HALF-POSITIONAL OBJECTIVES
RECOGNIZED BY DETERMINISTIC BÜCHI AUTOMATA

PATRICIA BOUYER \(^a\), ANTONIO CASARES \(^b\), MICKAEL RANDOUR \(^c\),
AND PIERRE VANDENHOVE \(^a\,^c\)

\(^a\) Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190, Gif-sur-Yvette, France
\(^b\) LaBRI, Université de Bordeaux, Bordeaux, France
\(^c\) F.R.S.-FNRS & UMONS – Université de Mons, Mons, Belgium

ABSTRACT. A central question in the theory of two-player games over graphs is to understand which objectives are half-positional, that is, which are the objectives for which the protagonist does not need memory to implement winning strategies. Objectives for which both players do not need memory have already been characterized (both in finite and infinite graphs); however, less is known about half-positional objectives. In particular, no characterization of half-positionality is known for the central class of \(\omega\)-regular objectives.

In this paper, we characterize objectives recognizable by deterministic Büchi automata (a class of \(\omega\)-regular objectives) that are half-positional, both over finite and infinite graphs. Our characterization consists of three natural conditions linked to the language-theoretic notion of right congruence. Furthermore, this characterization yields a polynomial-time algorithm to decide half-positionality of an objective recognized by a given deterministic Büchi automaton.

1. INTRODUCTION

Graph games and reactive synthesis. We study zero-sum turn-based games on graphs confronting two players (a protagonist and its opponent). They interact by moving a pebble in turns through the edges of a graph for an infinite amount of time. Each vertex belongs to a player, and the player controlling the current vertex decides on the next state of the game. Edges of the graph are labeled with colors, and the interaction of the two players therefore produces an infinite sequence of them. The objective of the game is specified by a subset of infinite sequences of colors, and the protagonist wins if the produced sequence
belongs to this set. We are interested in finding a winning strategy for the protagonist, that is, a function indicating how the protagonist should move in any situation, guaranteeing the achievement of the objective.

This game-theoretic model is particularly fitted to study the reactive synthesis problem [BCJ18]: a system (the protagonist) wants to satisfy a specification (the objective) while interacting continuously with its environment (the opponent). The goal is to build a controller for the system satisfying the specification, whenever possible. This comes down to finding a winning strategy for the protagonist in the derived game.

Half-positionality. In order to obtain a controller for the system that is simple to implement, we are interested in finding the simplest possible winning strategy. Here, we focus on the amount of information that winning strategies have to remember. The simplest strategies are then arguably positional (also called memoryless) strategies, which do not remember anything about the past and base their decisions solely on the current state of the game. We intend to understand for which objectives positional strategies suffice for the protagonist to play optimally (i.e., to win whenever it is possible) — we call these objectives half-positional.

We distinguish half-positionality from bipositionality (or memoryless-determinacy), which refers to objectives for which positional strategies suffice to play optimally for both players.

Many natural objectives have been shown to be bipositional over games on finite and sometimes infinite graphs: e.g., discounted sum [Sha53], mean-payoff [EM79], parity [EJ91], total payoff [GZ04], energy [BFL+08], or average-energy games [BMR+18]. Bipositionality can be established using general criteria and characterizations, over games on both finite [GZ04, GZ05, AR17] and infinite [CN06] graphs. Yet, there exist many objectives and combinations thereof for which one player, but not both, has positional optimal strategies (Rabin conditions [KK91, Kla94], mean-payoff parity [CHJ05], energy parity [CD12], some window objectives [CDRR15, BHR16], energy mean-payoff [BHRR19]...), and to which these results do not apply.

Various attempts have been made to understand common underlying properties of half-positional objectives and provide sufficient conditions [Kop06, Kop07, Kop08, BFMM11], but little more was known until the recent work of Ohlmann [Ohl23] (discussed below). These sufficient conditions are not general enough to prove half-positionality of some very simple objectives, even in the well-studied class of \(\omega\)-regular objectives [BFMM11, Lemma 13]. Furthermore, multiple questions concerning half-positionality remain open. For instance, in [Kop08], Kopczyński conjectured that prefix-independent half-positional objectives are closed under finite union (this conjecture was recently refuted for games on finite graphs [Koz22a], but is still unsolved for games on infinite graphs). Also, Kopczyński showed that given a deterministic parity automaton recognizing a prefix-independent objective \(W\), we can decide if \(W\) is half-positional over finite arenas [Kop07]. However, the time complexity of his algorithm is \(O(n^{O(n^2)})\), where \(n\) is the number of states of the automaton. It is unknown whether this can be done in polynomial time, and no algorithm is known for deciding half-positionality over infinite arenas or in the non-prefix-independent case.

\(\omega\)-regular objectives and deterministic Büchi automata. A central class of objectives, whose half-positionality is not yet completely understood, is the class of \(\omega\)-regular objectives. There are multiple equivalent definitions for them: they are the objectives defined, e.g., by \(\omega\)-regular expressions, by non-deterministic Büchi automata [McN66], and by deterministic parity automata [Mos84]. These objectives coincide with the class of objectives defined by
monadic second-order formulas [Büc62], and they encompass linear-time temporal logic (LTL) specifications [Pnu77]. Part of their interest is due to the landmark result that finite-state machines are sufficient to implement optimal strategies in \(\omega \)-regular games [BL69, GH82], implying the decidability of the monadic second-order theory of natural numbers with the successor relation [Büc62] and the decidability of the synthesis problem under LTL specifications [PR89].

In this paper, we focus on the subclass of \(\omega \)-regular objectives recognized by deterministic \(\text{Büchi automata} \) (DBA), that we call DBA-recognizable. DBA-recognizable objectives correspond to the \(\omega \)-regular objectives that can be written as a countable intersection of open objectives (for the Cantor topology, that is, that are \(G_\delta \)-sets of the Borel hierarchy); or equivalently, that are the limit of a regular language of finite words [Lan69, PP04]. Deciding the winner of a game with a DBA-recognizable objective is doable in polynomial time in the size of the arena and the DBA (by solving a Büchi game on the product of the arena and the DBA [BCJ18]).

We now discuss two technical tools at the core of our approach: \textit{universal graphs} and \textit{right congruences}.

Universal graphs. One recent breakthrough in the study of half-positionality is the introduction of \textit{well-monotonic universal graphs}, combinatorial structures that can be used to provide a witness of winning strategies in games with a half-positional objective. Recently, Ohlmann [Ohl23] has shown that the existence of a \textit{well-monotonic universal graph} for an objective \(W \) exactly characterizes half-positionality (under minor technical assumptions on \(W \)). Moreover, under these assumptions, a wide class of algorithms, called \textit{value iteration algorithms}, can be applied to solve any game with a half-positional objective [CFG022, Ohl23].

Although it brings insight into the structure of half-positional objectives, showing half-positionality through the use of universal graphs is not always straightforward, and has not yet been applied in a systematic way to \(\omega \)-regular objectives.

Right congruence. Given an objective \(W \), the \textit{right congruence} \(\sim_W \) of \(W \) is an equivalence relation on finite words: two finite words \(w_1 \) and \(w_2 \) are equivalent for \(\sim_W \) if for all infinite continuations \(w, w_1 w \in W \) if and only if \(w_2 w \in W \). There is a natural automaton classifying the equivalence classes of the right congruence, which we refer to as the \textit{prefix-classifier} [Sta83, MS97].

In the case of languages of \textit{finite} words, a straightforward adaptation of the right congruence recovers the known Myhill-Nerode congruence. This equivalence relation characterizes the regular languages (a language is regular if and only if its congruence has finitely many equivalence classes), and the prefix-classifier is exactly the smallest deterministic finite automaton recognizing a language — this is the celebrated Myhill-Nerode theorem [Ner58].

Objectives are languages of \textit{infinite} words, for which the situation is not so clear-cut. In particular, an \(\omega \)-regular objective may not always be recognized by its prefix-classifier along with a natural acceptance condition (Büchi, coBüchi, parity, Muller...) [MS97, AF21].

Contributions. Our main contribution is a \textit{characterization} of half-positionality for DBA-recognizable objectives through a conjunction of three easy-to-check conditions (Theorem 3.11).

1. The equivalence classes of the right congruence are \textit{totally} ordered \textit{w.r.t.} inclusion of their winning continuations.
(2) Whenever the set of winning continuations of a finite word \(w_1 \) is a proper subset of the set of winning continuations of a concatenation \(w_1 w_2 \), the word \(w_1 (w_2)\omega \) produced by repeating infinitely often \(w_2 \) is winning.

(3) The objective has to be recognizable by a DBA using the structure of its prefix-classifier.

A few examples of simple DBA-recognizable objectives that were not encompassed by previous half-positionality criteria [Kop06, BFMM11] are, e.g., reaching a color twice [BFMM11, Lemma 13] and weak parity [Tho08]. We also refer to Example 3.7, which is half-positional but not bipositional, and whose half-positionality is straightforward using our characterization.

Various corollaries with practical and theoretical interest follow from our characterization.

- We obtain a painless path to show (by checking each of the three conditions) that given a deterministic Büchi automaton, the half-positionality (over both finite and infinite arenas) of the objective it recognizes is decidable in time \(O(k \cdot n^4) \), where \(k \) is the number of colors and \(n \) is the number of states of the DBA (Section 3.3).
- Prefix-independent DBA-recognizable half-positional objectives are exactly the very simple Büchi conditions, which consist of all the infinite words seeing infinitely many times some subset of the colors (Proposition 3.12). In particular, Kopczyński’s conjecture trivializes for DBA-recognizable objectives (the finite union of Büchi conditions is a Büchi condition).
- We obtain a finite-to-infinite and one-to-two-player lift result (Proposition 3.15): in order to check that a DBA-recognizable objective is half-positional over arbitrary — possibly two-player and infinite — graphs, it suffices to check the existence of positional optimal strategies over finite graphs where all the vertices are controlled by the protagonist.

Technical overview.
Condition (1) turns out to be equivalent to earlier properties used to study bipositionality and half-positionality [GZ05, BFMM11] (details in Appendix A). Condition (2), to the best of our knowledge, is a novel condition. Condition (3) has been studied multiple times in the language-theoretic literature, both for itself and for minimization and learning algorithms [Sta83, Le 90, MS97, AF21]. As an example, all deterministic weak automata (a restriction on DBA) satisfy Condition (3) [Sta83, AF21].

Conditions (1) and (2) are necessary for respectively bipositionality and half-positionality of general objectives. Condition (3) is necessary for half-positionality of DBA-recognizable objectives, but not for all (even \(\omega \)-regular) objectives in general (see Example 3.10). The proof of its necessity is more involved than for the first two conditions, and will build on automata-theoretic ideas introduced for good-for-games coBüchi automata [AK19, AK20]. Together, the three conditions are sufficient for half-positionality of DBA-recognizable objectives: the proof of sufficiency uses the theory of universal graphs, and consists of building a family of well-monotonic universal graphs [Ohl23] for objectives satisfying the three properties.

Other related works.
We have discussed relevant literature on half-positionality [Kop06, Kop07, BFMM11, Ohl23] and bipositionality [GZ04, GZ05, CN06, AR17]. A more general quest is to understand memory requirements when positional strategies are not powerful enough: e.g., [LPR18, BLO+22, BORV21, BRV23].

Memory requirements have been precisely characterized for some classes of \(\omega \)-regular objectives (not encompassing the class of DBA-recognizable objectives), such as Muller conditions [DJW97, Zie98, Cas22, CCL22] and safety specifications, i.e., objectives that are
closed for the Cantor topology [CFH14]. The latter also uses the order of the equivalence classes of the right congruence as part of its characterization.

Recently, a link between the prefix-classifier, the memory requirements, and the recognizability of \(\omega\)-regular objectives was established [BRV23]. However, this result does not provide optimal bounds on the strategy complexity, and is thereby insufficient to study half-positionality.

Our article is an extended version (with complete proofs and additional examples and remarks) of a preceding conference version [BCRV22].

Structure of the paper. Notations and definitions are introduced in Section 2. Our main contributions are presented in Section 3: we introduce and discuss the three conditions used in our results, then we state our main characterization (Theorem 3.11) and some corollaries, and we end with an explanation on how to use the characterization to decide half-positionality of DBA-recognizable objectives in polynomial time. Section 4 and Section 5 contain the proof of Theorem 3.11: the former shows the necessity of the three conditions for half-positionality of DBA-recognizable objectives, and the latter shows their sufficiency through the use of universal graphs.

Conference version. Our article extends a work already published as a conference version [BCRV22] with many details. It contains in particular the full proofs of the statements and additional explanations, remarks, and examples.

2. Preliminaries

In the whole article, letter \(C\) refers to a (finite or infinite) non-empty set of colors. Given a set \(A\), we write respectively \(A^*\), \(A^+\), and \(A^\omega\) for the set of finite, non-empty finite, and infinite sequences of elements of \(A\). We denote by \(\varepsilon\) the empty word.

2.1. Games and positionality.

Graphs. An (edge-colored) graph \(G = (V,E)\) is given by a non-empty set of vertices \(V\) (of any cardinality) and a set of edges \(E \subseteq V \times C \times V\). We write \(v \xrightarrow{c} v'\) if \((v,c,v')\in E\).

We assume graphs to be non-blocking: for all \(v\in V\), there exists \((v',c,v'')\in E\) such that \(v = v'\). We allow graphs with infinite branching. For \(v\in V\), an infinite path of \(G\) from \(v\) is an infinite sequence of edges \(\pi = (v_0,c_1,v'_1)(v_1,c_2,v'_2)\ldots \in E^\omega\) such that \(v_0 = v\) and for all \(i \geq 1\), \(v'_i = v_i\). A finite path of \(G\) from \(v\) is a finite prefix in \(E^*\) of an infinite path of \(G\) from \(v\). For convenience, we assume that there is a distinct empty path \(\lambda_v\) for every \(v\in V\). If \(\gamma = (v_0,c_1,v_1)\ldots(v_{n-1},c_n,v_n)\) is a non-empty finite path of \(G\), we define \(\text{last}(\gamma) = v_n\). For an empty path \(\lambda_v\), we define \(\text{last}(\lambda_v) = v\). An infinite (resp. finite) path \((v_0,c_1,v_1)(v_1,c_2,v_2)\ldots\) (resp. \((v_0,c_1,v_1)\ldots(v_{n-1},c_n,v_n))\) is sometimes represented as \(v_0 \xrightarrow{c_1} v_1 \xrightarrow{c_2} \ldots\) (resp. \(v_0 \xrightarrow{c_1} \ldots \xrightarrow{c_n} v_n\)). A graph \(G = (V,E)\) is finite if both \(V\) and \(E\) are finite. A graph is strongly connected if for every pair of vertices \((v,v')\in V \times V\) there is a path from \(v\) to \(v'\). A strongly connected component of \(G\) is a maximal strongly connected subgraph.
Arenas and strategies. We consider two players \(P_1\) and \(P_2\). An arena is a tuple \(A = (V, V_1, V_2, E)\) such that \((V, E)\) is a graph and \(V\) is the disjoint union of \(V_1\) and \(V_2\). Intuitively, vertices in \(V_1\) are controlled by \(P_1\) and vertices in \(V_2\) are controlled by \(P_2\). An arena \(A = (V, V_1, V_2, E)\) is a one-player arena of \(P_1\) (resp. of \(P_2\)) if \(V_2 = \emptyset\) (resp. \(V_1 = \emptyset\)). Finite paths of \((V, E)\) are called histories of \(A\). For \(i \in \{1, 2\}\), we denote by \(\text{Hists}_i(A)\) the set of histories of \(A\) such that \(\text{last}(\gamma) \in V_i\).

Let \(i \in \{1, 2\}\). A strategy of \(P_i\) on \(A\) is a function \(\sigma_i : \text{Hists}_i(A) \to E\) such that for all \(\gamma \in \text{Hists}_i(A)\), the first component of \(\sigma_i(\gamma)\) coincides with \(\text{last}(\gamma)\). Given a strategy \(\sigma_i\) of \(P_i\), we say that an infinite path \(\pi = e_1e_2\ldots\) is consistent with \(\sigma_i\) if for all finite prefixes \(\gamma = e_1\ldots e_j\) of \(\pi\) such that \(\text{last}(\gamma) \in V_i\), \(\sigma_i(\gamma) = e_{j+1}\). A strategy \(\sigma_i\) is positional (also called memoryless in the literature) if its outputs only depend on the current vertex and not on the whole history, i.e., if there exists a function \(f : V_i \to E\) such that for \(\gamma \in \text{Hists}_i(A)\), \(\sigma_i(\gamma) = f(\text{last}(\gamma))\).

Objectives. An objective is a set \(W \subseteq C^\omega\) (subsets of \(C^\omega\) are sometimes also called languages of infinite words, \(\omega\)-languages, or winning conditions in the literature). When an objective \(W\) is clear in the context, we say that an infinite word \(w \in C^\omega\) is winning if \(w \in W\), and losing if \(w \notin W\). We write \(\overline{W}\) for the complement \(C^\omega \setminus W\) of an objective \(W\). An objective \(W\) is prefix-independent if for all \(w \in C^*\) and \(w' \in C^\omega\), \(w' \in W\) if and only if \(ww' \in W\). An objective that we will often consider is the Büchi condition: given a subset \(F \subseteq C\), we denote by \(\text{Büchi}(F)\) the set of infinite words seeing infinitely many times a color in \(F\). Such an objective is prefix-independent. A game is a tuple \((A, W)\) of an arena \(A\) and an objective \(W\).

Optimality and half-positionality. Let \(A = (V, V_1, V_2, E)\) be an arena, \((A, W)\) be a game, and \(v \in V\). We say that a strategy \(\sigma_1\) of \(P_1\) is winning from \(v\) if for all infinite paths \(v_0 \xrightarrow{c_1} v_1 \xrightarrow{c_2} \ldots\) from \(v\) consistent with \(\sigma_1, c_1c_2\ldots \in W\).

A strategy of \(P_1\) is optimal for \(P_1\) in \((A, W)\) if it is winning from all the vertices from which \(P_1\) has a winning strategy. We often write optimal for \(P_1\) in \(A\) if the objective \(W\) is clear from the context. We stress that this notion of optimality requires a single strategy to be winning from all the winning vertices (a property sometimes called uniformity).

An objective \(W\) is half-positional if for all arenas \(A\), there exists a positional strategy of \(P_1\) on \(A\) that is optimal for \(P_1\) in \(A\). We sometimes only consider half-positionality on a restricted set of arenas (typically, finite and/or one-player arenas). For a class of arenas \(\mathcal{X}\), an objective \(W\) is half-positional over \(\mathcal{X}\) if for all arenas \(A \in \mathcal{X}\), there exists a positional strategy of \(P_1\) on \(A\) that is optimal for \(P_1\) in \(A\).

Remark 2.1 (\(\varepsilon\)-edges). Sometimes, arenas are considered to be colored over the alphabet \(C \cup \{\varepsilon\}\), adding the restriction that no cycle is entirely labeled with \(\varepsilon\) [DJW97, Zie98, Kop07, Hor09, Cas22]. In that case, an infinite word in \((C \cup \{\varepsilon\})^\omega\) labeling a path is winning if the word obtained by removing the occurrences of \(\varepsilon\) belongs to \(W\). In this paper, we consider arenas without \(\varepsilon\)-edges, but all our results apply to this other setting (cf. Remark 5.3). In general, allowing for arenas with \(\varepsilon\)-edges has an effect on strategy complexity [Cas22].

2.2. Büchi automata.
Automaton structures and Büchi automata. A non-deterministic automaton structure (on C) is a tuple $S = (Q, C, Q_{\text{init}}, \Delta)$ such that Q is a finite set of states, $Q_{\text{init}} \subseteq Q$ is a non-empty set of initial states and $\Delta \subseteq Q \times C \times Q$ is a set of transitions. We assume that all states of automaton structures are reachable from an initial state in Q_{init} by taking transitions in Δ.

A (transition-based) non-deterministic Büchi automaton (NBA) is an automaton structure S together with a set of transitions $\alpha \subseteq \Delta$. The transitions in α are called Büchi transitions.

Given an NBA $B = (Q, C, Q_{\text{init}}, \Delta, \alpha)$, a (finite or infinite) run of B on a (finite or infinite) word $w = c_1 c_2 \ldots \in C^* \cup C^\omega$ is a sequence $(q_0, c_1, q_1) (q_1, c_2, q_2) \ldots \in \Delta^* \cup \Delta^\omega$ such that $q_0 \in Q_{\text{init}}$. An infinite run $(q_0, c_1, q_1) (q_1, c_2, q_2) \ldots \in \Delta^\omega$ of B is accepting if for infinitely many $i \geq 0$, $(q_i, c_{i+1}, q_{i+1}) \in \alpha$. A word $w \in C^\omega$ is accepted by B if there exists an accepting run of B on w — if not, it is rejected. We denote the set of infinite words accepted by B by $\mathcal{L}(B)$, and we then say that $\mathcal{L}(B)$ is the objective recognized by B. Here, we take the definition of an ω-regular objective as an objective that can be recognized by an NBA (the classical definition uses ω-regular expressions, but our definition is well-known to be equivalent [McN66]). Given an automaton structure $S = (Q, C, Q_{\text{init}}, \Delta)$, we say that an NBA B is built on top of S if there exists $\alpha \subseteq \Delta$ such that $B = (Q, C, Q_{\text{init}}, \Delta, \alpha)$.

Remark 2.2. Notice that for generality, we allow the set of colors C to be infinite. This is uncommon for ω-regular objectives and automata, but has no real impact: when an objective is specified by an NBA, there will be at most finitely many equivalence classes of colors for the equivalence relation “inducing exactly the same transitions in the NBA”. In Section 4.3.2, it will be helpful to consider infinite sets of colors.

Deterministic automata. An automaton structure $S = (Q, C, Q_{\text{init}}, \Delta)$ is deterministic if $|Q_{\text{init}}| = 1$ and, for each $q \in Q$ and $c \in C$, there is exactly one $q' \in Q$ such that $(q, c, q') \in \Delta$ (we remark that, without loss of generality, we define deterministic automaton structures so that for each state and each color there is one outgoing transition — such automata are sometimes called complete or total). A deterministic Büchi automaton (DBA) is an NBA whose underlying automaton structure is deterministic. For a DBA $B = (Q, C, \{q_{\text{init}}\}, \Delta, \alpha)$, we denote by q_{init} the unique initial state (and we will drop the braces around q_{init} in the tuple), and by $\delta : Q \times C \to Q$ the update function that associates to $(q, c) \in Q \times C$ the only $q' \in Q$ such that $(q, c, q') \in \Delta$. We denote by δ^s the natural extension of δ to finite words — by induction, the function $\delta^s : Q \times C^* \to Q$ is such that $\delta^s(q, c) = q$, and for $w \in C^*$, $c \in C$, $\delta^s(q, wc) = \delta(\delta^s(q, w), c)$. As transitions are uniquely determined by their first two components, we also assume for brevity that $\alpha \subseteq Q \times C$.

For a DBA B, a state $q \in Q$ and a word $w = c_1 c_2 \ldots \in C^* \cup C^\omega$, we denote by $B(q, w) = (q, c_1, q_1) (q_1, c_2, q_2) \ldots \in \Delta^* \cup \Delta^\omega$ the only run on w starting from q.

An objective W is DBA-recognizable if there exists a DBA B such that $W = \mathcal{L}(B)$. For $F \subseteq C$, notice that Büchi(F) is DBA-recognizable: it is recognized by the DBA $(\{q_{\text{init}}\}, C, q_{\text{init}}, \Delta, \alpha)$ with a single state such that $(q_{\text{init}}, c) \in \alpha$ if and only if $c \in F$.

Remark 2.3. The fact that a single state suffices to recognize Büchi(F) relies on the assumption that our DBA are transition-based and not state-based (α is a set of transitions, not of states). Indeed, apart from the trivial cases $F = \emptyset$ and $F = C$, a state-based DBA recognizing Büchi(F) requires two states. The third condition of our upcoming
characterization (Theorem 3.11) would therefore not apply to this simple example if we only considered state-based DBA.

In this paper, all automata will be deterministic, and the term “automaton” will stand for “deterministic automaton” by default.

Remark 2.4. Deterministic Büchi automata recognize a proper subset of the \(\omega \)-regular objectives. That is, not every non-deterministic Büchi automaton can be converted into a deterministic one recognizing the same objective \([\text{Wag79}])\.

We restate a well-known lemma about \(\omega \)-regular objectives: if two \(\omega \)-regular objectives are not equal, then they are distinguished by an ultimately periodic word. Ultimately periodic words can easily be finitely represented, and this lemma will be used in Section 4 to force some behaviors to appear in finite arenas.

Lemma 2.5. Let \(W_1, W_2 \) be two \(\omega \)-regular objectives. If \(W_1 \neq W_2 \), then there exist \(w_1 \in C^* \) and \(w_2 \in C^+ \) such that either \(w_1(w_2)^\omega \in W_1 \setminus W_2 \), or \(w_1(w_2)^\omega \in W_2 \setminus W_1 \). In particular, if \(W_1 \nsubseteq W_2 \), then there exist \(w_1 \in C^* \) and \(w_2 \in C^+ \) such that \(w_1(w_2)^\omega \in W_1 \setminus W_2 \).

Proof. The first statement is standard and follows from McNaughton’s theorem \([\text{McN66}]\). For the second statement, if \(W_1 \nsubseteq W_2 \), then \(W_1 \setminus W_2 \neq \emptyset \). Objective \(W_1 \setminus W_2 \neq \emptyset \) is \(\omega \)-regular (as \(\omega \)-regular objectives are closed by complement and intersection) and so is \(\emptyset \). By the first statement, we take \(w_1 \in C^* \) and \(w_2 \in C^+ \) such that either \(w_1(w_2)^\omega \in (W_1 \setminus W_2) \setminus \emptyset \), or \(w_1(w_2)^\omega \in \emptyset \setminus (W_1 \setminus W_2) \). As \(\emptyset \setminus (W_1 \setminus W_2) = \emptyset \), we have \(w_1(w_2)^\omega \in (W_1 \setminus W_2) \setminus \emptyset = W_1 \setminus W_2 \). \(\Box \)

Right congruence and prefix preorder. Let \(W \subseteq C^\omega \) be an objective. For a finite word \(w \in C^* \), we write \(w^{-1}W = \{ w' \in C^\omega \mid ww' \in W \} \) for the set of winning continuations of \(w \). We define the **right congruence** \(\sim_W \subseteq C^* \times C^* \) of \(W \) as \(w_1 \sim_W w_2 \) if \(w_1^{-1}W = w_2^{-1}W \) (meaning that \(w_1 \) and \(w_2 \) have the same winning continuations). Relation \(\sim_W \) is an equivalence relation. When \(W \) is clear from the context, we write \(\sim \) for \(\sim_W \). For \(w \in C^* \), we denote by \([w] \subseteq C^* \) its equivalence class of \(\sim \).

When \(\sim \) has finitely many equivalence classes, we can associate a natural deterministic automaton structure \(S_\sim = (Q_\sim, C, q_{\text{init}}, \Delta_\sim) \) to \(\sim \) such that \(Q_\sim \) is the set of equivalence classes of \(\sim \), \(q_{\text{init}} = [\varepsilon] \), and \(\delta_\sim([w],c) = [wc] \) \([\text{Sta83, MS97}]\). The transition function \(\delta_\sim \) is well-defined since it follows from the definition of \(\sim \) that if \(w_1 \sim w_2 \), then for all \(c \in C \), \(w_1c \sim w_2c \). Hence, the choice of representatives for the equivalence classes does not have an impact on this definition. We call the automaton structure \(S_\sim \) the **prefix-classifier** of \(W \).

Remark 2.6. Equivalence relation \(\sim_W \) has only one equivalence class if and only if \(W \) is prefix-independent. In particular, an objective has a prefix-classifier with a single state if and only if it is prefix-independent. \(\Box \)

An important property of \(\sim \) is the following.

Lemma 2.7. Let \(w_1, w_2 \in C^* \). If \(w_1 \sim w_2 \), then for all \(w \in C^* \), \(w_1w \sim w_2w \).

Proof. If \(w_1 \) and \(w_2 \) have the same winning continuations, they have in particular the same winning continuations starting with \(w \). \(\Box \)

We define the **prefix preorder** \(\preceq_W \) of \(W \): for \(w_1, w_2 \in C^* \), we write \(w_1 \preceq_W w_2 \) if \(w_1^{-1}W \subseteq w_2^{-1}W \) (meaning that any continuation that is winning after \(w_1 \) is also winning after \(w_2 \)). Intuitively, \(w_1 \preceq_W w_2 \) means that a game starting with \(w_2 \) is always preferable...
to a game starting with w_1 for \mathcal{P}_1, as there are more ways to win after w_2. When W is clear from the context, we write \leq for \leq_w. Relation $\leq \subseteq C^* \times C^*$ is a preorder. Notice that \sim is equal to $\leq \cap \preceq$. We also define the strict preorder $< = \leq \setminus \sim$.

Given a DBA $\mathcal{B} = (Q, C, q_{\text{init}}, \Delta, \alpha)$ recognizing the objective W, observe that for $w, w' \in C^*$ such that $\delta^*(q_{\text{init}}, w) = \delta^*(q_{\text{init}}, w')$, we have $w \sim w'$. In this case, equivalence relation \sim has at most $|Q|$ equivalence classes. For $q \in Q$, we write abusively $q^{-1}W$ for the objective recognized by the DBA $(Q, C, q, \Delta, \alpha)$. Objective $q^{-1}W$ equals $w^{-1}W$ for any word $w \in C^*$ such that $\delta^*(q_{\text{init}}, w) = q$. We extend the equivalence relation \sim and preorder \leq to elements of Q (we sometimes write \sim_Q and \leq_Q to avoid any ambiguity). Transitions of \mathcal{B} following a given word are non-decreasing w.r.t. states.

Lemma 2.8. Let $\mathcal{B} = (Q, C, q_{\text{init}}, \Delta, \alpha)$ be a DBA. For every $w \in C^*$, function $\delta^*(\cdot, w)$ is non-decreasing for \leq_Q (i.e., for $q_1, q_2 \in Q$, if $q_1 \leq_Q q_2$, then $\delta^*(q_1, w) \leq_Q \delta^*(q_2, w)$).

Proof. Let W be the objective that \mathcal{B} recognizes. Let $w \in C^*$ and $q_1, q_2 \in Q$ be such that $q_1 \leq_Q q_2$. Let $q'_1 = \delta^*(q_1, w)$ and $q'_2 = \delta^*(q_2, w)$. We show that $q'_1 \leq_Q q'_2$, i.e., that $(q'_1)^{-1}W \subseteq (q'_2)^{-1}W$. Let $w' \in (q'_1)^{-1}W$. This implies that $ww' \in q'_1^{-1}W$. As $q_1 \leq_Q q_2$, we also have that $ww' \in q_2^{-1}W$. This implies that $w' \in (q'_2)^{-1}W$. \hfill \Box

α-free words. Let $\mathcal{B} = (Q, C, q_{\text{init}}, \Delta, \alpha)$ be a DBA. We say that a finite run $\varrho \in \Delta^*$ of \mathcal{B} is α-free if it does not contain any transition from α. For $q \in Q$, we define

$$
\alpha\text{-Free}_\mathcal{B}(q) = \{ w \in C^* \mid \mathcal{B}(q, w) \text{ is } \alpha\text{-free} \},
$$

$$
\alpha\text{-FreeCycles}_\mathcal{B}(q) = \{ w \in C^* \mid w \in \alpha\text{-Free}_\mathcal{B}(q) \text{ and } \delta^*(q, w) = q \}.
$$

We call the words in the first set the α-free words from q, and the words in the second set the α-free cycles from q. We state an important property of α-free words.

Lemma 2.9. Let $q_1, q_2 \in Q$ be such that $\alpha\text{-Free}_\mathcal{B}(q_1) = \alpha\text{-Free}_\mathcal{B}(q_2)$. Then for all $w \in \alpha\text{-Free}_\mathcal{B}(q_1)$, $\alpha\text{-Free}_\mathcal{B}(\delta^*(q_1, w)) = \alpha\text{-Free}_\mathcal{B}(\delta^*(q_2, w))$.

Proof. Let $w \in \alpha\text{-Free}_\mathcal{B}(q_1)$. Let $q'_1 = \delta^*(q_1, w)$, $q'_2 = \delta^*(q_2, w)$, and $w' \in \alpha\text{-Free}_\mathcal{B}(q'_1)$. Since both runs $\mathcal{B}(q_1, w)$ and $\mathcal{B}(q'_1, w')$ are α-free, we have $ww' \in \alpha\text{-Free}_\mathcal{B}(q_1) = \alpha\text{-Free}_\mathcal{B}(q_2)$. Therefore, the finite run $\mathcal{B}(q_2, ww')$ is α-free, so the run $\mathcal{B}(q'_2, w')$ is α-free as well and $w' \in \alpha\text{-Free}_\mathcal{B}(q'_2)$. \hfill \Box

Saturation of DBA with B"{u}chi transitions. In what follows, we will make extensive use of a "normal form" of B"{u}chi automata satisfying that any α-free path can be extended to an α-free cycle. Such a normal form can be produced by saturating a given DBA \mathcal{B} with B"{u}chi transitions [KS15, AK19, AK20]. To do so, we add to α all transitions that do not appear in an α-free cycle of \mathcal{B}. Cycles that are α-free can be easily identified by decomposing in strongly connected components the structure obtained by removing the B"{u}chi transitions from \mathcal{B}.

We say that $\mathcal{B} = (Q, C, q_{\text{init}}, \Delta, \alpha)$ is saturated if for every $\alpha' \supseteq \alpha$, the automaton obtained by replacing α with α' does not recognize $\mathcal{L}(\mathcal{B})$.

An α-free component of \mathcal{B} is a strongly connected component of the graph obtained by removing the B"{u}chi transitions from \mathcal{B}. That is, it is a strongly connected component of $(Q, \Delta_{\alpha\text{-free}})$, with $\Delta_{\alpha\text{-free}} = \Delta \setminus \alpha$.
Lemma 2.10. Let $B = (Q, C, q_{\text{init}}, \Delta, \alpha)$ be a DBA. There is a unique set $\alpha_{\text{sat}} \subseteq \Delta$ such that the automaton $B_{\text{sat}} = (Q, C, q_{\text{init}}, \Delta, \alpha_{\text{sat}})$ satisfies:

1. $L(B_{\text{sat}}) = L(B)$.
2. B_{sat} is saturated.

Moreover, α_{sat} is the set of transitions not appearing in any α-free component of B, and it can be computed in $O(|C| \cdot |Q|)$ time when C is finite.

Proof. We first prove the existence of such an α_{sat}. Let $(Q_1, \Delta_1), \ldots, (Q_k, \Delta_k)$ be the α-free components of B. We consider the automaton B_{sat} whose Büchi transitions are those that do not appear in any α-free component (Q_i, Δ_i), that is, we let

$$\alpha_{\text{sat}} = \Delta \setminus \bigcup_{i=1}^{k} \Delta_i$$

and $B_{\text{sat}} = (Q, C, q_{\text{init}}, \Delta, \alpha_{\text{sat}})$.

We show that $L(B_{\text{sat}}) = L(B)$. Since $\alpha \subseteq \alpha_{\text{sat}}$, it holds that $L(B) \subseteq L(B_{\text{sat}})$. For the other inclusion, let $w \notin L(B)$. There are $w_0 \in C^*$, $w' \in C^\omega$ such that $w = w_0w'$ and the finite run $B(q_0, w')$ produced by reading w' from $q_0 = \delta^*(q_{\text{init}}, w_0)$ does not visit any Büchi transition. In particular, $B(q_0, w')$ is an infinite path in the finite graph $(Q, \Delta_{\alpha\text{-free}})$. This implies that eventually, run $B(q_0, w')$ reaches and stays in the same strongly connected component of graph $(Q, \Delta_{\alpha\text{-free}})$. Formally, there are $w_1 \in C^*$, $w_2 \in C^\omega$ such that $w' = w_1w_2$ and the finite run $B(q_1, w_2)$ produced by reading w_2 from $q_1 = \delta^*(q_0, w_1)$ lies entirely in some α-free component (Q_i, Δ_i). Let Δ_{q_1,w_2} be the transitions appearing in $B(q_1, w_2)$. We have $\Delta_{q_1,w_2} \subseteq \Delta_i$. Therefore, $\Delta_{q_1,w_2} \cap \alpha_{\text{sat}} = \emptyset$, so $B_{\text{sat}}(q_{\text{init}}, w)$ is also a rejecting run of B_{sat}.

We prove that B_{sat} is saturated and the uniqueness of α_{sat} at the same time. Let α' be another acceptance set such that $\alpha' \notin \alpha_{\text{sat}}$ and let B' be the automaton obtained by replacing α_{sat} with α' in B_{sat}. Let $(q, c, q') \in \alpha' \setminus \alpha_{\text{sat}}$. Since $(q, c, q') \notin \alpha_{\text{sat}}$, there is an α-free component (Q_i, Δ_i) such that $(q, c, q') \in \Delta_i$. We can therefore consider a word $w \in \alpha\text{-FreeCycles}_{\text{Bsat}}(q)$ labeling an α-free cycle including the transition (q, c, q'). Let $w_0 \in C^*$ such that $\delta^*(q_{\text{init}}, w_0) = q$. Then, $w_0w^\omega \notin L(B_{\text{sat}})$, whereas $w_0w^\omega \in L(B')$, so B' does not recognize the same objective as B_{sat}.

When C is finite, the set of transitions B_{sat} can be computed in time $O(|C| \cdot |Q|)$, as it consists of decomposing a graph with at most $|C| \cdot |Q|$ transitions into strongly connected components [Tar72].

![Figure 1: A DBA (left) and its unique saturation (right). Transitions labeled with a • symbol are the Büchi transitions. In figures, automaton states are depicted with diamonds.](image)

In Figure 1, we show an example of the saturation process presented in the proof of Lemma 2.10.

The following simple lemma follows, which holds true in saturated DBA: every word that is α-free from a state can be completed into an α-free cycle from the same state. This is a key technical lemma used many times in the upcoming proofs.
Lemma 2.11. Let $B = (Q, C, q_{\text{init}}, \Delta, \alpha)$ be a saturated DBA. Let $q \in Q$ and $w \in \alpha\text{-Free}_B(q)$.

There exists $w' \in C^*$ such that $ww' \in \alpha\text{-FreeCycles}_B(q)$.

Proof. Let $q' = \delta^*(q, w)$. Thanks to the saturation property and by Lemma 2.10, α contains all transitions that do not belong to an α-free component. This implies that any two states connected by an α-free run are in the same α-free component. In particular, as q' is reachable from q through an α-free run, q' must belong to the same α-free component as q. Therefore, there exists an α-free run from q' to q. Taking the word w' labeling this run, we obtain the desired result.

3. Half-positionality characterization for DBA-recognizable objectives

In this section, we present our main contribution in Theorem 3.11, by giving three conditions that exactly characterize half-positional DBA-recognizable objectives. These conditions are presented in Section 3.1. Theorem 3.11 and several consequences of it are stated in Section 3.2 (the proof of Theorem 3.11 is postponed to Sections 4 and 5). In Section 3.3, we use this characterization to show that we can decide the half-positionality of a DBA in polynomial time.

3.1. Three conditions for half-positionality. We define the three conditions of objectives at the core of our characterization.

Condition 3.1 (Total prefix preorder). We say that an objective $W \subseteq C^\omega$ has a total prefix preorder if for all $w_1, w_2 \in C^*$, $w_1 \leq_W w_2$ or $w_2 \leq_W w_1$.

Example 3.2 (Not total prefix preorder). Let $C = \{a, b\}$. We consider the objective W recognized by the DBA B depicted in Figure 2 (left). It consists of the infinite words starting with aa or bb. This objective does not have a total prefix preorder: words a and b are incomparable for \leq_W. Indeed, a^ω is winning after a but not after b, and b^ω is winning after b but not after a. In terms of automaton states, we have that q_a and q_b are incomparable for \leq_B. This objective is not half-positional, as witnessed by the arena on the right of Figure 2. In this arena, P_1 is able to win when the game starts in v_1 by playing a in v_3, and when the game starts in v_2 by playing b. However, no positional strategy wins from both v_1 and v_2.

Figure 2: DBA B recognizing objective $W = (aa + bb)C^\omega$ (left), and an arena in which positional strategies do not suffice for P_1 to play optimally for this objective (right). In figures, circles represent arena vertices controlled by P_1.

Remark 3.3. The prefix preorder of an objective W is total if and only if the prefix preorder of its complement \overline{W} is total.
Remark 3.4. Having a total prefix preorder is equivalent to the strong monotony notion [BFMM11] in general, and equivalent to monotony [GZ05] for ω-regular objectives. We discuss in more depth the relation between the conditions appearing in the characterization and other properties from the literature studying half-positionality in Appendix A.

A straightforward result for an objective W recognized by a DBA B is that it has a total prefix preorder if and only if the (reachable) states of B are totally ordered for \preceq_B.

Condition 3.5 (Progress-consistency). We say that an objective W is progress-consistent if for all $w_1 \in C^*$ and $w_2 \in C^+$ such that $w_1 \prec w_1 w_2$, we have $w_1 (w_2)^\omega \in W$.

Intuitively, this means that whenever a word w_2 can be used to make progress after seeing a word w_1 (in the sense of getting to a position in which more continuations are winning), then repeating this word has to be winning.

Example 3.6 (Not progress-consistent). Let $C = \{a, b\}$. We consider the objective $W = C^* a a C^\omega$ recognized by the DBA with three states in Figure 3 (left). This objective contains the words seeing, at some point, twice the color a in a row. Notice that the prefix preorder of this objective is total ($q_{\text{init}} \prec q_a \prec q_{aa}$). This objective is not progress-consistent: we have $\varepsilon \prec ba$, but $(ba)^\omega \notin W$. This objective is not half-positional: if P_1 plays in an arena with a choice among two cycles ba and ab depicted in Figure 3 (right), it is possible to win by playing ba and then ab, but a positional strategy can only achieve words $(ba)^\omega$ or $(ab)^\omega$, which are both losing.

![Figure 3: A DBA recognizing the set of words seeing aa at some point (left), an arena in which positional strategies do not suffice for P_1 to play optimally for this objective (right). Squiggly arrows indicate a sequence of edges or transitions (here, a sequence of two edges).](image)

Example 3.7 (Progress-consistent objective). We consider a slight modification of the previous example by adding two Büchi transitions: see the DBA in Figure 4. The objective recognized by this DBA is $W = \text{Büchi}(\{a\}) \cup C^* aa C^\omega$: W contains the words seeing a infinitely often, or that see a twice in a row at some point. The equivalence classes of \sim_W are $q_{\text{init}}^{-1} W = W$, $q_a^{-1} W = aC^\omega \cup W$ and $q_{aa}^{-1} W = C^\omega$. This objective is progress-consistent: any word reaching q_{aa} is straightforwardly accepted when repeated infinitely often, and any word w such that $\delta^*(q_{\text{init}}, w) = q_a$ necessarily contains at least one a, and thus is accepted when repeated infinitely often. Objective W is half-positional, which will be readily shown with our upcoming characterization (Theorem 3.11).

Here, notice that the complement \overline{W} of W is not progress-consistent. Indeed, $a \not\preceq_{\overline{W}} a(bab)$, but $a(bab)^\omega \notin W$. Unlike having a total prefix preorder, progress-consistency can hold for an objective but not its complement.

Note that half-positionality of W cannot be shown using existing half-positionality criteria [Kop06, BFMM11] (it is neither prefix-independent nor concave) or bipositionality criteria, as it is simply not bipositional.
Figure 4: A DBA recognizing the set of words seeing a infinitely many times, or aa at some point.

Condition 3.8 (Recognizability by the prefix-classifier). Being recognized by a Büchi automaton built on top of the prefix-classifier is our third condition. In other words, for a DBA-recognizable objective $W \subseteq C^\omega$ and its prefix-classifier $S_\sim = (Q_\sim, C, q_\text{init}, \Delta_\sim)$, this condition requires that there exists $\alpha_\sim \subseteq Q_\sim \times C$ such that W is recognized by DBA $(Q_\sim, C, q_\text{init}, \Delta_\sim, \alpha_\sim)$.

We show an example of a DBA-recognizable objective that satisfies the first two conditions (having a total prefix preorder and progress-consistency), but not this third condition, and which is not half-positional.

Example 3.9 (Not recognizable by the prefix-classifier). Let $C = \{a, b\}$. We consider the objective $W = \text{Büchi}(\{a\}) \cap \text{Büchi}(\{b\})$ recognized by the DBA in Figure 5. This objective is prefix-independent: as such (Remark 2.6), there is only one equivalence class of \sim. This implies that the prefix preorder is total, and that W is progress-consistent (the premise of the progress-consistency property can never be true). This objective is not half-positional, as witnessed by the arena in Figure 5 (right): P_1 has a winning strategy from v, but it needs to take infinitely often both a and b.

Any DBA recognizing this objective has at least two states, but all their (reachable) states are equivalent for \sim — no matter the state we choose as an initial state, the recognized objective is the same (by prefix-independence). As it is prefix-independent, its prefix-classifier S_\sim has only one state.

Figure 5: DBA recognizing the objective $\text{Büchi}(\{a\}) \cap \text{Büchi}(\{b\})$ (left), and an arena in which positional strategies do not suffice for P_1 to play optimally for this objective (right).

As will be shown formally, being recognized by a DBA built on top of the prefix-classifier is necessary for half-positionality of DBA-recognizable objectives over finite one-player arenas. Unlike the two other conditions, it is in general not necessary for half-positionality of general objectives, including objectives recognized by other standard classes of ω-automata.

Example 3.10. We consider the complement \overline{W} of the objective $W = \text{Büchi}(\{a\}) \cap \text{Büchi}(\{b\})$ of Example 3.9, which consists of the words ending with a^ω or b^ω. Objective \overline{W} is not DBA-recognizable (a close proof can be found in [BK08, Theorem 4.50]). Still, it is recognizable by a deterministic coBüchi automaton similar to the automaton in Figure 5, but which accepts infinite words that visit transitions labeled with \bullet only finitely often. This
objective is half-positional, which can be shown using [DJW97, Theorem 6]. However, its
prefix-classifier has just one state, and there is no way to recognize W by building a coBüchi
(or even parity) automaton on top of it.

3.2. Characterization and corollaries. We have now defined the three conditions re-
quired for our characterization.

Theorem 3.11. Let $W \subseteq C^\omega$ be a DBA-recognizable objective. Objective W is half-positional
(over all arenas) if and only if
- its prefix preorder \preceq is total,
- it is progress-consistent, and
- it can be recognized by a Büchi automaton built on top of its prefix-classifier S_\sim.

Proof. The proof of the necessity of the three conditions can be found in Section 4, respectively
in Propositions 4.1, 4.2, and 4.3. The proof of the sufficiency of the conjunction of the three
conditions can be found in Section 5, Proposition 5.4.

This characterization is valuable to prove (and disprove) half-positionality of DBA-
recognizable objectives. Examples 3.2, 3.6, and 3.9 are all not half-positional, and each of
them falsifies exactly one of the three conditions from the statement. On the other hand,
Example 3.7 is half-positional. We have already discussed its progress-consistency, but it
is also straightforward to verify that its prefix preorder is total and that it is recognizable
by its prefix-classifier: the right congruence has three totally ordered equivalence classes
corresponding to the states of the DBA in Figure 4.

We state two notable consequences of Theorem 3.11 and of its proof technique. The
first one is the specialization of Theorem 3.11 to prefix-independent objectives. It states
that all prefix-independent, DBA-recognizable objectives that are half-positional are of the
kind $\text{Büchi}(F)$ for some $F \subseteq C$. Prefix-independence of objectives is a frequent assumption
in the literature [Kop06, CN06, GK14a, CFGO22] — we show that under this assumption,
half-positionality of DBA-recognizable objectives is very easy to understand and characterize.

Proposition 3.12. Let $W \subseteq C^\omega$ be a prefix-independent, DBA-recognizable objective.
Objective W is half-positional if and only if there exists $F \subseteq C$ such that $W = \text{Büchi}(F)$.

Proof. The right-to-left implication follows from the known half-positionality of objectives
of the kind $\text{Büchi}(F)$ (this is a special case of a parity game [EJ91]). For the left-to-right
implication, we assume that W is a prefix-independent, DBA-recognizable, half-positional
objective. By Theorem 3.11, it is recognized by a DBA B built on top of S_\sim. As W is
prefix-independent (Remark 2.6), its prefix-classifier has just one state, and there is a single
transition from and to this single state for each color. Hence, $W = \text{Büchi}(F)$, where F is
the set of colors whose only transition is a Büchi transition of B.

Remark 3.13. A corollary of this result is that when W is prefix-independent, DBA-
recognizable, and half-positional, we also have that \overline{W} is half-positional. Indeed, the
complement of objective $W = \text{Büchi}(F)$ is a so-called coBüchi objective, which is also known
to be half-positional [EJ91]. This statement does not hold in general when W is not prefix-
independent, as was shown in Example 3.7. Moreover, the reciprocal of the statement also
does not hold, as was shown in Example 3.10.
Remark 3.14. A second corollary is that prefix-independent DBA-recognizable half-positional objectives are closed under finite union (since a finite union of Büchi conditions is a Büchi condition). This settles Kopczyński’s conjecture for DBA-recognizable objectives. \(\Box\)

A second consequence of Theorem 3.11 and its proof technique shows that half-positionality of DBA-recognizable objectives can be reduced to half-positionality over the restricted class of finite, one-player arenas. Results reducing strategy complexity in two-player arenas to the easier question of strategy complexity in one-player arenas are sometimes called one-to-two-player lifts and appear in multiple places in the literature [GZ05, BLO+22, Koz22b, BRV23].

Proposition 3.15 (One-to-two-player and finite-to-infinite lift). Let \(W \subseteq C^\omega \) be a DBA-recognizable objective. If objective \(W \) is half-positional over finite one-player arenas, then it is half-positional over all arenas (of any cardinality).

Proof. When showing the necessity of the three conditions for half-positionality of DBA-recognizable objectives in Section 4 (Propositions 4.1, 4.2, and 4.3), we actually show their necessity for half-positionality over finite one-player arenas. Hence, assuming half-positionality over finite one-player arenas, we have the three conditions from the characterization of Theorem 3.11, so we have half-positionality over all arenas. \(\square\)

One-to-two-player lifts from the literature all require an assumption on the strategy complexity of both players, and are either stated solely over finite arenas, or solely over infinite arenas. Proposition 3.15, albeit set in the more restricted context of DBA-recognizable objectives, displays stronger properties than the known one-to-two-player lifts.

- It is asymmetric in the sense that we simply need a hypothesis on one player: half-positionality of DBA-recognizable objectives over one-player arenas implies their half-positionality over two-player arenas.
- It shows that half-positionality of DBA-recognizable objectives over finite arenas implies half-positionality over infinite arenas.

Both these properties do not hold for general objectives.

- Some objectives are half-positional over one-player but not over two-player arenas [GK14b, Section 7] — we have that this is not possible for DBA-recognizable objectives.
- Some objectives are half-positional over finite but not over infinite arenas (see, e.g., the mean-payoff objective [EM79, Put94]) — we have that this is not possible for DBA-recognizable objectives.

3.3. Deciding half-positionality in polynomial time. In this section, we assume that \(C \) is finite. We show that the problem of deciding, given a DBA \(\mathcal{B} = (Q, C, q_{\text{init}}, \Delta, \alpha) \) as an input, whether \(\mathcal{L}(\mathcal{B}) \) is half-positional can be solved in polynomial time, and more precisely in time \(O(|C| \cdot |Q|^4) \). We will use the following classical result about the complexity of checking the inclusion of languages recognized by DBA.

Lemma 3.16. Let \(\mathcal{B} = (Q, C, q_{\text{init}}, \Delta, \alpha) \) and \(\mathcal{B}' = (Q', C, q'_{\text{init}}, \Delta', \alpha') \) be two DBA on the same finite set of colors \(C \). Deciding whether \(\mathcal{L}(\mathcal{B}) \subseteq \mathcal{L}(\mathcal{B}') \) can be done in time \(O(|C| \cdot |Q| \cdot |Q'|) \).
Proof. Observe first that $\mathcal{L}(B) \subseteq \mathcal{L}(B')$ if and only if $\mathcal{L}(B) \cap \overline{\mathcal{L}(B')} = \emptyset$. Therefore, we first want to complement B' (as an NBA $\overline{B'}$), and then check the emptiness of the intersection of the languages of B and $\overline{B'}$.

We use the fact that DBA can be easily complemented (as NBA): there is an NBA $\overline{B'}$ with at most $2 \cdot |Q'|$ states and at most two non-deterministic transitions for each element of $C \times Q'$ such that $\mathcal{L}(\overline{B'}) = \overline{\mathcal{L}(B')}$.\footnote{The construction to complement a DBA as an NBA is simple: keep the original DBA, add a copy of it in which the transitions in α' are removed, add non-deterministic transitions from the original to the copy mimicking the original transitions, and define as Büchi transitions only the transitions left in the copy. In this way, accepted words in the new NBA are the ones that, from some point on (guessed non-deterministically), move to the copy and only use transitions that were not Büchi transitions of the original DBA.}

Then, we use the fact that we can construct an NBA B_\cap with at most $2 \cdot |Q| \cdot (2 \cdot |Q'|) = \mathcal{O}(|Q| \cdot |Q'|)$ states and $\mathcal{O}(|C| \cdot |Q| \cdot |Q'|)$ transitions such that $\mathcal{L}(B_\cap) = \mathcal{L}(B) \cap \mathcal{L}(\overline{B'})$ [Bok18, Section 3.1].

The emptiness of the language of B_\cap can finally be checked in time $\mathcal{O}(|Q| \cdot |Q| + |C| \cdot |Q| \cdot |Q'|)$ by decomposing the graph of the NBA into strongly connected components [Tar72].

We investigate how to verify each property used in the characterization of Theorem 3.11. Let $B = (Q, C, q_{\text{init}}, \Delta, \alpha)$ be a DBA (we assume w.l.o.g. that all states in Q are reachable from q_{init}) and $W = \mathcal{L}(B)$ be the objective it recognizes. Our algorithm first verifies that the prefix preorder is total and recognizability by \mathcal{S}_\prec, and then, under these first two assumptions, progress-consistency. For each condition, we sketch an algorithm to decide it, and we discuss the time complexity of this algorithm.

Total prefix preorder. To check that W has a total prefix preorder, it suffices to check that the states of B are totally preordered by \preceq_B. We start by computing, for each pair of states $q, q' \in Q$, whether $q \preceq_B q'$, $q' \preceq_B q$, or none of these. This can be rephrased as an inclusion problem for two DBA-recognizable objectives: if $B_q = (Q, C, q, \Delta, \alpha)$ and $B_{q'} = (Q, C, q', \Delta, \alpha)$, we have that $q \preceq_B q'$ if and only if $\mathcal{L}(B_q) \subseteq \mathcal{L}(B_{q'})$. By Lemma 3.16, this can therefore be decided in time $\mathcal{O}(|C| \cdot |Q|^2)$. We can therefore know for all $|Q|^2$ pairs $q, q' \in Q$ whether $q \preceq_B q'$, $q' \preceq_B q$, $q' \sim_B q$ (as $\sim_B = \preceq_B \cap \geq_B$), or none of these in time $\mathcal{O}(|Q|^2 \cdot (|C| \cdot |Q|^2)) = \mathcal{O}(|C| \cdot |Q|^4)$. In particular, the prefix preorder is total if and only if for all $q, q' \in Q$, we have $q \preceq_B q'$ or $q' \preceq_B q$.

Recognizability by the prefix-classifier. After all the relations \preceq_B and \sim_B between pairs of states are computed in the previous step, we can compute the states and transitions of the prefix-classifier $\mathcal{S}_\prec = (Q_\prec, C, q_{\text{init}}, \Delta_\prec)$ by merging all the equivalence classes of \sim_B. We assume for simplicity that $Q_\prec = \overline{Q} \sim_B$.

We now wonder whether it is possible to recognize W by carefully selecting a set α_\prec of Büchi transitions in \mathcal{S}_\prec. We simplify the search for such a set with the following result, which shows that when B is saturated, it suffices to try with one specific set α_\prec. We can then simply check whether $W = \mathcal{L}((Q_\prec, C, \overline{q_{\text{init}}}, \Delta_\prec, \alpha_\prec))$, an equivalence query which can be performed in time $\mathcal{O}(|C| \cdot |Q|^2)$ by checking two inclusion queries as in Lemma 3.16.

Lemma 3.17. We assume that B is saturated and that W is recognized by a DBA built on top of the prefix-classifier $\mathcal{S}_\prec = (Q_\prec, C, \overline{q_{\text{init}}}, \Delta_\prec)$. We define

$$
\alpha_\prec = \{(q, c) \in Q_\prec \times C \mid \forall q' \in \overline{Q}, (q', c) \in \alpha\}.
$$

Then, W is recognized by $(Q_\sim, C, q_{\text{init}}, \Delta_\sim, \alpha_\sim)$.

Proof. We assume that W is recognized by a DBA built on top of S_\sim. We start by saturating this DBA, which yields a set of Büchi transitions α' such that W is also recognized by the saturated DBA $B' = (Q_\sim, C, q_{\text{init}}, \Delta_\sim, \alpha')$ (Lemma 2.10). To prove the claim, we show that $\alpha' = \alpha_\sim$.

We first show that $\alpha' \subseteq \alpha_\sim$. Let $([q], c) \notin \alpha_\sim$ — we show that $([q], c) \notin \alpha'$. As $([q], c) \notin \alpha_\sim$, by definition of α_\sim, there is $q' \in Q$ such that $(q', c) \notin \alpha$. As B is saturated, by Lemma 2.11, there exists $w' \in C^*$ such that $cw' \in \alpha$-FreeCycles$_B(q')$. By construction of the prefix-classifier, $\delta'_\sim([q], cw') = [q]$. Also, as $W = L(B')$, word $(cw')^\omega$ must be rejected from $[q]$ in B'. Therefore, $([q], c)$ cannot be a Büchi transition of B' and is not in α'.

We now show that $\alpha_\sim \subseteq \alpha'$. Let $([q], c) \notin \alpha'$ — we show that $([q], c) \notin \alpha_\sim$. As B' is saturated, by Lemma 2.11, there exists $w' \in C^*$ such that $cw' \in \alpha$-FreeCycles$_B([q])$. As $W = L(B')$, word $(cw')^\omega$ is rejected from any state in $[q]$ in B. If for all $q' \in [q]$, (q', c) was in α, $(cw')^\omega$ would be accepted from all states in $[q]$ in B. Hence, there exists $q' \in [q]$ such that $(q', c) \notin \alpha$. We conclude that $([q], c) \notin \alpha_\sim$.

Progress-consistency. We assume that we have already checked that W is recognizable by a Büchi automaton built on top of S_\sim, and that we know the (total) ordering of the states. We show that checking progress-consistency, under these two hypotheses, can be done in polynomial time. We prove a lemma reducing the search for words witnessing that W is not progress-consistent to a problem computationally easier to investigate.

Lemma 3.18. We assume that B is built on top of the prefix-classifier S_\sim and that the prefix preorder of W is total. Then, W is progress-consistent if and only if for all $q, q' \in Q$ with $q \prec_B q'$,

$$\{ w \in C^+ \mid \delta^*(q, w) = q' \} \cap \alpha$-$\text{FreeCycles}_B(q') = \emptyset.$$

Proof. For the left-to-right implication, we assume by contrapositive that there exist $q, q' \in Q$ with $q \prec_B q'$ and $w \in C^+$ such that $\delta^*(q, w) = q'$ and $w \in \alpha$-$\text{FreeCycles}_B(q')$. Let $w_q \in C^*$ be a word such that $\delta'(q_{\text{init}}, w_q) = q$. We have that $w_q \prec w_q w$, but $w_q w^\omega$ is not accepted by B as w is a cycle on q' that does not have any Büchi transition. Hence, W is not progress-consistent.

For the right-to-left implication, we assume by contrapositive that W is not progress-consistent. Thus, there exist $w' \in C^*$ and $w \in C^+$ such that $w' \prec w'w$ and $w'w^\omega \notin W$. Let $q_1 = \delta^*(q_{\text{init}}, w')$ and $q_2 = \delta^*(q_1, w)$ — we have $q_1 \prec q_2$. As $q_1 \prec q_2$, by Lemma 2.8, we have $\delta^*(q_1, w) = q_2 \preceq \delta^*(q_2, w)$. We distinguish two cases, using the fact that there is exactly one state per equivalence class of \sim_B. We represent what happens in Figure 6.

- If $q_2 = \delta^*(q_2, w)$, we then have that $w \in \alpha$-$\text{FreeCycles}_B(q_2)$, and we have what we want with $q = q_1$ and $q' = q_2$.

- If not, we have that $q_2 \prec \delta^*(q_2, w)$. Let $q_3 = \delta^*(q_2, w)$. We can repeat the argument on q_2 and q_3: either $w \in \alpha$-$\text{FreeCycles}_B(q_3)$ and we are done, or $q_3 \prec \delta^*(q_3, w)$. As there are finitely many states, this process necessarily ends with two states $q = q_n$ and $q' = q_{n+1}$ such that $\delta^*(q, w) = q'$ and $w \in \alpha$-$\text{FreeCycles}_B(q')$.

Notice that for each pair of states $q, q' \in Q$, the sets $\{ w \in C^+ \mid \delta(q, w) = q' \}$ and α-$\text{FreeCycles}_B(q')$ are both regular languages recognized by deterministic finite automata with at most $|Q|$ states. The emptiness of their intersection can be decided in time $O(|C| \cdot |Q|^2)$ (by solving a reachability problem in the product of the two automata, using an argument similar to but easier than Lemma 3.16) [RS59]. Thanks to Lemma 3.18, we can therefore
decide whether \(\mathcal{B} \) is progress-consistent in time \(O(|Q|^2 \cdot (|C| \cdot |Q|^2)) = O(|C| \cdot |Q|^4) \): for all \(|Q|^2 \) pairs of states \(q, q' \in Q \), if \(q \prec q' \), we test the emptiness of the intersection of these two regular languages.

Complexity wrap-up. By checking the three conditions as explained and in this order, the time complexities are respectively \(O(|C| \cdot |Q|^4) \), \(O(|C| \cdot |Q|^2) \), and \(O(|C| \cdot |Q|^4) \). This yields a time complexity of \(O(|C| \cdot |Q|^4) \) for the whole algorithm.

4. Necessity of the conditions

We prove that each of the three conditions introduced in Section 3.1 is necessary for half-positionality over finite one-player arenas of DBA-recognizable objectives. Each condition gets its own devoted subsection. For the first two conditions (having a total prefix preorder and progress-consistency), we also show for completeness that they are necessary for half-positionality of general objectives over countably infinite one-player arenas, and necessary for half-positionality of \(\omega \)-regular objectives over finite one-player arenas. This distinction is worthwhile, as there exist half-positional objectives that are not \(\omega \)-regular (see, e.g., finitary Büchi objectives [CF13]).

4.1. Total prefix preorder.

Having a total prefix preorder is necessary in general for half-positionality over countably infinite arenas, and even over finite arenas for \(\omega \)-regular objectives.

Proposition 4.1. Let \(W \subseteq C^\omega \) be an objective. If \(W \) is half-positional over countably infinite one-player arenas, then its prefix preorder is total. If \(W \) is \(\omega \)-regular and half-positional over finite one-player arenas, then its prefix preorder is total.

Proof. By contrapositive, we assume that the prefix preorder of \(W \) is not total. Then, there exist two finite words \(w_1, w_2 \in C^* \) such that \(w_1 \not\leq w_2 \) and \(w_2 \not\leq w_1 \). We can find two infinite continuations \(w'_1, w'_2 \in C^\omega \) such that \(w_1w'_1 \in W \), \(w_2w'_1 \notin W \), \(w_2w'_2 \in W \), and \(w_1w'_2 \notin W \). Using these four words, we build a countably infinite one-player arena depicted in Figure 7 (left) for which \(\mathcal{P}_1 \) has no positional optimal strategy. Indeed, if the game started with \(w'_1 \), \(\mathcal{P}_1 \) needs to reply with \(w'_1 \) in \(v_3 \) to win, but if the game started with \(w'_2 \), \(\mathcal{P}_1 \) needs to reply with \(w'_2 \) in \(v_3 \) to win.

Moreover, if \(W \) is \(\omega \)-regular, so are \(w_1^{-1}W \) and \(w_2^{-1}W \). By Lemma 2.5, we can therefore assume w.l.o.g. that \(w'_1 = x_1(y_1)^\omega \) and \(w'_2 = x_2(y_2)^\omega \) are ultimately periodic, and we can carry out similar arguments with the finite arena depicted in Figure 7 (right). \(\square \)
HALF-POSITIONAL OBJECTIVES RECOGNIZED BY DETERMINISTIC BÜCHI AUTOMATA

4.2. Progress-consistency. Progress-consistency is necessary for half-positionality over countably infinite arenas in general, and even over finite arenas for \(\omega \)-regular objectives.

Proposition 4.2. Let \(W \subseteq C^\omega \) be an objective. If \(W \) is half-positional over countably infinite one-player arenas, then it is progress-consistent. If \(W \) is \(\omega \)-regular and half-positional even over finite one-player arenas, then it is progress-consistent.

Proof. By contrapositive, we assume that \(W \) is not progress-consistent. Then there exist \(w_1 \in C^* \) and \(w_2 \in C^+ \) such that \(w_1 \prec w_1w_2 \), but \(w_1(w_2)^\omega \notin W \). As \(w_1 \prec w_1w_2 \), there exists an infinite continuation \(w' \in C^\omega \) such that \(w_1w' \notin W \) and \(w_1w_2w' \in W \). Using these three words, we build a countably infinite one-player arena depicted in Figure 8 (left). In this arena, from vertex \(v_1 \), a positional strategy can only achieve words \(w_1(w_2)^\omega \) or \(w_1w' \), which are both losing. However, there is a (non-positional) winning strategy achieving word \(w_1w_2w' \).

If \(W \) is additionally \(\omega \)-regular, using Lemma 2.5, we can assume w.l.o.g. that \(w' = xy^\omega \) is ultimately periodic, and we can carry out similar arguments with the finite arena depicted in Figure 8 (right).

\[\]

4.3. Recognizability by the prefix-classifier. We now prove that for a DBA-recognizable objective, being recognized by a Büchi automaton built on top of its prefix-classifier \(S_\sim \) is necessary for half-positionality.

Proposition 4.3. Let \(W \subseteq C^\omega \) be a DBA-recognizable objective that is half-positional over finite one-player arenas. Then, \(W \) is recognized by a Büchi automaton built on top of \(S_\sim \).

The rest of Section 4.3 is devoted to the proof of this result, which is more involved than the proofs in Sections 4.1 and 4.2. We fix an objective \(W \subseteq C^\omega \) recognized by a DBA \(\mathcal{B} = (Q, C, q_{\text{init}}, \Delta, \alpha) \). We make the assumption that \(W \) is half-positional over finite one-player arenas. Our goal is to show that \(W \) can be defined by a Büchi automaton built on top of \(S_\sim \). We assume w.l.o.g. that \(\mathcal{B} \) is saturated. Many upcoming arguments heavily
rely on this assumption through the use of Lemma 2.11 (any α-free word can be completed into an α-free cycle).

Our proof first assumes in Section 4.3.1 that B recognizes a prefix-independent objective. We will then build on this first case to conclude for the general case in Section 4.3.2. We also assume that states that are not reachable from q words from B.

4.3.1. Prefix-independent case. We assume that the objective W recognized by B is prefix-independent, so all the states of B are equivalent for \sim. We want to show that W can be recognized by a Büchi automaton built on top of S_\sim, and in this case, the automaton structure S_\sim has just one state. Therefore, we want to find $F \subseteq C$ such that $W = {\text{Büchi}}(F)$. We start with a high level description of the proof technique.

Proof sketch. The goal is to find a suitable definition for F. To do so, we exhibit a state q_{max} of B that is “the most rejecting state of the automaton”: it satisfies that the set of α-free words from q_{max} contains the α-free words from all the other states (q_{max} is then called an α-free-maximum) and that the set of α-free cycles on q_{max} contains the α-free cycles on all the other states (it is also an α-free-cycle-maximum). We define F as the set of colors c such that $(q_{\text{max}}, c) \in \alpha$.

We first show that if an α-free-maximum exists, we can assume w.l.o.g. that it is unique (Lemma 4.4). In Lemmas 4.6, 4.7 and 4.8, we show the existence of an α-free-cycle-maximum. This part of the proof relies on the half-positionality over finite one-player arenas of W. Finally, defining F using q_{max} as explained above, we prove that $W = {\text{Büchi}}(F)$ (Lemma 4.9).

We call a state $q_{\text{max}} \in Q$ of B an α-free-maximum (resp. an α-free-cycle-maximum) if for all $q \in Q$, we have α-Free$_B(q) \subseteq \alpha$-Free$_B(q_{\text{max}})$ (resp. if for all $q \in Q$, we have α-FreeCycles$_B(q) \subseteq \alpha$-FreeCycles$_B(q_{\text{max}})$). We remark that if B is saturated, an α-free-cycle-maximum is also an α-free-maximum (this can be shown using Lemma 2.11).

We first show that we can remove states from B, while still recognizing the same objective, until it has at most one α-free-maximum.

Lemma 4.4. There exists a DBA B' recognizing W with at most one α-free-maximum.

Proof. Assume that $q_{\text{max}}^1, q_{\text{max}}^2 \in Q$ are distinct α-free-maxima. In particular, we have that α-Free$_B(q_{\text{max}}^1) = \alpha$-Free$_B(q_{\text{max}}^2)$. We show that in such a situation, the objective recognized by B can be recognized by an automaton with one less state, in which we discard one of the two α-free-maxima. To simplify the upcoming arguments, we assume that $q_{\text{init}} = q_{\text{max}}^1$ (which is without loss of generality as all states of B are equivalent for \sim).

We define a new automaton in which we remove q_{max}^2 and redirect all its incoming transitions to q_{max}^1. Formally, let $B' = (Q', C, q_{\text{init}}', \Delta', \alpha')$ with update function δ' be such that

- $Q' = Q \setminus \{q_{\text{max}}^2\}$, $q_{\text{init}}' = q_{\text{max}}^1$;
- for $q \in Q'$ and $c \in C$, if $\delta(q, c) = q_{\text{max}}^2$, then $\delta'(q, c) = q_{\text{max}}^1$; otherwise, $\delta'(q, c) = \delta(q, c)$;
- for $q \in Q'$ and $c \in C$, $(q, c) \in \alpha'$ if and only if $(q, c) \in \alpha$.

We also assume that states that are not reachable from q_{init}' in B' are removed from Q'.

We show that this automaton with (at least) one less state recognizes the same objective as B. Let $w = c_1c_2 \ldots \in C^\omega$ be an infinite word. We show that w is accepted by B if and only if it is accepted by B'.
Let $\Delta_{\neq q_{\max}^2} = \{(q, c, q_{\max}^1) \in Q' \times C \times \{q_{\max}^1\} \mid \delta(q, c) = q_{\max}^2\}$ be the transitions of B' that were directed to q_{\max}^2 in B but are now redirected to q_{\max}^1 in B'. Let ϱ be the infinite run of B on w, and $\varrho' = (q_{0}', c_1, q_1')(q_1', c_2, q_2') \ldots$ be the infinite run of B' on w. The two runs start by taking corresponding transitions, but differ once a transition in $\Delta_{\neq q_{\max}^2}$ is taken.

We first assume that ϱ' uses transitions in $\Delta_{\neq q_{\max}^2}$ only finitely many times. Then, there exists $k \in \mathbb{N}$ such that $q_k' = q_{\max}^1$ and for all $l \geq k$, $(q_l', c_{l+1}, q_{l+1}') \notin \Delta_{\neq q_{\max}^2}$. Let $w_{\geq k} = c_{k+1}c_{k+2} \ldots$ be the infinite word consisting of the colors taken after the last occurrence of a transition in $\Delta_{\neq q_{\max}^2}$. We have that

B accepts w if and only if B' accepts $w_{\geq k}$ as B recognizes a prefix-independent objective.

Then, we know that for infinitely many $i \in \mathbb{N}$, $w_i \notin \alpha$-$\text{Free}_B(q_{\max}^1)$ by Equation (4.1).

As q_{\max}^2 is an α-free-maximum, for all $q \in Q$, $w_i \notin \alpha$-$\text{Free}_B(q)$ (this property is not true for all words, but this is true for these words that read only one transition in $\Delta_{\neq q_{\max}^2}$ as their last transition). We also have by construction that

$$\forall i \geq 1, w_i \in \alpha$-$\text{Free}_B(q_{\max}^1) \iff w_i \in \alpha$-$\text{Free}_B(q_{\max}^1),$$

(4.1)

as the transitions used by w_i from q_{\max}^1 in B' correspond to the transitions used by w_i from q_{\max}^1 in B (this property is not true for all words, but this is true for these words that read only one transition in $\Delta_{\neq q_{\max}^2}$ as their last transition). We also have by construction that

$$\forall i \geq 1, \delta^*(q_{\max}^1, w_i) = q_{\max}^2.$$

(4.2)

We distinguish whether w is accepted or rejected by B'.

Assume w is accepted by B'. Then, we know that for infinitely many $i \in \mathbb{N}$, $w_i \notin \alpha$-$\text{Free}_B(q_{\max}^1)$. This implies that for these indices i, $w_i \notin \alpha$-$\text{Free}_B(q_{\max}^1)$ by Equation (4.1).

As q_{\max}^2 is an α-free-maximum, for all $q \in Q$, $w_i \notin \alpha$-$\text{Free}_B(q)$ (this simply the contrapositive of the definition of α-free-maximum). Hence, for infinitely many $i \in \mathbb{N}$, when w_i is read in B (no matter from where), a Büchi transition is seen, so w is accepted by B.

Assume w is rejected by B'. Then there exists $k \in \mathbb{N}$ such that for all $l \geq k$, $w_i \in \alpha$-$\text{Free}_B(q_{\max}^1)$. As B is prefix-independent, up to removing the start of w, we assume w.l.o.g. that $k = 1$. We show by induction that

$$\forall i \geq 1, \alpha$-$\text{Free}_B(q_{\max}^1) = \alpha$-$\text{Free}_B(\delta^*(q_{\max}^1, w_1 \ldots w_i)).$$

This is true for $i = 1$, as $\delta^*(q_{\max}^1, w_1) = q_{\max}^2$ by Equation (4.2) and the fact that q_{\max}^1 and q_{\max}^2 are both α-free-maxima. Assume α-$\text{Free}_B(q_{\max}^1) = \alpha$-$\text{Free}_B(\delta^*(q_{\max}^1, w_1 \ldots w_{i-1}))$ for some $i \geq 2$. Then, by Lemma 2.9, as $w_i \in \alpha$-$\text{Free}_B(q_{\max}^1)$, we have α-$\text{Free}_B(\delta^*(q_{\max}^1, w_1)) = \alpha$-$\text{Free}_B(\delta^*(q_{\max}^1, w_i))$. Equation (4.2) gives α-$\text{Free}_B(\delta^*(q_{\max}^1, w_i)) = \alpha$-$\text{Free}_B(q_{\max}^1)$, which is itself equal to α-$\text{Free}_B(q_{\max}^1)$. We now know that for all $i \geq 1$, $w_i \in \alpha$-$\text{Free}_B(q_{\max}^1)$ by Equation (4.1). Therefore, we conclude that for all $i \geq 1$, $w_i \in \alpha$-$\text{Free}_B(\delta^*(q_{\max}^1, w_1 \ldots w_{i-1}))$.

In particular, w sees no Büchi transition when read from q_{\max}^1 in B and is also rejected by B.

We have shown that B' is a DBA with fewer states than B recognizing W. If B' still has two or more α-free-maxima, we repeat our construction until there is at most one left.

Thanks to Lemma 4.4, we now assume w.l.o.g. that B has at most one α-free-maximum. We intend to show that there exists an α-free-cycle-maximum. To do so, we exhibit
Lemma 4.5. If \mathcal{P}_1 has a winning strategy in \mathcal{A}_B, then \mathcal{P}_1 has a positional winning strategy.

Proof. Suppose that there is a winning strategy of \mathcal{P}_1 in \mathcal{A}_B. Let $w = w_1 w_2 \ldots$ be an infinite winning word such that for $i \geq 1$, $w_i \in \bigcup_{q \in Q} \alpha\text{-FreeCycles}_B(q) \setminus \{\varepsilon\}$. Let $q_0 = q_{\text{init}}$, and for $i \geq 1$, let $q_i = \delta^i(q_{\text{init}}, w_1 \ldots w_i)$ be the current automaton state after reading the first i finite words composing w. As there are only finitely many automaton states and w is winning, there are $k, l \geq 1$ with $k < l$ such that $q_k = q_l$ and $w_{k+1} \ldots w_l \in \bigcup_{q \in Q} \alpha\text{-FreeCycles}_B(q) \setminus \{\varepsilon\}$. Word $w_1 \ldots w_k(w_{k+1} \ldots w_l)\omega^i$ is also a winning word and uses only finitely many different words in $\bigcup_{q \in Q} \alpha\text{-FreeCycles}_B(q) \setminus \{\varepsilon\}$.

Hence, there is a finite restriction (“subarena”) $\mathcal{A'}_B$ of the arena \mathcal{A}_B with at most l choices in v in which \mathcal{P}_1 has a winning strategy. Arena $\mathcal{A'}_B$ being finite and one-player, half-positionality of W over finite one-player arenas implies that \mathcal{P}_1 has a positional winning strategy in $\mathcal{A'}_B$. This positional winning strategy can also be played in \mathcal{A}_B (as every choice available in $\mathcal{A'}_B$ is also available in \mathcal{A}_B).

Lemma 4.6. No positional strategy of \mathcal{P}_1 is winning in \mathcal{A}_B.

Proof. Any positional strategy of \mathcal{P}_1 generates a word w^ω, where $w \in \alpha\text{-FreeCycles}_B(q) \setminus \{\varepsilon\}$ for some $q \in Q$. In particular, word w^ω is rejected when it is read from state q. As all the states in Q are equivalent for \sim (as we assume that W is prefix-independent), we have $q \sim q_{\text{init}}$, so w^ω is also rejected when read from the initial state q_{init} of the automaton.

Using Lemmas 4.5 and 4.6, we deduce the desired result.

Lemma 4.7. No strategy of \mathcal{P}_1 is winning in \mathcal{A}_B.

Figure 9: Features of run q' when it takes infinitely many transitions in $\Delta_{q_{\text{max}}}^2$.

Figure 10: Infinite one-player arena \mathcal{A}_B of \mathcal{P}_1, with choices from v among every non-empty word in $\bigcup_{q \in Q} \alpha\text{-FreeCycles}_B(q) \setminus \{\varepsilon\}$.

an (infinite) arena in which \mathcal{P}_1 has no winning strategy, which we prove by using half-positionality of W over finite one-player arenas. We then prove that the non-existence of an α-free-cycle-maximum would imply that \mathcal{P}_1 has a winning strategy in this arena (Lemma 4.8).

Let \mathcal{A}_B be the infinite one-player arena of \mathcal{P}_1 depicted in Figure 10. This arena consists of one vertex v with a choice to make among all non-empty words that are α-free cycles from some state of \mathcal{B}. Vertex v is the only vertex with multiple outgoing edges. The goal of the next three short lemmas is to show that in this arena, \mathcal{P}_1 has no winning strategy.
We use the statement of Lemma 4.7 to show the existence of an \(\alpha \)-free-cycle-maximum.

Lemma 4.8. There exists an \(\alpha \)-free-maximum \(q_{\text{max}} \) in \(B \) that is a moreover an \(\alpha \)-free-cycle-maximum: for all \(q \in Q \), \(\alpha \)-FreeCycles\(_B\)(\(q \)) \(\subseteq \alpha \)-FreeCycles\(_B\)(\(q_{\text{max}} \)).

Proof. Let us assume by contradiction that there is no \(\alpha \)-free-maximum, or if there is one, that it is not an \(\alpha \)-free-cycle-maximum. We show how to build a winning strategy of \(P \) in \(A_B \), contradicting Lemma 4.7. To do so, we build an infinite word accepted by \(B \) by combining finite words that are \(\alpha \)-free cycles from some state.

We claim that for \(q \in Q \) which is not an \(\alpha \)-free-maximum, there exists
\[
\exists w_q \in \bigcup_{q' \in Q} \alpha \text{-FreeCycles}_B(q') \setminus \{\varepsilon\} \text{ such that } w_q \notin \alpha \text{-Free}_B(q).
\]

Let \(q' \in Q \) be such that \(\alpha \text{-Free}_B(q') \not\subseteq \alpha \text{-Free}_B(q) \), which exists as \(q \) is not an \(\alpha \)-free-maximum. Let \(w_1 \in \alpha \text{-Free}_B(q') \setminus \alpha \text{-Free}_B(q) \). By Lemma 2.11, there exists \(w_2 \in C^* \) such that \(w_1 w_2 \in \alpha \text{-FreeCycles}_B(q') \) (this holds as we have assumed w.l.o.g. that \(B \) is saturated). As \(w_1 \notin \alpha \text{-Free}_B(q) \), we also have \(w_1 w_2 \notin \alpha \text{-Free}_B(q) \). Taking \(w_q = w_1 w_2 \) proves the claim. For \(q \in Q \) not an \(\alpha \)-free-maximum, we fix \(w_q \in C^* \) such that \(w_q \in \bigcup_{q' \in Q} \alpha \text{-FreeCycles}_B(q') \setminus \{\varepsilon\} \) and \(w_q \notin \alpha \text{-Free}_B(q) \).

Let \(q_{\text{max}} \in Q \) be an \(\alpha \)-free-maximum (that we suppose to be unique by Lemma 4.4), if it exists. We suppose by contradiction that \(q_{\text{max}} \) is not an \(\alpha \)-free-cycle-maximum: there is \(q \in Q \) such that \(\alpha \text{-FreeCycles}_B(q) \not\subseteq \alpha \text{-FreeCycles}_B(q_{\text{max}}) \). Let \(w_{\text{max}} \in \alpha \text{-FreeCycles}_B(q) \setminus \alpha \text{-FreeCycles}_B(q_{\text{max}}) \). Notice that as \(w_{\text{max}} \in \alpha \text{-Free}_B(q) \) and \(q_{\text{max}} \) is an \(\alpha \)-free-maximum, \(w_{\text{max}} \in \alpha \text{-Free}_B(q_{\text{max}}) \). Therefore, \(w_{\text{max}} \) cannot be a cycle on \(q_{\text{max}} \), i.e., \(\delta^*(q_{\text{max}}, w_{\text{max}}) \neq q_{\text{max}} \).

We build iteratively an infinite winning word that can be played by \(P_1 \) in \(A_B \). As \(P_1 \) plays, we keep track in parallel of the current automaton state. The game starts in \(n \), with current automaton state \(q_0 = q_{\text{init}} \). Let \(n \geq 0 \). We distinguish two cases.

- If \(q_n \) is not an \(\alpha \)-free-maximum, then \(P_1 \) plays word \(w_{q_n} \). As \(w_{q_n} \notin \alpha \text{-Free}_B(q_n) \), a B"uchi transition is seen along the way. The current automaton state becomes \(q_{n+1} = \delta^*(q_n, w_{q_n}) \).
- If \(q_n = q_{\text{max}} \) is the \(\alpha \)-free-maximum, then \(P_1 \) plays \(w_{\text{max}} \). The current automaton state becomes \(q_{n+1} = \delta(q_{\text{max}}, w_{\text{max}}) \), which is not equal to \(q_{\text{max}} \).

For infinitely many \(i \geq 0 \), the automaton state \(q_i \) is not an \(\alpha \)-free-maximum (as there is at most one \(\alpha \)-free-maximum in \(B \), and it cannot appear twice in a row). Therefore, we have described a winning strategy for \(P_1 \), since the corresponding run over \(B \) visits infinitely often a B"uchi transition.

We now know that there exists a unique \(\alpha \)-free-maximum \(q_{\text{max}} \in Q \), and moreover, that it is an \(\alpha \)-free-cycle-maximum. We show how to use the outgoing transitions of \(q_{\text{max}} \) in order to realize \(W \) as an objective of the kind B"uchi\((F)\) for some \(F \subseteq C \), which is the goal of the current subsection.

Lemma 4.9. There exists \(F \subseteq C \) such that \(W = \text{B"uchi}(F) \).

Proof. Let \(F = \{ c \in C \mid (q_{\text{max}}, c) \in \alpha \} \) — equivalently, if we consider colors as words with one letter, \(F \) is the set of colors \(c \) such that \(c \notin \alpha \text{-Free}_B(q_{\text{max}}) \).

We first show that B"uchi\((F) \subseteq W \). Let \(c \in F \). Then, \(c \notin \alpha \text{-Free}_B(q_{\text{max}}) \). As \(q_{\text{max}} \) is an \(\alpha \)-free-maximum, for all \(q \in Q \), \(c \notin \alpha \text{-Free}_B(q) \). Therefore, any word seeing infinitely many colors in \(F \) sees infinitely many B"uchi transitions and is accepted by \(B \).

We now show that \(W \subseteq \text{B"uchi}(F) \). By contrapositive, let \(w = c_1 c_2 \ldots \notin \text{B"uchi}(F) \) be an infinite word with only finitely many colors in \(F \). We show that \(w \notin W \). As \(W \) is
prefix-independent, we may assume w.l.o.g. that w has no color in F, i.e., that for all $i \geq 1$, $c_i \in C \setminus F$. We claim that when read from q_{\max}, word w sees no Büchi transition and is thus rejected. This implies that $w \notin W$ as $q_{\max} \sim q_{\text{init}}$.

Assume by contradiction that there is some Büchi transition when reading w from q_{\max}, i.e., there exists $k \geq 0$ such that for $w_{\leq k} = c_1 \ldots c_k$, $w_{\leq k} \in \alpha\text{-Free}_{B}(q_{\max})$, but $w_{\leq k}c_{k+1} \notin \alpha\text{-Free}_{B}(q_{\max})$. We will deduce that (q_{\max},c_{k+1}) is a Büchi transition, contradicting that $c_{k+1} \in C \setminus F$.

We depict the situation in Figure 11. Let $q_1 = \delta^*(q_{\max},w_{\leq k})$ (whether q_1 equals q_{\max} or not does not matter). By Lemma 2.11, there exists $w' \in C^*$ such that $w_{\leq k}w' \in \alpha\text{-FreeCycles}_{B}(q_{\max})$. By construction, we have $w'w_{\leq k} \in \alpha\text{-FreeCycles}_{B}(q_1)$. As q_{\max} is an α-free-cycle-maximum, we have $\alpha\text{-FreeCycles}_{B}(q_1) \subseteq \alpha\text{-FreeCycles}_{B}(q_{\max})$, so we also have $w'w_{\leq k} \in \alpha\text{-FreeCycles}_{B}(q_{\max})$. Let $q_2 = \delta^*(q_{\max},w')$. Notice that $q_{\max} = \delta^*(q_2,w_{\leq k})$ and $w_{\leq k} \in \alpha\text{-Free}_{B}(q_2)$. As q_{\max} is an α-free-maximum and $w_{\leq k}c_{k+1} \notin \alpha\text{-Free}_{B}(q_{\max})$, we also have that $w_{\leq k}c_{k+1} \notin \alpha\text{-Free}_{B}(q_2)$. Therefore, transition (q_{\max},c_{k+1}) must be a Büchi transition, which contradicts that $c_{k+1} \in C \setminus F$.

![Figure 11: Situation in the proof of Lemma 4.9, with $w_{\leq k} \in \alpha\text{-Free}_{B}(q_{\max})$ but $w_{\leq k}c_{k+1} \notin \alpha\text{-Free}_{B}(q_{\max})$.](image)

4.3.2. General case. We now relax the prefix-independence assumption on W. We still assume that W is half-positional over finite one-player arenas, and show that W can be recognized by a Büchi automaton built on top of S_{\sim}. If B has exactly one state per equivalence class of \sim, it means that it is built on top of S_{\sim}, and we are done. If not, let $q_{\sim} \in Q$ be a state such that $|[q_{\sim}]| \geq 2$.

We briefly sketch the proof technique for this section.

Proof sketch. Our proof will show how to modify B by “merging” all states in equivalence class $[q_{\sim}]$ into a single state, while still recognizing the same objective W. The main technical argument is to build a variant $W_{[q_{\sim}]}$ of objective W on a new set of colors $C_{[q_{\sim}]}$, that turns out to also be half-positional over finite one-player arenas and DBA-recognizable, but which is *prefix-independent*. We can therefore use Lemma 4.9 from Section 4.3.1 and find $F_{[q_{\sim}]} \subseteq C_{[q_{\sim}]}$ such that $W_{[q_{\sim}]} \equiv \text{Büchi}(F_{[q_{\sim}]})$. Then, we exhibit a state $q_{\max} \in [q_{\sim}]$ whose α-free words are tightly linked to the elements of $F_{[q_{\sim}]}$ (Lemma 4.10 and Corollary 4.11). Finally, akin to the way we removed an α-free-maximum in Lemma 4.4, we show that it is still possible to recognize W while keeping only state q_{\max} in $[q_{\sim}]$ (Lemma 4.12).

Once we know how to merge the equivalence class $[q_{\sim}]$ into a single state, we can simply repeat the operation for each equivalence class with multiple states, until we obtain a DBA built on top of S_{\sim}. □
We define a new set of colors $C_{[q_\sim]}$ using finite words in C^+ such that

$$C_{[q_\sim]} = \{ w \in C^+ | \delta^*(q_\sim, w) \sim q_\sim \}. $$

This set contains all the finite words that, read from q_\sim, come back to a state in $[q_\sim]$. By Lemma 2.7, for all $q \in [q_\sim]$, for all $w \in C_{[q_\sim]}$, we also have that $\delta^*(q, w) \sim \delta^*(q_\sim, w) \sim q_\sim$. The set $C_{[q_\sim]}$ therefore corresponds to the set of words with the seemingly stronger property that, when read from any state in $[q_\sim]$, come back to a state in $[q_\sim]$. We define an objective $W_{[q_\sim]}$ of infinite words on this new set of colors such that

$$W_{[q_\sim]} = \{ w_1 w_2 \ldots \in C_{[q_\sim]}^{\omega} | w_1 w_2 \ldots \in q_\sim^{-1}W \}. $$

We show that $W_{[q_\sim]}$ has the three conditions allowing us to apply Lemma 4.9 to it.

- Objective $W_{[q_\sim]}$ is DBA-recognizable: we consider the DBA $B_{[q_\sim]} = ([q_\sim], C_{[q_\sim]}, q_\sim, \Delta', \alpha')$, whose update function δ' is the restriction of δ^* to $[q_\sim] \times C_{[q_\sim]}$, and $\alpha' = \{(q, w) \in [q_\sim] \times C_{[q_\sim]} | w \notin \alpha\text{-Free}_B(q)\}$.

- Objective $W_{[q_\sim]}$ is prefix-independent, as adding or removing a finite number of cycles on q_\sim does not affect the accepted status of a word in $q_\sim^{-1}W$.

- Half-positionality of $W_{[q_\sim]}$ over finite one-player arenas is implied by half-positionality of W over finite one-player arenas. Indeed, every (finite one-player) arena $A_{[q_\sim]}$ using colors in $C_{[q_\sim]}$ can be transformed into a (finite one-player) arena A with similar properties using colors in C. Two transformations are applied: (i) we replace every $C_{[q_\sim]}$-colored edge in $A_{[q_\sim]}$ by a corresponding finite chain of C-colored edges, and (ii) for every vertex v of $A_{[q_\sim]}$, we prefix it with a chain of C-colored edges starting from a vertex v' reading a word w_{q_\sim} such that $\delta^*(q_{\text{init}}, w_{q_\sim}) = q_\sim$. We then have that P_1 has a winning strategy from a vertex v in $A_{[q_\sim]}$ if and only if P_1 has a winning strategy from v' in A, and a positional winning strategy from v' in A can be transformed into a positional winning strategy from v in $A_{[q_\sim]}$.

By Lemma 4.9, there exists a set $F_{[q_\sim]} \subseteq C_{[q_\sim]}$ such that $W_{[q_\sim]} = \text{B"uchi}(F_{[q_\sim]})$.

We now show links between α-free words from states of $[q_\sim]$ and the words in $F_{[q_\sim]}$. The arguments once again rely on the saturation of B.

Lemma 4.10.

- Let $w \in C_{[q_\sim]}$. If $w \in F_{[q_\sim]}$, then for all $q \in [q_\sim]$, $w \notin \alpha\text{-Free}_B(q)$.

- There exists $q \in [q_\sim]$ such that, for all $w \in C_{[q_\sim]} \setminus F_{[q_\sim]}$, $w \in \alpha\text{-Free}_B(q)$.

Proof. For the first item, we assume by contrapositive that there exists a state $q \in [q_\sim]$ such that $w \in \alpha\text{-Free}_B(q)$. By Lemma 2.11, there is $w' \in C^*$ such that $ww' \in \alpha\text{-FreeCycles}_B(q)$. In particular, $(ww')^\omega \notin q_\sim^{-1}W = q_\sim^{-1}W$. We can assume w.l.o.g. that $w' \in C^+$ (if $w' = \varepsilon$, then we can simply replace it with $w' = w$). Therefore, $(ww')^\omega$ is also an infinite word on $C_{[q_\sim]}$, and we have $(ww')^\omega \notin W_{[q_\sim]}$ since $(ww')^\omega \notin q_\sim^{-1}W$. As $W_{[q_\sim]} = \text{B"uchi}(F_{[q_\sim]})$, clearly $w \notin F_{[q_\sim]}$, which ends the proof of the first item.

For the second item, assume by contradiction that for all $q \in [q_\sim]$, there exists $w_q \in C_{[q_\sim]} \setminus F_{[q_\sim]}$ such that $w_q \notin \alpha\text{-Free}_B(q)$. As there are only finitely many states in $[q_\sim]$, it is then possible to build a word $w = w_{q_1} \ldots w_{q_n}$ such that for all $1 \leq i < n$, $\delta^*(q_i, w_{q_i}) = q_{i+1}$, $\delta^*(q_n, w_{q_n}) = q_1$, and for all $1 \leq i \leq n$, $w_{q_i} \in C_{[q_\sim]} \setminus F_{[q_\sim]}$ and $w_{q_i} \notin \alpha\text{-Free}_B(q_i)$. Word w^ω is accepted from q_1 as it sees infinitely many B"uchi transitions, so it is in $(q_1)^{-1}W = q_\sim^{-1}W$. However, if we consider w^ω as an infinite word on $C_{[q_\sim]}$, then it is not in $W_{[q_\sim]} = \text{B"uchi}(F_{[q_\sim]})$ as every letter of the word is in $C_{[q_\sim]} \setminus F_{[q_\sim]}$. This yields a contradiction. \qed
We use the previous result in a straightforward way to exhibit a state \(q_{\text{max}} \) whose non-\(\alpha \)-free words in \(C_{[q_{\text{max}}]} \) are exactly the words in \(F_{[q_{\text{max}}]} \). The reader may notice that, echoing the proof of the prefix-independent case (Section 4.3.1), the state \(q_{\text{max}} \) given by Corollary 4.11 is actually an \(\alpha \)-free-maximum among states in \([q_{\text{max}}] \).

Corollary 4.11. There exists \(q_{\text{max}} \in [q_{\text{max}}] \) such that for all \(w \in C_{[q_{\text{max}}]} \), \(w \in F_{[q_{\text{max}}]} \) if and only if \(w \notin \alpha \)-Free\(_\text{B}(q_{\text{max}}) \).

Proof. By the second item of Lemma 4.10, we take \(q_{\text{max}} \in [q_{\text{max}}] \) such that, for all \(w \in C_{[q_{\text{max}}]} \setminus F_{[q_{\text{max}}]} \), \(w \in \alpha \)-Free\(_\text{B}(q_{\text{max}}) \). Let \(w \in C_{[q_{\text{max}}]} \). The property we already have on \(q_{\text{max}} \) gives us by contrapositive that \(w \notin \alpha \)-Free\(_\text{B}(q_{\text{max}}) \) implies that \(w \notin F_{[q_{\text{max}}]} \). Reciprocally, the first item of Lemma 4.10 gives us that if \(w \in F_{[q_{\text{max}}]} \), then \(w \notin \alpha \)-Free\(_\text{B}(q_{\text{max}}) \). \(\square \)

From now on, we assume that \(q_{\text{max}} \in [q_{\text{max}}] \) is a state having the property of Corollary 4.11. We show that \(W \) can be recognized by a smaller DBA consisting of DBA \(B \) in which all the states in \([q_{\text{max}}] \) have been merged into the single state \(q_{\text{max}} \), by redirecting all incoming transitions of \([q_{\text{max}}] \) to \(q_{\text{max}} \). We assume w.l.o.g. that if \(q_{\text{init}} \in [q_{\text{max}}] \), then \(q_{\text{init}} = q_{\text{max}} \) (this does not change the objective recognized by \(B \), and will be convenient in the upcoming construction). We consider DBA \(B' = (Q', C, q'_{\text{init}}, \Delta', \alpha') \) with

- \(Q' = (Q \setminus [q_{\text{max}}]) \cup \{q_{\text{init}}\}, q'_{\text{init}} = q_{\text{max}} \),
- for \(q \in Q' \) and \(c \in C \), if \(\delta(q, c) \in [q_{\text{max}}] \), then \(\delta'(q, c) = q_{\text{max}} \); otherwise, \(\delta'(q, c) = \delta(q, c) \),
- for \(q \in Q' \) and \(c \in C \), \(q_{\text{max}} \in \alpha' \) if and only if \((q, c) \notin \alpha \).

We also assume that states that are not reachable from \(q'_{\text{init}} \) in \(B' \) are removed from \(Q' \).

Lemma 4.12. The objective recognized by \(B' \) is also \(W \).

Proof. Let \(w = c_{1}c_{2} \ldots \in C^{\omega}, q = (q_{0}, c_{1}, q_{1})(q_{1}, c_{2}, q_{2}) \ldots \) be the infinite run of \(B \) on \(w \), and \(q' = (q'_{0}, c_{1}, q'_{1})(q'_{1}, c_{2}, q'_{2}) \ldots \) be the infinite run of \(B' \) on \(w \). We have that \(q_{0} = q'_{0} \), but states in both runs may not coincide after a state in \([q_{\text{max}}] \) has been reached. Yet, we show inductively that

\[
\forall i \geq 0, q_{i} \sim_{B} q'_{i}. \tag{4.3}
\]

It is true for \(i = 0 \) (we even have equality in this case), and if \(q_{n} \sim_{B} q'_{n} \), then by construction of the transitions of \(B' \) and Lemma 2.7, we still have \(q_{n+1} \sim_{B} q'_{n+1} \).

We want to show that \(w \) is accepted by \(B \) if and only if it is accepted by \(B' \). This is clear if \(w \) never goes through a state in \([q_{\text{max}}] \) (as the same transitions are then taken in \(B \) and \(B' \)).

We first assume that run \(q \) visits \([q_{\text{max}}] \) finitely many times, and that the last visit to \([q_{\text{max}}] \) happens in \(q_{n} \) for some \(n \geq 0 \). Notice that run \(q' \) also visits \([q_{\text{max}}] \) for the last time in \(q'_{n} \) by Equation (4.3). Therefore, word \(c_{n+1}c_{n+2} \ldots \) is accepted from \(q'_{n} \) in \(B' \) if and only if it is accepted from \(q'_{n} \) in \(B \); all the subsequent transitions coincide. As \(q_{n} \sim_{B} q'_{n} \), we have moreover that \(c_{n+1}c_{n+2} \ldots \) is accepted from \(q'_{n} \) in \(B' \) if and only if it is accepted from \(q_{n} \) in \(B \). This implies that \(w \) is accepted by \(B \) if and only if it is accepted by \(B' \).

We now assume that run \(q \) visits \([q_{\text{max}}] \) infinitely many times. We decompose \(w \) inductively into a prefix \(w_{q} \) reaching \([q_{\text{max}}] \) followed by cycles \(w_{1}, w_{2}, \ldots \) on \([q_{\text{max}}] \). Formally, let \(w_{q} \) be any finite prefix of \(w \) such that \(\delta^{*}(q_{\text{init}}, w_{q}) \in [q_{\text{max}}] \). By induction hypothesis, assume \(w_{q}, w_{1} \ldots w_{n} \) is a prefix of \(w \) such that \(\delta^{*}(q_{\text{init}}, w_{q}, w_{1} \ldots w_{n}) \in [q_{\text{max}}] \). We define \(w_{n+1} \in C^{+} \) as the shortest non-empty word such that \(w_{q}, w_{1} \ldots w_{n}w_{n+1} \) is a prefix of \(w \) and \(\delta^{*}(q_{\text{init}}, w_{q}, w_{1} \ldots w_{n}w_{n+1}) \in [q_{\text{max}}] \). We have \(w = w_{q}w_{1} \ldots \) by construction. By Equation (4.3), we also have that for all \(n \geq 0 \), \((\delta')^{*}(q_{\text{init}}, w_{q}w_{1} \ldots w_{n}) \sim_{B} q_{\text{max}} \), so \((\delta')^{*}(q_{\text{init}}, w_{q}w_{1} \ldots w_{n}) = q_{\text{max}} \) as this is the only state left in that class in \(B' \).
If w is accepted by \mathcal{B}, then for infinitely many $i \geq 1$, word w_i is in $F_{[q_\kappa]}$. By Corollary 4.11, all these infinitely many words are not in α-$\text{Free}_G(q_{\max})$ and therefore see a Büchi transition when read from q_{\max}, so w is also accepted by \mathcal{B}'.

If w is rejected by \mathcal{B}, then there exists $n \geq 1$ such that for all $n' \geq n$, $w_{n'} \in C_{[q_\kappa]} \setminus F_{[q_\kappa]}$. By Corollary 4.11, for all $n' \geq n$, $w_{n'}$ is in α-$\text{Free}_G(q_{\max})$ and therefore does not see a Büchi transition when read from q_{\max}, so w is also rejected by \mathcal{B}'.

We have all the arguments to show our goal for the section (Proposition 4.3), that is, to show that W can be recognized by a Büchi automaton built on top of \mathcal{S}_κ.

Proof of Proposition 4.3. We have shown in Lemma 4.12 how to merge an equivalence class of \mathcal{B} into a single state, while still recognizing the same objective. Repeating this construction for each equivalence class with two or more states, we end up with a DBA with exactly one state per equivalence class of \sim still recognizing W. By definition of \mathcal{S}_κ, this DBA is necessarily built on top of (some automaton isomorphic to) \mathcal{S}_κ.

5. Sufficiency of the conditions

We show that a DBA \mathcal{B} with the three conditions from Section 3.1 (recognizing a progress-consistent objective having a total prefix preorder and being recognizable by a Büchi automaton built on top of \mathcal{S}_κ) recognizes a half-positional objective. As these three conditions have been shown to be necessary for the half-positionalty of objectives recognized by a DBA, this will imply a characterization of half-positionalty.

Our main technical tool is to construct, thanks to these three conditions, a family of completely well-monotonic universal graphs. The existence of such objects implies, thanks to recent results [Ohl23], that \mathcal{P}_1 has positional optimal strategies, even in two-player arenas of arbitrary cardinality.

5.1. Completely well-monotonic universal graphs

We fix extra terminology about graphs only used in Section 5, and recall the relevant results from [Ohl23].

Extra preliminaries on graphs. Let $\mathcal{G} = (V, E)$ be a graph and $W \subseteq C^\omega$ be an objective. A vertex v of \mathcal{G} satisfies W if for all infinite paths $v_0 \stackrel{\kappa_1}{\rightarrow} v_1 \stackrel{\kappa_2}{\rightarrow} \ldots$ from v, we have $c_{1c_2} \ldots \in W$.

Given two graphs $\mathcal{G} = (V, E)$ and $\mathcal{G}' = (V', E')$, a (graph) morphism from \mathcal{G} to \mathcal{G}' is a function $\phi : V \rightarrow V'$ such that $(v_1, c, v_2) \in E$ implies $(\phi(v_1), c, \phi(v_2)) \in E'$.

A morphism ϕ from \mathcal{G} to \mathcal{G}' is W-preserving if for all $v \in V$, v satisfies W implies that $\phi(v)$ satisfies W. Notice that if $\phi(v)$ satisfies W, then v satisfies W, as any path $v \stackrel{\kappa_1}{\rightarrow} v_1 \stackrel{\kappa_2}{\rightarrow} \ldots$ of \mathcal{G} implies the existence of a path $\phi(v) \stackrel{\kappa_1}{\rightarrow} \phi(v_1) \stackrel{\kappa_2}{\rightarrow} \ldots$ of \mathcal{G}' — there are “more paths” in \mathcal{G}'. For κ a cardinal, a graph \mathcal{U} is (κ, W)-universal if for all graphs \mathcal{G} of cardinality $< \kappa$, there is a W-preserving morphism from \mathcal{G} to \mathcal{U}.

We consider a graph $\mathcal{G} = (V, E)$ along with a total order \leq on its vertex set V. We say that \mathcal{G} is monotonic if for all $v, v', v'' \in V$, for all $c \in C$,

- $(v \stackrel{c}{\rightarrow} v'$ and $v' \geq v'') \implies v \stackrel{c}{\rightarrow} v''$, and
- $(v \geq v'$ and $v' \stackrel{c}{\rightarrow} v'') \implies v \stackrel{c}{\rightarrow} v''$.

This means that (i) whenever there is an edge \(v \xrightarrow{c} v' \), there is also an edge with color \(c \) from \(v \) to all vertices smaller than \(v' \) for \(\leq \), and (ii) whenever \(v \geq v' \), then \(v \) has at least the same outgoing edges as \(v' \). Graph \(G \) is well-monotonic if it is monotonic and the total order \(\leq \) is a well-order (i.e., any set of vertices has a minimum). Graph \(G \) is completely well-monotonic if it is well-monotonic and there exists a vertex \(\top \in V \) maximum for \(\leq \) such that for all \(v \in V, c \in C, \top \xrightarrow{c} v \).

Example 5.1. We provide an example illustrating these notions with \(C = \{a, b\} \) and \(W = \text{Büchi}(\{a\}) \). This is a special case of our upcoming construction, and it is already discussed in more depth in [Ohl23, Section 4]. For \(\theta \) an ordinal, we define a graph \(U_\theta \) with vertices \(U_\theta = \theta \cup \{\top\} \), and such that for all ordinals \(\lambda, \lambda' < \theta \),

- \(\lambda \xrightarrow{a} \lambda' \), and
- \(\lambda \xrightarrow{b} \lambda' \) if and only if \(\lambda' < \lambda \).

Moreover, for all \(v \in U_\theta \), we define edges \(\top \xrightarrow{a} v \) and \(\top \xrightarrow{b} v \). We order vertices using the natural order on the ordinals, and with \(\lambda < \top \) for all \(\lambda < \theta \).

Vertex \(\top \) does not satisfy \(W \), as there is an infinite path \(\top \xrightarrow{b} \top \xrightarrow{b} \ldots \), and \(b^\omega \notin W \). All other vertices satisfy \(W \) by construction: they cannot reach \(\top \), and as reading \(b \) decreases the current ordinal, a path cannot have an infinite suffix using only color \(b \) (there is no infinite decreasing sequence of ordinals).

This graph is \((\kappa, W)\)-universal for \(\kappa = |\theta| \). Intuitively, for any graph \(G \) with less than \(\kappa \) vertices, a \(W \)-preserving morphism from \(G \) to \(U_\theta \) can be defined by mapping vertices not satisfying \(W \) to \(\top \), and vertices satisfying \(W \) to an ordinal \(\lambda \) that depends on how long it may take to guarantee seeing an \(a \) from them.

Graph \(U_\theta \) is monotonic, which can be quickly checked with the definition. As \(\leq \) is a well-order and there is a vertex \(\top \) with the right properties, \(U_\theta \) is even completely well-monotonic. The properties of \(U_\theta \) imply half-positionality of \(\text{Büchi}(\{a\}) \), thanks to the following theorem.

We state an important result linking half-positionality and completely well-monotonic universal graphs from [Ohl23].

Theorem 5.2 (One direction of [Ohl23, Theorem 3.1]). Let \(W \subseteq C^\omega \) be an objective. If for all cardinals \(\kappa \), there exists a completely well-monotonic \((\kappa, W)\)-universal graph, then \(W \) is half-positional (over all arenas).

A more precise result from Ohlmann’s thesis [Ohl21, Theorem 1.1] can actually be instantiated on more precise classes of arenas. However, we use it to prove here half-positionality of a family of objectives over all arenas, so the above result turns out to be sufficient.

Remark 5.3. Our approach also implies the half-positionality of \(W \) over arenas with \(\varepsilon \)-edges (cf. Remark 2.1). Indeed, we can add a fresh color \(e \) to \(C \) and define an objective \(W_e \subseteq (C \cup \{e\})^\omega \) such that for \(w \in (C \cup \{e\})^\omega \),

\[
w \in W_e \iff \begin{cases} \text{the word obtained by removing } e \text{ is infinite and belongs to } W, \text{ or} \\ w = w' e^\omega \text{ for some } w' \in (C \cup \{e\})^*. \end{cases}
\]

Then, the existence of a family of completely well-monotonic \((\kappa, W)\)-universal graphs for \(W \) implies that \(W_e \) is half-positional [Ohl23] (in the terminology of [Ohl23], \(e \) is a strongly
neutral letter). Therefore, we can label the ε-edges of any arena with e and obtain an equivalent game with objective W_e.\hfill \Diamond

5.2. Universal graphs for Büchi automata. We show that for a DBA-recognizable objective, the three conditions that were shown to be necessary for half-positionality in Section 4 are actually sufficient.

Proposition 5.4. Let $W \subseteq C^\omega$ be an objective that has a total prefix preorder, is progress-consistent, and is recognizable by a Büchi automaton built on top of S_ω. Then, W is half-positional.

The rest of the section is devoted to the proof of this result, using Theorem 5.2. Let $W \subseteq C^\omega$ be an objective with a total prefix preorder, that is progress-consistent, and that is recognized by a DBA $B = (Q, C, q_{\text{init}}, \Delta, \alpha)$ built on top of S_ω for the rest of this section. We assume as in previous sections that B is saturated (in particular, by Lemma 2.11, any α-free path can be extended to an α-free cycle). An implication of the fact that B is built on top of S_ω that we will use numerous times in the upcoming arguments is that for $q, q' \in Q$, $q \sim q'$ if and only if $q = q'$.

For θ an ordinal, we build a graph $U_{B, \theta}$ in the following way:

- We set the vertices as $U_{B, \theta} = \{(q, \lambda) \mid q \in Q, \lambda < \theta\} \cup \{\top\}$.
- For every transition $\delta(q, c) = q'$ of B,
 - if $(q, c) \in \alpha$, then for all ordinals λ, λ', we define an edge $(q, \lambda) \xrightarrow{c} (q', \lambda')$;
 - if $(q, c) \notin \alpha$, then for all ordinals λ, λ' s.t. $\lambda' < \lambda$, we define an edge $(q, \lambda) \xrightarrow{c} (q', \lambda')$.
 - for $q'' < q'$, then for all ordinals λ, λ'', we define an edge $(q, \lambda) \xrightarrow{c} (q'', \lambda'')$.
- For all $c \in C$, $v \in U_{B, \theta}$, we define an edge $\top \xrightarrow{c} v$.

We order the vertices lexicographically: $(q, \lambda) \leq (q', \lambda')$ if $q < q'$ or $(q = q'$ and $\lambda \leq \lambda')$, and we define \top as the maximum for $\leq ((q, \lambda) < \top$ for all $q \in Q, \lambda < \theta)$.

Graph $U_{B, \theta}$ is built such that on the one hand, it is sufficiently large and has sufficiently many edges so that there is a morphism from any graph G (of cardinality smaller than some function of $|\theta|$) to $U_{B, \theta}$. On the other hand, for the morphism to be W-preserving, at least some vertices of $U_{B, \theta}$ need to satisfy W, which imposes a restriction on the infinite paths from vertices. Graph $U_{B, \theta}$ is actually built so that for any automaton state $q \in Q$ and ordinal $\lambda < \theta$, the vertex (q, λ) satisfies $q^{-1}W$ (see Lemma 5.9). The intuitive idea is that for a non-Büchi transition $(q, c) \notin \alpha$ of the automaton such that $\delta(q, c) = q'$, a c-colored edge from a vertex (q, λ) in the graph either (i) reaches a vertex with first component q', in which case the ordinal must decrease on the second component, or (ii) reaches a vertex with first component $q'' < q'$, with no restriction on the second component, but therefore with fewer winning continuations. Using progress-consistency and the fact that there is no infinitely decreasing sequence of ordinals, we can show that this implies that no infinite path in $U_{B, \theta}$ corresponds to an infinite run in the automaton visiting only non-Büchi transitions.

We state two properties that directly follow from the definition of $U_{B, \theta}$:

$$
\begin{align*}
\text{if } (q, \lambda) &\xrightarrow{c} (q', \lambda'), \text{ then } q' \leq \delta(q, c); \quad (5.1) \\
\text{if } (q, \lambda) &\xrightarrow{c} (q', \lambda') \text{ and } \lambda'' \leq \lambda', \text{ then } (q, \lambda) \xrightarrow{c} (q', \lambda''). \quad (5.2)
\end{align*}
$$

Example 5.5. We consider again the DBA B from Example 3.7, recognizing the words seeing a infinitely many times, or a twice in a row at some point. We represent the graph $U_{B, \theta}$, with $\theta = \omega$ in Figure 12.\hfill \Diamond
Figure 12: The graph $\mathcal{U}_{B,0}$, where B is the automaton from Example 3.7 ($\mathcal{L}(B) = \text{Büchi}(\{a\}) \cup C^*aaC^\omega$). The dashed edge with color b indicates that $(q_{init}, \lambda) \xrightarrow{b} (q_{init}, \lambda')$ if and only if $\lambda' < \lambda$ (it corresponds to the only non-Büchi transition of B). Elsewhere, an edge labeled with color c between two rectangles q, q' means that for all ordinals $\lambda, \lambda', (q, \lambda) \xrightarrow{c} (q', \lambda')$. Thick edges correspond to the original transitions of B. There are edges from \top to all vertices of the graph with colors a and b. Vertices are totally ordered from left to right.

In order to use Theorem 5.2, we show that the graph $\mathcal{U}_{B,\theta}$ is completely well-monotonic (Lemma 5.6) and, for all cardinals κ, is (κ, W)-universal for sufficiently large θ (Proposition 5.10).

Lemma 5.6. Graph $\mathcal{U}_{B,\theta}$ is completely well-monotonic.

Proof. The order \leq on the vertices is a well-order, and there exists a vertex $\top \in \mathcal{U}_{B,\theta}$ maximum for \leq such that for all $v \in \mathcal{U}_{B,\theta}$, $c \in C$, $\top \xrightarrow{c} v$. To show that $\mathcal{U}_{B,\theta}$ is completely well-monotonic, it now suffices to show that $\mathcal{U}_{B,\theta}$ is monotonic.

The first item of the monotonicity definition follows from the construction of the graph. We assume that $(q, \lambda) \xrightarrow{c} (q', \lambda')$ and $(q', \lambda') \geq (q'', \lambda'')$, and we show that $(q, \lambda) \xrightarrow{c} (q'', \lambda'')$. By Equation (5.1), we have $q' \preceq (q, \lambda) \preceq c$. The inequality $(q', \lambda') \preceq (q'', \lambda'')$ means by definition that $q'' \prec q'$ or $(q'' = q'$ and $\lambda'' \preceq \lambda')$. If $q'' \prec q'$, we obtain that $q'' \prec \delta(q,c)$, so we also have $(q, \lambda) \xrightarrow{c} (q'', \lambda'')$. If $q'' = q'$ and $\lambda'' \preceq \lambda'$, then we also have $(q, \lambda) \xrightarrow{c} (q', \lambda'')$ by Equation (5.2), which is what we want as $q' = q''$.

The second item of the monotonicity definition is slightly more involved and follows from progress-consistency, the fact that the prefix preorder is total, and the saturation of B. We assume that $(q, \lambda) \geq (q', \lambda')$ and $(q', \lambda') \Rightarrow (q'', \lambda'')$, and we show that $(q, \lambda) \Rightarrow (q'', \lambda'')$. The assumption $(q, \lambda) \geq (q', \lambda')$ implies that $q \preceq q'$, so $\delta(q,c) \preceq (q', \lambda')$ by Lemma 2.8. Moreover, $(q', \lambda') \Rightarrow (q'', \lambda'')$ implies that $\delta(q', c) \preceq q''$ by Equation (5.1). Hence, $\delta(q,c) \preceq q''$. If $\delta(q,c) \preceq q''$, then $(q, \lambda) \Rightarrow (q'', \lambda'')$ by definition of the graph. The same holds if $\delta(q,c) = q''$ and $(q,c) \in \alpha$.

It is left to discuss the case $\delta(q,c) = q''$ and $(q,c) \notin \alpha$. By the above inequalities, this implies that we also have $\delta(q', c) = q''$.

- If $q = q'$, then $\lambda \preceq \lambda'$. Moreover, as $(q', c) = (q,c) \notin \alpha$, the existence of edge $(q', \lambda') \Rightarrow (q'', \lambda'')$ implies that $\lambda' > \lambda''$. So $\lambda > \lambda''$ and we also have $(q, \lambda) \Rightarrow (q'', \lambda'')$.
- We show that $q' \prec q$ is not possible — we assume it holds and draw a contradiction. As $(q,c) \notin \alpha$, we have $c \in \alpha$-$\text{Free}_{B}(q)$. By Lemma 2.11, there is $w \in C^*$ such that $cw \in \alpha$-$\text{FreeCycles}_{B}(q)$. As $\delta(q,c) = \delta(q', c)$ and $\delta^*(q,cw) = q$, we have $\delta^*(q', cw) = q$. As $q' \prec q$, by progress-consistency, the word $(cw)^\omega$ must be accepted by B when read from q'.

It must therefore also be accepted when read from \(q \) (as \(q' < q \)), which contradicts that \(cw \in \alpha\text{-FreeCycles}_B(q) \).

We now intend to show \((\kappa, W)\)-universality of some \(U_{\mathcal{B},\theta}\) for each cardinal \(\kappa\). Lemmas 5.7 and 5.8 give insight into properties of the paths of \(U_{\mathcal{B},\theta}\), to then establish which vertices of \(U_{\mathcal{B},\theta}\) satisfy \(W\) (Lemma 5.9). Understanding which vertices satisfy \(W\) is useful to later define a \(W\)-preserving morphism into \(U_{\mathcal{B},\theta}\). We first show that paths in this graph “underapproximate” corresponding runs in the automaton: a finite path \(\gamma = (q_0, \lambda_0) \xrightarrow{c_1} \ldots \xrightarrow{c_n} (q_n, \lambda_n)\) in \(U_{\mathcal{B},\theta}\) visits vertices labeled with automaton states at most as large (for \(\preceq\)) as the corresponding states visited by the finite run from \(q_0\) on \(c_1 \ldots c_n\).

Lemma 5.7. Let \(\gamma = (q_0, \lambda_0) \xrightarrow{c_1} \ldots \xrightarrow{c_n} (q_n, \lambda_n)\) be a finite path of \(U_{\mathcal{B},\theta}\) and \(w = c_1 \ldots c_n\). Then, \(q_n \preceq \delta^*(q_0, w)\).

Proof. We proceed by induction on the length \(n\) of \(\gamma\). If \(n = 0\), then \(w = \varepsilon\), so \(q_0 = q_0 = \delta^*(q_0, w)\), and the result holds. If \(n \geq 1\), we assume by induction hypothesis that \(q_{n-1} \preceq \delta^*(q_0, c_1 \ldots c_{n-1})\). By Lemma 2.8, we have \(\delta(q_{n-1}, c_n) \preceq \delta(\delta^*(q_0, c_1 \ldots c_{n-1}), c_n) = \delta^*(q_0, w)\). By Equation (5.1), if \((q_{n-1}, \lambda_{n-1}) \xrightarrow{c_n} (q_n, \lambda_n)\), then \(q_n \preceq \delta(q_{n-1}, c_n)\). By transitivity, \(q_n \preceq \delta^*(q_0, w)\).

We now show that in \(U_{\mathcal{B},\theta}\), a finite path that goes back to its initial value w.r.t. the first component without decreasing the ordinal necessarily induces an accepted word when repeated.

Lemma 5.8. Let \(\gamma = (q_0, \lambda_0) \xrightarrow{c_1} \ldots \xrightarrow{c_n} (q_n, \lambda_n)\) be a finite path of \(U_{\mathcal{B},\theta}\) with \(n \geq 1\), \(q_0 = q_n\), and \(\lambda_0 \leq \lambda_n\). Let \(w = c_1 \ldots c_n\). Then, \(w^\omega \in q_0^{-1}W\).

Proof. Let \(q = \mathcal{B}(q_0, w) = (q_0', c_1, q_1') \ldots (q_{n-1}', c_n, q_n')\) be the finite run of \(\mathcal{B}\) obtained by reading \(w\) from \(q_0\). States \(q_0, \ldots, q_n\) correspond to the first component of the vertices visited by \(\gamma\) in \(U_{\mathcal{B},\theta}\), whereas \(q_0', \ldots, q_n'\) are the states visited by the finite word \(w\) in \(\mathcal{B}\). We have that \(q_0 = q_0'\), but the subsequent states may or may not correspond. By Lemma 5.7, we still know that for all \(i\), \(0 \leq i \leq n\), \(q_i \preceq q_i'\). In particular, \(q_0 = q_n \preceq \delta^*(q_0, w) = q_n'\). We distinguish three cases, depending on whether \(q_0 \preceq \delta^*(q_0, w)\) or \(q_0 \sim \delta^*(q_0, w)\) (which implies \(q_0 = \delta^*(q_0, w)\) as \(\mathcal{B}\) is built on top of its prefix-classifier), and depending on whether \(q_i = q_i'\) for all \(0 \leq i \leq n\) or not.

- If \(q_0 \sim \delta^*(q_0, w)\), by progress-consistency, \(w^\omega \in q_0^{-1}W\).
- If \(q_0 = \delta^*(q_0, w)\) and for all \(i\), \(0 \leq i \leq n\), \(q_i = q_i'\) (i.e., \(\gamma\) only uses edges that directly correspond to transitions of the automaton \(\mathcal{B}\)), then for the ordinal to be greater than or equal to its starting value, some B"uchi transition has to be taken since non-B"uchi transitions strictly decrease the ordinal on the second component. Hence, \(w\) is not an \(\alpha\)-free cycle from \(q_0\), so \(w^\omega \notin q_0^{-1}W\).
- If \(q_0 = \delta^*(q_0, w)\) and for some index \(i\), \(1 \leq i < n\), we have \(q_i < q_i'\) (i.e., \(\gamma\) takes at least one edge that does not correspond to a transition of the automaton). We represent the situation in Figure 13. We know that \(\delta^*(q_i', c_{i+1} \ldots c_n) = q_i' \sim q_0\). By Lemma 2.8, as \(q_i < q_i'\), this implies that \(\delta^*(q_i, c_{i+1} \ldots c_n) \preceq q_0\). Also, in the graph, there is a path from \(q_i\) to \(q_0\) with colors \(c_{i+1} \ldots c_n\). Therefore, by Lemma 5.7, \(q_0 \preceq \delta^*(q_i, c_{i+1} \ldots c_n)\). Thus, \(q_0 \sim \delta^*(q_i, c_{i+1} \ldots c_n)\), and as \(\mathcal{B}\) is built on top of \(S_\omega\), \(q_0 = \delta^*(q_i, c_{i+1} \ldots c_n)\). Therefore, \(q_i < \delta^*(q_i, c_{i+1} \ldots c_n) = q_i'\). By progress-consistency, \((c_{i+1} \ldots c_n)q_i'\omega \in q_i^{-1}W\). As \(\delta^*(q_i, c_{i+1} \ldots c_n) = q_0\), this implies that \((c_1 \ldots c_n)w^\omega \in q_0^{-1}W\).
We show that every vertex \((q_0, \lambda_0)\) such that \(q_0 \preceq \text{init}\) satisfies \(W\).

Lemma 5.9. Let \(q_0 \in Q\). For all ordinals \(\lambda_0 < \theta\), the vertex \((q_0, \lambda_0)\) of \(U_{B, \theta}\) satisfies \(q_0^{-1}W\). In particular, if \(q_0 \preceq \text{init}\), \((q_0, \lambda_0)\) satisfies \(W\).

Proof. Let \(\pi = (q_0, \lambda_0) \xrightarrow{c_1} (q_1, \lambda_1) \xrightarrow{c_2} \ldots \) be an infinite path of \(U_{B, \theta}\) from \((q_0, \lambda_0)\) and \(w = c_1 c_2 \ldots\) be the sequence of colors along its edges. We show that \(w \in q_0^{-1}W\).

Let \(q'_i = \delta^\ast(q_0, c_1 \ldots c_i)\) be the state of \(B\) reached after reading the first \(i\) colors of \(w\). We claim that there are two states \(q, q' \in Q\) occurring infinitely often in the sequences \((q_i)_{i \geq 0}, (q'_i)_{i \geq 0}\), respectively, and an increasing sequence of indices \((i_k)_{k \geq 1}\) satisfying that for all \(k \geq 1\),

- \(q_{i_k} = q, q'_{i_k} = q'\), and
- \(\lambda_{i_k} \leq \lambda_{i_{k+1}}\).

Indeed, we can first choose a state \(q\) appearing infinitely often in \((q_i)_{i \geq 0}\) and pick a sequence \((i_j)_{j \geq 1}\) such that \(q_{i_j} = q\) and \((\lambda_{i_j})_{j \geq 1}\) is not decreasing (this is possible since there is no infinite decreasing sequence of ordinals). Then, we can just pick \(q'\) appearing infinitely often in \((q'_i)_{i \geq 1}\) and extract the subsequence corresponding to its occurrences.

Let \(q, q' \in Q\), \((i_k)_{k \geq 1}\) satisfying the above properties. Let \(w_0 = c_1 \ldots c_{i_1}\) and for \(k \geq 1\), let \(w_k = c_{i_k} \ldots c_{i_{k+1}} \in C^+\) be the colors over the edges in \(\pi\) from \((q_{i_k}, \lambda_{i_k})\) to \((q_{i_{k+1}}, \lambda_{i_{k+1}})\).

By Lemma 5.7, it holds that \(q \preceq q' = \delta^\ast(q_0, w_0)\). Moreover, since \(\lambda_{i_k} \leq \lambda_{i_{k+1}}\), by Lemma 5.8 we have that \(w_k^\omega \in q^{-1}W \subseteq (q')^{-1}W\) for all \(k \geq 1\). We conclude that for all \(k \geq 1\), the word \(w_k\) labels a cycle over \(q'\) in \(B\) visiting some Büchi transition, and therefore \(w = w_0 w_1 w_2 \ldots \in q_0^{-1}W\).

We now have all the tools to show, for all cardinals \(\kappa\), \((\kappa, W)\)-universality of \(U_{B, \theta}\) for sufficiently large \(\theta\).

Proposition 5.10. Let \(\kappa\) be a cardinal, and \(\theta'\) be an ordinal such that \(\kappa \leq |\theta'|\). Let \(\theta = |Q| \cdot \theta'\). Graph \(U_{B, \theta}\) is \((\kappa, W)\)-universal.

Proof. Let \(\mathcal{G} = (V, E)\) be a graph such that \(|V| < \kappa\) (in particular, \(|V| < |\theta'|\)). For \(v \in V\), let \(q_v \in Q \cup \{\top\}\) be the smallest automaton state (for \(\preceq\)) such that \(v\) satisfies \(q_v^{-1}W\), or \(\top\) if it satisfies none of them. We remark that \(q_v \preceq q\) if and only if \(v\) satisfies \(q^{-1}W\). To show that there is a \(W\)-preserving morphism from \(\mathcal{G}\) to \(U_{B, \theta}\), we follow the six steps outlined in [Ohl23, Lemma 4.3].

(i) In this first step, we classify and order vertices of \(\mathcal{G}\) in an inductive way, which will later be used to map them to vertices of \(U_{B, \theta}\). For \(q \in Q\) and \(\lambda\) an ordinal, we define by transfinite induction

\[
V_\lambda^q = \left\{ v \in V \mid q_v \preceq q, \text{ and } \forall c \in C \left(v \xrightarrow{c} v' \implies [(q, c) \in \alpha \text{ or } \exists \eta < \lambda, v' \in V^\delta_\eta(q, c)] \right) \right\}.
\]
Intuitively, for \(v \) to be in \(V^q_\lambda \), it has to satisfy \(q^{-1}W \) and to guarantee that a Büchi transition is seen “soon” when colors of paths from \(v \) are read from \(q \) in \(B \) (how soon depends on the value of \(\lambda \)). We remark that for each state \(q \in Q \), the sequence \((V^q_\lambda)_\lambda \) is non-decreasing: for \(\lambda \leq \lambda' \), \(V^q_\lambda \subseteq V^q_{\lambda'} \). We illustrate this induction on a concrete case in Example 5.11. We also discuss another example in Remark 5.12 to illustrate why we need to consider the product \(\theta = |Q| \cdot \theta' \) rather than just taking \(\theta = \theta' \) for our construction. The subsequent steps mostly follow from this definition.

(ii) Let \(V^q = \bigcup_\lambda V^q_\lambda \). We show that if \(v \) satisfies \(q^{-1}W \), then it is in \(V^q \). Assume that \(v \notin V^q \). If \(q < q_v \), then we immediately have that \(v \) does not satisfy \(q^{-1}W \). If \(q_v \leq q \), then \(v \) has an outgoing edge \(v \xrightarrow{c} v' \) such that \((q,c) \notin \alpha \) and \(v' \notin \bigcup_\lambda V^q_\lambda \). By induction, we build an infinite path from \(v \) whose projection in \(B \) only sees non-Büchi transitions, so \(v \) does not satisfy \(q^{-1}W \).

(iii) In this step and the next one, we show that there is no use in considering ordinals beyond \(\theta \) in our construction. We first show that if for all \(q \in Q \), \(V^q_\lambda = V^q_{\lambda+1} \), then for all \(q \in Q \) and all \(\lambda' \geq \lambda \), \(V^q_\lambda = V^q_{\lambda'} \). For \(\lambda \leq \lambda' \), we always have \(V^q_\lambda \subseteq V^q_{\lambda'} \). For the other inclusion, we assume by transfinite induction that \(V^q_{\lambda'} = V^q_q \) for all \(q' \in Q \) and for all \(\eta \) such that \(\lambda \leq \eta < \lambda' \). Let \(v \in V^q_{\lambda'} \). Every edge \(v \xrightarrow{c} v' \) either satisfies \((q,c) \in \alpha \), or there exists \(\eta < \lambda' \) such that \(v' \in V^q_\eta \). Since \(V^q_\lambda \subseteq V^q_{\lambda'} \) by induction hypothesis, we have \(v' \in V^q_{\lambda'} \). Hence, \(v \in V^q_{\lambda+1} = V^q_{\lambda'} \).

(iv) We prove that there exists \(\lambda < \theta \) such that for all \(q \in Q \), \(V^q_\lambda = V^q_{\lambda+1} \). If not, using the axiom of choice, we can build a map \(\psi : Q \times X \rightarrow Q \) such that for \(\lambda < \theta \), \(\psi(\lambda) = (q,v) \) for some \(q \in Q \) and \(v \in V^q_{\lambda+1} \setminus V^q_\lambda \). This map is injective, as any pair \((q,v) \) can be chosen at most once (as \((V^q_\lambda)_\lambda \) is non-decreasing). This implies that \(|\theta| = |Q| \cdot |\theta'| \leq |Q| \cdot |V| \), a contradiction since \(|V| < |\theta'| \).

Using additionally Item (iii), we deduce that there exists \(\lambda < \theta \) such that for all \(\lambda' \geq \lambda \), \(V^q_\lambda = V^q_{\lambda'} \).

(v) Let \(\phi : V \rightarrow U_{B,\theta} \) be such that

\[
\phi(v) = \begin{cases}
(q_v, \min\{\lambda \mid v \in V^q_\lambda\}) & \text{if } q_v < \top, \\
\top & \text{if } q_v = \top.
\end{cases}
\]

By Item (ii), for all \(v \in V \), there exists \(\lambda \) such that \(v \in V^q_\lambda \), so \(\{\lambda \mid v \in V^q_\lambda\} \) is non-empty. By Item (iv), we have that if \(\phi(v) = (q,\lambda) \), then \(\lambda < \theta \), so the image of \(\phi \) is indeed in \(U_{B,\theta} \). We show that \(\phi \) is \(W \)-preserving: if \(v \) satisfies \(W \), then \(q_v \leq q_{\text{init}} \), so by Lemma 5.9, \(\phi(v) \) also satisfies \(W \).

(vi) We show that \(\phi \) is a graph morphism. Let \(v \xrightarrow{c} v' \) be an edge of \(\mathcal{G} \) — we need to show that \(\phi(v) \xrightarrow{c} \phi(v') \) is an edge of \(\mathcal{U}_{B,\theta} \). If \(\phi(v) = \top \), this is clear as there are all possible outgoing edges from \(\top \). If not, we denote \(\phi(v) = (q,\lambda) \) and \(\phi(v') = (q',\lambda') \). We have that \(v \) satisfies \(q^{-1}W \). Thus, \(v' \) must satisfy \(\delta(q,c)^{-1}W \). This implies that \(q' \leq \delta(q,c) \).

We distinguish two cases.

- If \((q,c) \in \alpha \), then by construction of \(\mathcal{U}_{B,\theta} \), there are \(c \)-colored edges from \((q,\lambda) \) to \((\delta(q,c),\lambda'') \) for all ordinals \(\lambda'' \). By monotonicity, as \(q' \leq \delta(q,c) \), there is also a \(c \)-colored edge from \((q,\lambda) \) to \((q',\lambda') \).

- We assume that \((q,c) \notin \alpha \). If \(q' = \delta(q,c) \), this means that there exists \(\eta < \lambda \) such that \(v' \in V^q_\eta \). Therefore, \(\lambda' \leq \eta < \lambda \). So the edge \((q,\lambda) \xrightarrow{c} (q',\lambda') \) exists by
construction of $U_{B,\theta}$. If $q' \prec \delta(q, c)$, then by construction of $U_{B,\theta}$, there are c-colored edges from (q, λ) to (q', λ') for all ordinals λ'.

We have shown in Item (v) and Item (vi) that ϕ is a W-preserving morphism from G to $U_{B,\theta}$.

\[\square \]

Example 5.11. We consider the objective $W = \text{B"uchi}(\{a\}) \cup C^*aaC^\omega$ recognized by the DBA B from Example 3.7, for which graph $U_{B,\omega}$ was shown in Example 5.5. We discuss how our construction maps the vertices of graph G in Figure 14. Notice that v_1, v_2, and v_3 satisfy W, but not v_4 and v_5.

We build explicitly the sets V^q_λ from Item (i) of the proof of Proposition 5.10. All five vertices are in V^init_λ for every ordinal λ, as all vertices satisfy $q_{aa}^{-1}W = C^\omega$, and any transition from q_{aa} is a B"uchi transition. For the same reasons, v_1, v_2, v_3, and v_4 are in $V^\text{init}_{q_{ba}}$ for all λ. We determine the sets V^init_λ using the inductive definition. First, v_3 is in V^init_λ for all λ, since $(\text{init}, a) \in \alpha$. Therefore, $v_2 \in V^\text{init}_\lambda$ for $\lambda \geq 1$ (the b-colored edge from v_2 leads to v_3, and $\delta(q_{\text{init}}, b) = q_{\text{init}}$). Finally, $v_1 \in V^\text{init}_\lambda$ for $\lambda \geq 2$ for the same reason. The morphism ϕ from Item (v) assigns $\phi(v_1) = (q_{\text{init}}, 2)$, $\phi(v_2) = (q_{\text{init}}, 1)$, $\phi(v_3) = (q_{\text{init}}, 0)$, $\phi(v_4) = (q_4, 0)$, $\phi(v_5) = (q_{aa}, 0)$.

![Figure 14: Graph G used in Example 5.11.](image-url)

Remark 5.12. We illustrate why, in the statement of Proposition 5.10, we use $|Q| \cdot \theta'$ vertices for each automaton state and not just θ'.

Let $C = \{a, b, c\}$, W be the objective recognized by the DBA in Figure 15 (left), and G be the graph with two vertices in Figure 15 (right). This objective has a total prefix preorder, is progress-consistent, is recognized by a DBA built on top of its prefix-classifier, and the DBA in Figure 15 is saturated. Both vertices of G satisfy $W = q_1^{-1}W$ but do not satisfy $q_0^{-1}W$, so $q_{v_1} = q_{v_2} = q_1$. We have $v_1 \in V^q_{V_0}$ (the base case of the induction), and this inductively implies that $v_2 \in V^q_{V_1}, v_1 \in V^q_{V_2}, v_2 \in V^q_{V_3}, v_1 \in V^q_{V_4}, v_2 \in V^q_{V_5}$. We represent these steps in the figure, below the graph. Thus, $\phi(v_1) = (q_1, 4)$ and $\phi(v_2) = (q_1, 5)$. We see here that two copies of each automaton state in our universal graph construction would not have sufficed; we actually used six different indices to fully understand the situation, which is due to the interlacing between the graph and the structure of the automaton.

![Figure 14: Graph G used in Example 5.11.](image-url)

Proof of Proposition 5.4. Using Lemma 5.6 and Proposition 5.10, we have for all cardinals κ that there exists a completely well-monotonic (κ, W)-universal graph. By Theorem 5.2, this implies that W is half-positional.

\[\square \]
Figure 15: DBA (left) and graph G (right) used in Remark 15 to illustrate the need for $|Q| \cdot \theta'$ vertices for each automaton state in the universal graph used in the construction of Proposition 5.10.

6. CONCLUSION AND FUTURE WORK

We have provided a characterization of half-positionality for DBA-recognizable objectives. This novel result is necessary to advance toward a full understanding of half-positionality of ω-regular objectives.

Besides ω-regular objectives, one could study the half-positionality of classes of objectives defined by topological properties; for instance, those corresponding to different levels of the Borel hierarchy. In particular, a natural step in this direction would be to study the half-positionality of Π^0_2 objectives, which correspond to those that can be recognized by deterministic, but infinite, Büchi automata.

Another interesting extension is to characterize the memory requirements of DBA-recognizable objectives. An intermediate and already seemingly difficult step would be to characterize the memory requirements of objectives recognized by deterministic weak automata [Wag79, Sta83, Löd01], generalizing the characterization for safety specifications [CFH14].

ACKNOWLEDGMENTS

The authors would like to thank Igor Walukiewicz for suggesting a simplification of the proof of Lemma 4.9 and Pierre Ohlmann for interesting discussions on the subject.

REFERENCES

Half-positional objectives recognized by deterministic Büchi automata.

Appendix A. Relation with other properties from the literature

We show precise links between the first two conditions we have defined in Section 3.1 and the (strong) monotony and (strong) selectivity notions from [GZ05, BFMM11].

Let \(W \subseteq C^\omega \) be an objective. For \(M \subseteq C^* \) a set of finite words, we write \([M]\) for the set of infinite words whose every finite prefix is a prefix of a finite word in \(M \). For \(w \in C^* \), we write \(wW \) for set of infinite words \(\omega \upharpoonright w \) with \(\omega \in W \). For two sets of infinite words \(M, N \subseteq C^\omega \), we write \(M \subseteq_W N \) if \(M \cap W \neq \emptyset \) implies \(N \cap W \neq \emptyset \) (in other words, either all words in \(M \) are losing, or there exists a winning word in \(N \)). We write \(M \subseteq_W N \) if \(M \cap W = \emptyset \) and \(N \cap W \neq \emptyset \) (in other words, all words in \(M \) are losing and there exists a winning word in \(N \)).

Properties of prefixes. Objective \(W \) is strongly monotone if for all languages of infinite words \(M, N \subseteq C^\omega \), if there exists \(u \in C^* \), such that \(uM \subseteq_W wN \), then for all \(w' \in C^* \), \(w'M \subseteq_W w'N \). Objective \(W \) is monotone if for all regular languages (of finite words) \(M, N \subseteq C^* \), if there exists \(w \in C^* \), such that \(w[M] \subseteq_W w[N] \), then for all \(w' \in C^* \), \(w'[M] \subseteq_W w'[N] \).

We show that having a total prefix preorder is in general equivalent to strong monotony as defined in [BFMM11], and is even equivalent to monotony as defined in [GZ05] for \(\omega \)-regular objectives. In particular, strong monotony and monotony coincide for \(\omega \)-regular objectives.

Lemma A.1. Let \(W \subseteq C^\omega \) be an objective. Objective \(W \) has a total prefix preorder if and only if \(W \) is strongly monotone. If \(W \) is \(\omega \)-regular, \(W \) has a total prefix preorder if and only if \(W \) is monotone.

Proof. We first prove the first equivalence, with no restriction on \(W \).

We assume that \(W \) has a total prefix preorder and we show that it is strongly monotone. Let \(w \in C^* \), \(M, N \subseteq C^\omega \) such that \(wM \subseteq_W wN \). As the prefix-preorder is total, we have that \(w \preceq w' \) or \(w' \preceq w \). If \(w \preceq w' \), as \(w \) has a winning continuation in \(N \), this continuation is also winning for \(w' \) — so \(w'M \subseteq_W w'N \). If \(w' \preceq w \), then all the infinite words in \(w'M \) are also losing, thus \(w'M \subseteq_W w'N \).

We assume that \(W \) is strongly monotone and we show that the prefix preorder is total. Let \(x, y \in C^* \). We show that \(x \) and \(y \) are comparable for \(\preceq \): we assume w.l.o.g. that \(x \not\preceq y \), and we show that \(y \preceq x \), i.e., that \(y^{-1}W \subseteq x^{-1}W \). Let \(y' \in y^{-1}W \). As \(x \not\preceq y \), there is \(x' \in C^\omega \) such that \(xx' \in W \) but \(yx' \notin W \). By taking \(M = \{x'\} \) and \(N = \{y'\} \), we have \(yM \subseteq_W yN \). Hence, \(xM \subseteq_W xN \) by strong monotony. As \(xM \) contains a winning word, so does \(xN \), so \(y' \in x^{-1}W \).

We now assume that \(W \) is \(\omega \)-regular. The left-to-right implication still holds, as monotony is a weaker notion than strong monotony. We reprove the right-to-left implication with this extra assumption. We assume that \(W \) is monotone and we show that the prefix preorder is total. Let \(x, y \in C^* \). We show that \(x \) and \(y \) are comparable for \(\preceq \): we assume w.l.o.g. that \(x \not\preceq y \), and we show that \(y \preceq x \), i.e., that \(y^{-1}W \subseteq x^{-1}W \). As \(x^{-1}W \) and \(y^{-1}W \) are also \(\omega \)-regular, by Lemma 2.5, it suffices to show that all ultimately periodic words in \(y^{-1}W \) are in \(x^{-1}W \). Let \(u \in C^* \), \(v \in C^+ \) such that \(uv^\omega \in y^{-1}W \). As \(x \not\preceq y \), once again by Lemma 2.5, there is \(u' \in C^* \), \(v' \in C^+ \) such that \(xu'(v')^\omega \in W \) but \(yu'(v')^\omega \notin W \). By taking \(M = u'(v')^* \) and \(N = uv^\omega \) (which are regular languages), we have \([M] = \{u'(v')^*\}\) and \([N] = \{uv^\omega\}\). Therefore, \(y[M] \subseteq_W y[N] \). Hence, \(xM \subseteq_W xN \) by monotony. As \(xM \) contains a winning word, so does \(xN \), so \(uv^\omega \in x^{-1}W \).
As having a total prefix preorder holds symmetrically for an objective and its complement, we deduce that so does strong monotony, and so does monotony for ω-regular objectives. The latter is especially interesting for the study of ω-regular objectives, as monotony is not symmetric in general (there are objectives that are monotone but whose complement is not).

Properties of cycles. Objective W is strongly selective if for all languages of finite words $M, N, K \subseteq C^*$, for all $w \in C^*$, $w[(M \cup N)^*K] \sqsubseteq_W w[M^*] \cup w[N^*] \cup w[K]$. Selectivity is the same definition with M, N, K being restricted to being regular languages.

As for having a total prefix preorder and (strong) monotony, we can link progress-consistency and (strong) selectivity. We have that strong selectivity implies progress-consistency, and that selectivity implies progress-consistency when W is ω-regular.

Lemma A.2. Let $W \subseteq C^\omega$ be an objective. If W is strongly selective, then it is progress-consistent. If W is ω-regular and selective, then it is progress-consistent.

Proof. We prove the first implication. We assume by contrapositive that W is not progress-consistent, i.e., there exist $w_1 \in C^*$ and $w_2 \in C^+$ such that $w_1 < w_1w_2$ and $w_1(w_2)^\omega \notin W$. Let $w_3 \in C^\omega$ be such that $w_1w_3 \notin W$ and $w_1w_2w_3 \in W$, which exists as $w_1 < w_1w_2$. Let $w = w_1$, $M = \{w_2\}$, $N = \emptyset$, and $K = \{w_3' \in C^* \mid w_3'$ is a prefix of $w_3\}$. We have that $w[(M \cup N)^*K]$ contains the winning word $w_1w_2w_3$. However, we have $w[M^*] = \{w_1(w_2)^\omega\}$, $w[N^*] = \emptyset$, and $w[K] = \{w_1w_3\}$: the set $w[M^*] \cup w[N^*] \cup w[K]$ contains only losing words. We do not have $w[(M \cup N)^*K] \sqsubseteq_W w[M^*] \cup w[N^*] \cup w[K]$.

For the second implication, we assume that W is ω-regular. The proof proceeds in the exact same way, except that we have to make sure that M, N, and K are regular. This is the case for M and N. To make K regular, we use Lemma 2.5 and obtain that there is an ultimately periodic continuation uv^ω witnessing that $w_1 < w_1w_2$. We can set $K = uv^*$ (which is regular) and the proof ends in the same way.

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2, 10777 Berlin, Germany