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Complex networks Communication networks

— compute global metrics — design interactions among entities

— explain and reproduce phenomena — study what can be done from within

— distributed algorithms...




Distributed Algorithms

~

Collaboration of distinct entities to perform a common task

No centralization available. No global knowledge.

(Think globally, act locally)
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Examples of problems

Broadcast

Propagating a piece of information from one node to all others
Election

" SLF o+ el

Distinguishing exactly one node among all.
Spanning tree

: \So’ ’ );d
Selecting a cycle-free set of edges that interconnects all nodes.
(% ) % )
Counting

Determining how many participants there are.
Consensus, naming, routing, exploration,
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(a) The network. (b) Foremost broadcast trees from a depending on the starting date.
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What optimality 7 (Bui-Xuan, Jarry, Ferreira, 2003)
b 3,4
L 2) B4 ¢ 5. 6) Which way is optimal from a to d?
[4,5) e [9,10) -min hop? (shortest)
a
d -earliest arrival? (foremost)
[7.8) [7,8)

-fastest traversal? (fastest)
f e g

What about the distributed version?

— Can we broadcast a message to all the nodes in a foremost, shortest, or
fastest way? (with termination detection at the emitter and without knowing the schedule)

Fastest Shortest Foremost Nothing
&P N EB N ER Arbitrary
(periodic)  (bounded-recurrent)  (recurrent)
R /" o
N ! ’
Sl Assumption _-7

on the edges (C., Flocchini, Mans, Santoro, 2015)
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Zoom: Exploiting structure within 7C®

TC® := All nodes can reach each other through journeys infinitely often
(Formally, TC® :=Vt,Gj; o0) € TC)
= A connected spanning subset of the edges must be recurrent (Braud Santoni et al., 2016)

For example,

0.1 U [2.5]

Can we exploit this property even if we don't know which subset of edges is recurrent?

— New form of heredity in graphs: a solution must hold in all connected spanning subgraph
(C., Dubois, Petit, Robson, 2018)

Ex: MINIMALDOMINATINGSET and MAXIMALINDEPENDENTSET

Not locally

‘ computable
®\\—ﬁ/ " Locally
\/ @ computable

Robust MDS ~ Non robust MDS // Local algorithm for VMIS
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Test Induce
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Algorithmic movement synthesis

1) Collective movements which induce temporal structure

— Synthesizing collective movements (a.k.a.
mobility models) that satisfy temporal
properties on the resulting communication
graph (combined with a target mission).

+ Ex: this network € ER

(Credit video: Jason Schoeters / JBotSim)

2) Integrating physical constraints in a tractable way

Discrete acceleration models
VECTOR RACER
(paper and pencil game)

1T |

— Impact on problems, e.g. TSP *

Acceleration does impact the visit order!
[m] = = =

DA 1415
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