
Annals of Pure and Applied Logic 126 (2004) 159–213

www.elsevier.com/locate/apal

Algorithmic uses of the Feferman–Vaught
Theorem

J.A. Makowsky
Department of Computer Science, Technion-Israel Institute of Technology, Haifa 32000, Israel

On the occasion of Alfred Tarski’s Centennary (1901–1983)
In memoriam Robert Vaught (1926–2002)
Dedicated to Solomon Feferman (1928–)1

Abstract

The classical Feferman–Vaught Theorem for First Order Logic explains how to compute the
truth value of a 5rst order sentence in a generalized product of 5rst order structures by reducing
this computation to the computation of truth values of other 5rst order sentences in the factors
and evaluation of a monadic second order sentence in the index structure. This technique was
later extended by L8auchli, Shelah and Gurevich to monadic second order logic. The technique
has wide applications in decidability and de5nability theory.
Here we give a uni5ed presentation, including some new results, of how to use the Feferman–

Vaught Theorem, and some new variations thereof, algorithmically in the case of Monadic Second
Order Logic MSOL.
We then extend the technique to graph polynomials where the range of the summation of the

monomials is de5nable in MSOL. Here the Feferman–Vaught Theorem for these polynomials
generalizes well known splitting theorems for graph polynomials. Again, these can be used
algorithmically.
Finally, we discuss extensions of MSOL for which the Feferman–Vaught Theorem holds as

well.
c© 2003 Elsevier B.V. All rights reserved.

MSC: 03C; 05C; 05E; 68R; 68Q; 68W

Keywords: Mondadic second order logic; Tree width; Clique width; Graph algorithms; Graph polynomials

E-mail address: janos@cs.technion.ac.il (J.A. Makowsky).
1 At the occasion of his 75th birthday. It is also a tribute to Feferman’s work in model theory, which went

seemingly unnoticed at the celebrations of his 70th birthday. Feferman returned several times to topics related
to the preservation of truth under various model theoretic constructions, so in [54–58,60]. The Feferman–
Vaught Theorem can also be viewed as falling into this category.

0168-0072/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.apal.2003.11.002

mailto:janos@cs.technion.ac.il

160 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

1. Introduction

As the title indicates, this paper deals with algorithmic aspects of the Feferman–
Vaught Theorem. It is both a survey paper and contains new results. It traces the history
of the algorithmic uses of the Feferman–Vaught Theorem and it stresses unifying traits
which led to the most recent applications and extensions. It is, last but not least, a
tribute to Tarski and his two outstanding students, Feferman and Vaught, and to the
environment Tarski had created in Berkeley, where early model theory Iourished and
some of its most seminal concepts were formulated.

1.1. Notation and prerequisites

A vocabulary (or a similarity type 2 as Tarski used to call it) � is a 5nite set
of relation symbols, function symbols and constants. It may be many-sorted. In this
paper, however, we shall only deal with vocabularies which do not contain any function
symbols. 3 �-structures are interpretations of vocabularies. Sorts are mapped into non-
empty sets, 4 the sort-universes. Relation symbols are mapped into relations over the
sorts according to their speci5ed arities. Constant symbols are mapped into elements
of the corresponding sort-universes. FOL(�) denotes the set of �-formulas in 5rst order
logic. SOL(�) and MSOL(�) denote the set of �-formulas in second order and monadic
second order logic, respectively. A sentence is a formula without free variables. For
a class of �-structures K , ThFOL(K) is the set of sentences of FOL(�) true in all
A∈K . We write ThFOL(A) for K = {A}. Similarly, ThSOL(K) and ThMSOL(K) denote the
corresponding sets of sentences for SOL and MSOL. For a set of sentences
⊆ SOL(�)
we denote by Mod(
) the class of �-structures which are models of
.
We assume the reader is familiar with basic 5nite model theory and descriptive

complexity theory as described in, say, [41,42,88]. In particular, the reader should be
familiar with Ehrenfeucht–Fra8KssLe games, also called back and forth games, for 5rst
order and monadic second order logic, and with 5rst order reductions (transductions,
interpretations). The latter are nevertheless de5ned in detail in Section 2.
Finally, we treat free variables as uninterpreted constants. In particular, we tacitly

assume that whenever we write (Mx; MU)∈MSOL(�) we think of (Ma; MP)∈MSOL(�∪ { Ma;
MP}) where Ma are the uninterpreted constants corresponding to Mx and MP are the uninter-
preted unary relation symbols corresponding to MU . This allows us to speak of theories
with free variables without having to deal with the free variables separately.

2 Originally Tarski called a similarity type an equivalence relation between structures, which are all inter-
pretations of the same vocabulary. The vocabulary then can be viewed as a name for such an equivalence
class.
3 Function symbols can be replaced by relation symbols where the interpretation is the graph of the

function which interprets the function symbol. The price one has to pay depends on the nesting depth of
the terms, which translate into quanti5er rank.
4 In the one-sorted case the sort-universe is always required to be non-empty. However, certain authors

allow empty sets as sort-universes in the many-sorted case, provided at least one sort-universe is non-empty.
We shall not follow this convention. It requires too much exception handling and complicates matters
unnecessarily. One can also replace sorts by unary predicates and thing of one big universe instead.

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 161

1.2. Some history

The Feferman–Vaught Theorem stands at the beginnings of model theory. Hodges,
in his delightful book [85], very carefully traces the history of early model theoretic
developments. Most of the references in the sequel are taken from it.
Tarski published four short abstracts on model theory in 1949 in the Bulletin of

the American Mathematical Society [156–159]. He also had sent his manuscript of
Contribution to the theory of models, I to Beth for publication as [160]. Seemingly
inspired by these, Beth published two papers on model theory [8,9]. In [9] he, and
independently Fra8KssLe in [67], showed, among other things, that

Theorem 1.1 (Beth [9] and Fra8KssLe [67]). Let A;B be linear orders, C=A�¡ B their
ordered disjoint union. Then ThFOL(C) is uniquely determined by ThFOL(A) and ThFOL

(B), and can be computed from ThFOL(A) and ThFOL(B).

In the early 1950s Tarski had many young researchers gathered in Berkeley, among
them Ehrenfeucht, Feferman, Fra8KssLe and Vaught. One of the many questions studied
in this early period of logic, and the one which interests us here is the following:

Question 1. Let A;B be �-structures, A×B the cartesian product and A�B the
disjoint union. Assume we are given ThFOL(A) and ThFOL(B). What can we say
about ThFOL(A×B) and ThFOL(A�B)? What happens in the case of in8nite sums
and products?

This question triggered many landmark papers and also lead to the study of ultra-
products.
Among Tarski’s pupils 5 dealing directly or indirectly with this question we have

(with the year and place of their Ph.D.)

Andrzej Mostowski (Warsaw, 1938), Bjarni JLonsson (Berkeley, 1946), Wanda
Szmielew (Warsaw, 1950), Anne Morel (Berkeley, 1952), Robert Vaught (Berkeley,
1954), Chen-Chung Chang (Berkeley, 1955) Solomon Feferman (Berkeley, 1957)
Jerome Keisler (Berkeley, 1961).

JLonsson studied 5rst order theories of products in group theory and what became later
Universal Algebra, a 5eld he had shaped single handedly [91–93]. Szmielew used the
analysis of the 5rst order theory of products in her decidability result for Abelian
groups [155]. Morel, [69], Chang and Keisler were pioneers in generalized products
and ultraproducts, cf. [7,20].
The Feferman–Vaught Theorem evolved as follows. In [120] Mostowski proves,

among other things 6 the analogue of Theorem 1.1 for products

5 Although perceived as a Tarski student, Scott 5nished his Ph.D. under Church in Princeton.
6 In his own words: “The paper deals with the notion of direct product in the theory of decision problems.

(: : :) [It discusses] a theory of which the primitive notions are representable as powers of certain base-relations
and [reduces] all the problems concerning this theory (in particular the decision problem) to problems
concerning the theory of the base relations”.

162 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

Theorem 1.2 (Mostowski [120]). Let A;B relational structures or algebras, C=A×
B their cartesian product. Then ThFOL(C) is uniquely determined by, and can be
computed e:ectively from, ThFOL(A) and ThFOL(B).

Mostowski’s proof already contains all the ingredients of the proof via reduction
sequences, as in the proof of Theorem 1.6, below.
Finally, Feferman and Vaught answered the question in the outermost generality,

but, as Feferman recalls, 7 Tarski did not really appreciate the answer given. A special
case of this answer reads as follows.

Theorem 1.3 (Feferman and Vaught [61]). Let Ai ; i∈ I be structures of the same
similarity type. Then the theory of the in8nite cartesian product ThFOL

(∏
i∈I Ai

)
and the theory of the disjoint union ThFOL

(⊔
i∈I Ai

)
are uniquely determined by

ThFOL(Ai).

Another version also allows for the index structure to vary.

Theorem 1.4 (Mostowski [120] and Feferman and Vaught [61]). Let A be structure
and I an index set. Then the theory of the in8nite cartesian product ThFOL

(∏
i∈I A

)
and the theory of the disjoint union ThFOL

(⊔
i∈I A

)
are uniquely determined by

ThFOL(A) and ThMSOL(I).

The full generality is achieved by observing the following:

• By combining Theorems 1.3 and 1.4 with transductions and interpretations, similar
results can be stated for a wide variety of generalized products. In the original
paper [61] the transductions or interpretations are hidden in an unfortunate lengthy
de5nition of generalized products. We shall see in the sequel, how one can, in the
case of 5xed 5nite index sets, successfully separate the issues.

• In a sequence of papers by Ehrenfeucht, L8auchli, Shelah and Gurevich, cf.
[44,76,77,98,149] it emerged that Theorems 1.3 and 1.4 remain true for MSOL rather
than FOL in the case of the sum ThMSOL

(⊔
i∈I Ai

)
and the multiple disjoint union

ThMSOL
(⊔

i∈I A
)
but not for products.

1.3. Proofs

An easy and transparent proof of Theorems 1.1 and 1.2 uses Ehrenfeucht–Fra>?ss@e
Games and was presented by Feferman as early as in 1957 [53], at the famous Summer
Institute for Symbolic Logic at Cornell University. 8 Feferman knew Fra8KssLe’s [67,68],
and also was familiar with Ehrenfeucht’s appealing presentation [43,44] even before
its publication as [43,44].
This approach gives actually more.

7 Personal communication, December 2000.
8 For Tarski’s inIuence on this Summer Institute, and Feferman’s recollections, cf. [59].

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 163

The quanti5er rank of a formula is de5ned inductively. Atomic formulas have rank
0. Boolean operations do not increase the rank, but quanti5cation of one variable (5rst
or second order) increases the rank by 1. Let q∈N and FOLq(�) MSOLq(�) denote the
sentences of FOL and MSOL respectively of quanti8er rank at most q. Furthermore,
put Thq

FOL(A)=ThFOL(A)∩FOLq(�). and Thq
MSOL(A)=ThMSOL(A) ∩ MSOLq(�).

Theorem 1.5 (Ehrenfeucht, Fra8KssLe, Feferman and Vaught, cf. [53]).

(i) Thq
FOL(A×B) and Thq

FOL(A�B) are uniquely determined by Thq
FOL(A) and

Thq
FOL(B).

(ii) Thq
MSOL(A�B) is uniquely determined byThq

MSOL(A) and Thq
MSOL(B).

Proof. The proof just consists of putting the winning strategies of the games for
Thq

FOL(A) and Thq
FOL(B) together. In the case of FOL this works both for disjoint

unions and Cartesian products. If we use Thq
MSOL(A) and Thq

MSOL(B) instead, it still
works for the disjoint unions, as a subset of a disjoint union is uniquely determined
by its restrictions to the contributing sets. In contrast to this, a subset of a Cartesian
product of two sets is not uniquely determined by its two projection, so this approach
does not work.

A diSerent, more computational proof is presented in [61], using reduction sequences,
anticipated in the original proofs of Theorems 1.1 and 1.2.
Here one proves by induction, say for disjoint union and FOL. 9

Theorem 1.6 (Feferman and Vaught [61]).

(i) For every q∈N and for every formula ∈FOLq(�) one can compute e:ectively
a reduction sequence, i.e., a sequence of formulas

〈 A
1 ; : : : A

m ; B
1 ; : : : B

m 〉 ∈ FOLq(�)2m

and a boolean function B : {0; 1}2m → {0; 1} such that
A � B |=

i:

B(bA
1 ; : : : b

A
m; b

B
1 ; : : : b

B
m)= 1

where bA
j =1 i: A |= A

j and bB
j =1 i: B |= B

j .
(ii) The time complexity of the computation of the reduction sequence is bounded by

an iterated exponential where the number of iterations depends on the quanti8er
rank q of and is O(q).

9 In the literature one 5nds mostly proofs with in5nite products or disjoint unions. The only proof in print
of this special case I have found is in [27]. In [85] it is recommended to prove this special case as an
enlightening exercise.

164 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

(iii) The corresponding theorem for MSOL is formulated in the same way. One just
has to require ∈MSOLq(�) and 〈 A

1 ; : : :
A
m;

B
1 ; : : :

B
m〉 ∈MSOLq(�)2m.

Proof. We exemplify the construction of such a reduction sequence in the case of
ordered graphs G= 〈V; E;¡〉 with V the set of vertices, E a binary, not necessarily
symmetric, edge relation and ¡ a linear ordering of the vertices.
We are given G1 = 〈V1; E1;¡1〉 and G2 = 〈V2; E2;¡2〉 and their ordered sum G=

G1⊕¡ G2 with V =V1 �V2, E=E1 �E2 and the order is de5ned by ¡=¡1 �¡2 �
(V1×V2).
We construct reduction sequences and boolean functions by induction. As we have

free variables in the inductive construction, we assume that z :Variables→V =V1 �V2
is an assignment of the variables.
There are three types of atomic formulas: E(u; v), u¡v and u≈ v. Using the de5nition

of ordered sum we get

For E(u; v)
Reduction sequence: 〈E1(u; v); E2(u; v)〉
Boolean function: b11 ∨ b21 .
Here only the cases where z(u) and z(v) are both in V1 or both in V2 are relevant.

For u≈ v
Reduction sequence: 〈u≈1 v; u≈2 v〉
Boolean function: b11 ∨ b21 .
Again, only the cases where z(u) and z(v) are both in V1 or both in V2 are relevant.

For u¡v
Reduction sequence: 〈u¡1 v; u≈1 u; u¡2 v; v≈2 v〉.
Boolean function: b11 ∨ b21 ∨ (b21 ∧ b22).
Here, the relevant cases are z(u) and z(v) are both in V1 or both in V2, or z(u) is
in V1 and z(v) is in V2.

Let (= 〈A
1 ; : : :

A
m;

B
1 ; : : :

B
m〉 and)= 〈 A

1 ; : : : ;
A
n ;

B
1 ; : : : ;

B
n 〉 be reduction sequences

for and and B(Mb) and B (b′) the corresponding boolean functions with disjoint
variables.

(∧)
Reduction sequence: 〈(;)〉.
Boolean function: B(Mb)∧B (b′).

¬
reduction sequences: (.
Boolean function: ¬B(Mb).

Each application of a propositional connectives results in linear growth of the reduction
sequence. The case of quanti5cation is considerably more complicated.
Let B1 be the disjunctive normal form of B(Mb) with

B1 =
∨
j∈J

Cj

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 165

with

Cj =

 ∧

i∈J (i;A;pos)

bA
i ∧

∧
i∈J (i;A;neg)

¬bA
i ∧

∧
i∈J (i;B;pos)

bB
i ∧

∧
i∈J (i;B;neg)

¬bB
i

 :

Now let

/A
j = ∃x

 ∧

i∈J (i;A;pos)

A
i (x) ∧

∧
i∈J (i;A;neg)

¬A
i (x)

and

/B
j = ∃y

 ∧

i∈J (i;B;pos)

A
i (y) ∧

∧
i∈J (i;B;neg)

¬A
i (y)

 :

Finally we put

B∃(Mc)=
∨
j∈J

(cAj ∨ cBj);

where cA
j =1 iS A |= /A

j and cB=1j iS B |= /B
j .

With this notation, and m(J)= |J |, it is easy to verify that
∃x
Reduction sequence: 〈/A

1 ; : : : /
A
m(J); /

B
1 ; : : : /

B
m(J)〉.

Boolean function: B∃(Mc).

For MSOL the proof is similar. Again, we need that every X ⊆V has a unique decom-
position X =X1 �X2 with Xi ⊆Vi.
The additional clause in the induction are:

u∈X
Reduction sequence: 〈u∈X1; u∈X2〉.
Boolean function: b11 ;∨b12.

∃X
With the same notation is in the case of 5rst order existential quanti5cation we 5rst
put

/A
j = ∃X1

 ∧

i∈J (i;A;pos)

A
i (X1) ∧

∧
i∈J (i;A;neg)

¬A
i (X1)

and

/B
j = ∃X2

 ∧

i∈J (i;B;pos)

A
i (X2) ∧

∧
i∈J (i;B;neg)

¬A
i (X2)

166 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

and we get:
Reduction sequence: 〈/A

1 ; : : : /
A
m(J); /

B
1 ; : : : /

B
m(J)〉.

Boolean function: B∃(Mc).

The quanti5cation step can be simultaneously performed for a block of existential
quanti5ers. Hence, if we have a formula in prenex normal form, the time complexity
of computing the reduction sequence, and its length, is an iterated exponential of the
number of quanti5er alternations, rather than of the quanti5er rank.

Problem 1.

(i) Find, if possible, a better algorithm for computing the reduction sequences of
quanti5ed formula, which avoids the computation of the disjunctive normal forms.

(ii) Find sharp upper and lower bounds for the complexity of computing the reduction
sequences.

1.4. Algorithmic applications I: 8nite automata

For the algorithmic applications of Theorems 1.5, 1.6 we restrict our attention to
5nite structures.
The historically 5rst algorithmic result which has a proof using the Feferman–Vaught

theorem is the celebrated characterization of B8uchi of regular languages in terms of
de5nability by MSOL-sentences [17,18]. The theorem was also independently proved
by Trakhtenbrot [163], and Elgot [45].

Theorem 1.7 (B8uchi [17], Elgot [45] and Trakhtenbrot [163]). A set of words is
de8nable by an MSOL-sentence i: it is recognizable by some 8nite automaton.
Furthermore, the correspondence between automata and MSOL-sentences is
computable.

Proof. It is a straightforward induction, how to translate a regular expression into
an MSOL-sentence, hence, using Kleene’s theorem, one direction is settled. The other
direction uses the lookup table of Section 4.5 to de5ne the automaton from an MSOL-
sentence.

Corollary 1.8. MSOL-properties on words can be checked in polynomial time and
constant space.

In the papers [17,18,45,163] the model theoretic content of the proof was lost in the
constructive details. A very transparent translation proof may be found in Straubing’s
excellent monograph [154]. A clearly model theoretic proof using Ehrenfeucht–Fra8KssLe
games is due to Ladner, [96], cf. also [41]. This proof does not give a computable
translation, but is the key to further generalizations. A direct proof of Corollary 1.8
using the Feferman–Vaught theorem is given in Sections 4.5 and 4.6.

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 167

1.5. Algorithmic applications II: decidable MSOL-theories

Tarski and Mostowski proved before World War II that the 5rst order theory of well-
orderings is decidable. The manuscript, however was lost during the War and the result
was announced in [121]. A full account of this result is given in [39]. The reconstruc-
tion of the lost proof bene5ted a lot from the later developments, including from the
Feferman–Vaught Theorem. Explicit algorithmic use of the Feferman–Vaught theorem
was made in many decidability results of FOL and MSOL theories dealing with in5nite
structures. We shall not discuss this line of results here, but refer the interested reader to
the survey papers and monographs [22,23,50,62,85,119,139]. In [23,62] the Feferman–
Vaught theorems also play an essential rôle in determining the complexity of decidable
theories.
From our model theoretic point of view the developments which led to the decid-

ability of the MSOL theory of 5nite labeled trees are particularly instructive.
A 5rst step follows from B8uchi’s celebrated Theorem 1.7:

Theorem 1.9 (B8uchi, 1961). The MSOL-theory of 8nite linear orders is decidable.

The decidability follows immediately from Theorem 1.7 and Moore’s theorem on
the decidability of equivalence of 5nite automata, cf. e.g. [87]. There are two ingre-
dients here, Theorem 1.7, which can be proven with model theoretic means, and an
automata theoretic theorem. Following the model theoretic line, L8auchli [97] showed
that weak monadic second order theory (with set quanti5cation restricted to 5nite sets)
of linear order is decidable, but Shelah [149], 5nally showed that the MSOL theory of
all linear orders depends on set theory, and is, assuming the Continuum Hypothesis,
undecidable. Doner announced in [38] that the weak second order theory of two suc-
cessors is decidable. Rabin showed in [129], using automata theoretic methods, that
the MSOL theory of binary trees is decidable. But here no purely model theoretic
proof is known. From the theorem on binary trees Rabin then deduces the stronger
result

Theorem 1.10 (Rabin [129]). The MSOL-theories of 8nite trees, in8nite trees is de-
cidable. The same holds for rooted trees.

Proof. [Note on proofs:] Rabin’s classical theorem is about the full binary in5nite
tree. But the other cases follow easily. For rooted trees one has to add a constant. For
arbitrary binary trees, one has to use relativization via a unary predicate. For 5nite trees
one has to observe that 5niteness is expressible by an MSOL-formula in the language
of trees. For more details, cf. Thomas’ excellent survey [162].

A natural question to consider here is the following:

Question 2. Which classes of 8nite structures have a decidable MSOL theory?

168 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

As Gurevich notes in his [77]:

the most important tools for dealing with monadic theories are composition the-
orems. The term “composition” here means generalized products in the sense of
Feferman–Vaught [61].

The notion of tree width of a graph, which is to play a key rôle in our story, emerged
in this time in various contexts, cf. [82,136,171]. It is central in the deep combinatorial
analysis of graph classes with forbidden minors, as pursued by Robertson and Seymour.
We invite our reader to consult the excellent monograph of Diestel [96]. A concept
related to the tree width, introduced by Courcelle, Engelfriet and Rozenberg, and,
independently, by Wanke 10 [29,172], and further studied in [33,34,36,74] is the more
general notion of clique width. We shall de5ne and discuss tree width and clique width
in a general context in Section 4.2. Tree width measures in sense how close a graph
is to being a tree, and in many cases it also measures how small the largest clique-
like induced subgraph or minor can be. The graphs of clique width at most 2 contain
already all the cliques. Courcelle will forgive me, as I think the name is not a lucky
choice, but no better name did appear in the literature. However, we do not yet really
understand when graphs have a large clique width. Examples are studied in [74,115].
Two-dimensional (n× n)-grids have both large tree width and clique width. A class
of graphs of arbitrarily large tree width has, by a deep theorem due to Robertson and
Seymour [137], arbitrarily large grids as its minors. No such characterization of classes
of graphs of arbitrarily large clique width is known.
In a series of papers [145,146,148], Seese investigated classes of graphs which are

tree-like. In [148] he 5nally proved, relying heavily on work by Robertson and Seymour
[136], an amazing theorem.

Theorem 1.11 (Seese [147]). Let K be class of 8nite graphs G= 〈V; E; R〉 represented
as �2-structures with two sorts of elements, vertices V and edges E, and an incidence
relation R. If K has a decidable MSOL-theory, then K is of bounded tree width.

The proof uses that, without loss of generality, one can assume that K is closed
under minors, and that the MSOL-theory of grids is undecidable. Using the previous
remarks, it is not too diVcult to see that the corresponding MSOL-theory TWk of all
graphs (as �2-structures) of tree width at most k is decidable.
If we restrict our presentation of graphs to �1-structures G= 〈V; E〉 which are one-

sorted with vertices as elements and a binary symmetric edge relation E, the cliques
have a decidable MSOL-theory. This is so, because the edge relation is just inequality,
and the MSOL-theory of 5nite sets is decidable. More generally, the correspond-
ing MSOL-theory CWk of all graphs (as �1-structures) of clique width at most k is
decidable.
Seese conjectures that if a class K of 5nite graphs represented as �1-structures has a

decidable MSOL-theory, then K is contained in an MSOL-interpretable subset of 5nite

10 Under the name k-NLC-graphs.

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 169

trees. Using a result from [30], Engelfriet reformulated the conjecture in terms of clique
width:

Conjecture 1 (Engelfriet–Seese Conjecture). Let K be class of 8nite graphs G= 〈V; E〉
represented as �1-structures. If K has a decidable MSOL-theory, then K is of bounded
clique width.

A proof of this conjecture would very likely be based on a characterization of classes
of graphs of arbitrarily large clique width.

1.6. Algorithmic applications III: checking MSOL-properties

Finite orders and words are constructed from one-element structures by repeated
application of ordered disjoint unions or concatenation respectively. Words are just lin-
ear orders with unary predicates indicating which positions carry which letter. For both
operations Theorem 1.1 applies. This gives a straightforward algorithm to check MSOL-
properties of 5nite linear orders or words. We 5rst observe that the set MSOLq(�; Mx; MU)
of MSOL-formulas of quanti5er rank at most q is, up to logical equivalence, 5nite. For
a more detailed discussion of this, cf. Section 4.5.
Let be a MSOLq-sentence for words. Now given a 5nite word w we look at it as a

concatenation of two smaller words, i.e. w=w1 ◦w2. We can check w |= by applying
Theorem 1.1. This reduces to checking formulas 1; : : : ; m on w1 and w2 respectively,
and then computing a 5xed boolean function of the truth values of i on w1 or w2,
which is nothing else than the reduction sequence for for concatenation. As MSOLq

is 5nite, we can precompute all the reduction sequences in advance and then repeat
this step iteratively, till we only have to check formulas on one-letter words. This
algorithm runs in linear time in the size of the word, but obviously is not practical,
as the constants involved coming from the computation of all the possible reduction
sequences for MSOLq are prohibitively large.
A generalization of this algorithm will be shown to work in Section 4.6 for a wide

class of graph grammars based on edge replacements (HR-grammars) and vertex re-
placements (VR-grammars) where each replacement operation satis5es a version of the
Feferman–Vaught theorem as in Theorems 1.5 and 1.6.
In particular, the graphs of bounded tree width and of bounded clique width can be

viewed this way, and we have

Theorem 1.12 (Courcelle [26,27]). Let K be class of 8nite graphs G= 〈V; E; R〉 rep-
resented as �2-structures and be a MSOL(�2) sentence. If K has of bounded tree
width and G ∈K , then checking whether G |= can be done in linear time.

Theorem 1.12 was reproven subsequently by several authors almost simultaneously,
cf. [4,14,27,35].
Polynomial (linear) time is obtained, because there is a linear time algorithm, which,

given G of tree width at most k, produces a parse tree TG from which G can be
computed, cf. [11]. This parse tree TG is then used to check, whether is true in G.

170 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

In the case of clique width at most k, it is open whether the parse tree TG can be
found in polynomial time. But we still have the following theorem.

Theorem 1.13. Let K be class of 8nite graphs G= 〈V; E〉 represented as �1-structures
and be a MSOL(�1) sentence. Assume K is of clique width at most k.

(i) If G ∈K is given as �1-structure then checking whether G |= is in NP.
(ii) If G ∈K is given as a parse tree TG, then checking whether G |= can be done

in linear time in the size of TG.
(iii) If 8nding a parse tree for G ∈K is in P, then so is checking whether G |=.

The second part is from [32–34]. One can view this as a form of 5xed parameter
feasibility (FPT) result in the sense of [40].
We shall show in Sections 4.5 and 4.6 that similar theorems hold for a wide class

of graph grammars and inductively de5ned classes of structures.
In contrast to Theorems 1.12 and 1.13 it was shown by Pnueli and the author that

checking MSOL-properties can be arbitrarily hard within the polynomial hierarchy,
cf. [111]:

Theorem 1.14 (Makowsky and Pnueli [111]). For every level of the polynomial hier-
archy
P

k there are problems in
P
k which are MSOL-de8nable and which are complete

for
P
k via polynomial reductions.

The upper bound, namely that the complexity of checking MSOL-properties is in
the polynomial hierarchy, follows from classical theorems due to Fagin [51] and
Stockmeyer [153], cf. [70].

1.7. Algorithmic applications IV: graph polynomials

A graph polynomial is mapping

p : Graphs → R[X];

where R is a commutative ring and X is a, possibly countably in5nite, set of indeter-
minates. Furthermore, p has to be invariant under graph isomorphisms. In most cases
R=Z. The polynomial can often be written as

p(G)=
∑
7

∏
8

m7;8;

where m7;8 is a term depending on 7 and 8, 7 ranges often over subgraphs H of G
and 8 depends on 7. We shall see many examples in Appendix A.
In our 5nal development we shall prove a Feferman–Vaught theorem for graph

polynomials where the summation ranges over MSOL-de5nable sets of subgraphs. Here
we exploit the following analogy between MSOL-properties and the polynomial p.
 is also invariant under graph isomorphisms and takes values in the ring Z2 with
two elements. Viewed like this, the boolean function of the reduction sequences of

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 171

Theorem 1.6 is a polynomial over Z2[X] where X is a set of indeterminates. In the
case of graph polynomials one observes that many are multiplicative, i.e. if G=G1 �G2
is the disjoint union of two graphs, then

p(G) = p(G1) · p(G2):

The product is a special case of a two variable polynomial g(x; y)∈R[x; y]. Further-
more, in some cases, if G=G1 ∪e G2, where G1 and G2 have exactly one edge e in
common, one can 5nd graph polynomials p1; p2; and a polynomial g∈R[x1; x2; x3; x4]
such that

p(G) = g(p1(G1); p2(G1); p1(G2); p2(G2));

which looks very much like a reduction sequence for graph polynomials. Our last
result (Theorem 6.4) will make precise how the Feferman–Vaught Theorem can be
generalized to graph polynomials. Although graph polynomials are in general hard to
compute,]P-hard to be precise, we shall see that for graphs of bounded tree width
(clique width) many of them can be computed in polynomial time. These results extend
previous work presented in [34,107–109], and generalize the results of Andrejak [2],
Noble [123,124] and Mighton [117].

1.8. Outline of the paper

In Section 2 we introduce the formalism of translation schemes and its associ-
ated maps, the semantic transductions and syntactic translations. In its simplest forms,
translation schemes can be motivated by viewing them as a special case of the Feferman
–Vaught Theorem for the case where products or sums are taken over the same struc-
ture. But they also hold the key to further generalizations, both of the Feferman–Vaught
Theorem as well as a strong tool of interpretability. Translation schemes unify for-
malisms due to Tarski, Mostowski and Robinson and considerably clari5ed by Rabin,
cf. [128,161]. They allow us to recast the original Feferman–Vaught Theorem in its
suitable generality.
In Section 3 we introduce a unary map between structures, the Fusion, which con-

tracts the satisfaction set of a unary predicate to a single point. We show that this
operation satis5es a Feferman–Vaught Theorem similar to Theorem 1.3. In its full
generality the fusion operation is not known to be expressible as an FOL-transduction.
However, several special cases can be expressed in this way.
In Section 4 we present our formalism of MSOL-inductive classes of structures.

These are classes of structures built inductively using the disjoint union, quanti5er
free transductions, and the fusion operation in various forms. They generalize the
classes of graphs of bounded tree width, bounded clique width, comprise many graph
grammars, and extend to more general relational structures. Also in this section, we
show how to construct lookup tables for reduction sequences associated with disjoint
unions, quanti5er free transductions and fusion, and how to use these lookup tables
for linear time model checking of structures represented as parse trees of inductive
classes.

172 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

In Section 5 we brieIy discuss the already mentioned decidability results, and how
they can be proved using this general framework.
In Section 6 we introduce graph polynomials and de5ne the class of MSOL-de5nable

graph polynomials. We formulate and prove a Feferman–Vaught Theorem for MSOL-
de5nable graph polynomials, generalize known and generate new splitting theorems
for graph polynomials, and how these splitting theorems can be used for
calculations.
In Section 7 we discuss extensions of MSOL for which the Feferman–Vaught The-

orem holds as well. Such extensions are abundant, even if we restrict our attention
to 5nite structures. Courcelle has shown that the Feferman–Vaught Theorem holds
if MSOL is augmented by countably many counting quanti5ers Ck;m which say that
a set has size k modulo m. We discuss, without a conclusive answer, the question,
whether there is a maximal logic which satis5es the Feferman–Vaught Theorem. How-
ever, we think that it could be made precise that no such logic exists which is 5nitely
generated.
In Appendix A, we discuss graph polynomials and we review the literature for

examples of graph polynomials.

2. Translation schemes and transductions

There is a rich literature on various aspect of translation schemes. They are often
rediscovered and named diSerently. They play important rôles in various branches
of logic, which do not concern us here. But we would like to mention the booklet
by Mycielski et al. [122], where a general theory of logical (8rst order) theories
is developed, which is based on various uses of translation schemes. Here we look
at translation schemes is a tool to analyze a Feferman–Vaught Theorem for unary
operations.

2.1. Powers and disjoint unions of the same structure

Let us look for a moment at a special case of the cartesian product A×A and the
disjoint union A�A of two copies of one �-structure A, or in other words, we look
at the cartesian product and the disjoint union of two copies of the same structure A
as a unary operation performed on A. We want to check whether for a given FOL(�)-
sentence , A×A |= and A�A |=. For both cases, Theorem 1.4 says that there are
formulas 1; : : : ; k and /1; : : : ; /m and boolean functions B× : 2k → 2 and B� : 2m → 2
such that

A × A |= iS B×(a1; : : : ; ak) = 1

and

A � A |= iS B�(b1; : : : ; bm) = 1:

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 173

if we put ai=1 iS A |= i and bi=1 iS A |= /i. But as B× and B� depend only on
the truth values of the i and /i in A, there are formulas) and ; such that

A × A |= iS A |=)

and

A � A |= iS A |= ;:

In other words the reduction sequence consists of one formula, and the boolean func-
tion can be incorporated into the formulas of the trivial reduction sequence. Both, the
structures A×A and A�A can be obtained from A by translation schemes, the product
vectorized, and the disjoint union scalar but many-sorted. We shall explore this and
make the notions precise in the sequel. We shall distinguish three related notions:

Translation schemes. A translation scheme (consists just of a sequence of formulas
which satis5es some formatting restrictions. Its meaning is given in two ways:

Transductions. A transduction (? is a semantic map associated with a translation
scheme (.

Translations. A translation (] is a syntactic map associated with a translation
scheme (.

2.2. Translation schemes

De'nition 2.1 (Translation schemes ().

(i) Let � and == {R1; : : : ; Rm} be two vocabularies with >(Ri) be the arity of
Ri. Let L be a fragment of SOL, such as FOL, MSOL, ∃MSOL, etc. Let
(= 〈; 1; : : : ; m〉 be formulas of L(�) such that has exactly k distinct free
5rst order variables and each i has k · >(Ri) distinct free 5rst order variables.
In this situation we say that (is k-feasible (for = over �).

(ii) A k-feasible (= 〈; 1; : : : ; m〉 is called a k − �−=−L-translation scheme or,
in short, a translation scheme, if the parameters are clear in the context.

(iii) If k =1 we speak of scalar or non-vectorized translation schemes.
(iv) If k¿2 we speak of vectorized translation schemes.
(v) If is such that ∀ Mx(Mx) is a tautology (always true) the translation scheme is

not relativized otherwise it is relativized.
(vi) A translation scheme is many-sorted if = is a many-sorted vocabulary. In this

case there are de5ning formulas for each of the universes corresponding to the
sorts.
This generalizes Courcelle’s transduction which allow the disjoint union of a
5xed number of copies of a structure, cf. [28].

(vii) A translation scheme is parametrized (with parameters Mx; MU) if the formulas of
(all contain Mx and MU as additional free variables.

(viii) A translation scheme is simple if it is neither relativized nor vectorized. It is
many-sorted if = is a many-sorted vocabulary. In this case the domains are
disjoint.

174 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

Examples 1 (Products and sums). Let �= {R} consist of one binary relation symbol.
(i) The 2−�−�−FOL-translation scheme (power is given by (x; y)=def (x=x∧y=y),

and (x1; x2; y1; y2)=def R(x1; y1)∧R(x2; y2).
(power is vectorized.

(ii) Let = be like �, but two-sorted with sorts U1 and U2 (treated like unary predicates
but with disjoint domains). The 2−�−=−FOL-translation scheme (dunion is given
by U1 (x)=def U1(x), U2 (x)=def U2(x), and (x; y)=def ((R(x; y)∧U1(x)∧U1(y))
∨ (R(x; y)∧U2(x)∧U2(y))). (dunion is scalar but two-sorted.

Examples 2 (From words to graphs).

(i) �words3 consists of {R¡; P0; P1; P2} for three letters {0; 1; 2}. �graphs consists of {E}.
We put 1(x)= (P0(x)∨P1(x)) and E(x; y)= (P0(x)∧P1(y)).

(1 = 〈1(x); E(x; y)〉
is a scalar (as k =1) and relativized translation scheme in FOL. If instead we
look at 2(x)= (x≈ x) then

(2 = 〈2(x); E(x; y)〉
is a simple translation scheme.

(ii) �words2 consists of {R¡; P0; P1}. �grids consists of {ENS ; EEW}, the North–South, and
East–West relations. Put k =2, (x)=((x≈ x)∧ (y≈y)), ENS (x1; x2; y1; y2)=
(R¡(x1; x2)∧y1≈y2) and EES (x1; x2; y1; y2)= (R¡(y1; y2)∧ x1≈ x2).

(3 = 〈(x; y); ENS (x1; x2; y1; y2); EEW (x1; x2; y1; y2)〉
is a vectorized but not relativized translation scheme in FOL.

2.3. Transductions

We now de5ne the semantic map associated with (, the transductions.

De'nition 2.2 (The induced transduction (?). Given a translation scheme (, the func-
tion (? : Str(�)→ Str(=) is a partial function from �-structures to =-structures de5ned
by (?(A)=A(and

(i) the universe of A(is the set

A(= { Ma ∈ Ak : A |= (Ma)}
(ii) the interpretation of Ri in A(is the set

A((Ri) = { Ma ∈ A(
>(Ri)·k : A |= i(Ma)}:

A(is a =-structure of cardinality at most |A|k .
As (is k-feasible for = over �, (?(A) is de5ned iS A |=∃ Mx, i.e., the universe
de5ned by is not empty.

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 175

In the case of parametrized translation schemes (?(A) depends on the value of the
parameters.

Examples 3.

(i) Computing (?
prod for A gives A2.

(ii) Computing (?
dunion for A gives A�A.

(iii) Computing (?
1 for the word 1001020102001022111 gives a complete bipartite

graph, the vertices of which are the positions of the word which have either letter
0 or 1, and each 0-position is connected to every 1-position.

(iv) Computing (?
3 for the word 0110101001 gives a (10× 10) rectangular grid. Note

that this is independent of the letters {P0; P1}.

2.4. Translations

Next we de5ne the syntactic map associated with (, the translations. Translations
are sometimes also called interpretations, especially when theories and provability are
the subject of discourse.

De'nition 2.3 (The induced translation (]). Given a translation scheme (we de5ne
a function (] :L(=)→L(�) from L(=)-formulas to L(�)-formulas inductively as
follows:

(i) For Ri ∈ = and /=Ri(x1; : : : ; xm) let xj; h be new variables with j6m and h6k
and denote by Mxi= 〈xi;1; : : : ; xi; k〉. We put

(](/) =

(
 i(Mx1; : : : ; Mxm) ∧

∧
i

(Mxi)

)

(ii) This also works for equality and relation variables U instead of relation symbols R.
(iii) For the boolean connectives, the translation distributes, i.e.

(iii.a) if /=(/1 ∨ /2) then

(](/) = ((](/1) ∨ (](/2))

(iii.b) if /=¬/1 then

(](/) = (](¬/1)

(iii.c) similarly for ∧ and →.
(iv) For the existential quanti5er, we use relativization to :

If /=∃y/1, let My= 〈y1; : : : ; yk〉 be new variables. We put
/(= ∃ My((My) ∧ (/1)():
This concludes the inductive de5nition for 5rst order logic FOL.

(v) For second order quanti5cation of variables U of arity ‘ and Ma a vector of length ‘
of 5rst order variables or constants, we translate U (Ma) by treating U as a relation

176 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

symbol above and put

/(= ∃V (∀ Mv(V (Mv) → ((Mv1) ∧ : : : (Mv‘) ∧ (/1)()))
(vi) For parametrized translation schemes (with parameters Mx; MU , we 5rst compute

/((Mx; MU) by treating the parameters as uninterpreted constants, and then quantify the
variables to get

/(= ∃ Mx∃ MU/((Mx; MU):

This gives immediately

Proposition 2.4. Let (be a k − � − = translation scheme which is either in FOL or
in MSOL.

(i) If (is in MSOL and scalar and / is in MSOL then (#(/) is in MSOL.
(ii) If (is of quanti8er rank q and has p parameters, and / is a =-formula of

quanti8er rank r, then the quanti8er rank of (](/) is bounded by r + k · q+ p.

Example 2.5. We now look again at the examples of Section 2.2 and de5ned in detail
in Examples 1. The reduction formulas for the product) can be obtained as (]

prod()
and the reduction formulas for the disjoint union ; can be obtained as (]

dunion(). If
∈MSOL, (]

prod() is not necessarily in MSOL, because (prod is vectorized. However,
(]
dunion() is in MSOL. In both cases the quanti5er rank does not increase.

2.5. Properties of translation schemes

Translations schemes are useful tools providing us with various reduction techniques.
Without further assumptions we have the following theorem:

Theorem 2.6 (Fundamental property). Let (= 〈; 1; : : : ; m〉 be a k − (� − =)-trans-
lation scheme in MSOL. Then the transduction (? and the translation (] are linked
as follows: Given a �-structure A such that (?(A) is de8ned, an L(=)-formula /(Mx)
with free variables Mx= x1; : : : ; xm, and an assignment z :Variables→A, then

A |= (](/)(My1; : : : ; Mym) iff (?(A) |= /(Mx);

where Myi is the vector of variables corresponding to xi in the computation of (].

From this, together with Proposition 2.4, we get

Theorem 2.7. Let (be a k − � − = translation scheme of quanti8er rank q with
p parameters, and let A be a �-structure. Then Thm

MSOL((
?(A)) depends only on

Thm+k·q+p
MSOL (A).

If the induced maps (? and (] have additional properties we get more.

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 177

De'nition 2.8 (L-Reductions). Let L be a logic, say FOL;MSOL or some fragment
of SOL, and (a (�1 − �2) translation scheme. Furthermore, let K1; K2 be two classes
of �1 and �2-structures, respectively. We say

(i) (? is a weak reduction from K1 to K2 if for every �1-structure A with A∈K1
we have (?(A)∈K2.

(ii) (? is a reduction from K1 to K2 if for every �1-structure A, A∈K1 iS (?(A)∈K2.
(iii) (? from K1 to K2 is onto if (additionally) for every B ∈K2 there is an A∈K1

with (?(A) isomorphic to B.
(iv) By abuse of language we say (? is a translation from K1 onto K2 also if (? is

not a weak reduction but only K2⊆(?(K1).
(v) We say that (induces a reduction (a weak reduction) from K1 to K2, if (? is

a reduction (a weak reduction) from K1 to K2. For simplicity, we also say (is
a reduction (a weak reduction) instead of saying that (induces a reduction (a
weak reduction).

2.6. Feferman–Vaught Theorem for translation schemes and generalized sums and
products

Proposition 2.4 and Theorem 2.6, gives us analogues to Theorems 1.5 and 1.6 for
translation schemes (where all the formulas of (are quanti5er free. We call those
shortly quanti8er free translation schemes. We note that the cartesian power Ak of k
copies of a �-structure A, and the k-fold disjoint union of k copies of a �-structure A
are operations which can be obtained as (? for suitably chosen translation schemes (
which are quanti5er free. Other such examples are given in Examples 2.

Theorem 2.9. Let (be a quanti8er free �1 − �2-translation scheme in SOL. Let A
and B two �1-structures with Thq

SOL(A)=Thq
SOL(B). Then

(i) Thq
SOL((

?(A))=Thq
SOL((

?(B)) and for each /∈ SOL(�2) (](/) is a reduction
sequence of length one for /.

(ii) If each formula of (has quanti8er rank at most k and p parameters, the same
holds with the stronger hypothesis Thq+k+p

SOL (A)=Thq+k+p
SOL (B).

(iii) The same holds if we replace SOL by FOL or MSOL.

We combine this now with cartesian products and disjoint unions.

De'nition 2.10 (Product-like and sum-like operations). Let F be a k-ary operation

F : Str(�1)× · · · × Str(�k) → Str(�):

F is

(i) product-like if there is a quanti5er free FOL-translation scheme (such that for
all structures (over the appropriate vocabularies) we have

F(A1; : : : ;Ak) = (?(A1 × · · · × Ak)

178 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

(ii) sum-like if there is a quanti5er free MSOL-translation scheme (such that for all
structures (over the appropriate vocabularies) we have

F(A1; : : : ;Ak) = (?(A1 � · · · � Ak)

We note that it is convenient to regard A1× · · · ×Ak and A1 � · · · �Ak as ordered,
i.e., non-commutative.

The 5nite generalized products in the original paper of Feferman and Vaught are
de5ned like our product-like operations, but not necessarily with quanti5er free transla-
tion schemes. It is now clear how to formulate Theorems 1.5 and 1.6 for product-like
and sum-like operations. The restriction to FOL (MSOL) in the case of product-like
(sum-like) operations stems from the restrictions on the validity of these theorems.
Sum-like and product-like operations were 5rst introduced in this way in [112].

2.7. Preservation of decidability under translation schemes

It is well known that the consequence relation for FOL is semi-computable (in old
terminology recursive enumerable), but for MSOL it is undecidable. By Lindstr8om’s
celebrated theorem, FOL is the only recursively presented fragment of MSOL which has
the countable model property, [101,42] and has semi-computable consequence relation.
When we study decidable theories, this diSerence is important. In FOL a complete
5nitely axiomatizable theory is always decidable, but in many fragments MSOL the
theory of the arithmetic structure of the natural numbers is 5nitely axiomatizable but
not decidable. However, there are many theories in fragments L of MSOL which have
a decidable theory. We have seen examples in Section 1.5.
For the sequel we 5x some more terminology. A class of �-structures K is L-closed

if for every two �-structures A and B which satisfy the same L-sentences, whenever
A∈K then also B ∈K . If K contains only 5nite structures, and L contains all of
FOL, K is L-closed iS it is closed under �-isomorphisms.

K is L-decidable if the set of L(�)-sentences ThL(K) true in all structures of K
is computable (recursive). We write also Th(K) for ThL(K) if L is understood from
the context. Note that K is L-closed iS A∈ThL(K) implies that A∈K . The converse
is always true by de5nition.
Decidable theories were 5rst studied systematically by Tarski in collaboration with

Mostowski and Robinson in [161]. Translation schemes were 5rst used explicitly by
Rabin in [128] in his simpli5cation of [161]. We present here in a nutshell the general
results of [128] relating to decidability and de5nability.

Theorem 2.11 (Tarski, Mostowski and Robinson [161] and Rabin [128]). Let L be a
fragment of MSOL. Let K1; K2 beL-closed classes of �1 and �2-structures respectively,
and (be a translation scheme in L such that for every /∈L(�2) the formula (#(/)
is in L(�1).

(i) If (∗ is a weak reduction from K1 to K2 which is onto, K1 is decidable, then
K2 is decidable.

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 179

(ii) Assume additionally L has a recursive enumerable consequence relation. If (∗ is
a transduction from K1 to K2 which is onto and K1 is decidable and K2 de8nable
by a single L-sentence, then K2 is decidable.

(iii) Similarly, we can conclude that K2 is decidable in TIME(f), SPACE(g) for K1
decidable in TIME(f′), SPACE(g′) for suitable f;f′ and g; g′, depending on the
complexity of substitution in L.

(iv) The same results also hold for parametrized transformation schemes which re-
de8ne equality (even with second order variables).

Proof. (i) Let /∈L(�2). We want to check whether /∈Th(K2).
First we check whether (#(/)∈Th(K1). As Th(K1) is computable, we get an answer.
If (#(/)∈Th(K1), every A∈K1 satis5es (#(/). Hence for every A∈K1 (∗(A) |= /.

But, as (∗ is onto (∗(K1)=K2, hence every B ∈K2 satis5es /, and we have that
/∈Th(K2).
If (#(/) �∈Th(K1), there is A∈K1 with A|=¬(#(/). So we have also that A |=(#(¬/),

and by Theorem 2.6, (∗(A) |=¬/. As (∗ is a weak reduction, (∗(A)∈K2, / �∈Th(K2).
(ii) Assume that K2 =Mod(7). Now /∈Th(K2) iS 7→ / is valid. As L has an r.e.

consequence relation, Th(K2) is r.e.
On the other hand: / �∈Th(K2) iS there is B∈K2 with B |=¬/ iS (here we use

that (∗ is onto) there is A∈K1 with A |=(#(¬/) iS (#(/) �∈Th(K1). This shows that
Th(K2) is co-r.e.
(iii) In both cases above we have reduced the problem of checking /∈Th(K1) to

checking (](/)∈Th(K2). But the cost of this transformation depends solely on the
cost of computing (](/).
(iv) We leave this as an exercise.

Together with Theorem 1.10 Theorem 2.11 becomes a very powerful tool. We do
pursue this further in Section 5. But we 5rst have to prepare the grounds and present
our approach to tree width and clique width of graphs and its generalizations.

3. The fusion operation

In Section 4 we present our model theoretic approach to tree width and clique width
based on the Feferman–Vaught Theorem. To do this we study 5rst the operation FuseP .
Although FuseP can be de5ned using translation schemes, the translation scheme which
de5nes it is not quanti5er free. It seems that no quanti5er free translation schemes exists
which de5nes FuseP in its full generality, but nevertheless FuseP satis5es a Feferman–
Vaught Theorem in the style of Theorem 1.5, provided we restrict our attention to
vocabularies with only unary and binary relations, i.e. �= {P1; : : : ; Pm; R1; : : : ; Rn}.

3.1. Fusion of a unary predicate

Let A be a �-structure with universe A. We denote the interpretations of the symbols
in � by PA

1 ; : : : ; P
A
m ; RA

1 ; : : : ; R
A
n , respectively.

180 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

De'nition 3.1. Let > be the maximal arity of the relation symbols in �, and A be a
�-structure. Assume PA

i �= ∅. The structure Fusei(A)=B is de5ned as follows

(i) B=(A − PA
i)∪ {pi} where pi is an element not in A.

(ii) PB
i = {pi}

(iii) For j �= i PB
j =(P

A
j ∩B)∪ {pi} if PA

i ∩PA
j �= ∅.

Otherwise, PB
j =PA

j ∩B=PA
j .

(iv) For binary relation symbols Rj,
RB
j =(R

A
j ∩B2)∪ {(b; pi): b∈B∧ ∃x∈PA

i with (b; x)∈RA
j }

∪{(pi; b): b∈B∧ ∃x∈PA
i with (x; b)∈RA

j }
(v) For r-ary relation symbols Rj,

RB
j =(R

A
j ∩Br)∪ ⋃I⊆{1;:::; r} XI , where

XI = {vecI (Mb; Mpi): Mb∈Br−|I | ∧ ∃ Mx∈ (PA
i)

|I | with vecI (Mb; Mx)∈RA
j }.

Here vecI (Mc; Md)∈Cr is the shuYing of Mc∈Cr−|I | and Md∈C|I |, without changing
the order of the coordinates of Mc respectively Md.

If PA
i = ∅, Fusei(A)=A.

We note that this de5nition is of the form (?
Fusei for a many-sorted translation scheme

of quanti5er rank > − 1. Hence we have

Proposition 3.2. Thm
MSOL(FusePi(A)) depends only on Thm+>−1

MSOL (A).
Furthermore, /∈Thm

MSOL(FusePi(A)) can be computed by checking whether (
]
Fusei(/)

∈Thm+>−1
MSOL (A).

It is a somewhat surprising fact that Proposition 3.2 can be improved if we have
only unary and binary relation symbols.

Proposition 3.3. Assume � contains only unary and binary relation symbols. Then
for every �-structure A the theory Thm

MSOL(FusePi(A)) depends only on the theory
Thm

MSOL(A).

Proof. Assume we have a winning strategy W of the Ehrenfeucht–Fra8KssLe games for
Thm

MSOL(A) for m moves, as de5ned in [41,42,44]. We de5ne a winning strategy W ′

for Thm
MSOL(FusePi(A)). Assume k moves for W ′ have been de5ned.

(i) Assume pi, respectively p′
i was not yet chosen. If in the move (k + 1) player I

chooses an element, say a∈A − PA
i , player II answers with the same element as

prescribed by W for move (k + 1).
(ii) If I chooses pi or p′

i then II replies always with p′
i , respectively pi, independently

of the previous choices.
(iii) Assume pi, respectively p′

i was already chosen in a previous move and now
it is move (k + 1). If in the move (k + 1) player I chooses an element, say
a∈A − PA

i , player II answers with the same element as prescribed by W for
move k, disregarding the choice of pi and p′

i .

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 181

(iv) For set moves U ⊆A − PA
i we again use W .

(v) For set moves U containing pi, respectively p′
i we split accordingly.

We have to show that W ′ is indeed a winning strategy. W.l.o.g. we can assume that
pi and p′

i were chosen only once and in fact in the last move. This is so, as W ′ is
not aSected by the choice of pi and p′

i . The only way, W ′ could not be a partial
isomorphism is that for some Rj, ak ; a′

k chosen in move k we have (ak ; pi)∈RA
j but

(a′
k ; p

′
i) �∈RA

j
′
. But then we can show that W is not a winning strategy by choosing as

the last move some am such that (ak ; am)∈RA
j for which II has no reply, as no such

a′
m exists.

However, it is not clear how to compute (eVciently) Thm
MSOL(FusePi(A)) from

Thm
MSOL(A).

3.2. General vocabularies

We now discuss brieIy the operation FusePi in the case that the vocabulary � contains
5nitely many relation symbols, at least one of which of arity >, 36>∈N, but none of
which of arity bigger than >. We also allow 5nitely many constant symbols. Obviously,
Proposition 3.2 now becomes

Proposition 3.4. Thm
MSOL(FusePi(A)) depends only on Thm+>−1

MSOL (A).

Furthermore, Proposition 3.3 can be improved, using the same type of argument as
in the proof of Proposition 3.3, to the following proposition.

Proposition 3.5. Thm
MSOL(FusePi(A)) depends only on Thm+>−2

MSOL (A).

For >=2 this is Proposition 3.3.

3.3. Fusions of constants

Now assume � contains at least two constant symbols a; b, and == � − {b}. We
de5ne the operation Fusea=b using a 1− �−=−FOL quanti5er free translation scheme
(Fusea=b de5ned as follows

(i) The universe is de5ned by the formula (x) : x �= b.
(ii) For an n-ary relation symbol R, variables x1; : : : ; xn, a term t and J ⊆ {1; : : : ; n}, we

denote by RJ; t(x1; : : : ; xn) the formula obtained from R(x1; : : : ; xn) by substituting
t for each xi; i∈ J .

(iii) For every n-ary relation symbol R∈ �, J
R (x1; : : : ; xn) is the formula(

R(x1; : : : ; xn) ∧
∧
i∈J

xi �= b

)
∨
(
RJ;b(x1; : : : ; xn) ∧

∧
i∈J

xi = a

)

182 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

and

 R(x1; : : : ; xn) =
∨

J⊆{1;:::;n}
 J
R (x1; : : : ; xn):

Clearly, for every �-structure A, (?
Fusea=b

(A) is the =-structure obtained from A by
identifying a and b. Hence we get, using Theorem 2.7, the following:

Proposition 3.6. Thm
MSOL(Fusea=b(A)) depends only on Thm

MSOL(A) and can be e:ec-
tively computed.

An alternative proof is that of [31, Lemma 5.2].

3.4. Sum-like operations and fuse

We have de5ned in Section 2.6, De5nition 2.10 sum-like operations. As we do not
know whether FuseP can be de5ned using a quanti5er free translation scheme, it is not
clear whether applying FuseP to a sum-like operation gives again a sum-like operation.
In the next section we therefore introduce an extension of sum-like operations for
which Feferman–Vaught Theorems still hold.

4. MSOL-classes of structures

4.1. MSOL-smooth operations on structures

Instead of the disjoint union one can prove Theorem 1.5 and 1.6 for the following
operations on coloured (un)directed graphs:

(i) Concatenation of words, v ◦w.
(ii) Joining two trees at a new common root, T1 •T2.
(iii) H -sums of graphs:

For i=1; 2 let Gi= 〈V (Gi); E(Gi)〉 and V (G1)∩V (G2)=V (H) and E(H)=E(G1)
∩V (H)2=E(G2)∩V (H)2. Then G=G1⊕H G2 is given by V (G)=V (G1)∪V (G2)
and E(G)=E(G1)∪E(G2).

(iv) H -sums of edge and vertex coloured graphs are de5ned similarly.

Given two graphs G1; G2 with distinguished induced subgraphs H1; H2 which are iso-
morphic to H with isomorphisms h1; h2, the H -sum of G1 and G2 is an almost disjoint
union of the two graphs where the intersection contains exactly H as induced subgraph
(using the isomorphisms h1 and h2 to 5x it). 11

Both proofs of Theorem 1.5 and 1.6 for these operations, the one using Ehrenfeucht–
Fra8KssLe games, and the one using reduction sequences, generalize. We shall take this

11 Strictly speaking we should write G1 ⊕H; h1 ; h2 G2, but we shall drop the isomorphisms when there is no
risk of confusion.

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 183

observation as a starting point for our further treatment. However we note that it is
not clear whether H -sum of graphs are sum-like operations.
Instead of the previous operations we now allow any operation satisfying Theorem

1.5 or 1.6.

De'nition 4.1.

(i) A n-ary operation Op on �-structures is MSOL-smooth if for every q∈N and
every A1;A2; : : : ;An

Thq
MSOL(Op(A1; : : : ;An))

depends only on Thq
MSOL(Ai) for 16i6n.

(ii) Op is e:ectively MSOL-smooth if there is an algorithm which computes for every
∈MSOL(�) a reduction sequence, i.e. a sequence of formulas as described in
Theorem 1.6.

Clearly, by the above, we have the following examples.

Example 4.2. The following are MSOL-smooth operations.

(i) The disjoint union of structures, concatenation of words, root joining of trees,
H -sums of graphs (and its generalization to arbitrary structures) are all eSectively
MSOL-smooth operations by proofs similar to the proof of Theorem 1.6.

(ii) Quanti5er free MSOL-transductions are eSectively MSOL-smooth by Theorem 2.7.
(iii) The fusion operation Fusea=b was shown to be MSOL-smooth in the previous

section, Proposition 3.6.
(iv) The fusion operation FuseP was shown to be MSOL-smooth in the previous sec-

tion, Proposition 3.3, provided the relation symbols are all unary or binary.

However, parametrized quanti5er free MSOL-transductions are not known to be MSOL-
smooth, as Theorem 2.7 does not give us that much.

Question 3. Are there more examples of MSOL-smooth operations? Are there MSOL-
smooth operations which are not e:ectively MSOL-smooth?

4.2. MSOL-inductive classes

MSOL-inductive classes of structures are similar to graph grammars. The exact re-
lationship with graph grammars is studied in [31,72]. Mahajan and Peters, [104], look
at a similar, but more restricted concept. Also [15, Chapter 11] is close in spirit to our
notion of inductive classes.

De'nition 4.3.

(i) A class K of �-structures is MSOL-inductive if it is de5ned inductively using a
5nite set of MSOL-smooth operations as follows: we are given a 5nite set K0
of 5nite �-structures and a 5nite set O of MSOL-smooth operations. Now, K is

184 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

de5ned as the smallest class of �-structures containing K0, and which is closed
under isomorphisms and the operations in O.

(ii) K is e:ectively MSOL-inductive if it is de5ned inductively using a 5nite set of
eSectively MSOL-smooth operations.

Question 4. Are there MSOL-inductive classes K which are not e:ectively MSOL-
inductive?

The following are some examples of eSectively MSOL-inductive classes of structures.

Examples 4 (Tree width and clique width).

(i) Words
? are de5ned inductively by
(i.a) the empty word is a word
(i.b) one letter words are words
(i.c) words are closed under concatenation

(ii) Coloured trees (forests) are de5ned similarly:
(ii.a) one leaf trees are trees
(ii.b) trees are closed under root joining
(ii.c) forests are closed under disjoint unions

(iii) Series–parallel (SP) graphs are de5ned by 12

(iii.a) one edge graphs are SP.
(iii.b) SP graphs are closed under disjoint unions
(iii.c) SP graphs are closed under H -sums for all H with at most two vertices.
Series–parallel graphs are exactly the graphs of tree width at most 2 de5ned
below.

(iv) Graphs of tree width at most k TWk can be de5ned inductively by looking at
vertex coloured graphs with at most k + 1 colours:
(iv.a) All graphs with at most k + 1 vertices are in TWk .
(iv.b) TWk is closed under disjoint union.
(iv.c) TWk is closed under renaming of colours.
(iv.d) TWk is closed under fusion, i.e. for every coloured graph G ∈TWk , and

for every unary predicate symbol representing a vertex colour P, also
fuseP(G)∈TWk .

This de5nition is not the standard de5nition given, say in [37], but is equivalent
to it, cf. [31].

(v) Cographs are inductively de5ned as follows, cf. [15, Chapter 11.3].
(v.a) One vertex graphs are cographs.
(v.b) The disjoint union of two cographs is a cograph.
(v.c) For a graph G= 〈V; E〉 the complement graph MG= 〈V; V 2 − DV − E〉 is a

cograph. Here DV is the diagonal relation {(v; v)∈V 2: v∈V}.
12 In [15] an equivalent de5nition is given. In this de5nition a graph is series–parallel iS it is of tree-width
at most 2. This should not be confused with 2-terminal series–parallel graphs, also discussed in [15], which
sometimes are also called series–parallel. Under this de5nition, a graph is of tree-width at most 2 iS all its
2-connected components are 2-terminal series–parallel.

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 185

Cographs are exactly the graphs of clique width at most 2 de5ned below.
(vi) Similarly, graphs of clique width at most k CWk are de5ned inductively as follows,

cf. [36]:
(vi.a) All graphs with at most 1 vertex are in CWk .
(vi.b) CWk is closed under disjoint union.
(vi.c) CWk is closed under renaming of colours.
(vi.d) CWk is closed under adding all possible edges between two sets of diSer-

ently coloured vertices.

In [15, Chapter 11] series–parallel graphs, partial k-trees and cographs are discussed,
but diSerently. Cographs are exactly the graphs without an induced P4, i.e. path with
four vertices (or three edges). Partial k-trees are exactly the graphs of tree width
at most k. There also an inductive de5nition of threshold graphs is given which is
eSectively MSLO-inductive. Threshold graphs have also a de5nition using forbidden
induced subgraphs. The forbidden graphs are P4, C4, i.e. cycles of length 4, and pairs
of K2, i.e. two disjoint edges.
As we said in the introduction, graphs of tree width (or clique width) at most k

are widely studied in the literature. But the unifying view which led to the above
equivalent de5nitions is recent and was introduced in [34,36] and discussed in detail
in [31]. The notions in the above examples are related as indicated in the following
proposition.

Proposition 4.4.

(i) Words and trees are of tree width at most 1.
(ii) Series parallel graphs are of tree width at most 2.
(iii) The clique Km is of tree width m − 1 but of clique width 2.
(iv) Every graph of tree width at most k is of clique width at most 2k+1 + 1.

(i)–(iii) follow from the de5nitions and (iv) is basically a sharp bound, cf. [25,36].

4.3. Parse trees for MSOL-inductive classes

Given an MSOL-inductive class K of graphs, we want to establish that a graph G
belongs to K . One way of doing this is by exhibiting explicitly the way the graph was
obtained inductively. In other words, we exhibit the construction tree or parse term of
the graph G. We now have a closer look at this.

De'nition 4.5. Given an (eSectively) MSOL-inductive class of �-structures K , we de-
5ne a parse term tA of A, which, for a �-structure A, describes how it was obtained
according to the inductive de5nition of K . The parse term is built from constants
denoting the elements of K0, and function symbols for each operation in O.

Given a parse term tA, it is clear how to construct the structure A. The converse asks
for a given structure A, whether A∈K , i.e. whether there is a parse term tA. What one
would like to have is, that every structure A∈K has a parse term of size polynomial

186 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

in the size of A, where the degree of the polynomial depends only on K . There are
various monotonicity conditions which can guarantee this. If at every construction step
at least an edge or a vertex is added, and no vertices or edges are removed, this is the
case. But weaker conditions suVce as well. We leave it here open, how to formulate a
reasonable condition for the existence of polynomial size parse terms, and state it as an
abstract property. We also do not have an example of an (eSectively) MSOL-inductive
class K where structures in K have necessarily an exponential size parse term. But we
are quite sure that with some ingenuity such a class can be constructed.

De'nition 4.6.

(i) Let K be an (eSectively) MSOL-inductive class given by K0 and a 5nite set of
operations O. We say that O, and by abuse of notation K , has small parse terms,
if there exists a polynomial pK (n)∈Z[x] such that for each A∈K there is a parse
term (over O) of size pK (|A|) representing A.

(ii) Additionally, we say that K has polynomial time evaluation of parse terms, if for
each parse term tA over O the structure A is computable in polynomial time in
the size of the t.

It is easy to see that, if we only allow quanti5er free scalar non-relativizing trans-
ductions and disjoint unions, we only get MSOL-inductive classes with small parse
terms from which the structure is computable in polynomial time. Non-monotonicity
can be caused by relativization and the fusion operation. The case of tree width at
most k is interesting, as it involves, in our de5nition, the fusion operation. Neverthe-
less, it is eSectively MSOL-inductive with small parse terms which can be evaluated
in polynomial time. If we replace the unary predicates subject to fusion by named
elements and use fusion of constants paired with disjoint unions, we can even achieve
monotonicity.

Proposition 4.7. Let K be an (e:ectively) MSOL-inductive class of structures with
small parse terms which can be evaluated in polynomial time. Then membership in
K is in NP.

Proof. We can guess a parse term whose size is polynomial in the size of the structure.
Then we construct the structure from the parse term, which can be done in polynomial
time, and then we have to check whether the resulting structure is isomorphic to our
candidate structure, which is again in NP.

Proposition 4.8. The following are MSOL-inductive classes recognizable in polynomial
time:

(i) The series–parallel graphs, the graphs of tree width at most 2.
(ii) More generally, for every k, the class of graphs of tree width at most k.
(iii) The cographs, i.e. the graphs of clique width at most 2.
(iv) More generally, for k63, the class of graphs of clique width at most k.

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 187

Proof. (i) is due to [3]. Linear time algorithms were designed later, cf. [4] for the
best results.
(ii) is from [24]. For (iii) cf. [15], and (iv) is from [24].

It remains a challenging open problem to determine the complexity of 5nding parse
trees for clique width k¿4. Clearly, this is in NP.

Problem 2. Is there a k such that 5nding parse trees for clique width at most k is
NP-complete?

Another natural question to ask is whether there are other MSOL-inductive classes
with NP-complete recognition problem. A simple graph 〈V; E〉 has (cyclic) bandwidth
at most k if there is a linear ordering (cyclic ordering) E′ of its vertices such that for
every edge e=(v1; v2)∈E there is a E′-path of length at most k between v1 and v2.
Let Bk and CBk be the class of simple graphs of bandwidth and cyclic bandwidth at
most k respectively.

Proposition 4.9 (Saxe [144] and Leung et al. [100]). Bk is in P but CB2 is NP-
complete.

TurZan in [164] has shown that an NP-complete modi5cation MCB2 of CB2 can be
represented as an NLC-grammar. Given a graph G in CB2, the modi5cation adds two
dangling edges (and hence two more vertices) to each original vertex of G. Analyzing
his proof we get

Proposition 4.10 (TurZan [164]). MCB2 is an MSOL-inductive class of bounded tree-
width with polynomial time computable small parse terms where parsing is NP-
complete.

4.4. MSOL-inductive classes and graph grammars

Besides the examples given above, many graph grammars from the vast literature,
cf. the handbooks [26,140–142], can be shown to be MSOL-inductive classes of labeled
graphs. Actually, we view our approach to graph languages via MSOL-inductive classes
as a model theoretic alternative to graph grammars. Production rules are replaced by
closure conditions of MSOL-smooth operations.
The reader not at all acquainted with graph grammars should skip this section.

Unfortunately the various notations and de5nitions in the literature vary confusingly and
the notation carries too much information. For surveys on graph grammars, the reader
may want to consult Habel’s monograph [81] and the more updated and excellently
written [47] by Engelfriet. More recently, Kim clari5ed the relative expressive power
of various graph grammars, cf. [94,95].
The most studied graph grammars are the HR-grammars (Hyperedge replacement

grammars). The production rules are all of the form

Ai → Hi:

These grammars are context free (conIuent). It is well known that

188 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

Proposition 4.11.

(i) Every HR-language of graphs 13 has bounded tree width.
(ii) The graph language TWk is an HR-language.

Lautemann has explicitly described how to compute an upper bound to the tree width
of an HR-language from the production rules, cf. [99].

Proposition 4.12. Let K be an HR-language of graphs generated by an HR-grammar
D. Let k be the maximal number of vertices in the right-hand side hypergraph of the
production rules of D. Then the tree width of the graphs in K is bounded by k.

Other graph grammars are the NCE-grammars (Neighborhood Controlled Embed-
ding), which are all VR-grammars (Vertex replacement grammars) or, as they are
called in [47], NR-grammars (Node replacement grammars). Here the production rules
also specify an embedding embi and are of the form

Ai → (Hi; embi):

There are three main cases we want to mention.

(i) A-NCE-grammars (Apex NCE),
where the embedding connects only terminals;

(ii) B-NCE-grammars (Bounded NCE)
where there are no edges between non-terminals; and

(iii) C-NCE-grammars (ConIuent NCE),
the most general context-free VR-grammar.

(iv) We have A-NCE ⊆B-NCE ⊆C-NCE.
(v) If the edges of the graphs are labeled and directed we speak of A-edNCE, B-edNCE

and C-edNCE grammars respectively. In model theoretic terms this extensions
amounts to an extension of the vocabulary by unary predicates.

From [29,48,49] we get

Proposition 4.13. Let K be a context free VR-language of graphs.

(i) K is A-NCE i: K is of bounded degree.
(ii) K is B-edNCE with bounded non-terminal degree i: K has bounded tree width

i: K is an HR-language.
(iii) K is C-edNCE i: K has bounded clique width.

More generally we have

Proposition 4.14. If K is a context free VR-language of graphs, then K is MSOL-
inductive.

13 Strictly speaking, an HR-grammar D produces a class of hypergraphs. An HR-language of graphs refers
to the case where the HR-grammar D generates a class of graphs.

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 189

Proof. [Sketch of proof:] One has to show that the production rules are MSOL-smooth
operations on graphs. This is often veri5able by replacing the production rules by
a composition of quanti5er free transductions, disjoint unions and possibly fusions.
However, many-sorted transductions are needed here, and the details are tedious.

NCE-grammars which have a polynomial time parsing are studied by FlasiLnski in
[65], in the case of NLC-grammars (Node label controlled grammars, a special case of
NCE-grammars), and by Kim in [95] for general NC-grammars.

Problem 3. Characterize graph grammars and MSOL-inductive classes which do have
polynomial time parsing.

In [72] Proposition 4.12 has been improved and extended to context sensitive gram-
mars, the NCE-grammars and edNCE-grammars. 14 The main result there is

Theorem 4.15. Let K be a graph language generated by an NCE-grammar. Then K
is of bounded clique width and the bound can be computed from properties of the
grammar.

4.5. Computing a look-up table and dynamic programming

Given a 5nite set of eSectively MSOL-smooth operations O, we want to exploit
the reduction sequences for all the operations in O for various computations. What we
obtain is a 5nite look-up table which allows us to check properties of graphs in MSOL-
inductive classes using the parse tree of the graph. This resembles a 5nite automaton,
and Courcelle in [27] calls classes of graphs where properties can be checked in this
way recognizable classes of graphs.
We shall stress here the model theoretic point of view and generalize previous results

for graphs of bounded tree width and clique width. We note that, like in Theorem 1.7,
both the automata theoretic and the model theoretic approach coexist. But we think
that the model theoretic approach is more Iexible and covers more cases.
We 5rst determine the number of formulas in FOL(�) and MSOL(�) of 5xed quanti-

5er rank. Let Mx and MU be 5xed 5nite sequences of 5rst order and second order variables
respectively. For q∈N, FOLq(�; Mx; MU) and MSOLq(�; Mx; MU) denote the formulas of FOL
and MSOL respectively with all free variables among Mx; MU and which are of quanti5er
rank at most q.

Proposition 4.16. FOLq(�; Mx; MU) and MSOLq(�; Mx; MU) are 8nite of size

|FOLq(�; Mx; MU)| = 7FOL(�; q; Mx; MU)

and

|MSOLq(�; Mx; MU)| = 7MSOL(�; q; Mx; MU)

respectively.

14 e for edge labels and d for directed edges.

190 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

The proof is straightforward, but gives very large numbers. A good estimate of
the numbers 7FOL(�; q; Mx; MU) and 7MSOL(�; q; Mx; MU) may be found in [96, Lemma 3.2].
The upper bound given there is at least an q times iterated exponential. The semantic
diSerence between FOL and MSOL is lost in this count.

Problem 4. Improve the estimates on how many formulas there are in FOLq(�; Mx; MU)
or MSOLq(�; Mx; MU) up to logical equivalence over all structures (equivalence over 5nite
structures).
Exact computation is hopeless, as logical equivalence is undecidable. One may opt

for a weaker form of equivalence, where formulas are, say, in prenex normal form, and
two formulas are equivalent if they have the same quanti5er pre5x and the boolean
parts are equivalent boolean function of atomic formulas.

In the sequel we restrict our discussion to MSOL and leave it to the reader to
formulate the corresponding analogues for FOL.
Given a formula of MSOLq(�; Mx; MU), and a 5xed 5nite set O of MSOL-smooth

operations, we de5ne inductively a set R(;O) as follows:

De'nition 4.17. Let q be the quanti5er rank of . R(;O) is the smallest set of
formulas in MSOLq(�; Mx; MU) such that

(i) ∈R(;O);
(ii) If ∈R(;O), Op∈O is an m-ary operation and

Red(;Op) = 〈 11 ; : : : 1n ; : : : ; m
1 ; : : : m

n 〉

is a reduction sequence for Op and then each j
i ∈R(;O).

R(;O) is called the reduction set of for O.

Observation 5. For every ∈MSOL of quanti8er rank k and every 8nite set of
MSOL-smooth operations O, R(;O) is 8nite and consists of formulas of quanti-
8er rank at most k. Furthermore, if the operations are e:ectively smooth, R(;O) is
computable as a function of and O.

We now de5ne a look-up table for R(;O) inductively as follows:

De'nition 4.18. For a formula ∈R(;O) and Op∈O we denote by BOp() the
boolean function and by Red(;Op) the corresponding reduction sequence. The look-
up table Look(;O) consists of all the quadruples

(;Op; BOp(); Red(;Op1))

with ∈R(;O) and Op∈O.

From Theorem 1.6 we see immediately:

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 191

Observation 6. For every ∈MSOL of quanti8er rank k and every 8nite set of
MSOL-smooth operations O, Look(;O) is 8nite. Furthermore, if the operations are
e:ectively MSOL-smooth, Look(;O) is computable as a function of and O.

4.6. Model checking for MSOL-inductive classes

Model checking is the problem to check whether

A |=

is true for a 5nite �-structure A and sentence in a fragment of Second Order Logic
SOL(�). The combined model checking problem takes both a structure and a formula as
input. Other variants consider the model checking with 5xed formula or 5xed structure.
The fragment may be MSOL or some temporal logic not discussed in this paper,

cf. [21]. We measure the problem in the size of A and (combined case) or for
speci5c .
Model checking has found many applications in hardware and software veri5cation

and enormous eSorts have been made successfully in turning this complex problem into
an industrially feasible tool. The reader may consult the excellent book by Clarke et al.
[21] and the literature cited therein. Here we only brieIy discuss the complexity theo-
retic aspect of the problem for MSOL. But we predict that the systematic exploration
of how to use Feferman–Vaught-type techniques in industrial model checking will add
yet another tool to increase its feasibility. A 5rst step was initiated in Ravve’s M.Sc.
Thesis [133] and in [112]. Theorem 1.14 can be restated in this context as follows:

Theorem 4.19 (Makowsky and Pnueli [111]). For every level
P
i in the polynomial

hierarchy PH there are vocabularies � and formulas ∈MSOL(�) such that checking
A |= (for 8xed) is complete for
P

i .

Theorem 4.20 (Vardi [169]). The combined problem is PSpace-complete even for
FOL.

We want to do model checking on MSOL-inductive classes K . We can represent the
relational structure A by its relation tables or by a parse term tA which serves as a
certi5cate for A∈K . In general, by Proposition 4.10, 5nding tA is NP-hard.

Theorem 4.21 (Courcelle and Makowsky [31]). Let K be an MSOL-inductive class of
�-structures given by a 8nite K0 set of �-structures and MSOL-smooth operations O,
and let ∈MSOL(�). Given a parse term tA for A∈K of size nt , the problem of
deciding, for 8xed ,

A |=

can be solved in linear time in nt .

Proof. Using Observation 6 we use the look-up table Look(;O). We compute the
truth values of the formulas in R(;O) on all the structures in K0. This uses a constant

192 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

amount of time and does not depend on A. Now we use the boolean functions of the
look-up table and tA. to compute the truth value of in A bottom up. This uses O(nt)
time.

Note that 5nding the parse term tA for A∈K may be PSpace-hard already for K a
graph language generated by an NC-grammar, cf. [94].

5. Decidable MSOL-theories

We have seen in the introduction, Theorems 1.9 and 1.10, that the MSOL theory of
words and the MSOL theory of trees are decidable. We have also seen in Section 1.5
Seese’s Theorem 1.11 which states that if an MSOL(�2)-theory of a class of graphs K
is decidable, then K is of bounded tree width. In this section we want to explore this
further.
To use the Feferman–Vaught Theorem for products and disjoint unions, we shall

need some more classical decidability results:

Theorem 5.1 (Classical).

(i) The FOL theory of in8nite atomic boolean algebras is decidable.
(ii) The MSOL theory of in8nite sets is decidable.
(iii) The FOL theory of atomic boolean algebras is decidable.
(iv) The MSOL theory of sets is decidable.

Proof. Our point here is to show how the general machinery allows to get (ii)–(iv)
from (i).

(i) is well known, cf. [119, Chapter 21, Theorem 21.34].
(ii) is obtained from (i) by translation.
(iii) is obtained from (i) by realizing that the theory of atomic boolean algebras has
a recursive set of decidable completions, which by a criterion due to Ershov, [50] and
[119, Chapter 15, Theorem 15.6], implies decidability.
(iv), 5nally, is obtained from (iii) again by translations.

For historic references the reader should consult [50]. Here our emphasis is on using
(i) and model theoretic arguments to derive (ii)–(iv).
Using the Feferman–Vaught Theorem 1.4 for in5nite products or disjoint unions, and

Theorem 5.1, one can show the following:

Theorem 5.2 (Classical). Let K be class of �-structures and denote by P(K) the clo-
sure of K under products, DU(K) the closure of K under disjoint unions.

(i) If K has a decidable FOL theory, so do P(K) and DU(K).
(ii) If K has a decidable MSOL theory, so does DU(K).

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 193

Proof. We use the same methods as in [119, Chapter 23], who presents proofs for the
corresponding results for products and FOL.

As forest are just disjoint unions of trees we get:

Corollary 5.3. The MSOL theory of forests F is decidable.

There is another way of showing that the MSOL theory of forests is decidable,
using Proposition 2.11 for transductions, i.e. the Feferman–Vaught Theorem for unary
operations. We de5ne a scalar MSOL-reduction (? from rooted trees RT to forest
F, by cutting of the root of a tree. The new universe is de5ned as all the nodes
diSerent from the root. For every rooted tree this gives a forest, and every forest
can be obtained in this way, Hence (? :RT→F is a weak reduction which is onto
(surjective). Now the MSOL theory of rooted trees is also decidable, cf. Theorem 1.10.
Hence, using Proposition 2.11, the MSOL theory of F is decidable.
We can use Theorem 1.5 to show the following result by Seese [147]:

Proposition 5.4 (Seese [147]). The following theories are decidable:

(i) The MSOL-theory of series–parallel graphs (SP-graphs).
(ii) For each k ∈N, the MSOL-theory graphs of tree width at most k.

Proof. One shows that in both cases the graphs can be obtained as a straightforward
MSOL-transductions of certain labeled trees and then applies Proposition 2.11 and
Theorem 1.10.

In [31] this was, based on ideas from [30], generalized to

Theorem 5.5 (Courcelle and Makowsky [31]). Let K be a class of structures which
is MSOL-inductive using disjoint unions, fusions and quanti8er free MSOL-transduc-
tions. Then ThMSOL(K) is decidable.

Proof. [Proof idea:] One shows that an MSOL-inductive class K is always an MSOL-
transduction of a class of labeled trees. But the proof of this fact is rather involved.
Then one applies again Proposition 2.11 and Theorem 1.10.

The same proof technique also gives

Theorem 5.6 (Courcelle and Makowsky [31]). Let K be a class of labeled graphs
which is MSOL-inductive using disjoint unions, fusions and quanti8er free MSOL-
transductions. Then K is of bounded clique width.

We can now reformulate the Engelfriet–Seese’s Conjecture 1 from the introduction
as an open problem for 5nite relational structures. Instead of graphs or hypergraphs we
look at relational structures. As clique width for relational structures has no standard
de5nition, we replace it in the conclusion by being contained in an MSOL-inductive
class.

194 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

Problem 5 (Generalized Seese conjecture). Let K be a class of 5nite �-structures which
has a decidable MSOL-theory. Is K contained in some class of �-structures K1 which
is MSOL-inductive? 15

As we noted before, cf. Question 3 in Section 4.1, it is not clear whether every
MSOL-smooth operation is de5nable using disjoint unions, quanti5er free transduction
and fusions.
So here is another challenge:

Problem 6. Does every MSOL-inductive class of structures K have a decidable MSOL-
theory?

6. A Feferman–Vaught theorem for graph polynomials

The results in this section are due to the author, continuing work initiated with his
co-authors, Courcelle, Mariño and Rotics.

6.1. Graph polynomials

A graph polynomial is mapping

p : Graphs → R[X];

where R is a commutative ring and X is a, possibly countably in5nite, set of inde-
terminates. Furthermore, p has to be invariant under graph isomorphisms. Very often
R=Z.
As p(G)∈R[X], p is not one polynomial, but gives a polynomial for each graph G

for which it is de5ned. Nevertheless, by abuse of notation, both p and p(G) are called
graph polynomials. We write sometimes p(G;X) or p(G; x1; : : : ; xm) if X = {x1; : : : xm}
when we want to indicate explicitly the indeterminates.
In Appendix A we give many examples of graph polynomials. Among the graph

polynomials with a 5xed 5nite set of indeterminates over Z we 5nd: The chromatic
polynomial, the matching polynomials, and the Tutte polynomial. The Farrell poly-
nomials and the coloured Tutte polynomial, discussed next, may have the number of
indeterminates dependent on the graph G. Finally we shall see in Appendix A how the
determinant, the permanent and the hamiltonian of a matrix over Z2 can be viewed as
graph polynomials. However, for matrices over other 5elds, none of these are, strictly
speaking, graph polynomials. This is so, because the entries of the matrix may be dif-
ferent from 0 or 1 and hence the matrix can only be viewed as referring to a weighted
graph.

15 In Section 7 the logic CMSOL is discussed, which contains modular counting quanti5ers, and for which
the Feferman–Vaught Theorem was proved by Courcelle. It is reasonable to ask the same question for
CMSOL instead for MSOL. This also concerns Problem 6 below.

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 195

6.2. Graph properties

A graph property is a class of graphs closed under graph isomorphisms. To stress
an analogy between graph properties and graph polynomials, we can look at a graph
property as a mapping

p : Graphs → 2;

where 2 is the two-element boolean algebra. Furthermore, p has to be invariant under
graph isomorphisms. Let �graphs be a vocabulary of graphs. Clearly, a sentence in
FOL(�graphs) or MSOL(�graphs) de5nes a graph property p with

p(A) = 1 iS A |= :

Let us now reformulate the Feferman–Vaught Theorem (Theorem 1.6), in a way sug-
gestive for generalization to graph polynomials.

Theorem 6.1 (Feferman–Vaught for graph properties). For every graph property p
with ∈FOLq(�) one can compute in polynomial time a sequence of graph prop-
erties

p1; p2; : : : ; pm

associated with the formulas

 1; 2; : : : m ∈ FOLq(�)m

and a boolean polynomial B ∈ [Y1; Y2; : : : ; Ym] such that
p(A � B) = 1 i: B(p1(A); : : : ; pm(A); p1(B); : : : ; pm(B)) = 1:

6.3. Splitting properties for H -sums

Let G= 〈V (G); E(G)〉 be a graph with an edge e=(v1; v2). We denote by G− e the
graph 〈V (G); E(G)− {e}〉, and by G=e the graph Fusev1 ; v2 (G − e).
In Section 4.1 we introduced the H -sum G1 �H G2 of two graphs G1 and G2 with

respect to a shared induced subgraph H . This includes the disjoint union, G1 �G2,
if H is empty. If H is a single vertex v, a single edge e, or consists of two not
connected vertices v1; v2 we write G1 �v G2, G1 �e G2, G1 �v1 ; v2 G2 respectively. Many
graph polynomials p satisfy the following property:

p(G1 � G2) = p(G1) · p(G2) (+)

or even

p(G1 �v G2) = p(G1) · p(G2): (++)

The case of p(G1 �e G2) was analyzed only for the Tutte polynomial by Oxley and
Welsh in [127]. Abstractly formulated they found numbers 7; 70;0; 70;1; 71;0; 71;1 ∈Z and

196 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

a polynomial ge ∈Z[x1; : : : x4] all independent of G1 and G2, such that

7 · p(G1 �e G2) = ge(p(G1 − e); p(G2 − e); p(G1=e); p(G2=e))

= 70;0 · p(G1 − e) · p(G2 − e)

+ 71;0 · p(G1=e) · p(G2 − e)

+ 70;1 · p(G1 − e) · p(G2=e)

+ 71;1 · p(G1=e) · p(G2=e): (+++)

A similar formula holds also for p(G1 �v1 ; v2 G2). These formulas were extended for the
Tutte polynomial to arbitrary H -sums in [123,124,2]. To us the formulas (+), (++)
and (+++) suggest some similarity with Theorem 1.6. We put p(G − e)= p1(G) and
p(G=e)= p2(G) and write (+++) as

p(G1 �e G2) = ĝe(p1(G1); p1(G2); p2(G1); p2(G2))

=
ge(p1(G1); p1(G2); p2(G1); p2(G2))

7
: (*)

Now ĝe ∈Q[x1; : : : ; x4] rather than in Z[x1; : : : ; x4].
This leads us to the following de5nition:

De'nition 6.2 (Splitting set). Let p be a graph polynomial with values in a polynomial
ring R, and H be a 5xed graph. A 5nite set of graph polynomials

P = {p1; p2; : : : pm}

and a polynomial

gpi
H (x1; : : : ; xm; y1; : : : ; ym) ∈ R[y1; : : : ym; ym+1; : : : ; y2m]

is called a splitting set for p and H -sums if for every G, with G=G1 ⊕H G2 we have

pi(G) = gpi
H (p1(G1); : : : pm(G1); p1(G2); : : : pm(G2)):

The de5nition can also be stated for arbitrary �-structures and operations other than
H -sums of graphs. Our goal is to state (and prove) a general theorem which says that
for a large class of graph polynomials and for any MSOL-smooth operation on graphs,
a 5nite splitting set exists.

6.4. MSOL-de8nable polynomials

Here we follow [34] and [108,109]. We look at polynomials with MSOL-de5nable
ranges of summation over MSOL-de5nable monomials. More precisely:

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 197

De'nition 6.3. A polynomial is MSOL-de8nable if it is of the form∑
(U)

∏
(i;j)∈U⊂E

t(i; j);

where (U) is an MSOL-formula, and t(i; j) is a weight function 16 with 5nite range
on edges which is obtained by an MSOL-de5nable case distinction. The quanti8er rank
of p is the maximum of the quanti5er ranks of and the quanti5er rank of the case
distinction.

The de5nition in [34,108,109] is a bit more general, and allows also order on the
edges to be used in the case distinction, provided that the resulting polynomial does
not depend on the order of the edges.

Examples 7.

(i) The matching polynomial is given by

g(G; G) =
∑
r

p(G; r)Gr =
∑
(E′)

∏
e∈E′

G

where p(G; r) denotes the number of partial r-matchings of G. It is a MSOL-
de5nable polynomial where (U) says that U is a partial matching and t(i; j)= G.

(ii) Denote by H(G; n) the number of proper n-colourings of a graph G. By a classical
theorem, cf. [12, Chapter V, p. 151S], this de5nes a polynomial H(G; X)∈N[X],
called the chromatic polynomial. In its given form, it is not MSOL-de5ned, but
it can be obtained as a substitution instance of the Tutte polynomial, which will
turn out to be MSOL-de5nable (using an ordering on the edges), cf. [107].

We shall give a small catalogue of examples in Appendix A.
Now we can state the Feferman–Vaught theorem for graph polynomials.

Theorem 6.4. Let Op(G1; : : : ; Gk) be a k-ary MSOL-smooth operation on graphs. Let
R be a ring. For every MSOL-de8nable graph polynomial p over R there is a 8nite
set of MSOL-de8nable graph polynomials P over R containing p and a polynomial
gOp ∈R[MX] which is a splitting set for p and Op.

Proof. [Proof idea:] We compute reduction sequences for the de5ning formulas of p
and use them to de5ne the polynomials of P and the polynomial gOp. The full proof
is given in [34].

Using Proposition 4.16 we get

Proposition 6.5. There are only a 8nite number of MSOL-de8nable graph polynomials
of given quanti8er rank k.

16 t(i; j) may depend also on indeterminates.

198 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

Using Theorem 6.1 we can now compute look-up tables for MSOL-de5nable graph
polynomials exactly as in Section 4.5.

6.5. Computing MSOL-de8nable graph polynomials

Computing graph polynomials is in general]P-hard, cf. [173]. However, similarly
to Theorem 4.21 we have

Theorem 6.6. Let K be an MSOL-inductive class of �-structures given by a 8nite K0
set of �-structures and MSOL-smooth operations O, and let p be an MSOL-de8nable
graph polynomial over the polynomial ring R. Given a parse term tA for A, computing
p(A) can be solved in polynomial time (in the size nt of tA) if we assume unit cost
for the ring operations of R.

Corollary 6.7. Computing MSOL-de8nable graph polynomials on graphs of tree width
at most k can be done in polynomial time.

7. Beyond MSOL

The Feferman–Vaught Theorem was also intensively studied in abstract model theory,
initiated by two landmark papers by Feferman, [57,58]. For a survey of abstract model
theory, cf. [6], especially the chapter [106], where, among other issues, the relationship
of various forms of abstract Feferman–Vaught type theorems to interpolation properties
were studied.

7.1. Cardinality quanti8ers and in8nitary logics

Let I¿G be in5nite cardinals. Wojciechowska [174] considered the cardinality quan-
ti5ers QI where QIx(x) is interpreted as “there are at least I many x such that (x)”.
She showed that one can add these quanti5ers to FOL and still have a Feferman–Vaught
Theorem for products. But her proof easily shows that one can add these quanti5ers
to MSOL and still have a Feferman–Vaught Theorem for disjoint unions.
Malitz [116] showed various Feferman–Vaught Theorems for in5nitary logics L∞;∞

and LI; G where I is strongly inaccessible.
So, if we look at in5nite structures, there is a proper class of logics with a Feferman–

Vaught Theorem. But for our algorithmic perspective we restrict the logics to 5nite
structures. For this case, Courcelle looked at the quanti5ers Ck;m where k; m∈N and
Ck;mx(x) is interpreted as “there are, modulo m, exactly k elements x satisfying (x)”.
In [27], he showed that Theorem 1.6 holds for CMSOL, which is MSOL augmented
by all the quanti5ers Ck;m for k; m∈N. CMSOLq(�) denotes the set of CMSOL(�)-
sentences of quanti5er rank q. Free variables can be treated as uninterpreted constants
in �.

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 199

Theorem 7.1 (Courcelle [26]). For every q∈N and every sentences ∈CMSOLq(�)
one can compute in polynomial time in the size of a sequence of sentences

〈 A
1 ; : : : ; A

m ; B
1 ; : : : ; B

m 〉 ∈ CMSOLq(�)2m

and a boolean function B : {0; 1}2m → {0; 1} such that

A � B |=

if and only if

B(bA
1 ; : : : ; b

A
m; b

B
1 ; : : : ; b

B
m) = 1;

where bA
j =1 i: A |= A

j and bB
j =1 i: B |= B

j .

A detailed proof is found in [27, Lemma 4.5, p. 46S]. Theorem 7.1 allows us to
extend all algorithmic results from Sections 5 and 6 to the logic CMSOL. However,
one has to be careful to verify that the operations are CMSOL-smooth, rather than
just MSOL-smooth. Especially for the case of the FuseP-operation this has not been
veri5ed, whereas for Fusea=b it has been veri5ed in [27].
If, instead of considering all the quanti5ers Ck;m for k; m∈N, we choose a com-

putable set A⊆N and form the logic CMSOL(A) with all the quanti5ers Ck;m for
k6m, m∈A, the validity of sentences in a 5nite structure is still computable.
But Theorem 1.12 has to be modi5ed, such as to accommodate the complexity of
the set A.

7.2. Logics with a Feferman–Vaught theorem

We 5nally discuss how one could obtain a characterization of logics which satisfy
Theorem 1.6. For a precise de5nition of logics the reader should consult the books
[42] or [6]. But here very little is needed. A logic has the 5nite occurrence property,
if every �-sentence depends only on a 5nite subset of �. If L is a logic and K a
class of �-structures, we denote by L[K] the smallest logic L′ in which K and all the
L-de5nable classes of structures are de5nable. The following de5nition is from [106].

De'nition 7.2. A logic L has the uniform reduction for pairs, which we denote by
URP(L), if for every sentence ∈L(�) there exists a pair of 5nite sequences of
sentences 11 ; : : : ;

1
m and 21 ; : : : ;

2
m all in L(�) and a boolean function B∈ 22m such

that for every two �-structures A1;A2 A1 �A2 |= iS B(a11; : : : ; l
1
m; a

2
1; : : : ; l

2
m)= 1, where

ai
k is the truth value of Ai |= i

k .

Clearly, a logic L has uniform reduction for pairs iS it satis5es Theorem 1.6 without
the computability condition that the i

k can be computed in polynomial time from .
The following de5nition was studied 5rst by Gessel in [71], cf. also the forthcom-

ing [63].

200 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

De'nition 7.3. Let K be a class of �-structures.

(i) Two �-structures A1;A2 are DUK -equivalent if for every �-structure B, A1 �B ∈K
iS A2 �B ∈K .

(ii) The DU -index of K is the number of DUK -equivalence classes.
(iii) The DU -index of is the number of DUK -equivalence classes for K =Mod().

The following is useful for analyzing the DU -index.

Lemma 7.4. Let K be a class of �-structures of DU -index m with equivalence classes
K1; : : : ; Km.

(i) There is I ⊂ [m] with K =
⋃

i∈I Ki.
(ii) DUK -equivalence is a re8nement of DUKi -equivalence and the DU -index of each

Ki is at most m.

Proof. Use the associativity of the disjoint union and the transitivity of the DUK -
equivalence and DUKi -equivalence.

Example 7.5. Let �= {P} consist of one unary predicate.
(i) Let KI consist of all �-structures 〈A; PA〉 where |PA|¿I. The DU -index of KI is

2. Hence there is a proper class of classes of �-structures of DU -index 2.
(ii) Let Kk;m for k; m∈N consist of all �-structures 〈A; PA〉 where |PA|= k (modm).

The DU -index of KI is 5nite. None of these are MSOL-de5nable.

Using Theorem 1.6 it is not diVcult to show

Proposition 7.6. For every ∈MSOL(�) the DU -index of is 8nite.

However, Specker [152] pointed out, in a discussion of [10,151] and [63], that there
are many more classes with 5nite DU -index.

De'nition 7.7. Let Cn denote the cycle of size n, i.e. a regular connected graph of
degree 2 with n-vertices. Let A⊆N be any set of natural numbers and Cycle(A)= {Cn:
n∈A}. Similarly we de5ne Clique(A) as Cycle(A)= {Kn: n∈A}, where Kn denotes
the complete graph on n vertices.

Proposition 7.8 (Specker). Cycle(A) and Clique(A) have DU index at most 2.

Proof. The disjoint union of two non-empty graphs is never a cycle (clique).

Corollary 7.9 (Specker). There is a continuum of classes (of graphs, of MR-structures)
of 8nite DU index which are not CMSOL-de8nable.

Proof. Clearly there is continuum of classes of the type Cycle(A), and hence a
continuum of classes that are not de5nable in CMSOL (or even in second order
logic, SOL).

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 201

Problem 7. Can one characterize some natural recursively presented extension of MSOL
as the largest logic (over 5nite structures, over arbitrary structures) for which some
form of Feferman–Vaught theorem holds?

To solve the problem above one would have to give a necessary and suVcient
condition (*) on a class K of structures such that

If L is a logic, which has the uniform reduction property, and we add to L a
Lindstr8om quanti5er de5ned by a class of structures K which has the property
(*), then the logic L[K] has the uniform reduction property, too.

It would seem that being of 5nite DU index is such a property. However, this is
wrong. To see this we look at the class Is(A) of graphs 〈A; RA〉 such that 〈A; A −
RA〉 ∈Clique(A), i.e. the graph consists of isolated points only. In every logic where
Clique(A) is de5nable, also Is(A) is de5nable. But it is easy to see that for contin-
uum many A, Is(A) has in5nite DU -index, and therefore does not satisfy the uniform
reduction property. We just need that for in5nitely many k; m; n∈A, say k + n∈A but
m+ n =∈ A.
We nevertheless dare to formulate the following

Conjecture 2. There are continuum many recursively presented (even 8nitely pre-
sented) extension of CMSOL which satisfy a Feferman–Vaught Theorem for disjoint
unions and which have a recursively presented (even 8nitely presented) syntax. 17

8. Conclusions and further challenges

8.1. Algorithmic aspects

We have presented algorithmic applications of the Feferman–Vaught Theorem for
Monadic Second Order Logic in its restricted form for 5nite generalized sums and
products of 5nite structures. These applications include well known results on graphs
of bounded tree width or bounded clique width with uni5ed proofs, as well as more
recent and new results of the author and his coauthors Courcelle, Fischer, Glikson,
Mariño, Ravve and Rotics.
Many of the applications are theoretical in nature, as the algorithms are theoretically

feasible but involve large constants. But Ravve and the author have outlined appli-
cations in database design and system veri5cation which have the potential of real
applications, cf. [133,134] and [112–114]. Ravve used to work with INTEL’s veri5ca-
tion group in Haifa, Israel, and her work has con5rmed that H -sums for rather small
H are the operations used to build big computer chips from small components. In the
industrial parlance, H -sums are called unions with identi8cation by names.

17 Clique(A) could be represented by a single generalized quanti5er symbol, where the meaning depends on
A. Hence we have continuum many interpretations of this quanti5er symbol. Actually, the in5nite cardinality
quanti5er Qx(x) has a proper class of interpretations: for each cardinal I, we can consider the interpretation
“there are at least I many x such that (x)”.

202 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

Other applications involve matrix polynomials with prescribed zero-patterns, espe-
cially the permanent and hamiltonian of matrices, but even in the computation of
determinants improvements are possible, cf. [34].
Finally, we have also applied these techniques to knot theory, especially the com-

putation of knot polynomials such as the KauSman bracket, Jones Polynomial and
HOMFLY-PT polynomials, cf. [110,107].

8.2. Generalized sums and products

Shelah [150], has further generalized H -sums and used them in formulating very
weak 0–1 laws for First Order Logic over ordered structures. Recently, Gurevich and
Rabinovich have formulated various versions of the Feferman–Vaught Theorem for
First Order Logic, stressing applications in temporal logic, model checking and systems
veri5cation, [78,79,118,131,132]. Other applications include composition theorems for
recursively de5ned (in5nite) structures [130].

8.3. Other logics

We have seen in Section 7 that one can go beyond MSOL and still have the
Feferman–Vaught Theorem and its resulting tools available. It would be interesting
to see exactly how far this can be pushed. Looking from another angle, it would be
equally interesting to see whether there is a Lindstr8om type characterization of MSOL.
In particular, in spite of Conjecture 2, it may still be possible that CMSOL is distin-
guished by some form of the Feferman–Vaught Theorem.

Problem 8. Can one characterize CMSOL as the largest logic (over 5nite structures,
over arbitrary structures) for which some form of Feferman–Vaught theorem holds?

8.4. Other structures

Many graph polynomials, in particular the Tutte polynomial and its variations, were
originally de5ned for matroids, cf. [16,125,126]. The natural question arises, whether
Feferman–Vaught-type theorems should not be formulated also for matroids, rather than
relational structures.
Matroids are de5ned as sets with families of subsets, and representable matroids

are special cases which allow matrix presentations. However, a complexity theory for
matroid algorithms has yet to be developed. There are very few papers dealing with
computational models for matroids. Robinson and Welsh, in [138], were the 5rst to
study algorithmic problems of matroids in a proper setting. Hausmann and Korte in [83]
examine various extensionally equivalent de5nitions of matroids, and it is shown that
they are not computationally equivalent. One of the problems arises from the fact that
abstract matroids are not representable as relational structures. This has also its eSect
on the diVculty of de5ning a suitable logic for matroids. Very recently, HlinênLy in [84]
has approached this problem. He de5nes a version of Monadic Second Order Logic
for matroids. But there is still ample room for further investigation and alternatives.

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 203

8.5. Checking vs. listing

The model checking problem asks to compute the truth value of A |=, for given
A and . If (Mx) has free variables Mx, we can ask the same for a 5xed assignment for
the variables Mx. But instead, we can also ask the more general questions, such as

Construction: to 5nd a value Ma such that A |=(Ma);
Listing: to 5nd all values Ma such that A |=(Ma);
Counting: to compute the number of values Ma such that A |=(Ma).

In [4], an analogue of the Feferman–Vaught Theorem for counting is stated. More
recently, Flum et al. [66,75] have studied the construction and listing versions of model
checking. But the exact analogy to the techniques coming from the Feferman–Vaught
Theorem have not yet been worked out. This should not be too diVcult, but it will
need some work.

Acknowledgements

I am grateful to the organizers of the Tarski Centenary Conference at the International
Banach Center in Warsaw, Z. Adamowicz, D. Niwiñski and J. Woleñski, for having
invited me to present the lecture underlying this paper. A very preliminary version of
this work was also presented at the Banach Center at the occasion of the memorial
conference in honour of H. Rasiowa in 1997. But my 5rst visit at the Banach Center
was during the very 5rst year of its functioning, during the Logic Year 1972–1973,
organized by A. Mostowski and A. Grzegorczyk. During that period I also prepared my
5rst paper, [105], on the Feferman–Vaught Theorem, or rather on Feferman’s version
of it for abstract model theory [57]. My career as a logician was de5nitely shaped
considerably by my Polish experiences.
I would also like to thank my co-authors of the papers preceding but leading to this

presentation, B. Courcelle, J. Mariño, E. Ravve and U. Rotics, for their stimulating
collaboration. I would like to thank J. Przytycki and B. Wajnryb for many discus-
sion about knot polynomials, which did also shape my view on splitting theorems,
and A. Glikson, A. Rabinovich and A. Slissenko, for valuable discussions on com-
position theorems and graph grammars. Discussions with A. Litman and V. Harnik
helped clarifying my understanding of the fuse operation, discussions with E. Fischer
contributed to Section 7. B. Courcelle, A. Glikson, W. Marek and A. Slissenko kindly
read the (almost) 5nal version of this paper and helped with many valuable suggestions
and questions in the 5nal preparation of this paper for printing. Last but not least, I
must have exhausted the patience of D. Niwiñski, with all the delays he granted me
for 5nishing this paper.
As this paper covers research done over 30 years, it is appropriate to thank here

my teachers of mathematics and mathematical logic, who all have, in one way or an-
other, deeply inIuenced my own approach to this work. In temporal order from my
undergraduate studies in Z8urich, to my graduate studies in Z8urich and Warsaw, and
my postdoctoral experiences at Stanford and in Warsaw, Vancouver and Jerusalem,

204 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

these are E. Specker, P. Bernays, H. L8auchli, E. Engeler, V. Strassen, B. Eckmann,
K. Chandrasekharan, A. Mostowski, W. Marek, G. Kreisel, S. Feferman, J. Stavi,
A. Lachlan and S. Shelah.
This work was partially supported by the Fund for Promotion of Research of the

Technion-Israeli Institute of Technology.

Appendix A. Examples of graph polynomials

This appendix is meant to illustrate the abundance of graph polynomials. The list is
not complete, and does not contain answers to the question whether all these polyno-
mials are MSOL-de5nable or the like. It is a guided tour to some of the literature, and
should convince the reader that there are more graph polynomials between heaven and
earth than his imagination would expect.

A.1. The chromatic polynomial and the Tutte polynomial

The chromatic polynomial de5ned in Section 6.1 is the graph polynomial with the
oldest history. It is a univariate polynomial and is extensively discussed in [12]. It is
a special case of the two-variable Tutte polynomial, which was considered an exotic
object of mathematical study when it was introduced in 1954 by Tutte [165]. There are
several equivalent de5nitions of the Tutte polynomial, one based on the rank-generating
polynomial and one using spanning trees. The rank-generating polynomial of a graph
G= 〈V; E〉 is de5ned by

S(G; x; y) =
∑
F⊆E

xr(E)−r(F)yn(F) =
∑
F⊆E

xk(F)−k(E)yn(F);

where F ranges over induced subgraphs of G viewed as subsets of E, k(F) is the
number of connected components of F , r(F)= |V |−k(F), and n(F)= |F |−|V |+k(F).
The Tutte polynomial the is de5ned as

T (G; x; y) = S(G; x − 1; y − 1) =
∑
F⊆E

(x − 1)r(E)−r(F)(y − 1)n(F):

We do not get into more details here, and refer the reader to the excellent chapter in
the book by Bollobas [12].
The reason why the Tutte polynomial rose to center stage in mathematics is to be

found in its connection to knot theory and the knot invariants, such as the Jones poly-
nomial, 5rst noted by Jaeger [89]. For a good survey see also [12]. There are also
connections to the Penrose polynomial, cf. [1]. Recently, Bollobas and Riordan [13]
have introduced a generalization of the Tutte polynomial to edge coloured graphs, the
coloured Tutte polynomial. The coloured Tutte polynomial was shown to be complete
for Valiant’s complexity class VNP in [102]. VNP is a non-uniform algebraic ana-
logue of NP which was introduced in [168]. A good reference is B8urgisser’s book
[19]. Completeness here means that every other polynomial in this class is a substi-
tution instance of the coloured Tutte polynomial. For more on the Tutte polynomial,

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 205

its complexity, and its various interpretations, the reader may consult also Welsh’s de-
lightful [173]. There it is also shown that the Tutte polynomial, and therefore also the
coloured Tutte polynomial, are hard to compute. However, for graphs of bounded tree
width they can be computed and evaluated in polynomial time, cf. [2,107,123]. The
latest graph polynomial to appear in the literature is the interlace polynomial introduced
in [5].

A.2. The matching polynomial

We follow [73,103]. The generating matching polynomials g(G; G), the defect match-
ing polynomials m(G; G) and the rook polynomials >(B; G) of a graph G, respectively
bipartite graph B ⊂ Kn;n are de5ned as

g(G; G) =
∑
r

p(G; r)Gr =
∑

E′⊆E(G)

∏
e∈E′

G (gen-m)

m(G; G) =
∑
r

(−1)rp(G; r)Gn−2r = G−n
∑

E′⊆E(G)

∏
e∈E′

(−1) · G−2 (def-m)

>(B; G) =
∑
r

(−1)rp(B; r)Gn−r = G−n
∑

E′⊆E(B)

∏
e∈E′

(−1) · G−1 (rook)

where p(G; r) denotes the number of (partial) r-matchings of G, and E′ ranges over
the partial matchings of G, respectively B.
Both matching polynomials and the rook polynomials are #P hard to compute. This

follows from the fact that p(G; n=2) is already #P hard to compute for bipartite graphs,
cf. [166,73]. Noble in his thesis, [123] has shown that on graphs of tree width k the
matching polynomials can be computed in polynomial time.

A.3. Clique and independent set polynomials

We follow [86]. Let ak(G), Mak(G) and bk(G) be the number of k-cliques, maximal
k-cliques and k-independent sets of, with a0(G)= b0(G)= 1. The clique polynomials
C(G; x) the maximal clique polynomials MC(G; x) and independent set polynomials
I(G; x) are de5ned as

C(G; x) =
∑
k

ak(G)xk =
∑

C⊂v(G)

∏
v∈C

x (clique)

MC(G; x) =
∑
k

Mak(G)xk =
∑

C⊂v(G)

∏
v∈C

x (m-clique)

I(G; x) =
∑
k

bk(G)xk =
∑

I⊂v(G)

∏
v∈I

x (indep)

where the sum in the right most term ranges over the cliques, maximal cliques and
independent sets, respectively. C(G; x) and I(G; x) were studied in various contexts by
Fisher and Solow [64] and Gutman and Harary [80] and Hoede and Li [86].

206 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

It is easy to see that C(G; x) and I(G; x) are NP hard to compute and that MC(G; x)
is #P hard. In [86] is noted that for k-trees G one has

C(G; x) = x(1 + x)k(1 + (n − k)x):

Here n is the size of vertex set V (G). Hence, for k-trees G the computation of the
polynomial is trivially in P. In [108,109] this was extended to graphs of tree width at
most k.

A.4. Farrell polynomials

We follow and extend the framework given in [52]. Let F be a family of connected
graphs, 18 closed under isomorphisms. For each D∈F (up to isomorphism) let XD

be an indeterminate and let RF=Z[XD: D ∈ F] be the polynomial ring associated
with F.
Given a graph G= 〈V; E〉, a vertex disjoint F-cover C of G is a spanning subgraph

of G where each connected component D of C is in F. An edge disjoint F-cover
C of G is a spanning subgraph 〈V; E′〉 of G where E′=

⊔
i Ei is partitioned as the

disjoint union of edge sets Ei (also called components) such that the underlying graph
of Ei is in F. Here diSerent components may overlap at vertices. A F-cover is either
vertex disjoint or edge disjoint and we specify which if needed.
With each F-cover C of G we associate a monomial KG(C)=

∏
D⊆compC XD, where

the product ranges over all connected components D of C. The F-polynomial of G is
now de5ned as∑

C is an F-cover of G

KG(C) (Farrell)

A Farrel polynomial is a substitution instance of an F-polynomial for suitable F and
weight function w mapping indeterminates into some value of RF. Often the value set
of the weight function w is assumed to be 5nite.
Let F consist of the degenerate cliques K1 (a single vertex) and K2 (a single edge).

A vertex disjoint F-cover C is an m-matching with m=m(C) the number of K2’s
in C. To see that the matching polynomial m(G; G) is a Farrell polynomial we put
XK1 = 1 and XK2 =−G−2.
Other examples, with vertex disjoint covers, include:

(i) Rook polynomials of bipartite graphs, cf. [135]; Here F is like for the matching
polynomial and contains two graphs.

(ii) The circuit polynomials, where F consists of all proper and improper circuits,
hence F is in5nite.

(iii) The characteristic polynomial of a graph can be obtained as a special case of the
circuit polynomial with proper choice of the weight function, cf. [52,143].

18 One could also consider non-connected graphs, but no reasonable examples occur in the literature.

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 207

(iv) The subgraph polynomial, where F consists of all connected 5nite graphs. The
Tutte polynomials (also called dichromatic polynomials), are of this form for a
properly chosen weight function, 19 cf. [12,52].

(v) Using edge disjoint covers, we can also include the Martin polynomials for undi-
rected graphs, cf. [49,170].

A.5. Determinant, permanent and hamiltonian

The determinant of an (n× n) matrix M =(mi; j) over a 5eld is de5ned as

det(M) =
∑
L∈Sn

(−1)sign(L)
∏
i

mi;L(i);

where Sn is the set of permutations over n elements.
The permanent is de5ned as

per(M) =
∑
L∈Sn

∏
i

mi;L(i)

and the hamiltonian is de5ned as

per(M) =
∑
L∈Cn

∏
i

mi;L(i)

where Cn is the set of cyclic permutations over n elements.
For matrices over Z2 the entries mi; j can be interpreted as indicating the presence

or absence of an edge between vertices i; j of a graph G. In this case the determinant
is related via KirchhoS’s theorem, cf. [12], to the number of spanning trees of G, the
permanent to the number of perfect matchings, and the hamiltonian to the number of
hamiltonian cycles.
None of these are, strictly speaking graph polynomials. If the graph is given by

the values of mi; j ∈Z2, they compute numbers. If the values include, say −1 these
functions are not graph invariants. But if we replace mi; j by mi; j · x with mi; j ∈Z2 we
do get graph polynomials.
The permanent and the hamiltonian do have an interesting complexity theory. In

the Turing model of computation they are #P complete, cf. [90,166] and in Valiant’s
model of algebraic circuits they are VNP-complete, cf. [19,167,168].

References

[1] M. Aigner, The Penrose polynomial of graphs and matroids, in: Surveys in Combinatorics, 2001
(Sussex), London Mathematical Society Lecture Note Series, Vol. 288, Cambridge University Press,
Cambridge, 2001, pp. 11–46.

[2] A. Andrzejak, An algorithm for the Tutte polynomials of graphs of bounded treewidth, Discrete Math.
190 (1998) 39–54.

19 This does not apply to the coloured Tutte polynomials.

208 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

[3] S. Arnborg, D.G. Corneil, A. Proskurowski, Complexity of 5nding embedding in a k-tree, SIAM. J.
Algebraic Discrete Methods 8 (1987) 277–284.

[4] S. Arnborg, J. Lagergren, D. Seese, Easy problems for tree decomposable graphs, J. Algorithms 12
(1991) 308–340.

[5] R. Arratia, B. Bollobas, G.B. Sorkin, The interlace polynomial: a new graph polynomial, IBM Res.
Rep. RC 21813 (98165) (1990) 31.

[6] J. Barwise, S. Feferman (Eds.), Model-theoretic logics. Perspectives in Mathematical Logic, Springer,
Berlin, 1985.

[7] J.L. Bell, A.B. Slomson, Models and Ultraproducts: An Introduction, North-Holland, Amsterdam, 1969.
[8] E.W. Beth, On Padoa’s method in the theory of de5nitions, Indag. Math. 15 (1953) 330–339.
[9] E.W. Beth, Observations mLetamathLematiques sur les structures simplement ordonneLes, in: Applications
scienti5ques de la logique mathLematique, Collection de Logique MathLematique, Serie A, Vol. 5, Paris
and Louvain, 1954, pp. 29–35.

[10] C. Blatter, E. Specker, Recurrence relations for the number of labeled structures on a 5nite set,
in: E. B8orger, G. Hasenjaeger, D. R8odding (Eds.), In Logic and Machines: Decision Problems and
Complexity, Lecture Notes in Computer Science, Vol. 171, Springer, Berlin, 1984, pp. 43–61.

[11] H. Bodlaender, Treewidth: algorithmic techniques and results, in: I. Privara, P. Ruzicka (Eds.), Proc.
22nd Internat. Symp. on the Mathematical Foundation of Computer Science, MFCS’97, Lecture Notes
in Computer Science, Vol. 1295, Springer, Berlin, 1997, pp. 29–36.

[12] B. BollobLas, Modern Graph Theory, Springer, Berlin, 1999.
[13] B. BollobLas, O. Riordan, A Tutte polynomial for coloured graphs, Combin. Probab. Comput. 8 (1999)

45–94.
[14] R.B. Borie, R.G. Parker, C.A. Tovey, Automatic generation of linear-time algorithms from predicate

calculus descriptions of problems on recursively constructed graph families, Algorithmica 7 (1992)
555–581.

[15] A. Brandst8adt, V. Le, J. Spinrad, Graph classes: a survey, SIAM Monographs on Discrete Mathematics
and Applications, SIAM, Philadelphia, PA, 1999.

[16] T. Brylawski, J. Oxley, The Tutte polynomial and its applications, in: N. White (Ed.), Matroid
Applications, Cambridge University Press, Cambridge, 1992, pp. 123–225.

[17] J.R. B8uchi, Weak second-order arithmetic and 5nite automata, Z. Math. Logik Grundl. Math. 6 (1960)
66–92.

[18] J.R. B8uchi, Mathematische Theorie des Verhaltens endlicher Automaten, ZAMM 42 (1962) 9–16.
[19] P. B8urgisser, Completeness and Reduction in Algebraic Complexity, in: Algorithms and Computation

in Mathematics, Vol. 7, Springer, Berlin, 2000.
[20] C.C. Chang, H.J. Keisler, Model theory, Studies in Logic, Vol. 73, 3rd Edition, North-Holland,

Amsterdam, 1990.
[21] E.M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, Cambridge, MA, 1999.
[22] K.J. Compton, C.W. Henson, A uniform method for proving lower bounds on the computational

complexity of logical theories, Ann. Pure Appl. Logic 48 (1990) 1–79.
[23] K.J. Compton, C.W. Henson, A uniform method for proving lower bounds and the computational

complexity of logical theories, in: S. Abramsky, D. Gabbay, T. Maibaum (Eds.), Handbook of Logic
in Computer Science, Vol. 5, Oxford University Press, Oxford, 2000.

[24] D.G. Corneil, M. Habib, J.-M. Lanlignel, B. Reed, U. Rotics, Polynomial time recognition of
clique-width 6 3 graphs, in: Proc. LATIN’2000, Lecture Notes in Computer Science, Vol. 1776,
Springer, Berlin, 2000, pp. 126–134.

[25] D. Corneil, U. Rotics, On the relationship between clique-width and tree-width, in: Lecture Notes in
Computer Science, Vol. 2204, 2001, pp. 78–90.

[26] B. Courcelle, Graph rewriting: an algebraic and logic approach, in: J. van Leeuwen (Ed.), Handbook
of Theoretical Computer Science, Vol. 2, Elsevier, Amsterdam, 1990, pp. 142–193 (Chapter 5).

[27] B. Courcelle, The monadic second-order logic of graphs I: recognizable sets of 5nite graphs, Inform.
Comput. 85 (1990) 12–75.

[28] B. Courcelle, Monadic second order graph transductions: a survey, Theoret. Comput. Sci. 126 (1994)
53–75.

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 209

[29] B. Courcelle, J. Engelfriet, G. Rozenberg, Handle-rewriting hypergraph grammars, J. Comput. System
Sci. 46 (1993) 218–270.

[30] B. Courcelle, J. Engelfriet, A logical characterization of the sets of hypergraphs de5ned by hyperedge
replacement grammars, Math. Systems Theory 28 (1995) 515–552.

[31] B. Courcelle, J.A. Makowsky, Fusion on relational structures and the veri5cation of monadic second
order properties, Math. Struct. Comput. Sci. 12 (2) (2002) 203–235.

[32] B. Courcelle, J.A. Makowsky, U. Rotics, Linear time solvable optimization problems on graph of
bounded clique width, extended abstract, in: J. Hromkovic, O. Sykora (Eds.), Graph Theoretic Concepts
in Computer Science, 24th Internat. Workshop, WG’98, Lecture Notes in Computer Science, Vol. 1517,
Springer, Berlin, 1998, pp. 1–16.

[33] B. Courcelle, J.A. Makowsky, U. Rotics, Linear time solvable optimization problems on graphs of
bounded clique-width, Theory Comput. Systems 33 (2) (2000) 125–150.

[34] B. Courcelle, J.A. Makowsky, U. Rotics, On the 5xed parameter complexity of graph enumeration
problems de5nable in monadic second order logic, Discrete Appl. Math. 108 (1–2) (2001) 23–52.

[35] B. Courcelle, M. Mosbah, Monadic second-order evaluations on tree-decomposable graphs, Theoret.
Comput. Sci. 109 (1993) 49–82.

[36] B. Courcelle, S. Olariu, Upper bounds to the clique-width of graphs, Discrete Appl. Math. 101 (2000)
77–114.

[37] R. Diestel, Graph theory, Graduate Texts in Mathematics, Springer, Berlin, 1996.
[38] J.E. Doner, Decidability of the weak second-order theory of two successors, Notices Amer. Math. Soc.

12 (1965) 819 (Abstract).
[39] J.E. Doner, A. Mostowski, A. Tarski, The elementary theory of well-ordering—a metamathematical

study, in: A.J. Macintyre, L. Pacholski, J.B. Paris (Eds.), Logic Colloq. ’77, Studies in Logic, 1978,
pp. 1–54.

[40] R.G. Downey, M.F. Fellows, Parametrized Complexity, Springer, Berlin, 1999.
[41] H.D. Ebbinghaus, J. Flum, Finite model theory, Perspectives in Mathematical logic, Springer, Berlin,

1995.
[42] H.D. Ebbinghaus, J. Flum, W. Thomas, Mathematical logic, Undergraduate Texts in Mathematics,

Springer, Berlin, 1980.
[43] A. Ehrenfeucht, Application of games to some problems of mathematical logic, Bull. Acad. Polon.

Sci. Cl. III 5 (1957) 35–37.
[44] A. Ehrenfeucht, An application of games to the completeness problem for formalized theories, Fund.

Math. 49 (1961) 129–141.
[45] C.C. Elgot, Decision problems of 5nite automata design and related arithmetics, Trans. Amer. Math.

Soc. 98 (1961) 21–52.
[46] J. Ellis-Monaghan, New results for the Martin polynomial, J. Combin. Theory Ser. B 74 (1998)

326–352.
[47] J. Engelfriet, Context-free graph grammars, in: Handbook of Formal Languages, Vol. 3: Beyond Words,

Springer, Berlin, 1997, pp. 125–213.
[48] J. Engelfriet, L.M. Heyker, G. Leih, Context-free graph languages of bounded degree are generated

by Apex graph grammars, Acta Inform. 31 (1994) 341–378.
[49] J. Engelfriet, G. Rozenberg, A comparison of boundary graph grammars and context-free hypergraph

grammars, Inform. and Comput. 84 (1990) 163–206.
[50] Yu. Ershov, L. Lavrov, I.A. TaaKmanov, M.A. TaaKtslin, Elementary theories, Russian Math. Surveys 20

(4) (1965) 35–105.
[51] R. Fagin, Generalized 5rst-order spectra and polynomial time recognizable sets, Amer. Math. Soc.

Proc. 7 (1974) 27–41.
[52] E.J. Farrell, On a general class of graph polynomials, J. Combin. Theory Ser. B 26 (1979) 111–122.
[53] S. Feferman, Some recent work of Ehrenfeucht and Fra8KssLe, Proc. Summer Institute of Symbolic Logic,

Ithaca, 1957, pp. 201–209.
[54] S. Feferman, Persistent and invariant formulas for outer extensions, Compositio Math. 20 (1968)

29–52.
[55] S. Feferman, In5nitary properties, local functors, and systems of ordinal functions, in: W. Hodges (Ed.),

Conference in Mathematical Logic-London 1970, Lecture Notes in Mathematics, Vol. 255, Springer,
Berlin, 1972, pp. 63–97.

210 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

[56] S. Feferman, Applications of many-sorted interpolation theorems, in: L. Henkin, et al. (Eds.), Proc.
Tarski Symp., Proc. Symp. in Pure Mathematics, Vol. 25, American Mathematical Society, Providence,
RI, 1974, pp. 205–223.

[57] S. Feferman, Two notes on abstract model theory, I: properties invariant on the range of de5nable
relations between structures, Fund. Math. 82 (1974) 153–165.

[58] S. Feferman, Two notes on abstract model theory, II: languages for which the set of valid sentences
is s.i.i.d, Fund. Math. 89 (1975) 153–165.

[59] S. Feferman, Alfred Tarski and a watershed meeting in logic: Cornell 1957, preprint, to appear as part
of a chapter for a biography of Alfred Tarski, under preparation with Anita Burdman Feferman, 2003.

[60] S. Feferman, G. Kreisel, Persistent and invariant formulas relative to theories of higher order, Bull.
Amer. Math. Soc. 72 (1966) 480–485.

[61] S. Feferman, R. Vaught, The 5rst order properties of algebraic systems, Fund. Math. 47 (1959)
57–103.

[62] J. Ferrante, C.W. RackoS, The Computational Complexity of Logical Theories, in: Lecture Notes in
Mathematics, Vol. 718, Springer, Berlin, 1979.

[63] E. Fischer, J.A. Makowsky, The Specker–Blatter theorem revisited, in preparation.
[64] D.C. Fisher, A.E. Solow, Dependence polynomials, Discrete Math. 82 (1990) 251–258.
[65] M. FlasiLnski, Power properties of NLC graph grammars with polynomial membership problem, Theoret.

Comput. Sci. 201 (1998) 189–231.
[66] J. Flum, M. Frick, M. Grohe, Query evaluation via tree-decompositions, in: J. van den Bussche,

V. Vianu (Eds.), Database Theory—ICDT 2001, Lecture Notes in Computer Science, Vol. 1973,
Springer, Berlin, 2001, pp. 22–38.

[67] R. Fra8issLe, Sur quelques classi5cations des relations, basLees sur les isomorphisms restraints, I: LEtudes
gLenLerale, Publ. Sci. Univ. Alger Ser. A 2 (1955) 15–60.

[68] R. Fra8issLe, Sur quelques classi5cations des relations, basLees sur les isomorphisms restraints, II:
applications aux relations d’ordre, et constructions d’exemples montrant que les classi5cations sont
distinctes, Publ. Sci. Univ. Alger Ser. A 2 (1955) 273–295.

[69] T.E. Frayne, A.C. Morel, D.S. Scott, Reduced direct products, Fund. Math. 51 (1962) 195–228.
[70] M.G. Garey, D.S. Johnson, Computers and Intractability, Mathematical Series, Freeman, New York,

1979.
[71] I. Gessel, Combinatorial proofs of congruences, in: D.M. Jackson, S.A. Vanstone (Eds.), Enumeration

and Design, Academic Press, New York, 1984, pp. 157–197.
[72] A. Glikson, J.A. Makowsky, NCE graph grammars and clique-width, Accepted for presentation at

WG’03, 2003.
[73] C.D. Godsil, Algebraic Combinatorics, Chapman & Hall, London, 1993.
[74] M.C. Golumbic, U. Rotics, On the clique-width of some perfect graph classes, Internat. J. Foundations

of Comput. Sci. 11 (2000) 423–443.
[75] M. Grohe, Generalized model-checking for 5rst-order logic, in: A. Ferreira, H. Reichel (Eds.), 18th

STACS, Lecture Notes in Computer Science, Vol. 2010, Springer, Berlin, 2001, pp. 12–26.
[76] Y. Gurevich, Modest theory of short chains, I, J. Symbolic Logic 44 (1979) 481–490.
[77] Y. Gurevich, Monadic second order theories, in: Model-Theoretic Logics, Perspectives in Mathematical

Logic, Springer, Berlin, 1985 (Chapter 14).
[78] Y. Gurevich, A. Rabinovich, De5nability and unde5nability with real order at the background, J.

Symbolic Logic 65 (2) (2000) 946–958.
[79] Y. Gurevich, A. Rabinovich, De5nability in rationals with order in the background, J. Logic Comput.

12 (1) (2002) 1–11.
[80] I. Gutman, F. Harary, Generalizations of the matching polynomial, Utilitas Math. 24 (1983) 97–106.
[81] A. Habel, Hyperedge Replacement: Grammars and Languages, in: Lecture Notes in Computer Science,

Vol. 643, Springer, Berlin, 1992.
[82] R. Halin, S-functions for graphs, J. Geom. 8 (1976) 171–186.
[83] D. Hausmann, B. Korte, Algorithmic versus axiomatic de5nitions of matroids, Math. Programming

Stud. 14 (1981) 98–111.
[84] P. HlinênLy, Branch-width, parse trees, and monadic second order logic for matroids, 2002, preprint.

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 211

[85] W. Hodges, Model Theory, in: Encyclopedia of Mathematics and its Applications, Vol. 42, Cambridge
University Press, Cambridge, 1993.

[86] C. Hoede, X. Li, Clique polynomials and independent set polynomials of graphs, Discrete Math. 125
(1994) 219–228.

[87] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages and Computation,
Addison-Wesley Series in Computer Science, Addison-Wesley, Reading, MA, 1980.

[88] N. Immerman, Descriptive complexity, Graduate Texts in Computer Science, Springer, Berlin, 1999.
[89] F. Jaeger, Tutte polynomials and link polynomials, Proc. Amer. Math. Soc. 103 (1988) 647–654.
[90] D.S. Johnson, A catalog of complexity classes, in: J. van Leeuwen (Ed.), Handbook of Theoretical

Computer Science, Vol. 1, Elsevier, Amsterdam, 1990 (Chapter 2).
[91] B. JLonsson, Universal relational systems, Math. Scand. 4 (1956) 193–208.
[92] B. JLonsson, On isomorphism types of groups and other algebraic systems, Math. Scand. 5 (1957)

224–229.
[93] B. JLonsson, Homogeneous universal relational systems, Math. Scand. 8 (1960) 137–142.
[94] C. Kim, A hierarchy of ence families of graph languages, Theoret. Comput. Sci. 186 (1997) 157–169.
[95] C. Kim, EVcient recognition algorithms for boundary and linear ence graph languages, Acta Inform.

37 (2001) 619–623.
[96] R.E. Ladner, Application of model theoretic games to discrete linear orders and 5nite automata, Inform.

Control 33 (1977) 281–303.
[97] H. L8auchli, A decision procedure for the weak second order theory of linear order, in: Logic

Colloquium ’66, North-Holland, Amsterdam, 1968, pp. 189–197.
[98] H. L8auchli, J. Leonhard, On the elementary theory of order, Fund. Math. 59 (1966) 109–116.
[99] C. Lautemann, Decomposition trees: structured graph representation and eVcient algorithms, in: Proc.

CAAP’88, Lecture Notes in Computer Science, Vol. 299, Springer, Berlin, 1988, pp. 28–39.
[100] J.Y.-T. Leung, O. Vornberger, J.D. WitthoS, On some variants of the bandwidth minimization problem,

SIAM J. Comput. 13 (1984) 650–667.
[101] P. Lindstr8om, On extensions of elementary logic, Theoria 35 (1969) 1–11.
[102] M. Lotz, J.A. Makowsky, On the algebraic complexity of some families of coloured Tutte polynomials,

Adv. Appl. Math. 32 (1–2) (2004) 327–349.
[103] L. Lovasz, M. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.
[104] S. Mahajan, J.G. Peters, Regularity and locality in k-terminal graphs, Dam 54 (1994) 229–250.
[105] J.A. Makowsky, Some observations on uniform reduction for properties invariant on the range of

de5nable relations, Fund. Math. 99 (1978) 199–203.
[106] J.A. Makowsky, Compactness, embeddings and de5nability, in: Model-Theoretic Logics, Perspectives

in Mathematical Logic, Springer, Berlin, 1985 (Chapter 18).
[107] J.A. Makowsky, Colored Tutte polynomials and KauSman brackets on graphs of bounded tree width,

in: Proc. 12th Symp. on Discrete Algorithms, SIAM, Philadelphia, PA, 2001, pp. 487–495.
[108] J.A. Makowsky, J.P. Mariño, Farrell polynomials on graphs of bounded tree width, Presented at

FPSAC’01, 2000.
[109] J.A. Makowsky, J.P. Mariño, Farrell polynomials on graphs of bounded treewidth, Adv. Appl. Math.

30 (2003) 160–176.
[110] J.A. Makowsky, J.P. Mariño, The parametrized complexity of knot polynomials, J. Comput. System

Sci. 67 (4) (2003) 742–756.
[111] J.A. Makowsky, Y. Pnueli, Arity vs. alternation in second order logic, Ann. Pure Appl. Logic 78 (2)

(1996) 189–202.
[112] J.A. Makowsky, E.V. Ravve, Incremental model checking for decomposable structures, in:

Mathematical Foundations of Computer Science (MFCS’95), Lecture Notes in Computer Science,
Vol. 969, Springer, Berlin, 1995, pp. 540–551.

[113] J.A. Makowsky, E.V. Ravve, Translation schemes and the fundamental problem of database design,
in: Conceptual Modeling—ER’96, Lecture Notes in Computer Science, Vol. 1157, Springer, Berlin,
1996, pp. 5–26.

[114] J.A. Makowsky, E.V. Ravve, Dependency preserving re5nement and the fundamental problem of
database design, Data Knowledge Eng. 24 (3) (1997) 277–312.

212 J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213

[115] J.A. Makowsky, U. Rotics, On the cliquewidth of graphs with few P4’s, Internat. J. Foundations
Comput. Sci. 10 (1999) 329–348.

[116] J. Malitz, In5nitary analogs of theorems from 5rst order model theory, J. Symbolic Logic 36 (1971)
216–228.

[117] J. Mighton, Knot Theory on Bipartite Graphs, Ph.D. Thesis, Department of Mathematics, University
of Toronto, Toronto, Canada, 1999.

[118] F. Moller, A. Rabinovich, On the expressive power of CTL∗, in: LICS’99, IEEE, London, 1999,
pp. 360–369.

[119] J.D. Monk, Mathematical logic, Graduate Texts in Mathematics, Springer, Berlin, 1976.
[120] A. Mostowski, On direct products of theories, J. Symbolic Logic 17 (1952) 1–31.
[121] A. Mostowski, A. Tarski, Arithmetical classes and types of well-ordered systems. preliminary report,

Bull. Amer. Math. Soc. 55 (1949) 65, Abstract.
[122] J. Mycielski, P. PudlLak, A.S. Stern, A Lattice of Chapters of Mathematics, in: Memoirs of the American

Mathematical Society, Vol. 426, American Mathematical Society, Providence, RI, 1990.
[123] S.D. Noble, Complexity of graph polynomials, Ph.D. Thesis, New College, Oxford University, England,

1997.
[124] S.D. Noble, Evaluating the Tutte polynomial for graphs of bounded tree-width, Combin. Probab.

Comput. 7 (1998) 307–321.
[125] J. Oxley, On the interplay between graphs and matroids, in: Surveys in Combinatorics, 2001, Sussex,

London Mathematical Society Lecture Note Series, Vol. 288, Cambridge University Press, Cambridge,
2001, pp. 199–239.

[126] J. Oxley, What is a matroid? Preprint available at http://www.math.lsu.edu/preprint/, 2002.
[127] J.G. Oxley, D.J.A. Welsh, Tutte polynomials computable in polynomial time, Discrete Math. 109

(1992) 185–192.
[128] M.O. Rabin, A simple method for undecidability proofs and some applications, in: Y. Bar Hillel (Ed.),

Logic, Methodology and Philosophy of Science II, Studies in Logic, North-Holland, Amsterdam, 1965,
pp. 58–68.

[129] M. Rabin, Decidability of second order theories and automata on in5nite trees, Trans. Amer. Math.
Soc. 141 (1969) 1–35.

[130] A. Rabinovich, Composition theorems for recursively de5ned structures, Technical Report, Tel Aviv
University, 1999.

[131] A. Rabinovich, Composition theorems for generalized sums, preprint 2001. Available on
http://http://www.math.tau.ac.il/∼rabinoa/.

[132] A. Rabinovich, Selection and uniformization in generalized products, to appear in the Journal
of the Interest Group in Pure and Applied Logic, 2004. Available on http://http://www.math.tau.
ac.il/∼rabinoa/.

[133] E.V. Ravve, Model Checking for various notions of products, Ph.D. Thesis, Department of Computer
Science, Technion-Israel Institute of Technology, 1995.

[134] E.V. Ravve, Database decomposition with translation schemes, Ph.D. Thesis, Department of Computer
Science, Technion-Israel Institute of Technology, 1998.

[135] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.
[136] N. Robertson, P.D. Seymour, Graph minors. I. Excluding a forest, J. Combin. Theory Ser. B 35 (1983)

39–61.
[137] N. Robertson, P.D. Seymour, Graph minors. V. Excluding a planar graph, J. Combin. Theory Ser. B

41 (1986) 92–114.
[138] G.C. Robinson, D.J.A. Welsh, The computational complexity of matroid properties, Math. Proc.

Cambridge Phil. Soc. 87 (1980) 29–45.
[139] J.G. Rosenstein, Linear Orderings, Academic Press, New York, 1982.
[140] G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by Graph Transformations, Vol.

1: Foundations, World Scienti5c, Singapore, 1997.
[141] G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by Graph Transformations, Vol.

2: Applications, Languages, Tools, World Scienti5c, Singapore, 1999.
[142] G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by Graph Transformations, Vol.

3: Concurrency, Parallelisms, and Distribution, World Scienti5c, Singapore, 1999.

http://www.math.lsu.edu/preprint/
http://http://www.math.tau.ac.il/~rabinoa/
http://http://www.math.tau.ac.il/~rabinoa/
http://http://www.math.tau.ac.il/~rabinoa/

J.A. Makowsky /Annals of Pure and Applied Logic 126 (2004) 159–213 213

[143] H. Sachs, Beziehungen zwischen den in einem Graphen enthaltenen Kreisen und seinem
charakteristischen Polynom, Publ. Math. Debrecen. 11 (1964) 119–134.

[144] J.B. Saxe, Dynamic programming algorithms for recognizing small-bandwidth graphs in polynomial
time, SIAM J. Algebraic Discrete Methods 1 (1980) 363–369.

[145] D. Seese, Zur Entscheidbarkeit der monadische Theorie 2, Stufe baumartiger Graphen, W.Z. der
Humbolt-Universit8at zu Berlin Math.-Nat. R. XXIV (6) (1975) 768–772.

[146] D. Seese, Some graph theoretical operations and decidability, Math. Nachr. 87 (1979) 15–21.
[147] D. Seese, The structure of the models of decidable monadic theories of graphs, Ann. Pure Appl. Logic

53 (1991) 169–195.
[148] D. Seese, The structure of the models of decidable monadic theories of graphs, Ann. Pure Appl. Logic

53 (1991) 169–195.
[149] S. Shelah, The monadic theory of order, Ann. Math. 102 (1975) 379–419.
[150] S. Shelah, On the very weak 0-1 law for random graphs with orders, J. Logic Comput. 6 (1996)

137–159.
[151] E. Specker, Application of logic and combinatorics to enumeration problems, in: E. B8orger (Ed.),

Trends in Theoretical Computer Science, Computer Science Press, Rockville, MD, 1988, pp. 141–169,
Reprinted in: Ernst Specker, Selecta, Birkh8auser, Basel, 1990, pp. 324–350.

[152] E. Specker, Personal communication, Zurich, August 2002.
[153] L. Stockmeyer, The polynomial time hierarchy, Theoret. Comput. Sci. 3 (1977) 1–22.
[154] H. Straubing, Finite automata, formal logic, and circuit complexity, Progress in Theoretical Computer

Science, Birkh8auser, Basel, 1994.
[155] W. Szmielew, Elementary properties of abelian groups, Fund. Math. 41 (1955) 203–271.
[156] A. Tarski, Arithmetical classes and types of algebraically closed and real-closed 5elds, Bull. Amer.

Math. Soc. 55 (1949) 63.
[157] A. Tarski, Arithmetical classes and types of boolean algebras, Bull. Amer. Math. Soc. 55 (1949) 64.
[158] A. Tarski, Arithmetical classes and types of mathematical systems, Bull. Amer. Math. Soc. 55 (1949)

63.
[159] A. Tarski, Metamathematical aspects of arithmetical classes and types, Bull. Amer. Math. Soc. 55

(1949) 63–64.
[160] A. Tarski, Contribution to the theory of models, I, Indag. Math. 16 (1954) 572–581.
[161] A. Tarski, A. Mostowski, R.M. Robinson, Undecidable theories, Studies in Logic and the Foundations

of Mathematics, North-Holland, Amsterdam, 1953.
[162] W. Thomas, Automata on in5nite objects, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer

Science, Vol. 2, Elsevier, Amsterdam, 1990 (Chapter 4).
[163] B. Trakhtenbrot, Finite automata and the logic of monadic predicates, Dokl. Akad. Nauk SSSR 140

(1961) 326–329.
[164] Gy. TurZan, On the complexity of graph grammars, Acta Cybernet. 6 (3) (1983) 271–280.
[165] W.T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954) 80–91.
[166] L.G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci. 8 (1979) 189–201.
[167] L.G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput. 8 (1979)

410–421.
[168] L. Valiant, Reducibility by algebraic projections, in: Logic and Arithmetic: An International Symposium

held in honour of Ernst Specker, L’enseignement MathLematique, Vol. 30, UniversitLe de GenZeve, 1982,
pp. 365–380.

[169] M. Vardi, The complexity of relational query languages, in: Proc. 14th ACM Symp. on Theory of
Computing (STOC’82), ACM, San Francisco, 1982, pp. 137–146.

[170] M. Las Vergnas, Le polynôme de Martin d’un graphe eulerien, Ann. Discrete Math. 17 (1983)
397–411.

[171] K. Wagner, 8Uber eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937) 570–590.
[172] E. Wanke, k-NLC graphs and polynomial algorithms, Discrete Appl. Math. 54 (1994) 251–266.
[173] D.J.A. Welsh, Complexity: Knots, Colourings and Counting, London Mathematical Society Lecture

Notes Series, Vol. 186, Cambridge University Press, Cambridge, 1993.
[174] A. Wojciechowska, Generalized products for q7-languages, Bull. Acad. Polonaise Sci. SLerie Sci. Math.

17 (1969) 337–339.

	Algorithmic uses of the Feferman--Vaught Theorem
	Introduction
	Notation and prerequisites
	Some history
	Proofs
	Algorithmic applications I: finite automata
	Algorithmic applications II: decidable MSOL-theories
	Algorithmic applications III: checking MSOL-properties
	Algorithmic applications IV: graph polynomials
	Outline of the paper

	Translation schemes and transductions
	Powers and disjoint unions of the same structure
	Translation schemes
	Transductions
	Translations
	Properties of translation schemes
	Feferman--Vaught Theorem for translation schemes and generalized sums and products
	Preservation of decidability under translation schemes

	The fusion operation
	Fusion of a unary predicate
	General vocabularies
	Fusions of constants
	Sum-like operations and fuse

	MSOL-classes of structures
	MSOL-smooth operations on structures
	MSOL-inductive classes
	Parse trees for MSOL-inductive classes
	MSOL-inductive classes and graph grammars
	Computing a look-up table and dynamic programming
	Model checking for MSOL-inductive classes

	Decidable MSOL-theories
	A Feferman--Vaught theorem for graph polynomials
	Graph polynomials
	Graph properties
	Splitting properties for H-sums
	MSOL-definable polynomials
	Computing MSOL-definable graph polynomials

	Beyond MSOL
	Cardinality quantifiers and infinitary logics
	Logics with a Feferman--Vaught theorem

	Conclusions and further challenges
	Algorithmic aspects
	Generalized sums and products
	Other logics
	Other structures
	Checking vs. listing

	Acknowledgements
	Appendix A. Examples of graph polynomials
	The chromatic polynomial and the Tutte polynomial
	The matching polynomial
	Clique and independent set polynomials
	Farrell polynomials
	Determinant, permanent and hamiltonian

	References

