\exists a \in A$, $\alpha(a)S \subseteq S$ or $S\alpha(a) \subseteq S$ New morphism $\beta : (\alpha(a)S)^* \to \alpha(a)S \subseteq S$ Detectable by induction on |S|

One can adapt induction in our case.

1.

Aperiodicity used only in the base case.

Completeness proof: induction

- $\alpha: A^+ \to S$ surjective, S: subsemigroup of 2^S .
- ▶ Sat(S): add all $T^{\omega} \cup T^{\omega+1}$, and close by subsemigroup.
- $S_0 = \{\{s\} \mid s \in S\}$: singletons.

$$\mathcal{S}_0 \subset \mathsf{Sat}(\mathcal{S}_0) \subset \cdots \subset \mathsf{Sat}^K(\mathcal{S}_0) = \mathsf{Sat}^{K+1}(\mathcal{S}_0) \stackrel{\mathsf{def}}{=} \mathsf{Sat}^*(\mathcal{S}_0)$$

Goal: show that $\downarrow Sat^*(S) = I[\alpha]$. Induction on

the number of the elements of the base semigroup:

$$[] S] = \bigcup_{X \in S} X.$$

• the size |A| of the alphabet.

Completeness proof: induction

Main proposition

- ▶ S: subsemigroup of 2^S . and $\beta : B^+ \to S$ surjective morphism.
- Then, one can compute FO-formulas $\{\varphi_1, \ldots, \varphi_m\}$ such that
 - The languages $L(\varphi_i)$ form a partition of B^+ ,
 - ► For all *i*,

 $[\![\beta(L(\varphi_i))]\!] \in \mathbf{JSat}^*(\mathcal{S})$

Consequences

.

- 1. Entails that $I[\alpha] \subseteq \downarrow Sat^*(\alpha(A^+))$, ie, completeness.
- 2. Separators for languages recognized by α can be chosen as $\bigcup_I L(\varphi_i)$.
- 3. Constructive: formulas of controlled rank.

Recap for FO-separation

We have

- 1. Algorithm computing $I[\alpha] \Rightarrow$ yes/no answer for **FO**-separation.
- 2. Bound on the size of the separator.
- 3. Inductive computation of a separator.

More general analysis

Goal: handle logics which are not closed under complement.

► Eg, Σ₂

 $\exists x_1 \ldots \exists x_n \, \forall y_1 \ldots \forall y_k \, \varphi, \qquad \text{where } \varphi \text{ quantifier-free}$

Now use a non-symmetrical relation:

$$\begin{split} s \lesssim_k t \\ & \text{if} \\ \forall \psi \in \Sigma_2 \text{ of rank } k \\ \alpha^{-1}(s) \subseteq L(\psi) \implies \alpha^{-1}(t) \cap L(\psi) \neq \varnothing \end{split}$$

Ś

 \lesssim_k is not transitive.

To compute "chains", one needs more precise information.

► With FO, we worked in a finite universe, 2^S. Here we work with infinite set S⁺.

More general analysis

- For Σ_1 , one can compute all chains.
- For ∑₂, one can compute all chains fixed length. Fixpoint algorithm, by induction on length.

More general analysis

- For Σ_1 , one can compute all chains.
- For ∑₂, one can compute all chains fixed length. Fixpoint algorithm, by induction on length.

Theorem

Let *L* be a regular language and $\alpha : A^+ \to S$ be its syntactic morphism. Then, *L* is definable in Σ_3 iff α satisfies:

$$s^{\omega} \leqslant s^{\omega} t s^{\omega}$$
 for all $(t,s) \in \mathsf{I}^{\Sigma_2}[\alpha]$

- Actually generic for all levels.
- We have an algorithm for computing $I^{\Sigma_2}[\alpha]$,
 - \Rightarrow decidable characterization of Σ_3 .

Conclusion

We have the following results:

- Separation by FO is decidable (in EXPTIME).
- Computing an actual separator formula done in an elementary way.
- Results can be (easily) generalized to infinite words.
- Can be extended to other classes, e.g., Σ_2 .
- Transfer results: separation for $\Sigma_2 \implies$ characterization for Σ_3 .

Question: can we compute chains for other levels of the alternation hierarchy?

Thank you!