1/26

Weighted expressions and
one-way pebble automata

Marc Zeitoun

Benedikt Bollig, Paul Gastin, Benjamin Monmege
LaBRI, U. Bordeaux, LSV, ENS Cachan, CNRS, INRIA

LIAFA
May 20, 2011

Preliminary version at ICALP’10

Motivation: specifying quantitative properties

Develop high-level denotational formalism
> to express quantitative properties on words/trees,
» should be flexible,

> should allow us to compute arithmetic expressions (possibly guarded by
logical conditions written in a standard language (eg., FO or XPath),

» should have an equivalent operational model.

2/26

Motivation: an example

» An XML document for car models, pieces, and dealers.

CarCatalogue Part?ata{gue DealersDirectory
9/I‘ode| CModel ;M‘odel PModel Dealer Dealer
Part Part - -- Err Err - Sale Sale

Description - -- Description - - - Car Customer

3/26

Motivation: an example

» An XML document for car models, pieces, and dealers.

T

CarCatalogue PartCatalogue
/N VRN
CModel CModel PModel PModel
/| e / N\
Part Part - Err Err -

/N

Description - -- Description - - -

3/26

Motivation: an example

» An XML document for car models, pieces, and dealers.

—

CarCatalogue PartCatalogue
/N /N
CModel CModel PModel PModel
/| e /N
Part Part - -- Err Err -
» /- /N
Description - - - Description - -

» There is a car model using some car part with an error: Ixyzt p(x,y, z, t)

» = [CModel(x)APart(y)Ax <, y]A[PModel(z) AErr(t) Az <y t]AMatch(y, z).

3/26

Motivation: an example

» An XML document for car models, pieces, and dealers.

—

CarCatalogue PartCatalogue
/N /N
CModel CModel PModel PModel
/| e /N
Part Part - -- Err Err -
» /- /N
Description - - - Description - -

» There is a car model using some car part with an error: Ixyzt p(x,y, z, t)

» = [CModel(x)APart(y)Ax <, y]A[PModel(z) AErr(t) Az <y t]AMatch(y, z).

» Total number of errors: @, , ., ¢(x,y,z,t), and compute in (N, +, x).

3/26

Motivation: an example

» An XML document for car models, pieces, and dealers.

CarCatalogue PartCatalogue DealersDirectory
CModel CModel PMoéI P\I\/Iodel Dealer Dealer
Paréa‘rt e Err/E‘rr e Sale Sale
Description - -- Description - - - Car Customer

» XML document now includes car dealers and performed sales.

» Maximal number of errors to be fixed per dealer:

Maxy Dealer(d) A Z [d <y uA Car(u) A Z Match’(u, x) A o(x, y, z, t)}

X,¥,2Z,t

3/26

Motivation: an example

» An XML document for car models, pieces, and dealers.

CarCatalogue PartCatalogue DealersDirectory
CModel CModel PMoéI P\I\/Iodel Dealer Dealer
Paréa‘rt e Err/E‘rr e Sale Sale
Description - -- Description - - - Car Customer

» XML document now includes car dealers and performed sales.

» Maximal number of errors to be fixed per dealer:

Maxg Z P(d,u,x,y,z,t) > 1

u,x,y,Z,t

3/26

Motivation: an example

» An XML document for car models, pieces, and dealers.

CarCatalogue PartCatalogue DealersDirectory
CModel CModel PMoéI P\I\/Iodel Dealer Dealer
Paré’a‘rt e Err/E‘rr e Sale Sale
Description - -- Description - - - Car Customer

» XML document now includes car dealers and performed sales.

» Maximal number of errors to be fixed per dealer:

®d @u,x,y,z,tw(d, u,x,y,z, t) — 1

> Same formalism: compute in the max-plus semiring (N U {—o0}, max, +).

3/26

On words: what remains true for weights?

eXtended
Rational
Kleene Expressions
[-1]
— L
Automata A &, . zasgia%(e)sl}
2-way
pebbles]
alternating
FO + TC
Elgot
Trakhtenbrot © MSO sentences
Biichi

Boolean: B = ({0,1},V,A,0,1)

4/26

On words: what remains true for weights?

Schiitzenberger E wRat
[-]
wAutomata A I S;S;*riiK
[-]
¥ wMSO

Quantitative: K = (K, +, x,0,1)

4/26

Expressiveness in the weighted setting

DA

Expressiveness in the weighted setting

Find a robust class containing both wFO and wAutomata.
5/26

DA

Weighted automata

» Transitions carry weights from a semiring K: p1: ¥ — K®*Q,

» Weight of a run on w = ajay- - - a,: product in the semiring.

weight(po ks ay o keaz knan pn) = kiks - ky

> Value of a word: sum of all weights of runs on this word.

[Al(w) = Z weight(p) = A - pu(w) - vy

p run of A on w

6/26

Weighted automata

» Transitions carry weights from a semiring K: p1: ¥ — K®*Q,

(P2 —()
» Weight of a run on w = ajay- - - a,: product in the semiring.

weight(po ks ay o keaz knan pn) = kiks - ky

> Value of a word: sum of all weights of runs on this word.

[Al(w) = Z weight(p) = A - pu(w) - vy

p run of A on w

Example: Semirings: K = (K, +, x,0,1)

» B=({0,1},V,A,0,1) Boolean
» P= (R, +,x,0,1) Probabilistic
» N=(N,+,x,0,1) Natural
» T = (NU{oo}, min, +, 00, 0) Tropical

6/26

Weighted automata

» Transitions carry weights from a semiring K: p1: ¥ — K®*Q,
(B—2—(@)
» Weight of a run on w = ajay- - - a,: product in the semiring.
weight(po 2% py 2222, ... Lodny by — hiky -k,

> Value of a word: sum of all weights of runs on this word.

[Aw)= S weight(p) = A- u(w) -
p run of A on w
> In this talk: semiring is commutative.

6/26

Examples of weighted automata

» Alphabet ¥, on (N, +, x,0,1)
oy

4'8—' [A](u) =2/l (deterministic)

7/26

Examples of weighted automata

» Alphabet ¥, on (N, +, x,0,1)
oy

4'8—' [A](u) =2/l (deterministic)

> Alphabet X = {a, b}, on (Z,+, x,0,1)
1 1

la
—>E %i Z:g %—» [Al(u) = Jula = Juls

—1b

7/26

Examples of weighted automata

» Alphabet ¥, on (N, +, x,0,1)
oy

4'8—' [A](u) =2/l (deterministic)

> Alphabet X = {a, b}, on (Z,+, x,0,1)

1> 1
la
—>§ %i ZCE §—> [Al(u) = lula — [ulp
—1b
> Alphabet {a, b, c}, on (NU {00}, min, +, 00, 0)
2b
2a lc
[A](ab"c) = min(3 +2n,6 + n)
4a 2c

1b

7/26

Weighted automata cannot compute large weights

A = (Q, p) weighted automaton on N. There exists M such that

[A](u) = O(M'*]).

» There are |Q||“‘+1 runs on u = aias - - - an,

kiay kzaz knan

P =Po P1 Pn

> The weight of a run is exponential in |ul:

weight(p) = kiks -k, < (max{/(a)p.q | a € X and p,q € Q})“l.

8/26

Weighted Expressions
Syntax of WE(L)
Fix L a logic (eg, MSO, FO(<)).
E::=go|k|E69E|E®E|@XE|®XE

where ¢ € L, k € K, x is a first-order variable.

Semantics

9/26

> An expression E without free variables defines a mapping [¢] : ¥ 7 — K.
» For ¢ € L, we have [¢](w) € {0,1} (in the chosen semiring).

First order variables are interpreted as positions in the word.

For a € X, P,(x) means “position x carries an a".

x < y means “position x is before position y".

Weighted Expressions
Syntax of WE(L)

Fix L a logic (eg, MSO, FO(<)).

E:::go|k|E69E|E®E|@XE|®XE

where ¢ € L, k € K, x is a first-order variable.

> An expression E without free variables defines a mapping [¢] : ¥ 7 — K.
» For ¢ € L, we have [¢](w) € {0,1} (in the chosen semiring).
First order variables are interpreted as positions in the word.

For a € X, P,(x) means “position x carries an a".
x < y means “position x is before position y".
> (P, ¢ interpreted as a sum over all positions.

» X, @ interpreted as a product over all positions.

9/26

Weighted expressions: examples

> [B, Pa(x)](u Z [Pa(x =|ul, recognizable

i€pos(u)

10/26

Weighted expressions: examples

> [D, Pa(x)](u Z [Pa(x = ul, recognizable
i€pos(u)
> [®, 2](u) = H [2](u, i) = 2! recognizable

i€pos(u)

10/26

Weighted expressions: examples

> [D, Pa(x)](u Z [Pa(x = ul, recognizable
i€pos(u)
> [®, 2w) =[] [20(u,i)=2" recognizable
i€pos(u)
r [, ®, H [®, 2](u,i) = (2luhlul = 2lu* " not recognizable
i€pos(u)

w-Automata are not closed under universal quantification.

10/26

Weighted expressions: examples

> [B, Pa(x)](u Z [Pa(x =|ul, recognizable
i€pos(u)
> [®, 2w) =] [21(u, i) =2" recognizable
i€pos(u)
> [®. ®, 2](v H [®, 2](u, i) = (2l4h)lel = 214* | not recognizable
i€pos(u)

w-Automata are not closed under universal quantification.

Theorem (Droste & Gastin'05)
wAutomata = wRMSO

wWRMSO consists of weighted expressions with
>), restricted to \/ /\ of constants and boolean formulae.

> A new second order weighted operator, @, restricted to boolean formulae.

10/26

Extending instead of Restricting ?

Aim: robust class extending both WE(FO) and wAutomata.
11/26

DA

(2-way) Pebble weighted automata

» Automaton with 2-way mechanism and pebbles {1,... r}.

u
D> <

12/26

(2-way) Pebble weighted automata

» Automaton with 2-way mechanism and pebbles {1,... r}.

T

u
D>

12/26

(2-way) Pebble weighted automata

» Automaton with 2-way mechanism and pebbles {1,... r}.

u
D>

12/26

(2-way) Pebble weighted automata

» Automaton with 2-way mechanism and pebbles {1,... r}.

u
D>

12/26

(2-way) Pebble weighted automata

» Automaton with 2-way mechanism and pebbles {1,... r}.

u
D>

12/26

(2-way) Pebble weighted automata

» Automaton with 2-way mechanism and pebbles {1,... r}.
u

> ? <

12/26

(2-way) Pebble weighted automata

» Automaton with 2-way mechanism and pebbles {1,... r}.
u

> @ T S

12/26

(2-way) Pebble weighted automata

» Automaton with 2-way mechanism and pebbles {1,... r}.
u

> @ T S

12/26

(2-way) Pebble weighted automata

» Automaton with 2-way mechanism and pebbles {1,... r}.
u

—@ ?4

12/26

(2-way) Pebble weighted automata

» Automaton with 2-way mechanism and pebbles {1,... r}.
u

> @ T @ <

12/26

(2-way) Pebble weighted automata

» Automaton with 2-way mechanism and pebbles {1,... r}.
u

> @ T @ <

12/26

(2-way) Pebble weighted automata

» Automaton with 2-way mechanism and pebbles {1,... r}.

u
> @ ? @ Q

12/26

12/26

(2-way) Pebble weighted automata

» Automaton with 2-way mechanism and pebbles {1,... r}.

»o?@oﬂ

» Applicable transitions depend on current (state,letter,pebbles).
(p, ka, Pebbles, D, g), where D € {<—, —, lift, drop}.

12/26

(2-way) Pebble weighted automata

» Automaton with 2-way mechanism and pebbles {1,... r}.

u
> ? 3) 2 <

» Applicable transitions depend on current (state,letter,pebbles).
(p, ka, Pebbles, D, q), where D € {«+, — lift, drop}.
» Stack policy: only the most recently dropped pebble may be lifted

(2-way) Pebble weighted automata

v

Automaton with 2-way mechanism and pebbles {1,...,r}.

@ " @——

v

Applicable transitions depend on current (state,letter,pebbles).
(p, ka, Pebbles, D, q), where D € {«+, — lift, drop}.
Stack policy: only the most recently dropped pebble may be lifted

v

v

Weak policy: pebble may be lifted only when the head scans its position.

12/26

(2-way) Pebble weighted automata

v

Automaton with 2-way mechanism and pebbles {1,...,r}.

u
> @ ? 2 <

v

Applicable transitions depend on current (state,letter,pebbles).
(p, ka, Pebbles, D, q), where D € {«+, — lift, drop}.
Stack policy: only the most recently dropped pebble may be lifted

v

v

Weak policy: pebble may be lifted only when the head scans its position.

12/26

(2-way) Pebble weighted automata

v

Automaton with 2-way mechanism and pebbles {1,...,r}.

u
> @ T 2 4

v

Applicable transitions depend on current (state,letter,pebbles).
(p, ka, Pebbles, D, q), where D € {«+, — lift, drop}.
Stack policy: only the most recently dropped pebble may be lifted

v

v

Weak policy: pebble may be lifted only when the head scans its position.

12/26

(2-way) Pebble weighted automata

v

Automaton with 2-way mechanism and pebbles {1,...,r}.

u
> @ 2 4

v

Applicable transitions depend on current (state,letter,pebbles).
(p, ka, Pebbles, D, q), where D € {«+, — lift, drop}.
Stack policy: only the most recently dropped pebble may be lifted

v

v

Weak policy: pebble may be lifted only when the head scans its position.

v

Note. For Boolean word automata, this does not add expressive power.

12/26

Pebble weighted automata: semantics

Recall from the classical setting:

» Value of a word: sum of all weights of runs on this word.

[Alw)= 3 weight(p)

p run of Aon w

» No longer well defined for 2-way pebble automata
(can loop = can have arbitrarily large runs on a given word).

13/26

Pebble weighted automata: semantics

Recall from the classical setting:

» Value of a word: sum of all weights of runs on this word.

[Aw)= > weight(p)

p run of Aon w

» No longer well defined for 2-way pebble automata
(can loop = can have arbitrarily large runs on a given word).

» Value of a word: sum of all weights of simple runs on this word.

[Alw) = 3 weight(p)

p simple run of A on w

> (Other solution would be to restrict to suitable semirings)

13/26

Why pebbles?

> Intuitively, pebbles can be used to encode a variable (at its position).

2y

Q.

14/26

Why pebbles?

> Intuitively, pebbles can be used to encode a variable (at its position).

3k, 2%, %, —>
D>, %, — Z,*,dropQ D,*,%;Q <17*,%Q 3, e lift

W

Yu{a},x,—

14/26

Why pebbles?

> Intuitively, pebbles can be used to encode a variable (at its position).

3k, 2%, %, —>
D>, %, — Z,*,dropﬂ D,*,%;Q <17*,%Q 3, e lift

W

Yu{a},x,—

» Computes 2lul?. pebbles add expressive power.

14/26

Why pebbles?

> Intuitively, pebbles can be used to encode a variable (at its position).

Xk, 0.+

Yu{a},x,—

» Computes 2lul?. pebbles add expressive power.

> Very same idea: pebble weighted automata are closed under &), .

14/26

Why pebbles?

> Intuitively, pebbles can be used to encode a variable (at its position).

Xk, 0.+

Yu{a},x,—

» Computes 2lul?. pebbles add expressive power.
> Very same idea: pebble weighted automata are closed under &), .
» Closure under @, by dropping nondeterministically the pebble instead.

14/26

Why pebbles?

> Intuitively, pebbles can be used to encode a variable (at its position).

Yk, >0,

Yu{a},x,—

Computes 2lul?. pebbles add expressive power.
Very same idea: pebble weighted automata are closed under), .
Closure under), by dropping nondeterministically the pebble instead.

vV vVv.v Vv

Summary: pebble wA easily bring closure under & and B, .

14/26

1-way pebble weighted automata

The construction for closure under @, and), uses specific automata.

> After a drop, go to the end of the word and reset.
» No other use of < move.

1-way pebble automata with /-resets

A 1-way pebble automaton is a 2-way pebble automaton st.

» no < move. Replaced by new move: reset.
» no lift can be immediately followed by a drop,
> each time a pebble is dropped, it gets a credit for £ resets (recursively).

Similar to 1-way automata used by Neven, Schwentick, Vianu 04 for data words.

15/26

Closure properties of 1 way pwA

1-way pebble automata are nonlooping (pebble are “progressing”).
Semantics well-defined as [A](w) = 3", 1 of 4 on wWeight(p).
Conditions can be enforced from a 2-way automaton by synchronizing it
with a universal 1-way pebble automaton with /-resets.

Still closed under @@, and), .

Closed under @ and ®.

> easy thanks to resets.
> actually, resets not needed in commutative semirings.

v

v

v

v Yy

16/26

Closure properties of 1 way pwA

1-way pebble automata are nonlooping (pebble are “progressing”).
Semantics well-defined as [A](w) = 3", 1 of 4 on wWeight(p).

Conditions can be enforced from a 2-way automaton by synchronizing it
with a universal 1-way pebble automaton with /-resets.

Still closed under @@, and), .

Closed under @ and ®.

> easy thanks to resets.
> actually, resets not needed in commutative semirings.

Corollary

1-way pebble weighted automata capture WE(MSO).

v

v

v

v Yy

For the converse, need to enrich the weighted expressions

16/26

Pebble weighted Automata vs WE(MSO)

17/26

[m]

=

Characterization of 1-way and 2-way pebble wA in terms of expressions?

DA

Weighted transitive closure: TC and BTC

> Boolean setting: MSO = FO(<) + Transitive closure.
> Intuition for a weighted transitive closure operator: path costs.
> Let w € X* and E(x,y) € WE(MSO) encoding a weighted graph G:

» Set of vertices Pos(w),
~ Set of edges {(x,y) € V2| [E](x,y) # 0}
» Costs defined by A(x,y) = [E](x,y).

Weighted transitive closure should compute, given vertices i, j, the sum of
the weights of paths leading from j to j in G.

» Several natural interpretations according to the semiring.

18/26

Weighted transitive closure: TC and BTC

» For E(x,y) with (at least) two first order free variables, define

E"(x,y) = Zx=z°7zl7,__,zn=y (H1§e§n E(ZZ—I,ZZ))

where the sum ranges over sequence of pairwise distinct positions z, ..., z,.

19/26

Weighted transitive closure: TC and BTC

» For E(x,y) with (at least) two first order free variables, define

E"(x,y) = Zx=z°7zl7,__,zn=y (H1§e§n E(ZZ—I,ZZ))

where the sum ranges over sequence of pairwise distinct positions z, ..., z,.

n

» The transitive closure operator is defined by TC,, £ =\/ . E".

19/26

Weighted transitive closure: TC and BTC

» For E(x,y) with (at least) two first order free variables, define

E"(x,y) = Zx=z°7zl7,__,zn=y (H1§e§n E(ZZ—I,ZZ))

where the sum ranges over sequence of pairwise distinct positions z, ..., z,.

n

> The transitive closure operator is defined by TC,, E = \/n21 E".
> Bounded transitive closure : N-TC, £ = TC, (E A [x —y| < N)
<N

19/26

Bounded transitive closure and pebble automata

Express N-TC,, E with 2 additional pebbles:
Given p-pebble automaton A on X, = ¥ x {0,1} x {0, 1} recognizing

[E](x,y) and a word (u, i,j)

20/26

Bounded transitive closure and pebble automata

Express N-TC,, E with 2 additional pebbles:
Given p-pebble automaton A on X, = ¥ x {0,1} x {0, 1} recognizing

[E](x,y) and a word (u, i,j)

i

—@

[]
A

1. B goes to i and drops pebble 1

20/26

Bounded transitive closure and pebble automata

Express N-TC,, E with 2 additional pebbles:
Given p-pebble automaton A on X, = ¥ x {0,1} x {0, 1} recognizing
[E](x,y) and a word (u, i,)

<N

NP C—

1. B goes to i and drops pebble 1
2. B drops nondeterministically pebble 2 on a position at distance < N
3. B simulates A on w where x and y are mapped to the positions of pebbles

o —.
A

20/26

Bounded transitive closure and pebble automata

Express N-TC,, E with 2 additional pebbles:
Given p-pebble automaton A on X, = ¥ x {0,1} x {0, 1} recognizing
[E](x,y) and a word (u, i,)

<N

P C—

o —.
A

1. B goes to i and drops pebble 1

2. B drops nondeterministically pebble 2 on a position at distance < N

3. B simulates A on w where x and y are mapped to the positions of pebbles
4. B lifts pebble 2 and pebble 1, and drops again pebble 1 where pebble 2 was.

20/26

Bounded transitive closure and pebble automata

Express N-TC,, E with 2 additional pebbles:
Given p-pebble automaton A on X, = ¥ x {0,1} x {0, 1} recognizing
[E](x,y) and a word (u, i,)

.

i

(1)

®
A

B goes to i and drops pebble 1

B drops nondeterministically pebble 2 on a position at distance < N

B simulates A on w where x and y are mapped to the positions of pebbles
B lifts pebble 2 and pebble 1, and drops again pebble 1 where pebble 2 was.
If pebble 1 is not on j then goto 2 else stop.

AR A

20/26

Expressiveness

Theorem (BGMZ'10)
WE(FO + BTC<) = 2-way pebble wA = 1-way pebble wA

> Proof of WE(FO + BTC<) C 2-way pebble wA done in the previous slides.

> Proof of 2-way pebble wA C 1-way pebble wA:
Generalization of the translation of 2-way automata to 1-way automata.

» Proof of 1-way pebble wA C WE(FO + BTC<):
Generalization of a proof showing that weighted automata are expressible
with transitive closure.

21/26

Summary

> Pebbles and 1-way pebbles add expressive power in weighted automata.
> Negative result: SAT of WE(FO 4+ BTC<) is not decidable in general.

WE(FO + BTC)
= 2-wPA

= 1-wPA

22/26

Flavor of the proof of 1-pebble C 1-nested

q4q
al bl --- «|O > e (a}l) eq

RE' —— |final

Requires commutativity

23/26

SAT for 2-way pebble wA

Undecidability of SAT

SAT is undecidable for 2-way pebble wA, with 2 pebbles over (Z, +, x).

» Given A, is there a word such that [A] # 0?7
» Reduction from halting problem for Minsky machines.
» From Minsky machine M, build A over (Z,+, x)

» which reads sequences of transitions of M, in {D1, Dz, h, 2, Z1, 2>}
» assigns weight 0 to illegal runs, nonzero to legal ones.

24/26

SAT for 2-way pebble wA

Undecidability of SAT

SAT is undecidable for 2-way pebble wA, with 2 pebbles over (Z, +, x).

v

Given A, is there a word such that [A] # 07
Reduction from halting problem for Minsky machines.
From Minsky machine M, build A over (Z, +, x)

» which reads sequences of transitions of M, in {D1, D2, h, b, Z1,2Z>}".
> assigns weight 0 to illegal runs, nonzero to legal ones.

v

v

v

4 conditions to check that a run is illegal. Eg, for counter c':
1 . 1
» counter ¢ is zero at a Decrement: compute Ha,-=01 ¢i_1(w)
Note: ¢ ;(w) is just the difference between the numbers of I1's and Dy's.
1 . J 1
> counter ¢’ is nonzero at a Zero test: compute Haj:zl [Tecilei (w) — K.

24/26

Related and further work

1. Algorithms for pebble wA (eg. model-checking)?
Emptiness: is [A] = 0 decidable?
Yes on positive semirings.
NO on fields (recall: emptiness decidable for wA from Schiitzenberger'62).

2. Unbounded steps in transitive closure?
3. Weak pebbles vs. strong pebbles?
4. Extended wRat for wPA?

25/26

Open problems (2)

Extensions to other structures: Trees (ranked or unranked)

1. Tree walking automata (TWA) are 2-way automata
2. 1-way TWA = Depth First Search Automata (DFSA)

3. Some results go through: w-DFSA = w(FO + BTC<) Additional technical
difficulties:
» On words: usual encoding to come back to expressions WE(FO+BTC<)
based on suitable factorization.
» The wDFS automata follow a DFS walk but may nondeterministically cut
subtrees.

26/26

Open problems (2)

Extensions to other structures: Trees (ranked or unranked)

1.
2.

3.

26/26

Tree walking automata (TWA) are 2-way automata
1-way TWA = Depth First Search Automata (DFSA)

Some results go through: w-DFSA = w(FO + BTC<) Additional technical
difficulties:
» On words: usual encoding to come back to expressions WE(FO+BTC<)
based on suitable factorization.
» The wDFS automata follow a DFS walk but may nondeterministically cut
subtrees.

pebble TWA < pebble DFSA

Open problems (2)

Extensions to other structures: Trees (ranked or unranked)

1.
2.

3.

Tree walking automata (TWA) are 2-way automata
1-way TWA = Depth First Search Automata (DFSA)

Some results go through: w-DFSA = w(FO + BTC<) Additional technical
difficulties:
» On words: usual encoding to come back to expressions WE(FO+BTC<)
based on suitable factorization.
» The wDFS automata follow a DFS walk but may nondeterministically cut
subtrees.

pebble TWA < pebble DFSA

5. Quantitative query languages: wXPath, wRXPath

26/26

