Gallai's path decomposition conjecture: the case of planar graphs

Alexandre Blanché, Marthe Bonamy, Nicolas Bonichon

LaBRI, Université de Bordeaux

CanaDAM 2021

May 27, 2021

Path decomposition

Path decomposition: a partition of the edges into paths

Path decomposition

Path decomposition: a partition of the edges into paths

Conjecture (Gallai, 1968)

Any connected graph on *n* vertices has a decomposition into at most $\begin{bmatrix} n \\ 2 \end{bmatrix}$ paths.

Path decomposition

Path decomposition: a partition of the edges into paths

Conjecture (Gallai, 1968)

Any connected graph on *n* vertices has a decomposition into at most $\begin{bmatrix} n \\ 2 \end{bmatrix}$ paths.

Conjecture (Hajós, 1968)

An Eulerian graph on *n* vertices has a decomposition into at most $\left| \frac{n}{2} \right|$ cycles.

Theorem (Lovász, 1968)

A graph on *n* vertices can be decomposed into at most $\lfloor \frac{n}{2} \rfloor$ paths and cycles.

General bounds

|odd|, |even| : number of vertices of odd, even degree

• Lovász, 1968: $\leq \frac{|\text{odd}|}{2} + |\text{even}| - 1$ • Donald, 1980: $\leq \frac{|\text{odd}|}{2} + \left\lfloor \frac{3|\text{even}|}{4} \right\rfloor$ • Dean, Kouider, 2000: $\leq \frac{|\text{odd}|}{2} + \left\lfloor \frac{2|\text{even}|}{3} \right\rfloor$

If a tree is a minimum counterexample for Gallai's conjecture:

• We are able to deal with a pair of leaves having a common parent:

• We are able to deal with single leaves:

Graph classes on which Gallai's conjecture holds

 $(G_{even} = graph induced by vertices of even degree)$

- Lovász, 1968: $|G_{even}| \leq 1$
- Favaron, Kouider, 1988: Each vertex has degree 2 or 4
- Pyber, 1996: G_{even} is a forest
- Fan, 2005: Each block of $G_{\rm even}$ is triangle-free with maximum degree ≤ 3
- Bonamy, Perrett, 2016: Maximum degree \leq 5
- Botler, Sambinelli, 2017: Treewidth ≤ 3
- Botler, Jiménez, Sambinelli, 2018: Triangle-free planar graphs

Graph classes on which Gallai's conjecture holds

 $(G_{even} = graph induced by vertices of even degree)$

- Lovász, 1968: $|G_{even}| \leq 1$
- Favaron, Kouider, 1988: Each vertex has degree 2 or 4
- Pyber, 1996: G_{even} is a forest
- Fan, 2005: Each block of $G_{\rm even}$ is triangle-free with maximum degree \leq 3
- Bonamy, Perrett, 2016: Maximum degree \leq 5
- Botler, Sambinelli, 2017: Treewidth \leq 3
- Botler, Jiménez, Sambinelli, 2018: Triangle-free planar graphs

The results in red actually show a bound of
$$\left|\frac{n}{2}\right|$$
.

Natural obstructions to the bound $\lfloor \frac{n}{2} \rfloor$: Odd semi-cliques: cliques on 2k + 1 vertices minus at most k - 1 edges, i.e. graphs with $> \lfloor \frac{n}{2} \rfloor (n - 1)$ edges Natural obstructions to the bound $\left|\frac{n}{2}\right|$:

Odd semi-cliques: cliques on 2k + 1 vertices minus at most k - 1 edges, i.e. graphs with $> \lfloor \frac{n}{2} \rfloor (n-1)$ edges

Strong Gallai conjecture (Bonamy, Perrett, 2016)

Any connected graph on *n* vertices either has a decomposition into at most $\lfloor \frac{n}{2} \rfloor$ paths or is an odd semi-clique.

Natural obstructions to the bound $\left|\frac{n}{2}\right|$:

Odd semi-cliques: cliques on 2k + 1 vertices minus at most k - 1 edges, i.e. graphs with $> \lfloor \frac{n}{2} \rfloor (n-1)$ edges

Strong Gallai conjecture (Bonamy, Perrett, 2016)

Any connected graph on *n* vertices either has a decomposition into at most $\lfloor \frac{n}{2} \rfloor$ paths or is an odd semi-clique.

Helpful when dealing with disconnected graphs

$$\left\lfloor \frac{n_1}{2} \right\rfloor + \left\lfloor \frac{n_2}{2} \right\rfloor + \dots + \left\lfloor \frac{n_k}{2} \right\rfloor \le \left\lfloor \frac{n_1 + n_2 + \dots + n_k}{2} \right\rfloor$$

A graph is **planar** if it can be embedded in the plane, i.e. drawn without edges crossing.

A graph is **planar** if it can be embedded in the plane, i.e. drawn without edges crossing.

Theorem (B., Bonamy, Bonichon, 2021+)

Gallai's conjecture is true on planar graphs.

Planar odd semi-cliques:

Theorem (B., Bonamy, Bonichon, 2021+)

Every connected planar graph on *n* vertices, except K_3 and K_5^- , has a decomposition into at most $\lfloor \frac{n}{2} \rfloor$ paths.

 $G \equiv$ minimum counterexample

G has n vertices, u_1, u_2 are special vertices, P is a path between u_1, u_2 .

 $G \equiv minimum \ counterexample$

G has *n* vertices, u_1, u_2 are special vertices, *P* is a path between u_1, u_2 . *G* - { u_1, u_2 } - *P* has 6 components G_1, \ldots, G_6 , with n_1, \ldots, n_6 vertices respectively.

 $G \equiv minimum \ counterexample$

G has *n* vertices, u_1, u_2 are special vertices, *P* is a path between u_1, u_2 . *G* - { u_1, u_2 } - *P* has 6 components G_1, \ldots, G_6 , with n_1, \ldots, n_6 vertices respectively.

Assume each component G_i has a path decomposition into $\leq \lfloor \frac{n_i}{2} \rfloor$ paths.

 $G \equiv minimum \ counterexample$

G has *n* vertices, u_1, u_2 are special vertices, *P* is a path between u_1, u_2 . *G* - { u_1, u_2 } - *P* has 6 components G_1, \ldots, G_6 , with n_1, \ldots, n_6 vertices respectively.

Assume each component G_i has a path decomposition into $\leq \lfloor \frac{n_i}{2} \rfloor$ paths. We may find a path decomposition of G into $\leq 1 + \lfloor \frac{n_1}{2} \rfloor + \dots + \lfloor \frac{n_6}{2} \rfloor \leq \lfloor \frac{n}{2} \rfloor$ paths.

Outline of the proof

- Prove that a minimum counterexample does not contain some configurations (the hard part)
- Show a contradiction using Euler's formula ("easy")

2 kinds of configurations to eliminate: C_I and C_{II} configurations

C_l configurations

 C_1 configuration: 2 vertices of degree at most 4 Since the graph is connected, they are associated with a shortest path.

C_l configurations

 C_1 configuration: 2 vertices of degree at most 4 Since the graph is connected, they are associated with a shortest path.

• Half-rules: when "far" from each other, at distance ≥ 3

C_l configurations

 C_1 configuration: 2 vertices of degree at most 4 Since the graph is connected, they are associated with a shortest path.

• Half-rules: when "far" from each other, at distance ≥ 3

• **Resolution rules:** when the vertices are at distance ≤ 2

We take care of each K_3 and K_5^- component generated by combining them with a path of the decomposition.

C_{II} configurations

 C_{II} configuration: 4 vertices of degree 5 ("special vertices") And we now assume the graph is **almost 4-connected**:

- 3-connected (no 2-cut)
- No 3-cut separates two special vertices
- No 3-cut contains a special vertex and separates two of its neighbors

C_{II} configurations

 C_{II} configuration: 4 vertices of degree 5 ("special vertices") And we now assume the graph is **almost 4-connected**:

- 3-connected (no 2-cut)
- No 3-cut separates two special vertices
- No 3-cut contains a special vertex and separates two of its neighbors

Corollary of (Yu, 1994)

An almost 4-connected planar graph has a K_{4-} , C_{4+}^1 or C_{4+}^2 -subdivision.

Subdivisions

Remaining neighbors

Patterns: to take care of the 1 or 2 **remaining neighbors** for each special vertex

Pre-processing

Step 2 :

Problems

• Close problems

(10 rules)

Conclusion

Proof

- Eliminating C_I configurations
 - Half-rules
 - Resolution rules for close cases
 - Safety: combining K_3, K_5^- with a path
- Eliminating C_{II} configurations
 - K_{4-} , C_{4+}^1 -, C_{4+}^2 -subdivisions
 - Patterns for each special vertex
 - Elimination of problems
 - Distant problems with routing
 - Close problems by hand
- Contradiction using Euler's formula

Conclusion

Proof

- Eliminating C_I configurations
 - Half-rules
 - Resolution rules for close cases
 - Safety: combining K_3, K_5^- with a path
- Eliminating C_{II} configurations
 - K_{4-} , C_{4+}^1 -, C_{4+}^2 -subdivisions
 - Patterns for each special vertex
 - Elimination of problems
 - Distant problems with routing
 - Close problems by hand
- Contradiction using Euler's formula

Thanks for your attention.

Half-rules (examples)

. . .

Resolution rules (examples)

. . .

Elimination of distant problems

Routing operation

Ensures that each distant problem is turned into a $\mathcal{C}_{\textit{V}}$ pattern

