Minimisation of Automata

State of the art minimisation of co-Büchi automata:

<table>
<thead>
<tr>
<th></th>
<th>State-based</th>
<th>Transition-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic</td>
<td>NP-complete (Schewe 2010)</td>
<td>?</td>
</tr>
<tr>
<td>Good-For-Games</td>
<td>NP-complete (Schewe 2020)</td>
<td>Polynomial (Abu Radi-Kupferman 2019)</td>
</tr>
</tbody>
</table>

Our contributions:

Theorem
Minimisation of transition-based Rabin automata is NP-complete.

Remark 1. For the reduction we use a language that is a Muller condition: whether a word $w \in \Sigma^\omega$ belongs to the language only depends on $\text{Inf}(w)$.

Proposition
Minimisation of parity automata recognising Muller conditions can be done in polynomial time.

Muller games

Players move a pebble in turns producing an infinite word $w \in \{a, b, c\}^\omega$.

Muller condition: Family of subsets of colours $F = \{\{a, b, c\}, \{a\}, \{b\}\}$. Player 1 wins if the set of colours produced infinitely often is in F.

Memory structures

3 kinds of memory structures:

- **General memory:** Update transitions can depend on the specific edges of the game.
- **Chromatic memory:** Update transitions only depend on the colours of the condition (for example, the memory structure above).
- **Arena-independent memory:** Memory structure that can be used in any game where the winning condition is F.

Question (Kopczyński 2006)
Is it true that, if Player 1 wins a game using a given winning condition, she requires the same amount of “general memory” than “chromatic memory” to win it?

Answer
No. There are Muller conditions for which Player 1 requires strictly more “chromatic memory” than “general memory” to win.

Memory and Rabin automata

In the following, “automaton” stands for “deterministic transition-based automaton”.

Theorem
Let F be a Muller condition. Any Rabin automaton recognising F can be used as an arena-independent memory for F-games. Conversely, any arena-independent memory for F-games can be interpreted as a Rabin automaton recognising F. In particular, the following quantities coincide:
- The size of a minimal Rabin automaton recognising F.
- The smallest amount of chromatic memory required to win F-games.
- The size of a minimal arena-independent memory for F-games.

Corollary
Determining the amount of chromatic memory needed in games using a Muller condition F is NP-complete, even if the condition is represented by its Zielonka tree.

References