
Decremental Optimization of Dominating Sets Under the
Reconfiguration Framework ∗

Alexandre Blanché1, Haruka Mizuta2, Paul Ouvrard1, and Akira Suzuki2

1Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France †

2Graduate School of Information Sciences, Tohoku University, Aoba 6-6-05,
Aramaki-aza, Aoba-ku, Sendai, Miyagi, 980-8579, Japan ‡

Abstract

Given a dominating set, how much smaller a dominating set can we find through elementary
operations? Here, we proceed by iterative vertex addition and removal while maintaining the property
that the set forms a dominating set of bounded size. This can be seen as the optimization variant of
the dominating set reconfiguration problem, where two dominating sets are given and the question
is merely whether they can be reached from one another through elementary operations. We show
that this problem is PSPACE-complete, even if the input graph is a bipartite graph, a split graph, or
has bounded pathwidth. On the positive side, we give linear-time algorithms for cographs, trees and
interval graphs. We also study the parameterized complexity of this problem. More precisely, we show
that the problem is W[2]-hard when parameterized by the upper bound on the size of an intermediary
dominating set. On the other hand, we give fixed-parameter algorithms with respect to the minimum
size of a vertex cover, or d + s where d is the degeneracy and s is the upper bound of the output
solution.

1 Introduction

Recently, Combinatorial reconfiguration [11] has been extensively studied in the field of theoretical com-
puter science. (See, e.g., surveys [10, 18].) A reconfiguration problem is generally defined as follows:
we are given two feasible solutions of a combinatorial search problem, and asked to determine whether
we can transform one into the other via feasible solutions so that all intermediate solutions are obtained
from the previous one by applying the specified reconfiguration rule. This framework is applied to sev-
eral well-studied combinatorial search problems; for example, INDEPENDENT SET [3, 9, 13, 14], VERTEX
COVER [16, 17], DOMINATING SET [8, 15, 17, 19], and so on.

The DOMINATING SET RECONFIGURATION problem is one of the well-studied reconfiguration prob-
lems. For a graph G = (V,E), a vertex subset D ⊆ V is called a dominating set of G if D contains at least
one vertex in the closed neighborhood of each vertex in V . Figure 1 illustrates four dominating sets of
the same graph. Suppose that we are given two dominating sets D0 and Dt of a graph whose cardi-
nalities are at most a given upper bound k. Then the DOMINATING SET RECONFIGURATION problem
asks to determine whether we can transform D0 into Dt via dominating sets of cardinalities at most k
such that all intermediate ones are obtained from the previous one by adding or removing exactly one
vertex. Note that this reconfiguration rule, i.e. adding or removing exactly one vertex while keeping the

∗Partially supported by JSPS and MAEDI under the Japan-France Integrated Action Program (SAKURA). The first and third
author is partially supported by ANR project GrR(ANR-18-CE40-0032). The second author is partially supported by JSPS KAK-
ENHI Grant Number JP19J10042, Japan. The third author is partially supported by ANR project GraphEn (ANR-15-CE40-
0009). The fourth author is partially supported by JST CREST Grant Number JPMJCR1402, and JSPS KAKENHI Grant Numbers
JP17K12636, JP18H04091 and JP20K11666, Japan.
†{alexandre.blanche, paul.ouvrard}@u-bordeaux.fr
‡haruka.mizuta.s4@dc.tohoku.ac.jp, a.suzuki@ecei.tohoku.ac.jp

1

↔

D0 = D

↔

D1

↔

D2 D3 = Dt

Figure 1: Reconfiguration sequence between D0 and D3 via dominating sets D1, D2 with upper bound
k = 4, where vertices contained in a dominating set are depicted by black circles, and added or removed
vertices are surrounded by dotted circles.

cardinality constraint, is called the token addition and removal (TAR) rule. Figure 1 illustrates an example
of transformation between two dominating sets D0 and D3 for an upper bound k = 4.

Combinatorial reconfiguration models “dynamic” transformations of systems, where we wish to
transform the current configuration of a system into a more desirable one by a step-by-step transforma-
tion. In the current framework of combinatorial reconfiguration, we need to have in advance a target (a
more desirable) configuration. However, it is sometimes hard to decide a target configuration, because
there may exist exponentially many desirable configurations. Based on this situation, Ito et al. intro-
duced the new framework of reconfiguration problems, called optimization variant [12]. In this variant,
we are given a single solution as a current configuration, and asked for a more “desirable” solution
reachable from the given one. This variant was introduced very recently, hence it has only been applied
to INDEPENDENT SET RECONFIGURATION to the best of our knowledge. Therefore and since DOMINAT-
ING SET RECONFIGURATION is one of the well-studied reconfiguration problems as we already said, we
focus on this problem and study it under this framework.

1.1 Our problem

In this paper, we study the optimization variant of DOMINATING SET RECONFIGURATION, denoted by
OPT-DSR. To avoid confusion, we call the original DOMINATING SET RECONFIGURATION the reachabil-
ity variant, and we denote it by REACH-DSR. Suppose that we are given a graph G, two integers k, s,
and a dominating setD ofGwhose cardinality is at most k; we call k an upper bound and s a solution size.
Then OPT-DSR asks for a dominating setDt satisfying the following two conditions: (a) the cardinality
of Dt is at most s, and (b) Dt can be transformed from D under the TAR rule with upper bound k. For
example, if we are given a dominating set D0 in Figure 1 and two integers k = 4 and s = 2, then one of
the solutions is D3, because D3 can be transformed from D0 and |D3| ≤ 2 holds.

1.2 Related results

Although OPT-DSR is being introduced in this paper, some results for REACH-DSR relate to OPT-
DSR in the sense that the techniques to show the computational hardness or construct an algorithm
will be used in our proof for OPT-DSR. We thus list such results for REACH-DSR in the following.

There are several results for the polynomial-time solvability of REACH-DSR. Haddadan et al. [8]
showed that REACH-DSR under TAR rule is PSPACE-complete for split graphs, for bipartite graphs,
and for planar graphs, while linear-time solvable for interval graphs, for cographs, and for forests.
REACH-DSR is also studied well from the viewpoint of fixed-parameter (in)tractability. Mouawad et
al. [17] showed that REACH-DSR under TAR is W[2]-hard when parameterized by an upper bound k.
As a positive result, Lokshtanov et al. [15] gave a fixed-parameter algorithm with respect to k + d for
graphs that exclude Kd,d as a subgraph.

Ito et al. studied optimization variant of INDEPENDENT SET RECONFIGURATION (OPT-ISR) [12].
More precisely, they proved that this problem is PSPACE-hard on bounded pathwidth, NP-hard on
planar graphs, while linear-time solvable on chordal graphs. They also gave an XP-algorithm with
respect to the solution size, and a fixed-parameter algorithm with respect to both solution size and
degeneracy.

2

PSPACE-c.

P(linear time)

NP-hard

Perfect Bounded degeneracy

Chordal Bounded treewidth

Split
[Thm 4]

Bipartite
[Thm 4]

Bounded pathwidth
[Thm 4]

Planar
[Obs 3]

Cograph
[Cor 9]

Interval
[Cor 9]

Tree
[Cor 9]

Threshold Caterpillar

Figure 2: Our results for polynomial-time solvability with respect to graph classes, where A→ B means
that the class A contains the class B.

1.3 Our results

In this paper, we study OPT-DSR from the viewpoint of the polynomial-time (in)tractability and fixed-
parameter (in)tractability.

We first study the polynomial-time solvability of OPT-DSR with respect to graph classes (See Fig-
ure 2). Specifically, we show that the problem is PSPACE-complete even for split graphs, for bipartite
graphs, and for bounded pathwidth graphs, and NP-hard for planar graphs with bounded maximum
degree. On the other hand, the problem is linear-time solvable for cographs, trees and interval graphs.
The inclusions of these graph classes are represented in Figure 2.

We then study the fixed-parameter (in)tractability of OPT-DSR. We first focus on the following four
graph parameters: the degeneracy d, the maximum degree ∆, the pathwidth pw, and the vertex cover
number τ (that is the size of a minimum vertex cover). Figure 3(a) illustrates the relationship between
these parameters, where A → B means that the parameter A is bounded by some function of B. This
relation implies that if we have a result stating that OPT-DSR is fixed-parameter tractable for A then
the tractability for B follows, while if we have a negative (i.e. intractability) result for B then it extends
to A. From results for polynomial-time solvability, we show the PSPACE-completeness for fixed pw and
NP-hardness for fixed ∆, and hence the problem is fixed-parameter intractable for each parameter pw,
∆ and d under P 6= PSPACE or P 6= NP. As a positive result, we give an FPT algorithm for τ .We then
consider two input parameters: the solution size s and the upper bound k. (See Figure 3(c).) We show
that OPT-DSR is W[2]-hard when parameterized by k. We note that we can assume without loss of
generality that s < k holds, as explained in Section 2. Therefore, it immediately implies W[2]-hardness
for s. Most single parameters (except for τ) cause a negative (intractability) result. We thus finally
consider combinations of one graph parameter and one input parameter. We give an FPT algorithm
with respect to s+ d. (See Figure 3(b).) In the end, we can conclude from the discussion above that for
any combination of a graph parameter p ∈ {d,∆, pw, τ} and an input parameter q ∈ {s, k}, OPT-DSR
is fixed-parameter tractable when parameterized by p+ q.

2 Preliminaries

For a graph G, we denote by V (G) and E(G) the vertex set of G and edge set of G, respectively. For a
vertex v ∈ V (G), we let NG(v) = {w | vw ∈ E(G)} and NG[v] = NG(v) ∪ {v}; we call a vertex in NG(v)
a neighbor of v in G. For a vertex subset S ⊆ V (G), we let NG[S] =

⋃
v∈S NG[v]. If there is no confusion,

we sometimes omit G from the notation.

3

degeneracy d
(PSPACE-c. for fixed d)

maximum degree ∆
NP-h. for fixed ∆

[Obs 3]

pathwidth pw
PSPACE-c. for fixed pw

[Thm 4]

vertex cover number τ
FPT for τ
[Thm 16]

(a) graph parameters.

d+ s
FPT for d+ s

[Thm 11]

any
other combinations

(b) combinations.

solution size s
(W[2]-h. for s)

upper bound k
W[2]-h. for k

[Thm 10]

(c) input parameters.

intractable

tractable

Figure 3: Our results for fixed-parameter tractability, where A → B means that the parameter A is
bounded on some function of B.

2.1 Optimization variant of Dominating Set Reconfiguration

For a graphG = (V,E), a vertex subsetD ⊆ V is a dominating set ofG ifN [D] = V (G). For a dominating
set D, we say that u ∈ D dominates v ∈ V if v ∈ N [u] holds. We say that a vertex v ∈ D has a private
neighbor in D if there exists a vertex u ∈ N [v] such that N [u] ∩ D = {v}. In other words, the vertex u
is dominated only by v in D. Note that the private neighbor of a vertex can be itself. A dominating set
is (inclusion-wise) minimal if and only if each of its vertices has a private neighbor, and minimum if and
only if the cardinality is minimum among all dominating sets. Notice that any minimum dominating
set is minimal.

Let D and D′ be two dominating sets of G. We say that D and D′ are adjacent if |D∆D′| = 1, where
D∆D′ = (D \D′)∪ (D′ \D) and we denote this by D ↔ D′. Let us now assume that D and D′ are both
of size at most k, for some given k ≥ 0. Then, a reconfiguration sequence between D and D′ under the
TAR rule (or sometimes called a TAR-sequence) is a sequence 〈D = D0, D1, . . . , D` = D′〉 of dominating
sets of G such that:

• for each i ∈ {0, 1, . . . , `}, Di is a dominating set of G such that |Di| ≤ k; and

• for each i ∈ {0, 1, . . . , `− 1}, Di ↔ Di+1 holds.

Considering a reconfiguration sequence under the TAR rule, we sometimes write TAR(k) instead of TAR
to emphasize the upper bound k on the size of a solution. We say that D′ is reachable from D if there
exists a reconfiguration sequence between D and D′; since a reconfiguration sequence is reversible, if

D′ is reachable from D, then D is also reachable from D′. We write D k
! D′ if D′ (resp. D) is reachable

from D (resp. D′). Then, the optimization variant of the DOMINATING SET RECONFIGURATION problem
(OPT-DSR) is defined as follows:

OPT-DSR

Instance: A graph G, two integers k, s ≥ 0, a dominating set D of G such that |D| ≤ k.

Question: A dominating set Dt of G such that |Dt| ≤ s and D
k
! Dt if it exists, no-instance

otherwise.

We denote by a 4-tuple (G, k, s,D) an instance of OPT-DSR.

2.2 Useful observations

From the definition of OPT-DSR, we have the following observations.

4

Observation 1. Let (G, k, s,D) be an instance of OPT-DSR. If k, s and |D| violate the inequality s < |D| ≤ k,
then D is a solution of the instance.

Proof. By the definition of D, we know |D| ≤ k. Therefore if the inequality is violated, we have |D| ≤
s ≤ k or |D| ≤ k ≤ s. In both cases, |D| ≤ s holds, and hence D is a solution.

It is observed that the condition in Observation 1 can be checked in linear time. Therefore, we
sometimes assume without loss of generality that s < |D| ≤ k holds. Then, another observation follows.

Observation 2. Let (G, k, s,D) be an instance of OPT-DSR such that s < |D| holds. If D is minimal and
|D| = k holds, then the instance has no solution.

Proof. Since |D| = k, we cannot add any vertex to D without exceeding the threshold k. Besides, since
D is minimal, we cannot remove any vertex while maintaining the domination property. As a result,

there is no dominating set Dt of size at most s reachable from D, i.e. D k
! Dt does not hold for any

dominating set Dt such that |Dt| ≤ s.

Again, the conditions in Observation 2 can be checked in linear time, and hence we can assume
without loss of generality that D is not minimal or |D| < k holds. Suppose that D is not minimal.
Then we can always obtain a dominating set of size less than k by removing some vertex without

private neighbor from D, that is, we have a dominating set D′ with D k
! D′ and |D′| < k. Note that

(G, k, s,D) has a solution if and only if (G, k, s,D′) does. Therefore, it suffices to consider the case where
|D| < k holds. Combining it with Observation 1, we sometimes assume without loss of generality that
s < |D| < k holds.

Finally, we have the following observation which states that OPT-DSR is a generalization of the
DOMINATING SET PROBLEM:

Observation 3. Let G = (V,E) be a graph and s be an integer. Then the instance (G, |V |, s, V) of OPT-DSR
is equivalent to finding a dominating set of G of size at most s.

Proof. Let Dt be a dominating set of G of size at most s. Since we started from a dominating set con-
taining all the vertices of G, it is sufficient to remove one by one each vertex in V \Dt to reach Dt.

Observation 3 implies that hardness results for the original DOMINATING SET problem extend to
OPT-DSR. In particular, we get that OPT-DSR is NP-hard even for the case where the input graph has
maximum degree 3, or is planar with maximum degree 4 [7]. However, we will show in Section 3.1 that
this problem is actually PSPACE-complete.

3 Polynomial-time (in)tractability

3.1 PSPACE-completeness for several graph classes

Theorem 4. OPT-DSR is PSPACE-complete even when restricted to bounded pathwidth graphs, for split
graphs, and for bipartite graphs.

First, observe that OPT-DSR is in PSPACE. Indeed, when we are given a dominating set Dt as a
solution for some instance of OPT-DSR, we can check in polynomial time whether it has size at most s
or not. Furthermore, since REACH-DSR is in PSPACE, we can check in polynomial space whether it is
reachable from the original dominating set D. Therefore, we can conclude that OPT-DSR is in PSPACE.

We now give three reductions to show the PSPACE-hardness for split graphs, bipartite graphs
and bounded pathwidth graphs, respectively. These reductions are slight adaptations of the ones of
PSPACE-hardness for REACH-DSR developed in [8]. We only give the hardness proof for split graphs;
the two other proofs have been moved to Appendix due to space limitation. To this end, we use a
polynomial-time reduction from the optimization variant of VERTEX COVER RECONFIGURATION, de-
noted by OPT-VCR.

Given a graph G = (V,E), a vertex cover is a subset of vertices that contains at least one endpoint of
each edge in E. We now give the formal definition of OPT-VCR. Suppose that we are given a graph G,
two integers k, s ≥ 0, and a vertex cover C of G whose cardinality is at most k. Then OPT-VCR asks for

5

v1 v2

v3v4

e2

e3e1 e 4

(a) Original graph G′ with vertex cover {v2, v4}.

v1

v2

v3

v4

w1

w2

w3

w4

(b) Corresponding split graph G.

Figure 4: Reduction for Lemma 5. Note that {v2, v4} is a dominating set of G.

a vertex cover Ct of size at most s reachable from C under the TAR(k) rule. This problem is known to
be PSPACE-complete even for bounded pathwidth graphs1 [12].

Lemma 5. OPT-DSR is PSPACE-hard even for split graphs.

Proof. As we said, we give a polynomial-time reduction from OPT-VCR. More precisely, we extend the
idea developed for the NP-hardness proof of DOMINATING SET problem on split graphs [2].

Let (G′, k′, s′, C) be an instance of OPT-VCR with vertex set V (G′) = {v1, v2, . . . , vn} and edge set
E(G′) = {e1, e2, . . . , em}. We construct the corresponding split graph G as follows (see also Figure 4).
Let V (G) = A ∪ B, where A = V (G′) and B = {w1, w2, . . . , wm}; the vertex wi ∈ B corresponds to the
edge ei ∈ E(G′). We join all pairs of vertices in A so that A forms a clique in G. In addition, for each
edge ei = vpvq in E(G′), we join wi ∈ B with each of vp and vq . Let G be the resulting graph, and let
(G, k = k′, s = s′, D = C) be the corresponding instance of OPT-DSR (we will prove later that D is a
dominating set of G). Clearly, this instance can be constructed in polynomial time. It remains to prove
that (G′, k′, s′, C) is a yes-instance if and only if (G, k, s,D) is a yes-instance.

(⇒) We start by the only-if direction. Suppose that (G′, k′, s′, C) is a yes-instance. Then, there exists
a vertex cover Ct of size at most s′ reachable from C under the TAR(k’) rule. Since k′ = k, s = s′ and
both problems employ the same reconfiguration rule, it suffices to prove that any vertex cover of G′ is a
dominating set of G. Since C ⊆ V (G′) = A and A is a clique, all vertices in A \ C are dominated by the
vertices in C. Thus, consider a vertex wi ∈ B, which corresponds to the edge ei = vpvq in E(G′). Then,
since C is a vertex cover of G′, at least one of vp and vq must be contained in C. This means that wi is
dominated by the endpoint vp or vq in G. Therefore, each vertex cover in the reconfiguration sequence
between C and Ct is a dominating set of G (including D = C and Dt = Ct) and thus, (G, k, s,D) is a
yes-instance.

(⇐) We now focus on the if direction. Suppose that (G, k, s,D) is a yes-instance. Then, there
exists a dominating set Dt of G of size at most s reachable under the TAR(k) rule by a sequence
R = 〈D0, D1, . . . , Dt〉, with D = D0. Recall that D = C and thus D is a vertex cover of G′. We want
to produce a sequence of dominating sets that are subsets of A. To this end, we proceed by eliminating
the vertices of B that appears in R one by one from the sequence. Let i be the smallest index such that
Di ∈ R contains a vertex w ∈ B associated with the edge vavb ∈ E(G). Let j ≥ i be the largest index
such that every dominating set Dl ∈ R (i ≤ l ≤ j) contains w. Now we show that Dj+1 is reachable
from Di−1 under TAR(k) rule without touching w, that is, there is a sequence where each dominating
set on the sequence does not contain w. For every Dl ∈ R (i ≤ l ≤ j) we instead consider the set
D′l = (Dl \w) ∪ {va}. Note that va ∈ NG(w), and |D′l| ≤ |Dl| ≤ k. Observe that each D′l is a dominating
set since NG[w] ⊆ NG[va]. If va ∈ Di−1, observe that Di−1 = D′i. Otherwise, D′i is obtainable from Di−1
in one step since we just replace the addition of w by the one of va. Moreover, due to the choice of j,
Dj+1 = Dj \{w}. Hence, Dj+1 contains a vertex in A adjacent to w. If this vertex is va, D′j = Dj+1. Oth-
erwise, Dj+1 = D′j \ {va}, which corresponds to a valid TAR move. Finally, since we ensure that each
dominating set D′l with i ≤ l ≤ j contains va, we can ignore each move in the subsequence of R that

1In [12], Ito et al. actually showed the PSPACE-completeness for the optimization variant of INDEPENDENT SET RECONFIGU-
RATION. However, the result can easily be converted to OPT-VCR from the observation that any vertex cover of a graph is the
complement of an independent set.

6

u w

(a)

u w

vuw

(b)

Figure 5: Reduction for Lemma 6. (a) Original edge uv in G′ and (b) gadget in G for uv.

touches va. Hence, either D′l = D′l+1 or D′l ↔ D′l+1 holds, for every i ≤ l < j. By ignoring duplicates
from the sequence 〈Di−1, D

′
i, . . . , D

′
j , Dj+1〉, we obtain a desired subsequence which does not touch w.

Therefore, we can eliminate w in the subsequence 〈Di−1, Di, . . . , Dj , Dj+1〉 ofR by replacing it with the
desired subsequence. Hence by repeating this process for each subsequence containing w we get a new
sequence that does not touch w at all. We then repeat this process for every vertex of B that appears in
R and we obtain a sequence R′ where each dominating set is a subset of A. Finally, observe that any
dominating set D of G such that D ⊆ A = V (G′) forms a vertex cover of G′, because each vertex wi ∈ B
is dominated by at least one vertex in D ⊆ V (G′). Therefore, (G′, s′, k′, C) is a yes-instance.

Finally, the two following lemmas complete the proof of Theorem 4.

Lemma 6. OPT-DSR is PSPACE-hard even for bounded pathwidth graphs.

The pathwidth of a graph is defined as follows. A path decomposition of G is a sequence P =
(X1, X2, . . . , X`), where each Xi ⊆ V , for each i ∈ {1, 2, · · · , `}, satisfies the following properties:

(i) each vertex v ∈ V is contained in (at least) one bag Xi;

(ii) each edge uv ∈ E is contained in (at least) one bag, i.e. there exists Xi such that u, v ∈ Xi;

(iii) for every three indices i ≤ j ≤ k, Xi ∩Xk ⊆ Xj .

The width of a given path decomposition is one less than the size of its largest bag, that is max1≤i≤` |Xi|−
1. Finally, the pathwidth of G, denoted by pw(G), is the minimum width of any path decomposition of
G. Then the following lemma completes the proof of PSPACE-completeness for bounded pathwidth
graphs.

Proof. Our reduction follows from the original reduction from VERTEX COVER to DOMINATING SET [7].
Let (G′, k′, s′, C) be an instance of OPT-VCR, where the pathwidth of G′ is bounded; note again that
OPT-VCR is PSPACE-complete even for bounded pathwidth graphs. Let G be the graph constructed
fromG′ as follows: for each edge u,w, we add a new vertex vuw and join it with both of u andw by edges
(see Fig. 5). We now claim that the pathwidth of G is bounded. Let P ′ be the path decomposition of G′

of width pw(G′). Then we construct a path decomposition P of G from P ′ by adding each new vertex
vuw to any vertex subset X ′i in P ′ in which both u and w are contained; from the definition of a path
decomposition, such a vertex subset X ′i always exists. For each vertex subset in P ′, the number of pairs
of two vertices isO(pw(G′)2), and hence the resulting path decomposition P has widthO(pw(G′)2); it is
bounded by some constant since pw(G′) is. Let (G, k = k′, s = s′, D = C) be the corresponding instance
of OPT-DSR. This construction can clearly be done in polynomial time.

It remains to prove that (G′, k′, s′, C) is a yes-instance for OPT-VCR if and only if (G, k, s,D) is a
yes-instance for OPT-DSR.

(⇒) Suppose that (G′, k′, s′, C) is a yes-instance and let Ct be a vertex cover of size at most s′ reach-
able from C under the TAR(k′) rule, by a sequence R′. Since any vertex cover of G′ is a dominating set
of G and k = k′, s = s′, then the sequenceR′ yields a reconfiguration sequence from D = C to Dt = Ct.
Thus, (G, k, s,D) is a yes-instance.

(⇐) We now prove the other direction. Suppose that (G, k, s,D) is a yes-instance and let R =
〈D0, D1, . . . , Dt〉 be a TAR(k) sequence of dominating sets of G starting at D = D0 and reaching a

7

v1

v2

v3

v4

w1

w2

w3

w4

(a) Original split graph G′.

v1

v2

v3

v4

w1

w2

w3

w4

x y

(b) Corresponding bipartite graph G.

Figure 6: Reduction for Lemma 7. Note that {v2, v4} forms a dominating set of G′, and {y, v2, v4} a
dominating set of G.

dominating set Dt that satisfies |Dt| ≤ s. Recall that D does not contain any newly added vertex in
V (G) \ V (G′). We want a sequence R′ that does not touch any newly added vertex vuw. To this end, in
the same spirit as in the proof of Lemma 5, we eliminate the vertices of V (G)\V (G′) one by one. If a Di

contains a vertex vuw, then we replaceDi byD′i = (Di \vuw)∪{u}, which is also a dominating set and is
reachable in one step from Di−1. Thus, the resulting sequence does not touch vuw, and by repeating the
operation to all vertices of V (G) \V (G′), we obtain the wanted TAR(k) sequenceR′ of subsets of V (G′).
In this way, we can obtain a reconfiguration sequence of vertex covers in G′ between C and Ct = Dt as
needed.

Since OPT-VCR is PSPACE-complete for bounded pathwidth graphs, the reduction above implies
PSPACE-hardness on bounded pathwidth graphs.

Lemma 7. OPT-DSR is PSPACE-hard even for bipartite graphs.

Proof. We give a polynomial-time reduction from OPT-DSR on split graphs to the same problem re-
stricted to bipartite graphs. The same idea is used in the NP-hardness proof of DOMINATING SET
problem on bipartite graphs [2].

Let (G′, k′, s′, D′) be an instance of OPT-DSR, where G′ is a split graph. Then V (G′) can be par-
titioned into two subsets A and B which form a clique and an independent set in G′, respectively.
Furthermore, by the reduction given in the proof of Lemma 5, the problem on split graph remains
PSPACE-complete even if the given dominating set D′ consists of vertices only in A. We thus assume
that D′ ⊆ A holds.

We now construct the corresponding bipartite graph G, as follows. First, we delete any edge joining
two vertices in A so that A forms an independent set. Then, we add a new edge consisting of two new
vertices x and y, and join y with each vertex in A.

The resulting graph G is bipartite (see Figure 6 for an example). Let D = D′ ∪ {y}, k = k′ + 1
and s = s′ + 1. Then we obtain the corresponding OPT-DSR instance (G, k, s,D) where G is bipartite
(here again, we will prove later that D is dominating set of G). Clearly, this instance can be constructed
in polynomial time. We then prove that (G′, k′, s′, D′) is a yes-instance if and only if (G, k, s,D) is a
yes-instance.

(⇒) We first prove the only-if direction. Suppose that there exists a dominating setD′t ofG′ such that

D′
k′

! D′t and |D′t| ≤ s′. Consider any dominating set D′′ of G′. Then, B ⊆ NG[D′′] holds because B ⊆
NG′ [D′′] and we have deleted only the edges which have both endpoints in A. Since NG[y] = A ∪ {x},
we can conclude that D′′ ∪ {y} is a dominating set of G. Furthermore, |D′t ∪ {y}| ≤ s′ + 1 = s. Thus

there exists a dominating set Ds of G such that D k
! Dt and |Dt| ≤ s, as desired.

(⇐) We then prove the if direction. Suppose that there exists a dominating set Dt of G, of size
at most s and reachable from D by a TAR(k) sequence R = 〈D0, D1, . . . , Dt〉, with D = D0. Recall
that D = D′ ∪ {y}, and notice that any dominating set of G contains at least one of x and y. Since
NG[x] ⊂ NG[y], we can assume that Ds contains y. Therefore, we can also assume that y is contained
in every dominating set of the reconfiguration sequence. Recall that the assumption D′ ⊆ A holds. As
in the proofs of Lemmas 5 and 6, we can produce an equivalent sequence R′ that does not touch any

8

vertex ofB. Again, if a dominating setDi touches a vertexwj associated with the edge vk, vl, we replace
Di by D′i = (Di \ wj) ∪ vk. We repeat the operation for all wj and obtain the wanted sequence.

Consider any dominating set D of G in such a reconfiguration sequence. Since y ∈ D, we have
|D ∩ V (G′)| ≤ k − 1 = k′. Furthermore, since D ∩ V (G′) ⊆ A and A forms a clique in G′, we have
A ⊆ NG′ [D ∩ V (G′)]. Since there is no edge joining y and a vertex in B, each vertex in B is dominated
by some vertex in D∩V (G′). Therefore, D∩V (G′) is a dominating set of G′ with cardinality at most k′,

and hence there exists a dominating set D′t of G′ such that D′ k′

! D′t and |D′t| ≤ s′.

3.2 Linear-time algorithms

We now explain how OPT-DSR can be solved in linear time for several graph classes.To this end, we
deal with the concept of a canonical dominating set. A dominating setDc is canonical ifDc is a minimum
dominating set which is reachable from any dominating set D under the TAR(|D| + 1) rule. Then we
have the following theorem.

Theorem 8. Let G be a class of graphs such that any graph G ∈ G has a canonical dominating set and we can
compute it in linear time. Then OPT-DSR can be solved in linear time on G.

Proof. Let (G, k, s,D) be an instance of OPT-DSR, where G ∈ G. Recall that we can assume without loss
of generality that s < |D| < k; we can check in linear time whether the inequality is satisfied or not,
and if it is violated, then we know from Observation 1 and 2 that it is a trivial instance. Since G ∈ G,
G admits a canonical dominating set and we can compute in linear time an actual one. Let Dc be such
a canonical dominating set. Then it follows from the definition that Dc is reachable from D under the
TAR(k) rule since k ≥ |D|+ 1. Since Dc is a minimum dominating set, we can output it if |Dc| ≤ s holds,
and no-instance otherwise. All processes can be done in linear time, and hence the theorem follows.

Haddadan et al. showed in [8] that cographs, trees (actually, forests), and interval graphs admit
a canonical dominating set. Their proofs are constructive, and hence we can find an actual canonical
dominating set. It is observed that the constructions on cographs and trees can be done in linear time.
The construction on interval graphs can also be done in linear time with a nontrivial adaptation by using
an appropriate data structure. Therefore, we have the following linear-time solvability of OPT-DSR.

Corollary 9. OPT-DSR can be solved in linear time on cographs, trees, and interval graphs.

4 Fixed-parameter (in)tractability

In this section, we study the fixed-parameter complexity of OPT-DSR with respect to several graph
parameters: the upper bound k, solution size s, minimum size of a vertex cover τ and degeneracy d.

More precisely, we first show that OPT-DSR is W[2]-hard when parameterized by the upper bound
k. To prove it, we use the idea of the reduction constructed by Mouawad et al. in [17] to show the
W[2]-hardness of REACH-DSR.

Theorem 10. OPT-DSR is W[2]-hard when parameterized by the upper bound k.

Proof. We give an FPT-reduction from the (original) DOMINATING SET problem that is W[2]-hard when
parameterized by its natural parameter k [5].

Let (G′, k′) be an instance of DOMINATING SET, where |V (G′)| = n′ and V (G′) = {v1, v2, . . . , vn′}.
Then we construct the corresponding instance (G, k, s,D) of OPT-DSR, as follows. We first describe the
construction ofG. LetG0 be the graph obtained by adding a universal vertex v0 toG′, andG1, G2, . . . , Gk′

be k′ copies of G0. The vertex set of G consists of
⋃

j∈{0,1,...,k′} V (Gj). For any j ∈ {1, 2, . . . , k′} and
i ∈ {0, 1, . . . , n′}, we use vj,i to denote the vertex in Gj corresponding to vi in G0. Then, for each vertex
vi inG0 except for v0, we connect vi by new edges to all vertices inNGj

[vj,i] in each j ∈ {1, 2, . . . , k′}; for-
mally, the edge set of G consists of

⋃
j∈{0,1,...,k′}E(Gj)∪

⋃
i∈{1,2,...,n′}

⋃
j∈{1,2,...,k′}{viw | w ∈ NGj

[vj,i]}.
This completes the construction of G; see Figure 7 for an example of this reduction. However, for read-
ability purposes, we do not draw all the edges between the vertices in G′ and those of Gj , for j ∈ {1, 2}.
The only such drawn edges are the dotted ones (in gray) that are incident to the vertices v1 and v3. We
set k = 2k′ + 1, s = k′, and D = {vj,0 | j ∈ {0, 1, . . . , k′}}; notice that D has k′ + 1 vertices. In this way,

9

v1

v2

v3v4

v5

G′

(a) (G′, k′ = 2)

v0

v1

v2

v3v4

v5

v1,0

v1,1

v1,2

v1,3v1,4

v1,5

v2,0

v2,1

v2,2

v2,3v2,4

v2,5

G1 G0 G2

(b) (G, k = 5, s = 2, D)

Figure 7: Reduction for Theorem 10 with D′ = {v1, v3} and D = {v0, v1,0, v2,0}.

we constructed the corresponding instance (G, k, s,D). Then our claim is that (G′, k′) is a yes-instance
if and only if (G, k, s,D) has a solution.

(⇒) We first prove the only-if direction. Suppose that (G′, k′) is a yes-instance, hence there exists
a dominating set D′ of G′ of size at most k′. Then by the construction of G, we know that D′ is also
a dominating set of G (if we identify the vertices of G′ with those of G0). Thus it suffices to show

that D k
! D′, since D′ has at most s = k′ vertices. We first add vertices in D′ to D one by one; this

transformation can be done under TAR(k) since |D ∪D′| ≤ (k′ + 1) + k′ = k. We then remove vertices
in D one by one. In this way, we can transform D into D′ under TAR(k), and hence (G, k, s,D) has a
solution D′.

(⇐) We then prove the if direction. Suppose that (G, k, s,D) has a solution D′. We know that
D′ has at most s = k′ vertices. Then, since G has k′ + 1 copies G0, G1, . . . , Gk′ , there exists a copy
Gj ∈ {G0, G1, . . . , Gk′} such that V (Gj) ∩ D′ = ∅. We know that j 6= 0 because all neighbors of v0
are in V (G0), hence D′ contains at least one vertex in V (G0). For any p ∈ {1, 2, . . . , k′} \ {j}, there is
no edge joining a vertex in V (Gj) and a vertex in V (Gp). Therefore, for any vertex vj,i in Gj , a vertex
u ∈ D′ which dominates vj,i is contained in (V (G0) ∩ D′) \ {v0}. Then, by the construction of G, u
also dominates the corresponding vertex vi in G0. Thus, we know that D′′ = (V (G0) ∩ D′) \ {v0} is a
dominating set of G′. Since |D′′| ≤ |D′| ≤ s = k′ holds, D′′ is a desired dominating set of G′.

On the other hand, we give FPT algorithms with respect to the combination of the solution size s
and the degeneracy d in Subsection 4.1 and the vertex cover number τ in Subsection 4.2.

4.1 FPT algorithm for degeneracy and solution size

The following is the main theorem in this subsection.

Theorem 11. OPT-DSR is fixed-parameter tractable when parameterized by d + s, where d is the degeneracy
and s the solution size.

To prove the theorem, we give an FPT algorithm with respect to d+ s. Note that our algorithm uses
the idea of an FPT algorithm solving the reachability variant of DOMINATING SET RECONFIGURATION,
developed by Lokshtanov et al. [15]. Their algorithm uses the concept of domination core; for a graphG,
a domination core ofG is a vertex subsetC ⊆ V (G) such that any vertex subsetD ⊆ V (G) is a dominating
set of G if and only if C ⊆ NG[D] [6].

Suppose that we are given an instance (G, k, s,D) of OPT-DSR where G is a d-degenerate graph. By
Observation 2, we can assume without loss of generality that |D| < k. We first check whether G has a
dominating set of size at most s: this can be done in FPT(d + s) time for d-degenerate graphs [1]. If G
does not have it, then we can instantly conclude that this is a no-instance.

In the remainder of this subsection, we assume that G has a dominating set of size at most s. In this
case, we kernelize the instance: we shrink G by removing some vertices while keeping the existence
of a solution until the size of the graph only depends on d and s. To this end, we use the concept of
domination core.

10

Lemma 12 (Lokshtanov et al. [15]). If G is a d-degenerate graph and G has a dominating set of size at most s,
then G has a domination core of size at most dsd and we can find it in FPT(d+ s) time.

Therefore, one can compute a domination core of G of size at most dsd in FPT(d + s) time by
Lemma 12. In order to shrink G, we use the reduction rule R1: if there is a domination core C and
two vertices vr, vl ∈ V (G) \C such that NG(vr)∩C ⊆ NG(vl)∩C, we remove vr. We need to prove that
R1 is “safe”, that is, we can remove vr from G without changing the existence of a solution. However,
if the input dominating set D contains vr, we cannot do it immediately. Therefore, we first remove vr
from D.

Lemma 13. Let D be a dominating set such that both |D| < k and vr ∈ D hold. Then there exists D′ such that
vr /∈ D′ and D k

! D′, and D′ can be computed in linear time.

Proof. We first consider the case where vl ∈ D. In this case, we simply remove vr from D; let D′

be the resulting vertex subset. It is clear that D k
! D′, and hence it suffices to show that D′ is a

dominating set of G. We know that C ⊆ NG[D] holds by the definition of a domination core. Then
since NG(vr) ∩ C ⊆ NG(vl) ∩ C and vl ∈ D hold, we have C ⊆ NG[D \ {vr}] = NG[D′]. Thus D′ is a
dominating set of G.

We then consider the remaining case where vl /∈ D. In this case, we can add vl to D since |D| < k.
Then the resulting dominating set contains vl, and we can remove vr as discussed above.

We can now redefine D as a dominating set which does not contain vr. We then consider removing
vr from G. Let G′ = G[V (G) \ {vr}]. The following lemma ensures that removing vr keeps the existence
of a solution.

Lemma 14. Let (G, k, s,D) be an instance where vr /∈ D. Then, (G, k, s,D) has a solution if and only if
(G′, k, s,D) has a solution.

Proof. (⇐) We first prove the if direction. Suppose that (G′, k, s,D) has a solution D′s. Then there exists
a reconfiguration sequence D′ = 〈D = D′0, D

′
1, . . . , D

′
`′ = D′t〉 of dominating sets of G′. It suffices to

show that any dominating set D′i of G′ in D′ is also a dominating set of G. Since D′i is a dominating set
of G′ and vr /∈ C, we have C ⊆ V (G′) ⊆ NG′ [D′i]. By the definition of domination core, we know that
D′i is also a dominating set of G.

(⇒) We then prove only-if direction. Suppose that (G, k, s,D) has a solution Ds. Then there exists
a reconfiguration sequence D = 〈D = D0, D1, . . . , D` = Dt〉 of dominating sets of G. Based on D, we
construct another sequence D′ = 〈D = D′0, D

′
1, . . . , D

′
` = D′t〉 of vertex sets of G′, where

D′i =

{
Di \ {vr} ∪ {vl} (vr ∈ Di)

Di (otherwise)

for each i ∈ {0, 1, . . . , `}. Notice that any vertex subset in D′ does not contain vr. Our claim is that D′s is
a solution of (G′, k, s,D). To prove it, we show the following two statements:

(i) for each i ∈ {0, 1, . . . , `}, D′i is a dominating set of G (and hence of G′); and

(ii) for each i ∈ {0, 1, . . . , `− 1}, |D′i∆D′i+1| ≤ 1 holds, i.e. we have D′i ↔ D′i+1.

Then the sequence obtained by removing redundant ones from D′ is a reconfiguration sequence
from D to D′s.

We first show the statement (i). Let Di be any dominating set in D. If vr /∈ Di, then the statement
clearly holds. Thus we consider the other case where vr ∈ Di. Since Di is a dominating set of G, we
know C ⊆ V (G) ⊆ NG[Di]. Furthermore, since NG(vr) ∩ C ⊆ NG(vl) ∩ C, we have C ⊆ NG[Di \
{vr} ∪ {vl}] ⊆ NG[D′i]. By the definition of domination core, D′i is a dominating set of G, and hence the
statement (i) follows.

We then show the statement (ii). Let Di and Di+1 be any two consecutive dominating sets in D.
Then, we know |Di∆Di+1| = 1. We assume without loss of generality that Di ⊆ Di+1; otherwise the
proof is symmetric. We prove the statement in the following three cases:

11

• Case 1: both vr /∈ Di and vr /∈ Di+1 hold;

• Case 2: either vr ∈ Di or vr ∈ Di+1 holds (but not both); and

• Case 3: both vr ∈ Di and vr ∈ Di+1 hold.

In Case 1, we know that |D′i∆D′i+1| = |Di∆Di+1| = 1, and hence the statement clearly holds. We
then consider Case 2. In this case, since Di ⊆ Di+1, we observe that vr /∈ Di and vr ∈ Di+1, and hence
{vr} = Di+1 \ Di Therefore, D′i∆D

′
i+1 = Di∆(Di+1 \ {vr} ∪ {vl}) ⊆ {vl}. Thus we can conclude that

|D′i∆D′i+1| ≤ 1, and hence the statement follows. We finally deal with Case 3. In this case, we have
D′i∆D

′
i+1 = (Di \{vr}∪{vl})∆(Di+1 \{vr}∪{vl}) ⊆ Di∆Di+1. Therefore, |D′i∆D′i+1| ≤ |Di∆Di+1| = 1

holds, and hence the statement follows. In this way, we can conclude thatD′s is a solution of (G′, k, s,D).
This concludes the proof.

We exhaustively apply the reduction rule R1 to shrink G. Let Gk and Dk be the resulting graph and
dominating set, respectively. Then, any two vertices u, v ∈ V (Gk) \ C satisfy NGk

(u) ∩ C 6= NGk
(v) ∩

C (more precisely, NGk
(u) ∩ C 6⊆ NGk

(v) ∩ C). Then the following lemma completes the proof of
Theorem 11.

Lemma 15. (Gk, k, s,Dk) can be solved in FPT(d+ s) time.

Proof. We first show that the size of the vertex set of Gk is at most f(d, s) = dsd + 2ds
d

. Since |C| ≤ dsd,
it suffices to show that |V (Gk) \ C| ≤ 2ds

d

holds. Recall that any two vertices u, v ∈ V (Gk) \ C satisfy
NGk

(u)∩C 6= NGk
(v)∩C. Then since the number of combination of vertices in C is at most 2|C| ≤ 2ds

d

,
we have the desired upper bound |V (Gk) \ C| ≤ 2ds

d

.
We now prove that (Gk, k, s,Dk) can be solved in FPT(d + s) time. To this end, we construct an

auxiliary graph GA, where the vertex set of GA is the set of all dominating sets of Gk, and any two
nodes (that correspond to dominating sets of Gk) D and D′ in GA are adjacent if and only if |D∆D′| =
1 holds. Let n = |V (Gk)| and m = |E(Gk)|. Then the number of candidate nodes in GA (vertex
subsets of Gk) is bounded by O(2n). For each candidate, we can check in O(n + m) time if it forms a
dominating set. Thus we can construct the vertex set of GA in O(2n(n + m)) time. We then construct
the edge set of GA. There are at most O(|V (GA)|2) = O(4n) pairs of nodes in GA. For each pair of
nodes, we can check in O(n) time if their corresponding dominating sets differ in exactly one vertex.
Therefore we can construct the edge set of GA in O(4nn) time, and hence the total time to construct GA

is O(4nn + 2n(n + m)) time. We finally search a solution by running a breadth-first search algorithm
from Dk on GA in O(|V (GA)|+ |E(GA)|) = O(4n) time.

We can conclude that our algorithm runs in time O(4nn+ 2n(n+m)) in total. Since n ≤ f(d, s) and
m ≤ n2 ≤ (f(d, s))2, this is an FPT time algorithm.

4.2 FPT algorithm for vertex cover number

Let (G, k, s,D) be an instance of OPT-DSR. As in the previous section, we may first assume by Obser-
vation 2 that |D| < k. We recall that τ(G) is the size of a minimum vertex cover of G. In order to
lighten notations, we simply denote by τ the vertex cover number of the input graph. Then, we have
the following:

Theorem 16. OPT-DSR is fixed-parameter tractable when parameterized by τ .

We first establish the following fact that is going to be useful later.

Observation 17. If G is d-degenerate, then d ≤ τ .

Proof. Let G be a graph, X a minimum vertex cover of G and H be any subgraph of G. Recall that
G[V \ X] is an independent set. If H contains a vertex v outside X , then v has a degree at most τ in
G and therefore in H . Otherwise, H is a subraph of G[X] and thus has at most τ vertices. Hence all
vertices of H have degree at most τ in H . Therefore, since any subgraph H of G contains a vertex of
degree at most τ , G is τ -degenerate.

12

a

b

c

v1

v2

v3

v4

v5

(a) D0 = D

↔

X I

a

b

c

v1

v2

v3

v4

v5

(b) D1

↔

X I

a

b

c

v1

v2

v3

v4

v5

(c) D2

↔

X I

a

b

c

v1

v2

v3

v4

v5

(a) D3 = Dt

X I

Figure 8: Reconfiguration sequence from the original dominating set D = I to the target one Dt =
{b, v1, v3}. D1 is obtained from D0 by applying Rule (ii) and D2 (resp. D3) obtained from D1 (resp. D2)
by applying Rule (i). The special neighbor of a vertex v ∈ X \D is the one pointed by its outgoing edge.

We are now able to get down to the proof of Theorem 16, by providing an algorithm that solves
OPT-DSR and runs in time FPT(τ). We first compute a minimum vertex cover X ⊆ V (G) of G in time
FPT(τ) [4]. We partition the vertices of G into two components, the vertex cover X and the remaining
vertices I . By definition of vertex cover, no edge can have both endpoints outside X , therefore I is
an independent set. Note that if s ≤ τ , then by Observation 17 we have d + s ≤ 2τ , where d is the
degeneracy of G. In this case we are able to use the algorithm of the last section, that runs in time
FPT(d+ s).

We may therefore assume τ < s. In that case, we have the following lemma:

Lemma 18. If τ < s, then (G, k, s,D) is a yes-instance.

Proof. In the remainder of the proof, we assume that the graphG has no isolated vertex since an isolated
vertex must belong to any dominating set of G. We now prove that (G, k, s,D) is always a yes-instance,
i.e. there exists a dominating set of size at most τ that is reachable from D under the TAR(k) rule.

We associate to every vertex v ∈ X \D a special neighbor among its neighbors that dominate it (which
can be either in X or I), i.e. we pick arbitrarily a vertex in NG[v] ∩D. We denote this special neighbor
t(v). Let T be the set of special neighbors, i.e. T := {t(v) | v ∈ X \ D}. This corresponds to the set of
vertices that are used to dominate the vertices in X that do not belong to D. Note that |T | ≤ τ .

We are now able to describe the algorithm we use to output Dt, the target dominating set. It con-
sists in exhaustively applying the two following rules on the vertices of I that belong to the current
dominating set:

(i) if there is a vertex v in I but not in T that is already dominated by another vertex, then we remove
v from the dominating set; and

(ii) if there is a vertex v in I but not in T that is dominated only by itself, then we add any one of its
neighbors u ∈ X to the dominating set, and then remove v. The vertex u does not need a special
neighbor anymore, since it now belongs to the dominating set. We thus update the set T by only
keeping the special neighbors t(w) of vertices w that are still in X \D.

We first prove that these two rules are safe, i.e. we do not break the domination property at any step.
Since Rule (i) removes a vertex v that is not required to dominate itself or another vertex u ∈ X (because
it has not been chosen in T), we can safely remove it. In Rule (ii), after adding a neighbor of v to the
dominating set, v is not required to dominate itself anymore. Since v is not in T , we can now apply Rule
(i) which is safe.

13

Recall that |D| < k. Then, each dominating set obtained after applying one of these rules is of size at
most k since Rule (i) only removes vertices and Rule (ii) consists in an addition immediately followed
by a removal.

Now, let Dt be the dominating set obtained once we cannot apply Rule (i) and Rule (ii) anymore
(see Figure 8 for an example). All remaining vertices in I ∩ Dt now belong to T . By definition of T ,
each vertex in X \Dt has (exactly) one neighbor in T (but they are not necessarily distinct). Therefore,
|I ∩Dt| ≤ |X \Dt|. As a result, |Dt| = |X ∩Dt|+ |I ∩Dt| ≤ |X ∩Dt|+ |X \Dt| = |X| = τ . Since τ < s,
the size of Dt is at most s, as desired.

It remains to discuss the complexity of this algorithm. As we already said, we first compute a
minimum vertex cover X of G in time FPT(τ). If s ≤ τ , we run the FPT algorithm of Section 4.1.
Otherwise, we first compute the set T and then run the subroutine which are both described in the
proof of Lemma 18. The two rules used in this subroutine only apply to vertices that belong to the set
I and whenever one is applied, exactly one vertex in I is removed (and none is added). Hence, they
are applied at most |I ∩D| times. Therefore, the subroutine runs in polynomial time and produces the
desired dominating setDt. As a result, this algorithm is FPT with respect to τ . This concludes the proof.

Concluding remarks. In this paper, we showed that OPT-DSR is PSPACE-complete even if restricted
to some graph classes. However, we only know that it is NP-hard for bounded maximum degree graphs
or planar graps, as an immediate corollary of Observation 3. Hence, it would be interesting to determine
whether OPT-DSR is NP-complete or PSPACE-complete on these two graph classes. Note that the
complexity on planar graphs remains open for OPT-ISR.

We also proved that OPT-DSR is W[2]-hard for parameter k but the question remains as to whether
there exists an XP algorithm for upper bound k.

Acknowledgements. We would like to thank the anonymous referees for several remarks which helped
improve the presentation of this paper.

References

[1] N. Alon and S. Gutner. Linear time algorithms for finding a dominating set of fixed size in degen-
erated graphs. Algorithmica, 54(4):544, 2008.

[2] A. Bertossi. Dominating sets for split and bipartite graphs. Information Processing Letters, 19(1):37–
40, 1984.

[3] M. Bonamy and N. Bousquet. Token sliding on chordal graphs. In Proceedings of the 43rd Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science (WG 2017), pages 127–139, 2017.

[4] J. Chen, I. Kanj, and G. Xia. Improved upper bounds for vertex cover. Theoretical Computer Science,
411(40):3736 – 3756, 2010.

[5] R. Downey and M. Fellows. Parameterized Complexity. Springer, 1999.

[6] P. Drange, M. Dregi, F. Fomin, S. Kreutzer, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, F., F. Vil-
laamil, S. Saurabh, S. Siebertz, and S.Sikdar. Kernelization and sparseness: the case of dominating
set. In 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016), pages 31:1–31:14,
2016.

[7] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, San Francisco, CA, 1979.

[8] A. Haddadan, T. Ito, A. Mouawad, N. Nishimura, H. Ono, A. Suzuki, and Y. Tebbal. The complex-
ity of dominating set reconfiguration. Theoretical Computer Science, 651:37–49, 2016.

[9] R. Hearn and E. Demaine. PSPACE-completeness of sliding-block puzzles and other problems
through the nondeterministic constraint logic model of computation. Theoretical Computer Science,
343(1–2):72–96, 2005.

14

[10] J. van den Heuvel. The complexity of change. In Surveys in Combinatorics 2013, volume 409 of
London Mathematical Society Lecture Note Series, pages 127–160. Cambridge University Press, 2013.

[11] T. Ito, E. Demaine, N. Harvey, C. Papadimitriou, M. Sideri, R. Uehara, and Y. Uno. On the com-
plexity of reconfiguration problems. Theoretical Computer Science, 412(12–14):1054–1065, 2011.

[12] T. Ito, H. Mizuta, N. Nishimura, and A. Suzuki. Incremental optimization of independent sets
under reachability constraints. In Proceedings of the 25th International Computing and Combinatorics
Conference (COCOON 2019), 2019. to appear.

[13] M. Kamiński, P. Medvedev, and M. Milanič. Complexity of independent set reconfigurability prob-
lems. Theoretical Computer Science, 439:9–15, 2012.

[14] D. Lokshtanov and A. Mouawad. The complexity of independent set reconfiguration on bipartite
graphs. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2018), pages 7:1–7:19, 2019.

[15] D. Lokshtanov, A. Mouawad, F. Panolan, M. Ramanujan, and S. Saurabh. Reconfiguration on
sparse graphs. J. Comput. Syst. Sci., 95:122–131, 2018.

[16] A. Mouawad, N. Nishimura, and V. Raman. Vertex cover reconfiguration and beyond. In Proceed-
ings of the 25th International Symposium on Algorithms and Computation (ISAAC 2014), pages 452–463,
2014.

[17] A. Mouawad, N. Nishimura, V. Raman, N. Simjour, and A. Suzuki. On the parameterized com-
plexity of reconfiguration problems. Algorithmica, 78(1):274–297, 2017.

[18] N. Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018.

[19] A. Suzuki, A. Mouawad, and N. Nishimura. Reconfiguration of dominating sets. Journal of Combi-
natorial Optimization, 32(4):1182–1195, 2016.

15

