# Decremental Optimization of Dominating Sets Under the Reconfiguration Framework

<u>Alexandre Blanché</u><sup>1</sup> Haruka Mizuta<sup>2</sup> Paul Ouvrard<sup>1</sup> Akira Suzuki<sup>2</sup>

<sup>1</sup>LaBRI, Bordeaux <sup>2</sup>Tohoku University, Sendai, Japan



June 10, 2020

## Dominating sets

### Definition

A **dominating set** is a subset of vertices whose neighborhood contains all the vertices.



#### Dominating set problem

- Instance : A graph G, an integer s
- Question : Does G have a dominating set of size at most s ?

This problem is NP-complete.

1/24

## Dominating set reconfiguration

Model : Successive additions and removals of vertices



## Dominating set reconfiguration

Model : Successive additions and removals of vertices



3/24

## Dominating set reconfiguration

Model : Successive additions and removals of vertices



4/24

## Size bound

Without a bound on the size of the dominating sets, they are all reachable through successive additions and removals:



# Size bound

We restrict the size of the authorized dominating sets with a bound k:



Alexandre Blanché, Haruka Mizuta, Paul Ouvrard, Akira Suzuki Decremental Optimization of the Dominating Set Reconfiguration

# Optimization problem

#### OPT-DSR (OPTimization variant of Dominating Set Reconfiguration)

- Input : A graph G, two integers k,s, a dominating set D<sub>0</sub> of size |D<sub>0</sub>| ≤ k.
- Question : Does G have a dominating set  $D_s$  of size  $|D_s| \le s$ , such that  $D_0 \stackrel{k}{\longleftrightarrow} D_s$  ?



Alexandre Blanché, Haruka Mizuta, Paul Ouvrard, Akira Suzuki Decremental Optimization of the Dominating Set Reconfiguration

# General complexity

#### Observation

OPT-DSR generalizes the dominating set problem.

A graph G = (V, E) has a dominating set of size  $\leq s$   $\Leftrightarrow$ the instance (G, k = |V|, s, D = V) is a solution of OPT-DSR.



Alexandre Blanché, Haruka Mizuta, Paul Ouvrard, Akira Suzuki Decremental Optimization of the Dominating Set Reconfiguration

# General complexity

#### Observation

OPT-DSR generalizes the dominating set problem.

A graph G = (V, E) has a dominating set of size  $\leq s$   $\Leftrightarrow$ the instance (G, k = |V|, s, D = V) is a solution of OPT-DSR.

Corollary

OPT-DSR is NP-hard.

### Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR is PSPACE-complete, including when the input graph :

is bipartite ;



### Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR is PSPACE-complete, including when the input graph :

- is bipartite ;
- is a split graph ;



### Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR is PSPACE-complete, including when the input graph :

- is bipartite ;
- is a split graph ;
- has bounded *pathwidth*.



### Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR is PSPACE-complete, including when the input graph :

- is bipartite ;
- is a split graph ;
- has bounded pathwidth.



*Proof* : By adapting a result on **independent sets** and the **OPT-ISR** problem, analogous to OPT-DSR.

#### OPT-ISR deals with independent set reconfiguration.



# **OPT-ISR**

### **OPT-ISR**

- Input : A graph G,  $k, s \in \mathbb{N}$ , an independent set  $I_0$  with  $|I_0| \ge k$ .
- Question : Does G have an independent set  $I_s$  with  $|I_s| \ge s$ and  $I_0 \stackrel{\ge k}{\longleftrightarrow} I_s$  ?



Alexandre Blanché, Haruka Mizuta, Paul Ouvrard, Akira Suzuki Decremental Optimization of the Dominating Set Reconfiguration

# **OPT-ISR**

#### **OPT-ISR**

- Input : A graph G,  $k, s \in \mathbb{N}$ , an independent set  $I_0$  with  $|I_0| \ge k$ .
- Question : Does G have an independent set  $I_s$  with  $|I_s| \ge s$ and  $I_0 \stackrel{\ge k}{\longleftrightarrow} I_s$  ?

#### Theorem [Ito, Mizuta, Nishimura, Suzuki (2018)]

OPT-ISR is PSPACE-hard when the input graph has bounded pathwidth.

## Idea of the reduction



#### Corollary

**OPT-ISR** is PSPACE-hard  $\Rightarrow$  **OPT-VCR** is PSPACE-hard

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

#### **OPT-DSR** is PSPACE-hard.

12/24

### Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in polynomial time on interval graphs.



*Proof* : (G, k, s, D), with G an interval graph



*Proof* : (G, k, s, D), with G an interval graph



• We build in linear time in |G| a possible representation of G as a set of intervals.

*Proof* : (G, k, s, D), with G an interval graph



• We build a **minimum dominating set**  $D_m$  of G, in linear time in |G|.

Lemma [Haddadan *et al.* (2015)] We can reconfigure *D* in *D'*, s.t.  $D_m \subseteq D'$ ,

under the bound |D| + 1, in linear time in |G|.

15/24

*Proof* : (G, k, s, D), with G an interval graph



- We build a **minimum dominating set**  $D_m$  of G, in linear time in |G|.
- We thus have D ↔ D' ↔ Dm.
  We can answer yes if |Dm| ≤ s and produce the corresponding sequence in linear time in |G|.

*Proof* : We build a minimum dominating set of G.

- Ordering : by ending time
- favored neighbor of v<sub>i</sub> := maximum neighbor of v<sub>i</sub> in the ordering



*Proof* : We build a minimum dominating set of G.

- Ordering : by ending time
- favored neighbor of v<sub>i</sub> := maximum neighbor of v<sub>i</sub> in the ordering



- Algorithm Traverse the vertices in order.
  - If v<sub>i</sub> is dominated, skip it.
  - Otherwise, add its favored neighbor to the dominating set.

*Proof* : We build a minimum dominating set of G.

- Ordering : by ending time
- favored neighbor of v<sub>i</sub> := maximum neighbor of v<sub>i</sub> in the ordering



- Algorithm Traverse the vertices in order.
  - If v<sub>i</sub> is dominated, skip it.
  - Otherwise, add its favored neighbor to the dominating set.

*Proof* : We build a minimum dominating set of G.

- Ordering : by ending time
- favored neighbor of v<sub>i</sub> := maximum neighbor of v<sub>i</sub> in the ordering



- Algorithm Traverse the vertices in order.
  - If v<sub>i</sub> is dominated, skip it.
  - Otherwise, add its favored neighbor to the dominating set.

*Proof* : We build a minimum dominating set of G.

- Ordering : by ending time
- favored neighbor of v<sub>i</sub> := maximum neighbor of v<sub>i</sub> in the ordering



- Algorithm Traverse the vertices in order.
  - If v<sub>i</sub> is dominated, skip it.
  - Otherwise, add its favored neighbor to the dominating set.

*Proof* : We build a minimum dominating set of G.

- Ordering : by ending time
- favored neighbor of v<sub>i</sub> := maximum neighbor of v<sub>i</sub> in the ordering



- Algorithm Traverse the vertices in order.
  - If v<sub>i</sub> is dominated, skip it.
  - Otherwise, add its favored neighbor to the dominating set.

*Proof* : We build a minimum dominating set of G.

- Ordering : by ending time
- favored neighbor of v<sub>i</sub> := maximum neighbor of v<sub>i</sub> in the ordering



- Algorithm Traverse the vertices in order.
  - If v<sub>i</sub> is dominated, skip it.
  - Otherwise, add its favored neighbor to the dominating set.

*Proof* : We build a minimum dominating set of G.

- Ordering : by ending time
- favored neighbor of v<sub>i</sub> := maximum neighbor of v<sub>i</sub> in the ordering



- Algorithm Traverse the vertices in order.
  - If v<sub>i</sub> is dominated, skip it.
  - Otherwise, add its favored neighbor to the dominating set.

*Proof* : We build a minimum dominating set of G.

- Ordering : by ending time
- favored neighbor of v<sub>i</sub> := maximum neighbor of v<sub>i</sub> in the ordering



- Algorithm Traverse the vertices in order.
  - If v<sub>i</sub> is dominated, skip it.
  - Otherwise, add its favored neighbor to the dominating set.

*Proof* : We build a minimum dominating set of G.

- Ordering : by ending time
- favored neighbor of v<sub>i</sub> := maximum neighbor of v<sub>i</sub> in the ordering



- Algorithm Traverse the vertices in order.
  - If v<sub>i</sub> is dominated, skip it.
  - Otherwise, add its favored neighbor to the dominating set.

A graph G is d-degenerate it possesses a vertex v of degree  $\leq d$  and G - v is also d-degenerate.



#### Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time FPT(d + s), i.e. in time  $f(d + s) \times n^{O(1)}$  if |G| = n; where d is the degeneracy of the graph and s is the size of the sought solution.

A graph G is d-degenerate it possesses a vertex v of degree  $\leq d$  and G - v is also d-degenerate.



#### Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time FPT(d + s), i.e. in time  $f(d + s) \times n^{O(1)}$  if |G| = n; where d is the degeneracy of the graph and s is the size of the sought solution.

A graph G is d-degenerate it possesses a vertex v of degree  $\leq d$  and G - v is also d-degenerate.



#### Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time FPT(d + s), i.e. in time  $f(d + s) \times n^{O(1)}$  if |G| = n; where d is the degeneracy of the graph and s is the size of the sought solution.

A graph G is d-degenerate it possesses a vertex v of degree  $\leq d$  and G - v is also d-degenerate.



#### Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time FPT(d + s), i.e. in time  $f(d + s) \times n^{O(1)}$  if |G| = n; where d is the degeneracy of the graph and s is the size of the sought solution.

A graph G is d-degenerate it possesses a vertex v of degree  $\leq d$  and G - v is also d-degenerate.



#### Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time FPT(d + s), i.e. in time  $f(d + s) \times n^{O(1)}$  if |G| = n; where d is the degeneracy of the graph and s is the size of the sought solution.

#### Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time FPT( $\tau$ ),

where  $\tau$  is the size of a minimum vertex cover of the graph.

#### Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time FPT( $\tau$ ), where  $\tau$  is the size of a minimum vertex cover of the graph.

Proof :

 Trivial case : If |D| = k and D is minimal, then D is frozen.
 We cannot remove nor add vertices, hence the instance (G, k, s, D) is positive iff |D| ≤ s.

 $\rightarrow$  We can test this condition in time O(|G|)  $\checkmark$ 



### Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time FPT( $\tau$ ), where  $\tau$  is the size of a minimum vertex cover of the graph.

Proof :

- Trivial case : If |D| = k and D is minimal, then D is frozen. We cannot remove nor add vertices, hence the instance (G, k, s, D) is positive iff |D| ≤ s. → We can test this condition in time O(|G|) √
- If |D| = k and D is **not minimal**, then we can remove a vertex of D and reduce to the last case, |D| < k.

From now on we assume that |D| < k.

 $\rightarrow$  We can add at least 1 vertex to D without getting above k

#### Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time FPT( $\tau$ ),

where  $\tau$  is the size of a minimum vertex cover of the graph.

- We compute  $\tau$  in time FPT $(\tau)$ .
- 2 possibilities :
  - Either  $\tau > s$ : As  $d \le \tau$ , we have  $d + s \le 2\tau$ .  $\rightarrow$  we use the FPT(d + s)-time algorithm  $\checkmark$

#### Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time FPT( $\tau$ ),

where  $\tau$  is the size of a minimum vertex cover of the graph.

- We compute  $\tau$  in time FPT $(\tau)$ .
- 2 possibilities :
  - Either  $\tau > s$ : As  $d \le \tau$ , we have  $d + s \le 2\tau$ .  $\rightarrow$  we use the FPT(d + s)-time algorithm  $\checkmark$
  - Or τ ≤ s : The instance is a **positive instance** in this case. To prove it, we will reconfigure D into a dominating set D' that satisfies |D'| ≤ τ.



Let G be a graph.



We build a minimum vertex cover in time  $FPT(\tau)$ .



Let D be an initial dominating set.



We associate to each  $v \in X \setminus D$  a neighbor t(v). Let  $T = \{t(v) \mid v \in X \setminus D\}$ .





22/24



22/24



22/24



22/24



22/24



22/24





22/24



22/24

When  $(I \cap D') \subseteq J$ , we have :

 $|I \cap D'| \leq |t^{-1}(I \cap D')|$  $\leq |X \setminus D'|$  $= \tau - |X \cap D'|$ 



When  $(I \cap D') \subseteq J$ , we have :

$$|I \cap D'| \leq |t^{-1}(I \cap D')|$$
  
$$\leq |X \setminus D'|$$
  
$$= \tau - |X \cap D'|$$

Hence we have :

$$\begin{array}{rcl} |D'| & = & |I \cap D'| + |X \cap D'| \\ & \leq & \tau \\ & \leq & s \end{array}$$

Thus D' is a solution : the instance is positive.



### Complexity of OPT-DSR

- PSPACE-complete (even on bipartite, split and bounded pathwidth graphs)
- Polynomial on Interval graphs
- FPT(d + s) (d = degeneracy, s = size of the solution)
- FPT(au) (au = size of a minimum vertex cover)

### Complexity of OPT-DSR

- PSPACE-complete (even on bipartite, split and bounded pathwidth graphs)
- Polynomial on Interval graphs
- FPT(d + s) (d = degeneracy, s = size of the solution)
- FPT(au) (au = size of a minimum vertex cover)

#### Thanks for your attention.