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Distributed Algorithms in Dynamic Networks

(a short introduction)

Arnaud Casteigts

The content of this talk can be found in

https://arxiv.org/abs/1807.07801
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2/15

Networks?

• Set of nodes V (a.k.a. entities, vertices)

• Set of links E among them (a.k.a. relations, edges)
→ A network (or graph) G = (V , E)

Complex networks

→ compute global metrics

→ explain and reproduce phenomena

Communication networks

→ design interactions among entities

→ study what can be done from within

→ distributed algorithms...
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Distributed Algorithms

Collaboration of distinct entities to perform a common task.

No centralization available. No global knowledge.

(Think globally, act locally)
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Examples of problems

Broadcast Propagating a piece of information from one node to all others.

→

Election Distinguishing exactly one node among all.

→

Spanning tree Selecting a cycle-free set of edges that interconnects all nodes.

→

Counting Determining how many participants there are.

→ 9

Consensus, naming, routing, exploration, ...
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Dynamic Networks
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Dynamic networks?

In fact, highly dynamic networks.

Ex:

How changes are perceived?

- Faults and Failures?

- Nature of the system. Change is normal.

- Partitioned network

Example of scenario
(say, exploration by mobile robots)
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Dynamic Graphs

Also called time-varying graphs, evolving graphs, temporal graphs, etc.

As a sequence

Sequence of static graphs G = G0,G1, ... [+table of dates]

G0 G1 G2 G3

With a presence function

G = (V ,E , T , ρ),

with ρ being a presence function

ρ : E × T → {0, 1}

a

b

c

d

e

[1,
2]

[0]

[2
,

3]

[0]

[0
, 1

] [0, 2]

[2,
3]

→ Both are theoretically equivalent if T ⊆ N (e.g. not like this )

→ Further extensions possible (latency function, node-presence function, ...)
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Basic graph concepts
a

b

c

d

e

G0

a

b

c

d

e

G1

a

b

c

d

e

G2

a

b

c

d

e

G3

→ Paths become temporal (journey)

Ex: ((ac, t1), (cd , t2), (de, t3)) with ti+1 ≥ ti and ρ(ei , ti ) = 1

→ Strict journeys vs. non-strict journeys. (Relevant in discrete time only.)

→ Temporal connectivity. Not symmetrical! (e.g. a  e, but e 6 a)

→ Footprint, snapshots, etc.

→ Hierarchy of classes of dynamic networks (basic examples)

K T C>

E1∀

T C

J 1∀>

J ∀1

J 1∀

∗ − ∗ ∗ st
 ∗

1− ∗ 1
st
 ∗

∗  ∗ ∗  1

1  ∗

∀ =⇒ ∃ ∀ =⇒ ∃

∀ =⇒ ∃

∀ =⇒ ∃

− =⇒ Jstrict

− =⇒ Jstrict

Jstrict =⇒ J

Jstrict =⇒ J

− =⇒ J
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Classes of dynamic networks

T C	
T C

(∗ ∗)

J∀1

(∗ 1)

J 1∀
(1 ∗)

T CR

ER

KR

EBEP

T CBα-T CB

CRPRC∗C∩

K
(∗–∗)

E1∀
(1–∗)

infinite lifetime finite lifetime

Foremost broadcast

Shortest broadcast

Fastest broadcast

Population
protocols

Retry
routing

Retry
broadcast

Bounded
broadcast

Speed up for
some problems

Ring exploration

Broadcast
Counting

Leader
election

Broadcast +
acknowledgment

Network algorithms

Exploit
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Zoom: Optimal broadcast in DTNs?
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Difficulty: Depends on the starting date! (E.g. for in the foremost case)
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(b) Foremost broadcast trees from a depending on the starting date.
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What about the distributed version?

→ Can we broadcast a message to all the nodes in a foremost, shortest, or
fastest way? (with termination detection at the emitter and without knowing the schedule)

EP EB ER Arbitrary

Fastest Shortest Foremost Nothing

(periodic) (bounded-recurrent) (recurrent)

Assumption
on the edges (C., Flocchini, Mans, Santoro, 2015)



10/15

Zoom: Optimal broadcast in DTNs?

What optimality ? (Bui-Xuan, Jarry, Ferreira, 2003)

a

b
c

d

e

f g

[1, 2)

[3, 4)

[5, 6)

[4, 5) [9, 10)

[7, 8)

[7, 8)

[7, 8)

Which way is optimal from a to d?

-min hop? (shortest)

-earliest arrival? (foremost)

-fastest traversal? (fastest)

shortest

foremost

fastest

→ Computing shortest, foremost and fastest journeys in dynamic networks

What about the distributed version?

→ Can we broadcast a message to all the nodes in a foremost, shortest, or
fastest way? (with termination detection at the emitter and without knowing the schedule)

EP EB ER Arbitrary

Fastest Shortest Foremost Nothing

(periodic) (bounded-recurrent) (recurrent)

Assumption
on the edges (C., Flocchini, Mans, Santoro, 2015)



11/15

Classes of dynamic networks

T C	
T C

(∗ ∗)

J∀1

(∗ 1)

J 1∀
(1 ∗)

T CR

ER

KR

EBEP

T CBα-T CB

CRPRC∗C∩

K
(∗–∗)

E1∀
(1–∗)

infinite lifetime finite lifetime



11/15

Classes of dynamic networks

T C	
T C

(∗ ∗)

J∀1

(∗ 1)

J 1∀
(1 ∗)

T CR

ER

KR

EBEP

T CBα-T CB

CRPRC∗C∩

K
(∗–∗)

E1∀
(1–∗)

infinite lifetime finite lifetime



12/15

Zoom: Exploiting structure within T CR

T CR := All nodes can reach each other through journeys infinitely often

(Formally, T CR := ∀t,G[t,+∞) ∈ T C)

≡ A connected spanning subset of the edges must be recurrent (Braud Santoni et al., 2016)

For example,

−→

Can we exploit this property even if we don’t know which subset of edges is recurrent?

→ New form of heredity in graphs: a solution must hold in all connected spanning subgraph

(C., Dubois, Petit, Robson, 2018)

Ex: MinimalDominatingSet and MaximalIndependentSet

Robust MDS Non robust MDS
∀MDS

∀MIS

∃MIS

∃MDS

Locally
computable

Not locally
computable

Local algorithm for ∀MIS
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Algorithmic movement synthesis

1) Collective movements which induce temporal structure

→ Synthesizing collective movements (a.k.a.
mobility models) that satisfy temporal
properties on the resulting communication
graph (combined with a target mission).

← Ex: this network ∈ ER
(Credit video: Jason Schoeters / JBotSim)

2) Integrating physical constraints in a tractable way

Discrete acceleration models
Vector Racer

(paper and pencil game)

→ Impact on problems, e.g. TSP↗
Acceleration does impact the visit order!
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The content of this talk can be found in

https://arxiv.org/abs/1807.07801


