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Motivation: specifying quantitative properties

Develop high-level denotational formalism

I to express quantitative properties on words/trees,
I should be flexible,
I should allow us to compute arithmetic expressions (possibly guarded by

logical conditions written in a standard language (eg., FO or XPath),
I should have an equivalent operational model.
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Motivation: an example
I An XML document for car models, pieces, and dealers.

CarCatalogue

CModel CModel

Part Part . . .

Description . . .

PartCatalogue

PModel PModel

Err Err . . .

Description . . .

DealersDirectory

Dealer Dealer

Sale Sale . . .

Car Customer
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Description . . .
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Sale Sale . . .

Car Customer

I There is a car model using some car part with an error: ∃xyzt ϕ(x , y , z , t)

ϕ = [CModel(x)∧Part(y)∧x <v y ]∧[PModel(z)∧Err(t)∧z <v t]∧Match(y , z).

I Total number of errors:
⊕

x,y ,z,t ϕ(x , y , z , t), and compute in (N,+,×).
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CModel CModel

Part Part . . .

Description . . .

PartCatalogue

PModel PModel

Err Err . . .

Description . . .

DealersDirectory

Dealer Dealer

Sale Sale . . .

Car Customer

I XML document now includes car dealers and performed sales.
I Maximal number of errors to be fixed per dealer:

Maxd Dealer(d) ∧
∑
u

[
d <v u ∧ Car(u) ∧

∑
x,y ,z,t

Match′(u, x) ∧ ϕ(x , y , z , t)
]

I Same formalism: compute in the max-plus semiring (N ∪ {−∞},max,+).
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On words: what remains true for weights?

Boolean: B = ({0, 1},∨,∧, 0, 1)

Languages
L : Σ∗ → {0, 1}AAutomata

E
Rational
Expressions

ϕ MSO sentences

J−K

J−K

J−K

Kleene

Elgot
Trakhtenbrot

Büchi

2-way
pebbles

alternating
...

eXtended

FO + TC
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On words: what remains true for weights?

Series
s : Σ∗ → K

AwAutomata

E wRat

ϕ wMSO

J−K

J−K

J−K

Schützenberger

Quantitative: K = (K ,+,×, 0, 1)
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Expressiveness in the weighted setting

wMSO

wA = wRat

wFO

???

Find a robust class containing both wFO and wAutomata.
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Weighted automata
I Transitions carry weights from a semiring K: µ : Σ→ KQ×Q .

p qka

I Weight of a run on w = a1a2 · · · an: product in the semiring.

weight(p0
k1a1−−−→ p1

k2a2−−−→ · · · knan−−−→ pn) = k1k2 · · · kn

I Value of a word: sum of all weights of runs on this word.

JAK(w) =
∑

ρ run of A on w

weight(ρ) = λ · µ(w) · γ

I In this talk: semiring is commutative.

Example: Semirings: K = (K ,+,×, 0, 1)
I B = ({0, 1},∨,∧, 0, 1) Boolean
I P = (R+,+,×, 0, 1) Probabilistic
I N = (N,+,×, 0, 1) Natural
I T = (N ∪ {∞},min,+,∞, 0) Tropical
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Examples of weighted automata
I Alphabet Σ, on (N,+,×, 0, 1)

2Σ

JAK(u) = 2|u| (deterministic)

I Alphabet Σ = {a, b}, on (Z,+,×, 0, 1)

1Σ 1Σ

1a

−1b

JAK(u) = |u|a − |u|b

I Alphabet {a, b, c}, on (N ∪ {∞},min,+,∞, 0)

2b

1b

2a

4a

1c

2c

JAK(abnc) = min(3 + 2n, 6 + n)
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Weighted automata cannot compute large weights

Remark
A = (Q, µ) weighted automaton on N. There exists M such that

JAK(u) = O(M |u|).

I There are |Q||u|+1 runs on u = a1a2 · · · an,

ρ = p0
k1a1−−−→ p1

k2a2−−−→ · · · knan−−−→ pn

I The weight of a run is exponential in |u|:

weight(ρ) = k1k2 · · · kn ≤ (max{µ(a)p,q | a ∈ Σ and p, q ∈ Q})|u|.
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Weighted Expressions

Syntax of WE(L)
Fix L a logic (eg, MSO, FO(<)).

E ::= ϕ | k | E ⊕ E | E ⊗ E |
⊕

x
E |
⊗

x
E

where ϕ ∈ L, k ∈ K , x is a first-order variable.

Semantics
I An expression E without free variables defines a mapping JϕK : Σ+ → K .
I For ϕ ∈ L, we have JϕK(w) ∈ {0, 1} (in the chosen semiring).

First order variables are interpreted as positions in the word.
For a ∈ Σ, Pa(x) means “position x carries an a”.
x ≤ y means “position x is before position y ”.

I
⊕

x ϕ interpreted as a sum over all positions.
I
⊗

x ϕ interpreted as a product over all positions.
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Weighted expressions: examples

I J
⊕

x Pa(x)K(u) =
∑

i∈pos(u)

JPa(x)K(u, i) = |u|a recognizable

I J
⊗

y 2K(u) =
∏

i∈pos(u)

J2K(u, i) = 2|u| recognizable

I J
⊗

x
⊗

y 2K(u) =
∏

i∈pos(u)

J
⊗

y 2K(u, i) = (2|u|)|u| = 2|u|
2
. not recognizable

w-Automata are not closed under universal quantification.

Theorem (Droste & Gastin’05)

wAutomata = wRMSO

wRMSO consists of weighted expressions with
I
⊗

x restricted to
∨∧

of constants and boolean formulae.
I A new second order weighted operator,

⊕
X , restricted to boolean formulae.
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Extending instead of Restricting ?

wMSO

wA
= wRat
= wRMSO

WE(FO) ???

Aim: robust class extending both WE(FO) and wAutomata.
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(2-way) Pebble weighted automata

I Automaton with 2-way mechanism and pebbles {1, . . . , r}.
u

⊲ ⊳

I Applicable transitions depend on current (state,letter,pebbles).
(p, ka,Pebbles,D, q), where D ∈ {←,→, lift, drop}.

I Stack policy: only the most recently dropped pebble may be lifted
I Weak policy: pebble may be lifted only when the head scans its position.
I Note. For Boolean word automata, this does not add expressive power.

12/26
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Pebble weighted automata: semantics

Recall from the classical setting:

I Value of a word: sum of all weights of runs on this word.

JAK(w) =
∑

ρ run of A on w

weight(ρ)

I No longer well defined for 2-way pebble automata
(can loop ⇒ can have arbitrarily large runs on a given word).

I Value of a word: sum of all weights of simple runs on this word.

JAK(w) =
∑

ρ simple run of A on w

weight(ρ)

I (Other solution would be to restrict to suitable semirings)
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Why pebbles?
I Intuitively, pebbles can be used to encode a variable (at its position).

2Σ

I Computes 2|u|
2
: pebbles add expressive power.

I Very same idea: pebble weighted automata are closed under
⊗

x .
I Closure under

⊕
x by dropping nondeterministically the pebble instead.

I Summary: pebble wA easily bring closure under
⊗

x and
⊕

x .
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1-way pebble weighted automata

The construction for closure under
⊕

x and
⊗

x uses specific automata.

I After a drop, go to the end of the word and reset.
I No other use of ← move.

1-way pebble automata with `-resets
A 1-way pebble automaton is a 2-way pebble automaton st.

I no ← move. Replaced by new move: reset.
I no lift can be immediately followed by a drop,
I each time a pebble is dropped, it gets a credit for ` resets (recursively).

Similar to 1-way automata used by Neven, Schwentick, Vianu 04 for data words.
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Closure properties of 1 way pwA

I 1-way pebble automata are nonlooping (pebble are “progressing”).
I Semantics well-defined as JAK(w) =

∑
ρ run of A on wweight(ρ).

I Conditions can be enforced from a 2-way automaton by synchronizing it
with a universal 1-way pebble automaton with `-resets.

I Still closed under
⊕

x and
⊗

x .
I Closed under ⊕ and ⊗.

I easy thanks to resets.
I actually, resets not needed in commutative semirings.

Corollary
1-way pebble weighted automata capture WE(MSO).

For the converse, need to enrich the weighted expressions

16/26



–sourcefile– –revision– 2011-05-21 –time– –owner–

Closure properties of 1 way pwA

I 1-way pebble automata are nonlooping (pebble are “progressing”).
I Semantics well-defined as JAK(w) =

∑
ρ run of A on wweight(ρ).

I Conditions can be enforced from a 2-way automaton by synchronizing it
with a universal 1-way pebble automaton with `-resets.

I Still closed under
⊕

x and
⊗

x .
I Closed under ⊕ and ⊗.

I easy thanks to resets.
I actually, resets not needed in commutative semirings.

Corollary
1-way pebble weighted automata capture WE(MSO).

For the converse, need to enrich the weighted expressions

16/26



–sourcefile– –revision– 2011-05-21 –time– –owner–

Pebble weighted Automata vs WE(MSO)

wMSO

2-pwA
= ???

1-pwA = ???

wA
= wRat
= wRMSO

WE(FO)

Characterization of 1-way and 2-way pebble wA in terms of expressions?
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Weighted transitive closure: TC and BTC

I Boolean setting: MSO ≡ FO(<) + Transitive closure.
I Intuition for a weighted transitive closure operator: path costs.
I Let w ∈ Σ∗ and E (x , y) ∈WE(MSO) encoding a weighted graph G :

I Set of vertices Pos(w),
I Set of edges {(x , y) ∈ V 2 | JEK(x , y) 6= 0}
I Costs defined by λ(x , y) = JEK(x , y).

Weighted transitive closure should compute, given vertices i , j , the sum of
the weights of paths leading from i to j in G .

I Several natural interpretations according to the semiring.
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Weighted transitive closure: TC and BTC
I For E (x , y) with (at least) two first order free variables, define

En(x , y) =
∑

x=z0,z1,...,zn=y

(∏
1≤`≤n E (z`−1, z`)

)
where the sum ranges over sequence of pairwise distinct positions z0, . . . , zn.

x = z0 z4 = yz2 z3 z1

E

E

E
E

I The transitive closure operator is defined by TCxyE =
∨

n≥1 E
n.

I Bounded transitive closure : N-TCxyE = TCxy (E ∧ |x − y | ≤ N)

x yz1 z3 z2

≤ N

≤ N

≤ N
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Bounded transitive closure and pebble automata
Express N-TCxyE with 2 additional pebbles:
Given p-pebble automaton A on Σxy = Σ× {0, 1} × {0, 1} recognizing
JEK(x , y) and a word (u, i , j)

⊲ ⊳

i j

1. B goes to i and drops pebble 1
2. B drops nondeterministically pebble 2 on a position at distance ≤ N
3. B simulates A on w where x and y are mapped to the positions of pebbles
4. B lifts pebble 2 and pebble 1, and drops again pebble 1 where pebble 2 was.
5. If pebble 1 is not on j then goto 2 else stop.
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Expressiveness

Theorem (BGMZ’10)

WE(FO + BTC<) = 2-way pebble wA = 1-way pebble wA

I Proof of WE(FO + BTC<) ⊆ 2-way pebble wA done in the previous slides.

I Proof of 2-way pebble wA ⊆ 1-way pebble wA:
Generalization of the translation of 2-way automata to 1-way automata.

I Proof of 1-way pebble wA ⊆ WE(FO + BTC<):
Generalization of a proof showing that weighted automata are expressible
with transitive closure.
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Summary

I Pebbles and 1-way pebbles add expressive power in weighted automata.
I Negative result: SAT of WE(FO + BTC<) is not decidable in general.

wMSO

WE(FO + BTC)
= 2-wPA
= 1-wPAwA

= wRat
= wRMSO

WE(FO)
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Flavor of the proof of 1-pebble ⊆ 1-nested

B . . . a b . . . C 2

p0
→ p1

p2
←p3

p4
drop

p5

p̂5
lift
p6

p7
drop

p8

p̂8
lift
p9
→p10

p11
→

q q′

B . . . (a, 1) . . . C

(p5, 1)

(p̂5, 1)

(p8, 2)

(p̂8, 2)

final

Requires commutativity
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SAT for 2-way pebble wA

Undecidability of SAT
SAT is undecidable for 2-way pebble wA, with 2 pebbles over (Z,+,×).

I Given A, is there a word such that JAK 6= 0?
I Reduction from halting problem for Minsky machines.
I From Minsky machineM, build A over (Z,+,×)

I which reads sequences of transitions ofM, in {D1,D2, I1, I2,Z1,Z2}+.
I assigns weight 0 to illegal runs, nonzero to legal ones.

I 4 conditions to check that a run is illegal. Eg, for counter c1:
I counter c1 is zero at a Decrement: compute

∏
aj=D1

c1
j−1(w)

Note: c1
j−1(w) is just the difference between the numbers of I1’s and D1’s.

I counter c1 is nonzero at a Zero test: compute
∏

aj=Z1

∏j
k=1[c

1
j (w)− k].
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Related and further work

1. Algorithms for pebble wA (eg. model-checking)?
Emptiness: is JAK = 0 decidable?
Yes on positive semirings.
NO on fields (recall: emptiness decidable for wA from Schützenberger’62).

2. Unbounded steps in transitive closure?
3. Weak pebbles vs. strong pebbles?
4. Extended wRat for wPA?
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Open problems (2)

Extensions to other structures: Trees (ranked or unranked)

1. Tree walking automata (TWA) are 2-way automata
2. 1-way TWA = Depth First Search Automata (DFSA)

3. Some results go through: w-DFSA = w(FO + BTC<) Additional technical
difficulties:

I On words: usual encoding to come back to expressions WE(FO+BTC<)
based on suitable factorization.

I The wDFS automata follow a DFS walk but may nondeterministically cut
subtrees.

4. pebble TWA ?
= pebble DFSA

5. Quantitative query languages: wXPath, wRXPath
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