Distributed Algorithms in Dynamic Networks (a short introduction)

Arnaud Casteigts

The content of this talk can be found in

https://arxiv.org/abs/1807.07801

February 8, 2019

< □ > < □ > < □ > < Ξ > < Ξ > Ξ · ク Q ? 1/15

- Set of nodes V (a.k.a. entities, vertices)
- Set of links E among them (a.k.a. relations, edges)

$$\rightarrow$$
 A network (or graph) $G = (V, E)$

- Set of nodes V (a.k.a. entities, vertices)
- Set of links E among them (a.k.a. relations, edges)

 \rightarrow A network (or graph) G = (V, E)

- Set of nodes V (a.k.a. entities, vertices)
- Set of links E among them (a.k.a. relations, edges)

 \rightarrow A network (or graph) G = (V, E)

- Set of nodes V (a.k.a. entities, vertices)
- Set of links *E* among them (*a.k.a.* relations, edges)

 \rightarrow A network (or graph) G = (V, E)

Complex networks

- \rightarrow compute global metrics
- \rightarrow explain and reproduce phenomena

Communication networks

- \rightarrow design interactions among entities
- \rightarrow study what can be done from within

◆□ ▶ ◆ ● ▶ ◆ ● ▶ ● ● ⑦ Q ○ 2/15

- Set of nodes V (a.k.a. entities, vertices)
- Set of links *E* among them (*a.k.a.* relations, edges)

 \rightarrow A network (or graph) G = (V, E)

Complex networks

- \rightarrow compute global metrics
- \rightarrow explain and reproduce phenomena

Communication networks

- \rightarrow design interactions among entities
- \rightarrow study what can be done from within

 \rightarrow distributed algorithms...

◆□ ▶ ◆ ● ▶ ◆ ● ▶ ● ● ⑦ Q ○ 2/15

Distributed Algorithms

Collaboration of distinct entities to perform a common task.

No centralization available. No global knowledge.

(Think globally, act locally)

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E り < ≥ り < ○ 3/15

Broadcast

 \sim

Propagating a piece of information from one node to all others.

Broadcast

Propagating a piece of information from one node to all others.

Election

Distinguishing exactly one node among all.

・ロト ・ 日 ・ ・ 目 ・ 目 ・ り へ へ 4/15

Broadcast

Propagating a piece of information from one node to all others.

Election

Distinguishing exactly one node among all.

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 の 4 で 4/15

Spanning tree

Selecting a cycle-free set of edges that interconnects all nodes.

Broadcast

Propagating a piece of information from one node to all others.

Election

Distinguishing exactly one node among all.

Spanning tree

Selecting a cycle-free set of edges that interconnects all nodes.

Counting

Determining how many participants there are.

Broadcast

Propagating a piece of information from one node to all others.

Election

Distinguishing exactly one node among all.

Spanning tree

Selecting a cycle-free set of edges that interconnects all nodes.

Counting

Consensus, naming, routing, exploration, ...

Determining how many participants there are.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ● ■ の Q @ 4/15

In fact, highly dynamic networks.

In fact, highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Partitioned network

In fact, highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario (say, exploration by mobile robots)

In fact, highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario (say, exploration by mobile robots)

In fact, highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario

In fact, highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario

In fact, highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario

In fact, highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario

In fact, highly dynamic networks.

How changes are perceived?

- Faults and Failures?
- Nature of the system. Change is normal.
- Partitioned network

Example of scenario (say, exploration by mobile robots)

Also called time-varying graphs, evolving graphs, temporal graphs, etc.

Also called time-varying graphs, evolving graphs, temporal graphs, etc.

As a sequence

Sequence of static graphs $\mathcal{G} = \mathcal{G}_0, \mathcal{G}_1, \dots$ [+table of dates]

Also called time-varying graphs, evolving graphs, temporal graphs, etc.

As a sequence

Sequence of static graphs $\mathcal{G} = G_0, G_1, ...$ [+table of dates]

With a presence function $\mathcal{G} = (V, E, \mathcal{T}, \rho),$ with ρ being a presence function $\rho : E \times \mathcal{T} \to \{0, 1\}$

Also called time-varying graphs, evolving graphs, temporal graphs, etc.

As a sequence

Sequence of static graphs $\mathcal{G} = \mathcal{G}_0, \mathcal{G}_1, \dots$ [+table of dates]

With a presence function $\mathcal{G} = (V, E, \mathcal{T}, \rho),$ with ρ being a presence function $\rho : E \times \mathcal{T} \to \{0, 1\}$

 \rightarrow Both are theoretically equivalent if $\mathcal{T} \subseteq \mathbb{N}$ (e.g. not like this \rightarrow

Also called time-varying graphs, evolving graphs, temporal graphs, etc.

As a sequence

Sequence of static graphs $\mathcal{G} = \mathcal{G}_0, \mathcal{G}_1, \dots$ [+table of dates]

With a presence function $\mathcal{G} = (V, E, \mathcal{T}, \rho),$ with ρ being a presence function $\rho : E \times \mathcal{T} \to \{0, 1\}$

 \rightarrow Both are theoretically equivalent if $\mathcal{T} \subseteq \mathbb{N}$ (e.g. not like this \longrightarrow)

ightarrow Further extensions possible (latency function, node-presence function, ...)

Also called time-varying graphs, evolving graphs, temporal graphs, etc.

As a sequence

Sequence of static graphs $\mathcal{G} = \mathcal{G}_0, \mathcal{G}_1, \dots$ [+table of dates]

With a presence function $\mathcal{G} = (V, E, \mathcal{T}, \rho),$ with ρ being a presence function $\rho : E \times \mathcal{T} \to \{0, 1\}$

 \rightarrow Both are theoretically equivalent if $\mathcal{T} \subseteq \mathbb{N}$ (e.g. not like this \longrightarrow)

ightarrow Further extensions possible (latency function, node-presence function, ...)

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ● ● ● ● 8/15

◆□ → ◆□ → ◆ ■ → ▲ ■ ・ ● ◆ ○ ○ 8/15

 \rightarrow Paths become temporal (*journey*)

Ex: $((ac, t_1), (cd, t_2), (de, t_3))$ with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$

 \rightarrow Paths become temporal (*journey*)

Ex: $((ac, t_1), (cd, t_2), (de, t_3))$ with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$

→ *Strict* journeys *vs. non-strict* journeys. (Relevant in discrete time only.)

 \rightarrow Paths become temporal (*journey*)

Ex: $((ac, t_1), (cd, t_2), (de, t_3))$ with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$

→ *Strict* journeys *vs. non-strict* journeys. (Relevant in discrete time only.)

 \rightarrow Paths become temporal (*journey*)

Ex: $((ac, t_1), (cd, t_2), (de, t_3))$ with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$

 \rightarrow *Strict* journeys *vs. non-strict* journeys. (Relevant in discrete time only.)

- → Paths become temporal (*journey*) Ex: ((*ac*, t_1), (*cd*, t_2), (*de*, t_3)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$
- \rightarrow *Strict* journeys *vs. non-strict* journeys. (Relevant in discrete time only.)

 \rightarrow Temporal connectivity. Not symmetrical! (e.g. $a \rightsquigarrow e$, but $e \not \rightsquigarrow a$)

- → Paths become temporal (*journey*) Ex: ((*ac*, t_1), (*cd*, t_2), (*de*, t_3)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$
- \rightarrow *Strict* journeys *vs. non-strict* journeys. (Relevant in discrete time only.)
- \rightarrow Temporal connectivity. Not symmetrical! (e.g. $a \rightsquigarrow e$, but $e \not\rightsquigarrow a$)
- \rightarrow Footprint, snapshots, etc.

- → Paths become temporal (*journey*) Ex: ((*ac*, t_1), (*cd*, t_2), (*de*, t_3)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$
- \rightarrow *Strict* journeys *vs. non-strict* journeys. (Relevant in discrete time only.)
- \rightarrow Temporal connectivity. Not symmetrical! (e.g. $a \rightsquigarrow e$, but $e \not\rightsquigarrow a$)
- \rightarrow Footprint, snapshots, $\mathit{etc.}$
- \rightarrow Hierarchy of *classes of dynamic networks* (basic examples)

- → Paths become temporal (*journey*) Ex: ((*ac*, t_1), (*cd*, t_2), (*de*, t_3)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$
- \rightarrow *Strict* journeys *vs. non-strict* journeys. (Relevant in discrete time only.)
- \rightarrow Temporal connectivity. Not symmetrical! (e.g. $a \rightsquigarrow e$, but $e \not\rightsquigarrow a$)
- \rightarrow Footprint, snapshots, etc.
- → Hierarchy of *classes of dynamic networks* (basic examples)

- → Paths become temporal (*journey*) Ex: ((*ac*, t_1), (*cd*, t_2), (*de*, t_3)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$
- \rightarrow *Strict* journeys *vs. non-strict* journeys. (Relevant in discrete time only.)
- \rightarrow Temporal connectivity. Not symmetrical! (e.g. $a \rightsquigarrow e$, but $e \not \rightsquigarrow a$)
- \rightarrow Footprint, snapshots, etc.
- → Hierarchy of *classes of dynamic networks* (basic examples)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ⑦ Q ○ 8/15

- → Paths become temporal (*journey*) Ex: ((*ac*, t_1), (*cd*, t_2), (*de*, t_3)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$
- \rightarrow *Strict* journeys *vs. non-strict* journeys. (Relevant in discrete time only.)
- \rightarrow Temporal connectivity. Not symmetrical! (e.g. $a \rightsquigarrow e$, but $e \not \rightsquigarrow a$)
- \rightarrow Footprint, snapshots, etc.
- → Hierarchy of *classes of dynamic networks* (basic examples)

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ Q ○ 8/15

- → Paths become temporal (*journey*) Ex: ((*ac*, t_1), (*cd*, t_2), (*de*, t_3)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$
- \rightarrow *Strict* journeys *vs. non-strict* journeys. (Relevant in discrete time only.)
- \rightarrow *Temporal connectivity*. Not symmetrical! (e.g. $a \rightsquigarrow e$, but $e \not\rightsquigarrow a$)
- \rightarrow Footprint, snapshots, etc.
- → Hierarchy of *classes of dynamic networks* (basic examples)

・ロト ・ 日 ・ ・ 三 ・ ・ 三 ・ り へ ? 8/15

- → Paths become temporal (*journey*) Ex: ((*ac*, t_1), (*cd*, t_2), (*de*, t_3)) with $t_{i+1} \ge t_i$ and $\rho(e_i, t_i) = 1$
- \rightarrow *Strict* journeys *vs. non-strict* journeys. (Relevant in discrete time only.)
- \rightarrow *Temporal connectivity*. Not symmetrical! (e.g. $a \rightsquigarrow e$, but $e \not\rightsquigarrow a$)
- \rightarrow Footprint, snapshots, etc.
- → Hierarchy of *classes of dynamic networks* (basic examples)

・ロト ・ 日 ・ ・ 三 ・ ・ 三 ・ り へ ? 8/15

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ ≧ り < ♡ 9/15

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ ≧ り < ♡ 9/15

What optimality ?

Which way is optimal from a to d?

What optimality ?

Which way is optimal from a to d?

-min hop? (shortest)

What optimality ?

Which way is optimal from *a* to *d*? -min hop? (shortest) -earliest arrival? (foremost)

What optimality ?

Which way is optimal from *a* to *d*? -min hop? (shortest) -earliest arrival? (foremost) -fastest traversal? (fastest)

What optimality ?

(Bui-Xuan, Jarry, Ferreira, 2003)

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ♡ 10/15

Which way is optimal from *a* to *d*? -min hop? (shortest) -earliest arrival? (foremost) -fastest traversal? (fastest)

 \rightarrow Computing shortest, foremost and fastest journeys in dynamic networks

Which way is optimal from *a* to *d*? -min hop? (shortest) -earliest arrival? (foremost) -fastest traversal? (fastest)

Difficulty: Depends on the starting date! (E.g. for in the foremost case)

◆□ → < 団 → < 三 → < 三 → ○ ○ ○ 10/15</p>

Which way is optimal from a to d? -min hop? (shortest) -earliest arrival? (foremost) -fastest traversal? (fastest)

What about the distributed version?

 \rightarrow Can we broadcast a message to all the nodes in a foremost, shortest, or fastest way? (with termination detection at the emitter and without knowing the schedule)

Which way is optimal from a to d? -min hop? (shortest) -earliest arrival? (foremost) -fastest traversal? (fastest)

What about the distributed version?

 \rightarrow Can we broadcast a message to all the nodes in a foremost, shortest, or fastest way? (with termination detection at the emitter and without knowing the schedule)

◆□ → ◆□ → ◆ Ξ → ▲ Ξ → ● Ξ → ⑦ Q ↔ 11/15

◆□ → ◆□ → ◆ Ξ → ▲ Ξ → ● Ξ → ⑦ Q ↔ 11/15

 $\mathcal{TC}^{\mathcal{R}} := \text{All nodes can reach each other through journeys infinitely often}$ (Formally, $\mathcal{TC}^{\mathcal{R}} := \forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{TC}$)

 $\mathcal{TC}^{\mathcal{R}} := \text{All nodes can reach each other through journeys infinitely often}$ (Formally, $\mathcal{TC}^{\mathcal{R}} := \forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{TC}$)

 \equiv A connected spanning subset of the edges must be recurrent (Braud Santoni et al., 2016)

 $\mathcal{TC}^\mathcal{R} := \mathsf{All}$ nodes can reach each other through journeys infinitely often (Formally, $\mathcal{TC}^{\mathcal{R}} := \forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{TC}$)

 \equiv A connected spanning subset of the edges must be recurrent (Braud Santoni et al., 2016)

For example,

 $\mathcal{TC}^{\mathcal{R}} := \text{All nodes can reach each other through journeys infinitely often}$ (Formally, $\mathcal{TC}^{\mathcal{R}} := \forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{TC}$)

 \equiv A connected spanning subset of the edges must be recurrent

(Braud Santoni et al., 2016)

For example,

 $\mathcal{TC}^{\mathcal{R}} := \text{All nodes can reach each other through journeys infinitely often}$ (Formally, $\mathcal{TC}^{\mathcal{R}} := \forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{TC}$)

 \equiv A connected spanning subset of the edges must be recurrent

(Braud Santoni et al., 2016)

For example,

Can we exploit this property even if we don't know which subset of edges is recurrent?

 $\mathcal{TC}^{\mathcal{R}} := All nodes can reach each other through journeys infinitely often (Formally, <math>\mathcal{TC}^{\mathcal{R}} := \forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{TC}$)

 \equiv A connected spanning subset of the edges must be recurrent (Braud Santoni et al., 2016)

For example,

Can we exploit this property even if we don't know which subset of edges is recurrent?

 \rightarrow New form of heredity in graphs: a solution must hold in *all connected spanning subgraph* (C., Dubois, Petit, Robson, 2018)

 $\mathcal{TC}^{\mathcal{R}} := All nodes can reach each other through journeys infinitely often (Formally, <math>\mathcal{TC}^{\mathcal{R}} := \forall t, \mathcal{G}_{[t,+\infty)} \in \mathcal{TC}$)

 \equiv A connected spanning subset of the edges must be recurrent (Braud Santoni et al., 2016)

For example,

Can we exploit this property even if we don't know which subset of edges is recurrent?

 \rightarrow New form of heredity in graphs: a solution must hold in *all connected spanning subgraph*

(C., Dubois, Petit, Robson, 2018)

Ex: MINIMALDOMINATINGSET and MAXIMALINDEPENDENTSET

Robust MDS Non robust MDS

Network algorithms

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の へ ? 13/15

Algorithmic movement synthesis

1) Collective movements which induce temporal structure

 \rightarrow Synthesizing collective movements (*a.k.a. mobility models*) that satisfy temporal properties on the resulting communication graph (combined with a target mission).

 $\leftarrow \mathsf{Ex: this network} \in \mathcal{E^R}$ (Credit video: Jason Schoeters / JBotSim)

Algorithmic movement synthesis

1) Collective movements which induce temporal structure

 \rightarrow Synthesizing collective movements (*a.k.a.* mobility models) that satisfy temporal properties on the resulting communication graph (combined with a target mission).

 $\leftarrow \mathsf{Ex:} \ \mathsf{this} \ \mathsf{network} \in \mathcal{E}^\mathcal{R}$ (Credit video: Jason Schoeters / JBotSim)

2) Integrating physical constraints in a tractable way

Algorithmic movement synthesis

1) Collective movements which induce temporal structure

 \rightarrow Synthesizing collective movements (*a.k.a.* mobility models) that satisfy temporal properties on the resulting communication graph (combined with a target mission).

 $\leftarrow \mathsf{Ex: this network} \in \mathcal{E}^{\mathcal{R}}$ (Credit video: Jason Schoeters / JBotSim)

2) Integrating physical constraints in a tractable way

 \rightarrow Impact on problems, e.g. $\mathrm{TSP}\nearrow$

Acceleration does impact the visit order!

The content of this talk can be found in https://arxiv.org/abs/1807.07801

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 15/15