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First-Order Logic for Words

We consider first-order logic with only the linear order '<.'

a b b b c a a a c a

0 1 2 3 4 5 6 7 8 9

▶ A word is as a sequence of labeled positions that can be quantified.
▶ Unary predicates a(x), b(x), c(x), . . . testing the label of a position.
▶ One binary predicate: the linear-order x < y.

Example: every a comes after some b

∀x a(x) ⇒ ∃y (b(y) ∧ (y < x))
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First Problem: Decidable Characterizations
Decide the following problem:

Take a regular language L

a
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Can it be defined
with an FO formula?

Schützenberger'65, McNaughton and Papert'71
For L a regular language, the following are equivalent:

▶ L is FO-definable.
▶ The syntactic monoid of L satisfies uω+1 = uω.
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Why we want more than decidable characterizations

If the characterization answer is yes for L:
▶ All subparts of the minimal automaton of L are FO-definable.

If the characterization's answer is no for L:

▶ We have little information.
▶ Defining L would require differentiating some uω and uω+1.
▶ Yet: the logic can still express facts on L.
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Separation
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Separation

Characterization can be formally reduced to separation
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Motivations for Separation

▶ More general: need FO techniques applying to all languages.

▶ Therefore, may give information to solve harder problems.
▶ For FO, already solved with such motivations by Henckell '88.

Pointlike
sets: the
finest
aperiodic
cover
of
a
finite
semigroup
The
research
in
this
paper
is
motivated
by
the
open
question: ``Is
the
complexity
of
a
finite
semigroup
S decidable?''

▶ Difficult algebraic techniques. Following the lead of the Presentation
Lemma (Rhodes), we describe the finest cover on S that can be
computed using an aperiodic semigroup and give an explicit relation.
The central idea of the proof is that an aperiodic computation can be
described by a new ‘blow-up operator’ HW. The proof also relies on the
Rhodes expansion of S and on Zeiger coding.
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An already known result: Henckell '88
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Alternate formulations of separation

Formulations of separation [Almeida'96] [AlmeidaCostaZ13]
The following are equivalent:

1. L1 and L2 are not FO-separable.
2. For all k, there exist w1 ∈ L1, w2 ∈ L2 with w1

∼=k w2.
3. For all aperiodic T and morphism β : A+ → T ,

β(L1) ∩ β(L2) ̸= ∅.

4. L1 ∩ L2 ̸= ∅ (closures taken in the pro-aperiodic semigroup).
5. L1 ∩ L2 contains an ω-term.

Actually, 5 may be exploited to prove decidability of separation.

9 / 33



What was already known

Separation already solved for interesting classes:
▶ First-order definable,
▶ Piecewise testable,
▶ Locally (threshold) testable.

Drawbacks:
▶ Difficult algebraic proofs.
▶ No insight of an actual separator.
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Contributions

▶ New, elementary proofs for already known cases.
▶ Single ``proof canvas''.
▶ Extension to other logics (FO2, quantifier alternation within FO2).
▶ Generalization to logics not closed under negation: Σ2.
▶ Transfer theorems: separation for Σ2 ⇒ characterization for Σ3.
▶ Results can be lifted to the profinite interpretation.

Canvas: given α : A+ → S, fixpoint algorithm answering separability
for all input languages recognized by α.
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FO is hard, let's make it easy: Quantifier Rank

Quantifier rank of a formula: Nested depth of quantifiers.

∀x∃y (a(x) =⇒ ∃z (x < z < y ∧ b(y))) has quantifier rank 3

If k fixed: finitely many FO properties of rank k
⇒ Separation is easy (test them all).

k-equivalence for FO
Let w1, w2 be words:

w1
∼=k w2 iff w1, w2 satisfy the same formulas of rank k

All FO properties
of
rank k are
unions
of
classes
of ∼=k.
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Fixed Quantifier Rank k

L1L2

A+

Let's add the ∼=k-classes

Separable with rank k iff no ∼=k-class intersects both languages

For full FO we want to know if there exists such a k
⇒ Compute a 'limit' for ∼=k.

When k gets larger, ∼=k is refined but it never ends

Idea. Abstract ∼=k on a finite semigroup recognizing both L1 and L2.
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``Pair'' analysis

Fix α : A+ → S. Compute Ik[α], k-indistinguishable pairs.

FO-indistinguishable pairs for α : A+ → S

(s1, s2) ∈ Ik[α] if

∃ w1 ∼=k w2

s1 s2

α α

▶ Smaller and smaller sets: Ik+1[α] ⊆ Ik[α].
▶ Limit set: I[α] =

∩
k Ik[α].

▶ Computing these pairs solves separation:

(s1, s2) ∈ I[α] ⇐⇒ α−1(s1) and α−1(s2) not separable
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``Pair'' analysis

▶ Smaller and smaller sets: Ik+1[α] ⊆ Ik[α]
▶ Limit set: I[α] =

∩
k Ik[α].

What have we gained?

We work with finite semigroups ⇒ the refinement stabilizes.

� It may happen that Ik+1[α] = Ik[α] before stabilization.
It may happen that

▶ (r, s) ∈ I[α],
▶ (s, t) ∈ I[α],
▶ but (r, t) ̸∈ I[α] (no transitivity).
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The Separation Criterion

Separation Criterion
L1, L2 recognized by α : A+ → S are not separable

iff
there are accepting elements s1, s2 ∈ S for L1, L2 s.t. (s1, s2) ∈ I[α].

Computing I[α] suffices to solve separation.
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Two approaches to compute I[α]

Brute-force

▶ Computing Ik[α] easy for fixed k.

▶ I[α] = Ik[α] for k depending on α.

▶ ⇒ Prove a bound k = f(α),
Compute Ik[α].

Algorithm

Algorithm bypassing the bound k:
Direct fixpoint computation of I[α].

We use approach 2.
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A first (non complete) Algorithm computing I[α]

Idea. Start with trivial pairs and add more pairs via a fixpoint algorithm.

1st Property of FO
w ∼=k w

2nd Property of FO
w1

∼=k w2 and u1 ∼=k u2 ⇒ w1u1 ∼=k w2u2

3rd Property of FO
∀k ∃n ∀w1, w2 ∈ A+ w1

∼=k w2 ⇒ (w1)
n ∼=k (w2)

n+1

1. Trivial pairs: for all w ∈ A+ (α(w), α(w)) ∈ I[α]
2. Operation •: (s1, s2) ∈ I[α] and (t1, t2) ∈ I[α] ⇒ (s1t1, s2t2) ∈ I[α]
3. Operation ω: (s1, s2) ∈ I[α] ⇒ (sω1 , s

ω+1
2 ) ∈ I[α]

Correct by definition but not complete
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Why it does not work

3rd Property of FO
w1

∼=k w2 ⇒ (w1)
n ∼=k (w2)

n+1

Not general enough

w1
∼=k w2

∼=k · · · ∼=k wm

⇓
All large concatenations of words in {w1, . . . , wm} are ∼=k-equivalent.

Needs to be replaced
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Need for better analysis

A Generalization: FO-indistinguishable Sets for α : A+ → S:

▶ {s1, s2, . . . , sn} ∈ Ik[α] if
∃ w1 ∼=k w2 · · · ∼=k wn

s1 s2 · · · sn

α α α

▶ Limit set: I[α] =
∩

k Ik[α].
▶ Computing these sets is more general than computing pairs.

⇒ also solves separation (and gives much more).
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From Pairs to Sets

New Objective
We want to compute the set I[α] ⊆ 2S such that:

T ∈ I[α] iff T ∈ Ik[α], ∀k ∈ N

Remark
▶ With our new definition, we have I[α] ⊆ 2S .
▶ 2S is a semigroup for the operation T1 · T2 = {t1t2 | t1 ∈ T1 t2 ∈ T2}.
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A new (working) Algorithm

Idea : Start with trivial pairs and add more pairs via a fixpoint algorithm.

1st Property of FO
w ∼=k w

2nd Property of FO
w1

∼=k w2 and u1 ∼=k u2 ⇒ w1u1 ∼=k w2u2

3rd Property of FO
w1

∼=k w2 · · · ∼=k wm

⇓
All large concatenations of words in {w1, · · · , wm} are ∼=k-equivalent.

1. Trivial sets: for all w ∈ A+ {α(w)} ∈ I[α]
2. Operation •: T1 ∈ I[α] and T2 ∈ I[α] ⇒ T1T2 ∈ I[α]
3. Operation ω: T ∈ I[α] ⇒ (Tω ∪ Tω+1) ∈ I[α]

Correct by definition (e.g., use EF games)
Can be proved to be complete
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Alternate algorithms

▶ The algorithm reflects the equation xω = xω+1

▶ 2 other equivalent ways to characterize FO-definability:
▶ All groups are trivial.
▶ All H-classes are trivial.

▶ The algorithm can be modified to reflect them too:

New algorithm:

• Trivial sets: for all w ∈ A+ {α(w)} ∈ I[α]
• Operation •: T1 ∈ I[α] and T2 ∈ I ⇒ T1T2 ∈ I[α]
• Operation: G a subgroup of I[α] ⇒ (

∪
T∈G T ) ∈ I[α]

▶ Works also for H-classes (similar to Henckell's algorithm).
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Alternate algorithms

3 variations of the 3rd operation.

▶ Operation ω: T ∈ I[α] ⇒ (Tω ∪ Tω+1) ∈ I[α].
▶ Operation H: H an H-class of I[α] ⇒ (

∪
T∈H T ) ∈ I[α].

▶ Operation G: G a subgroup of I[α] ⇒ (
∪

T∈G T ) ∈ I[α].

Theorem
All variations compute FO-indistinguishable sets, and all maximal ones.
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Completeness: Generalizing Wilke's proof

Reminder: I[α] =
∩

k∈N Ik[α]. In particular, for all k, I[α] ⊆ Ik[α].

What we prove
For ℓ = |A|2|S|2 , the algorithm computes all maximal subsets of Iℓ[α].
In particular, we get the bound of the ``brute-force'' approach for free.

Proof technique
To every w ∈ A+, one can associate Genk(w) ∈ Ik[α]:

Genk(w) = {s ∈ S | ∃w′ ∼=k w s.t. α(w′) = s}

We prove that for all w ∈ A+, Genℓ(w) is computed by the algorithm.

⇒ We start with a w ∈ A+, we need a way to decompose it in a way that
respects the operations of our algorithm.
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Wilke's Proof for characterization of FO

We have α : A+ → S with S satisfying xω = xω+1.
Let w ∈ A+, how does FO proceeds to detect α(w)?

w =

Two Cases:

1. ∀a ∈ A,
α(a)S = S and Sα(a) = S

2. ∃a ∈ A,
α(a)S ⊊ S or Sα(a) ⊊ S

Two Cases:

1. ∀a ∈ A,
α(a)S = S and Sα(a) = S

2. ∃a ∈ A,
α(a)S ⊊ S or Sα(a) ⊊ S

In that Case:
xω = xω+1 ⇒ S = {1S}

Two Cases:

1. ∀a ∈ A,
α(a)S = S and Sα(a) = S

2. ∃a ∈ A,
α(a)S ⊊ S or Sα(a) ⊊ S

w = w0 aw1 aw2 aw3 aw4 awmw = w0 aw1 aw2 aw3 aw4 awm

α(w0) detectable
(Induction on |A|)

w = w0 aw1 aw2 aw3 aw4 awm

α(w0) detectable
(Induction on |A|)

α(aw1) α(aw2) α(aw3) α(aw4) α(awm)

New meta-word on alphabet α(a)S

New morphism β : (α(a)S)∗ → α(a)S ⊊ S
Detectable by induction on |S|

▶ One can adapt induction in our case.
▶ Aperiodicity used only in the base case.
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Completeness proof: induction

▶ α : A+ → S surjective, S: subsemigroup of 2S .
▶ Sat(S): add all Tω ∪ Tω+1, and close by subsemigroup.
▶ S0 = {{s} | s ∈ S}: singletons.

S0 ⊂ Sat(S0) ⊂ · · · ⊂ SatK(S0) = SatK+1(S0)
def
= Sat∗(S0)

Goal: show that ↓Sat∗(S) = I[α].
Induction on

▶ the number of the elements of the base semigroup:

TSU =
∪
X∈S

X.

▶ the size |A| of the alphabet.
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Completeness proof: induction

Main proposition
▶ S: subsemigroup of 2S . and β : B+ → S surjective morphism.
▶ Then, one can compute FO-formulas {φ1, . . . , φm} such that

▶ The languages L(φi) form a partition of B+,
▶ For all i, Tβ(L(φi))U ∈ ↓Sat∗(S)

.

Consequences
1. Entails that I[α] ⊆ ↓Sat∗(α(A+)), ie, completeness.
2. Separators for languages recognized by α can be chosen as

∪
I L(φi).

3. Constructive: formulas of controlled rank.
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Recap for FO-separation

We have

1. Algorithm computing I[α] ⇒ yes/no answer for FO-separation.
2. Bound on the size of the separator.
3. Inductive computation of a separator.
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More general analysis
▶ Goal: handle logics which are not closed under complement.
▶ Eg, Σ2

∃x1 . . .∃xn ∀y1 . . . ∀yk φ, where φ quantifier-free

▶ Now use a non-symmetrical relation:

s ≲k t

if
∀ψ ∈ Σ2 of rank k

α−1(s) ⊆ L(ψ) =⇒ α−1(t) ∩ L(ψ) ̸= ∅

� ≲k is not transitive.

To compute ``chains'', one needs more precise information.
▶ With FO, we worked in a finite universe, 2S .

Here we work with infinite set S+.
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More general analysis

▶ For Σ1, one can compute all chains.
▶ For Σ2, one can compute all chains fixed length.

Fixpoint algorithm, by induction on length.

Theorem
Let L be
a
regular
language
and α : A+ → S be
its
syntactic
morphism.
Then, L is
definable
in Σ3 iff α satisfies:

sω ⩽ sωtsω for
all (t, s) ∈ IΣ2 [α]

▶ Actually generic for all levels.
▶ We have an algorithm for computing IΣ2 [α],

⇒ decidable characterization of Σ3.
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Conclusion

We have the following results:

▶ Separation by FO is decidable (in EXPTIME).
▶ Computing an actual separator formula done in an elementary way.
▶ Results can be (easily) generalized to infinite words.
▶ Can be extended to other classes, e.g., Σ2.
▶ Transfer results: separation for Σ2 =⇒ characterization for Σ3.

Question: can we compute chains for other levels of the alternation hierarchy?
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Thank you!
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