Distributed Algorithms in Dynamic Networks (a short introduction)

Arnaud Casteigts

The content of this talk can be found in
https://arxiv.org/abs/1807.07801

February 8, 2019

Networks?

- Set of nodes V (a.k.a. entities, vertices)
- Set of links E among them (a.k.a. relations, edges) \rightarrow A network (or graph) $G=(V, E)$

Networks?

- Set of nodes V (a.k.a. entities, vertices)
- Set of links E among them (a.k.a. relations, edges) \rightarrow A network (or graph) $G=(V, E)$

Networks?

- Set of nodes V (a.k.a. entities, vertices)
- Set of links E among them (a.k.a. relations, edges) \rightarrow A network (or graph) $G=(V, E)$

Networks?

- Set of nodes V (a.k.a. entities, vertices)
- Set of links E among them (a.k.a. relations, edges)

$$
\rightarrow \text { A network (or graph) } G=(V, E)
$$

Complex networks
\rightarrow compute global metrics
\rightarrow explain and reproduce phenomena

Communication networks
\rightarrow design interactions among entities
\rightarrow study what can be done from within

Networks?

- Set of nodes V (a.k.a. entities, vertices)
- Set of links E among them (a.k.a. relations, edges)

$$
\rightarrow \text { A network (or graph) } G=(V, E)
$$

Complex networks
\rightarrow compute global metrics
\rightarrow explain and reproduce phenomena

Communication networks
\rightarrow design interactions among entities
\rightarrow study what can be done from within
\rightarrow distributed algorithms...

Distributed Algorithms

Collaboration of distinct entities to perform a common task.
No centralization available. No global knowledge.
(Think globally, act locally)

Examples of problems

Broadcast

Propagating a piece of information from one node to all others.
\longrightarrow

Examples of problems

Broadcast

Election

Propagating a piece of information from one node to all others.

Distinguishing exactly one node among all.

Examples of problems

Broadcast

Election

Spanning tree

Propagating a piece of information from one node to all others.
\qquad

Distinguishing exactly one node among all.

Selecting a cycle-free set of edges that interconnects all nodes.

Examples of problems

Broadcast

Election
 \longrightarrow

Spanning tree

Counting

\qquad

Propagating a piece of information from one node to all others.

Distinguishing exactly one node among all.

Selecting a cycle-free set of edges that interconnects all nodes.

Determining how many participants there are.

Examples of problems

Broadcast

Election
 \longrightarrow

Spanning tree

Counting

Consensus, naming, routing, exploration, ...

Propagating a piece of information from one node to all others.

Distinguishing exactly one node among all.

Selecting a cycle-free set of edges that interconnects all nodes.

Determining how many participants there are.

Dynamic Networks

Dynamic networks?

In fact, highly dynamic networks.

Dynamic networks?

In fact, highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Partitioned network

Dynamic networks?

In fact, highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario
(say, exploration by mobile robots)

Dynamic networks?

In fact, highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario
(say, exploration by mobile robots)

Dynamic networks?

In fact, highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario
(say, exploration by mobile robots)

Dynamic networks?

In fact, highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario
(say, exploration by mobile robots)

Dynamic networks?

In fact, highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario
(say, exploration by mobile robots)

Dynamic networks?

In fact, highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario
(say, exploration by mobile robots)

Dynamic networks?

In fact, highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario
(say, exploration by mobile robots)
5)

Dynamic Graphs

Also called time-varying graphs, evolving graphs, temporal graphs, etc.

Dynamic Graphs

Also called time-varying graphs, evolving graphs, temporal graphs, etc.

As a sequence

Sequence of static graphs $\mathcal{G}=G_{0}, G_{1}, \ldots \quad$ [+table of dates]

Dynamic Graphs

Also called time-varying graphs, evolving graphs, temporal graphs, etc.

As a sequence

Sequence of static graphs $\mathcal{G}=G_{0}, G_{1}, \ldots \quad$ [+table of dates]

With a presence function
$\mathcal{G}=(V, E, \mathcal{T}, \rho)$,
with ρ being a presence function

$$
\rho: E \times \mathcal{T} \rightarrow\{0,1\}
$$

Dynamic Graphs

Also called time-varying graphs, evolving graphs, temporal graphs, etc.

As a sequence

Sequence of static graphs $\mathcal{G}=G_{0}, G_{1}, \ldots \quad$ [+table of dates]

With a presence function
$\mathcal{G}=(V, E, \mathcal{T}, \rho)$,
with ρ being a presence function
$\rho: E \times \mathcal{T} \rightarrow\{0,1\}$

\rightarrow Both are theoretically equivalent if $\mathcal{T} \subseteq \mathbb{N}$ (e.g. not like this $\rightarrow||l| l| l)$

Dynamic Graphs

Also called time-varying graphs, evolving graphs, temporal graphs, etc.

As a sequence

Sequence of static graphs $\mathcal{G}=G_{0}, G_{1}, \ldots \quad$ [+table of dates]

With a presence function
$\mathcal{G}=(V, E, \mathcal{T}, \rho)$,
with ρ being a presence function

$$
\rho: E \times \mathcal{T} \rightarrow\{0,1\}
$$

\rightarrow Both are theoretically equivalent if $\mathcal{T} \subseteq \mathbb{N}$ (e.g. not like this $\rightarrow||l| l| l)$
\rightarrow Further extensions possible (latency function, node-presence function, ...)

Dynamic Graphs

Also called time-varying graphs, evolving graphs, temporal graphs, etc.

As a sequence

Sequence of static graphs $\mathcal{G}=G_{0}, G_{1}, \ldots \quad$ [+table of dates]

With a presence function
$\mathcal{G}=(V, E, \mathcal{T}, \rho)$,
with ρ being a presence function

$$
\rho: E \times \mathcal{T} \rightarrow\{0,1\}
$$

\rightarrow Both are theoretically equivalent if $\mathcal{T} \subseteq \mathbb{N}$ (e.g. not like this $\rightarrow||l| l| l)$
\rightarrow Further extensions possible (latency function, node-presence function, ...)

Basic graph concepts

Basic graph concepts

\rightarrow Paths become temporal (journey)

$$
\text { Ex: }\left(\left(a c, t_{1}\right),\left(c d, t_{2}\right),\left(d e, t_{3}\right)\right) \text { with } t_{i+1} \geq t_{i} \text { and } \rho\left(e_{i}, t_{i}\right)=1
$$

Basic graph concepts

\rightarrow Paths become temporal (journey)

$$
\text { Ex: }\left(\left(a c, t_{1}\right),\left(c d, t_{2}\right),\left(d e, t_{3}\right)\right) \text { with } t_{i+1} \geq t_{i} \text { and } \rho\left(e_{i}, t_{i}\right)=1
$$

\rightarrow Strict journeys vs. non-strict journeys. (Relevant in discrete time only.)

Basic graph concepts

- e

G_{1}
- e

a.

\rightarrow Paths become temporal (journey)

$$
\text { Ex: }\left(\left(a c, t_{1}\right),\left(c d, t_{2}\right),\left(d e, t_{3}\right)\right) \text { with } t_{i+1} \geq t_{i} \text { and } \rho\left(e_{i}, t_{i}\right)=1
$$

\rightarrow Strict journeys vs. non-strict journeys. (Relevant in discrete time only.)

Basic graph concepts

- e

G_{1}
- e

a 。

\rightarrow Paths become temporal (journey)

$$
\text { Ex: }\left(\left(a c, t_{1}\right),\left(c d, t_{2}\right),\left(d e, t_{3}\right)\right) \text { with } t_{i+1} \geq t_{i} \text { and } \rho\left(e_{i}, t_{i}\right)=1
$$

\rightarrow Strict journeys vs. non-strict journeys. (Relevant in discrete time only.)

Basic graph concepts

- e

G_{1}

a 。

\rightarrow Paths become temporal (journey)

$$
\text { Ex: }\left(\left(a c, t_{1}\right),\left(c d, t_{2}\right),\left(d e, t_{3}\right)\right) \text { with } t_{i+1} \geq t_{i} \text { and } \rho\left(e_{i}, t_{i}\right)=1
$$

\rightarrow Strict journeys vs. non-strict journeys. (Relevant in discrete time only.)
\rightarrow Temporal connectivity. Not symmetrical! (e.g. a $\rightsquigarrow e$, but $e \ngtr a$)

Basic graph concepts

- e

G_{1}

a.

\rightarrow Paths become temporal (journey) Ex: $\left(\left(a c, t_{1}\right),\left(c d, t_{2}\right),\left(d e, t_{3}\right)\right)$ with $t_{i+1} \geq t_{i}$ and $\rho\left(e_{i}, t_{i}\right)=1$
\rightarrow Strict journeys vs. non-strict journeys. (Relevant in discrete time only.)
\rightarrow Temporal connectivity. Not symmetrical! (e.g. a $\rightsquigarrow e$, but e $\nrightarrow a$)
\rightarrow Footprint, snapshots, etc.

Basic graph concepts

a

- e

G_{1}
- e

a.

\rightarrow Paths become temporal (journey)

$$
\text { Ex: }\left(\left(a c, t_{1}\right),\left(c d, t_{2}\right),\left(d e, t_{3}\right)\right) \text { with } t_{i+1} \geq t_{i} \text { and } \rho\left(e_{i}, t_{i}\right)=1
$$

\rightarrow Strict journeys vs. non-strict journeys. (Relevant in discrete time only.)
\rightarrow Temporal connectivity. Not symmetrical! (e.g. a $\rightsquigarrow e$, but $e \not \nrightarrow a$)
\rightarrow Footprint, snapshots, etc.
\rightarrow Hierarchy of classes of dynamic networks (basic examples)
$1-*$
$\mathcal{E}^{1 \forall}$
$1 \stackrel{s t}{\stackrel{s t}{*}} *$
$\mathcal{J}^{1 \forall>}$
$1 \rightsquigarrow *$
$\mathcal{J}^{1 \forall}$
$\underset{*-*}{\mathcal{K}}$

$$
\begin{aligned}
& \mathcal{T C} \mathcal{C}^{>} \\
& * \stackrel{s t}{\sim}
\end{aligned}
$$

$$
\underset{* \sim *}{\mathcal{T C}}
$$

$$
\mathcal{J}^{\forall 1}
$$

$$
* \rightsquigarrow 1
$$

Basic graph concepts

a

- e

G_{1}

a 。
$b \cdot G_{3}^{c}$
G3
\rightarrow Paths become temporal (journey)

$$
\text { Ex: }\left(\left(a c, t_{1}\right),\left(c d, t_{2}\right),\left(d e, t_{3}\right)\right) \text { with } t_{i+1} \geq t_{i} \text { and } \rho\left(e_{i}, t_{i}\right)=1
$$

\rightarrow Strict journeys vs. non-strict journeys. (Relevant in discrete time only.)
\rightarrow Temporal connectivity. Not symmetrical! (e.g. a $\rightsquigarrow e$, but $e \not \nrightarrow a$)
\rightarrow Footprint, snapshots, etc.
\rightarrow Hierarchy of classes of dynamic networks (basic examples)

Basic graph concepts

a

- e

G_{1}

a.
$b \cdot \sim_{d}^{e}$
G_{3}
\rightarrow Paths become temporal (journey)

$$
\text { Ex: }\left(\left(a c, t_{1}\right),\left(c d, t_{2}\right),\left(d e, t_{3}\right)\right) \text { with } t_{i+1} \geq t_{i} \text { and } \rho\left(e_{i}, t_{i}\right)=1
$$

\rightarrow Strict journeys vs. non-strict journeys. (Relevant in discrete time only.)
\rightarrow Temporal connectivity. Not symmetrical! (e.g. a $\rightsquigarrow e$, but $e \not \nrightarrow a$)
\rightarrow Footprint, snapshots, etc.
\rightarrow Hierarchy of classes of dynamic networks (basic examples)

Basic graph concepts

a

- e

G_{1}

a -
$b \cdot \sim_{d}^{e}$
G_{3}
\rightarrow Paths become temporal (journey)

$$
\text { Ex: }\left(\left(a c, t_{1}\right),\left(c d, t_{2}\right),\left(d e, t_{3}\right)\right) \text { with } t_{i+1} \geq t_{i} \text { and } \rho\left(e_{i}, t_{i}\right)=1
$$

\rightarrow Strict journeys vs. non-strict journeys. (Relevant in discrete time only.)
\rightarrow Temporal connectivity. Not symmetrical! (e.g. a $\rightsquigarrow e$, but $e \not \nrightarrow a$)
\rightarrow Footprint, snapshots, etc.
\rightarrow Hierarchy of classes of dynamic networks (basic examples)

Basic graph concepts

a

- e

G_{1}

a.

G_{3}
\rightarrow Paths become temporal (journey)

$$
\text { Ex: }\left(\left(a c, t_{1}\right),\left(c d, t_{2}\right),\left(d e, t_{3}\right)\right) \text { with } t_{i+1} \geq t_{i} \text { and } \rho\left(e_{i}, t_{i}\right)=1
$$

\rightarrow Strict journeys vs. non-strict journeys. (Relevant in discrete time only.)
\rightarrow Temporal connectivity. Not symmetrical! (e.g. a $\rightsquigarrow e$, but e $\nrightarrow a$)
\rightarrow Footprint, snapshots, etc.
\rightarrow Hierarchy of classes of dynamic networks (basic examples)

Basic graph concepts

a

- e

G_{1}
- e

a.

G_{3}
\rightarrow Paths become temporal (journey)

$$
\text { Ex: }\left(\left(a c, t_{1}\right),\left(c d, t_{2}\right),\left(d e, t_{3}\right)\right) \text { with } t_{i+1} \geq t_{i} \text { and } \rho\left(e_{i}, t_{i}\right)=1
$$

\rightarrow Strict journeys vs. non-strict journeys. (Relevant in discrete time only.)
\rightarrow Temporal connectivity. Not symmetrical! (e.g. a $\rightsquigarrow e$, but e $\nrightarrow a$)
\rightarrow Footprint, snapshots, etc.
\rightarrow Hierarchy of classes of dynamic networks (basic examples)

Classes of dynamic networks

Network algorithms

Classes of dynamic networks

Network algorithms

Classes of dynamic networks

Network algorithms

Zoom: Optimal broadcast in DTNs?

What optimality ?
(Bui-Xuan, Jarry, Ferreira, 2003)

Which way is optimal from a to d ?

Zoom: Optimal broadcast in DTNs?

What optimality ?

Which way is optimal from a to d ?
-min hop? (shortest)

Zoom: Optimal broadcast in DTNs?

What optimality ?

Which way is optimal from a to d ?
-min hop? (shortest)
-earliest arrival? (foremost)

Zoom: Optimal broadcast in DTNs?

What optimality ?

Which way is optimal from a to d ?
-min hop? (shortest)
-earliest arrival? (foremost)
-fastest traversal? (fastest)

Zoom: Optimal broadcast in DTNs?

What optimality ?
(Bui-Xuan, Jarry, Ferreira, 2003)

Which way is optimal from a to d ?
-min hop? (shortest)
-earliest arrival? (foremost)
-fastest traversal? (fastest)
\rightarrow Computing shortest, foremost and fastest journeys in dynamic networks

Zoom: Optimal broadcast in DTNs?

What optimality ?

Which way is optimal from a to d ?
-min hop? (shortest)
-earliest arrival? (foremost)
-fastest traversal? (fastest)

Difficulty: Depends on the starting date! (E.g. for in the foremost case)

(a) The network.

(b) Foremost broadcast trees from a depending on the starting date.

Zoom: Optimal broadcast in DTNs?

What optimality ?

Which way is optimal from a to d ?
-min hop? (shortest)
-earliest arrival? (foremost)
-fastest traversal? (fastest)

What about the distributed version?
\rightarrow Can we broadcast a message to all the nodes in a foremost, shortest, or fastest way? (with termination detection at the emitter and without knowing the schedule)

Zoom: Optimal broadcast in DTNs?

What optimality ?

Which way is optimal from a to d ?
-min hop? (shortest)
-earliest arrival? (foremost)
-fastest traversal? (fastest)

What about the distributed version?
\rightarrow Can we broadcast a message to all the nodes in a foremost, shortest, or fastest way? (with termination detection at the emitter and without knowing the schedule)

Classes of dynamic networks

Classes of dynamic networks

Zoom: Exploiting structure within $\mathcal{T} \mathcal{C}^{\mathcal{R}}$

$\mathcal{T C}^{\mathcal{R}}:=$ All nodes can reach each other through journeys infinitely often (Formally, $\mathcal{T C}^{\mathcal{R}}:=\forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{T C}$)

Zoom: Exploiting structure within $\mathcal{T} \mathcal{C}^{\mathcal{R}}$

$\mathcal{T C}^{\mathcal{R}}:=$ All nodes can reach each other through journeys infinitely often
(Formally, $\mathcal{T C}^{\mathcal{R}}:=\forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{T C}$)
\equiv A connected spanning subset of the edges must be recurrent

Zoom: Exploiting structure within $\mathcal{T} \mathcal{C}^{\mathcal{R}}$

$\mathcal{T C}^{\mathcal{R}}:=$ All nodes can reach each other through journeys infinitely often
(Formally, $\mathcal{T C}^{\mathcal{R}}:=\forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{T C}$)
\equiv A connected spanning subset of the edges must be recurrent
For example,

Zoom: Exploiting structure within $\mathcal{T} \mathcal{C}^{\mathcal{R}}$

$\mathcal{T C}^{\mathcal{R}}:=$ All nodes can reach each other through journeys infinitely often
(Formally, $\mathcal{T C}^{\mathcal{R}}:=\forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{T C}$)
\equiv A connected spanning subset of the edges must be recurrent
(Braud Santoni et al., 2016)
For example,

Zoom: Exploiting structure within $\mathcal{T} \mathcal{C}^{\mathcal{R}}$

$\mathcal{T C}^{\mathcal{R}}:=$ All nodes can reach each other through journeys infinitely often
(Formally, $\mathcal{T C}^{\mathcal{R}}:=\forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{T C}$)
\equiv A connected spanning subset of the edges must be recurrent
(Braud Santoni et al., 2016)
For example,

Can we exploit this property even if we don't know which subset of edges is recurrent?

Zoom: Exploiting structure within $\mathcal{T} \mathcal{C}^{\mathcal{R}}$

$\mathcal{T C}^{\mathcal{R}}:=$ All nodes can reach each other through journeys infinitely often
(Formally, $\mathcal{T C}^{\mathcal{R}}:=\forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{T C}$)
\equiv A connected spanning subset of the edges must be recurrent
(Braud Santoni et al., 2016)
For example,

Can we exploit this property even if we don't know which subset of edges is recurrent?
\rightarrow New form of heredity in graphs: a solution must hold in all connected spanning subgraph
(C., Dubois, Petit, Robson, 2018)

Zoom: Exploiting structure within $\mathcal{T} \mathcal{C}^{\mathcal{R}}$

$\mathcal{T C}^{\mathcal{R}}:=$ All nodes can reach each other through journeys infinitely often
(Formally, $\mathcal{T C}^{\mathcal{R}}:=\forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{T C}$)
\equiv A connected spanning subset of the edges must be recurrent
(Braud Santoni et al., 2016)
For example,

Can we exploit this property even if we don't know which subset of edges is recurrent?
\rightarrow New form of heredity in graphs: a solution must hold in all connected spanning subgraph
(C., Dubois, Petit, Robson, 2018)

Ex: MinimalDominatingSet and MaximalindependentSet

Robust MDS

Non robust MDS

Local algorithm for \forall MIS

Classes of dynamic networks

Network algorithms

Classes of dynamic networks

Network algorithms

Classes of dynamic networks

Network algorithms

Centralized algorithms

Classes of dynamic networks

Network algorithms

Centralized algorithms

Classes of dynamic networks

Network algorithms

Centralized algorithms
Movement synthesis

Algorithmic movement synthesis

1) Collective movements which induce temporal structure

\rightarrow Synthesizing collective movements (a.k.a. mobility models) that satisfy temporal properties on the resulting communication graph (combined with a target mission).
\leftarrow Ex: this network $\in \mathcal{E}^{\mathcal{R}}$
(Credit video: Jason Schoeters / JBotSim)

Algorithmic movement synthesis

1) Collective movements which induce temporal structure

\rightarrow Synthesizing collective movements (a.k.a. mobility models) that satisfy temporal
properties on the resulting communication graph (combined with a target mission).
\leftarrow Ex: this network $\in \mathcal{E}^{\mathcal{R}}$
(Credit video: Jason Schoeters / JBotSim)
2) Integrating physical constraints in a tractable way

Discrete acceleration models
Vector Racer
(paper and pencil game)

Algorithmic movement synthesis

1) Collective movements which induce temporal structure

\rightarrow Synthesizing collective movements (a.k.a. mobility models) that satisfy temporal properties on the resulting communication graph (combined with a target mission).
\leftarrow Ex: this network $\in \mathcal{E}^{\mathcal{R}}$
(Credit video: Jason Schoeters / JBotSim)
2) Integrating physical constraints in a tractable way

Discrete acceleration models
Vector Racer (paper and pencil game)

\rightarrow Impact on problems, e.g. TSP \nearrow

Acceleration does impact the visit order!

The content of this talk can be found in https://arxiv.org/abs/1807.07801

