Projet ANR TEMPOGRAL

Réunion de lancement (Chasseneuil-du-Poitou)

Arnaud Casteigts

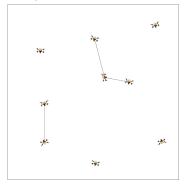
24 novembre 2022

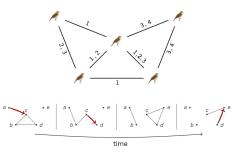
Networks / Graphs

Network as data

 \rightarrow centralized algorithms...

Network as an environment


 \rightarrow distributed algorithms...

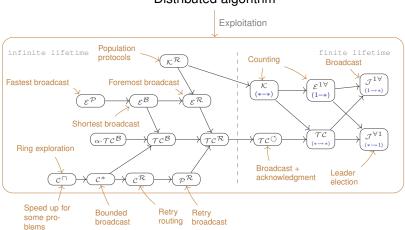

(Highly) dynamic networks?

Example of scenario

Modeling

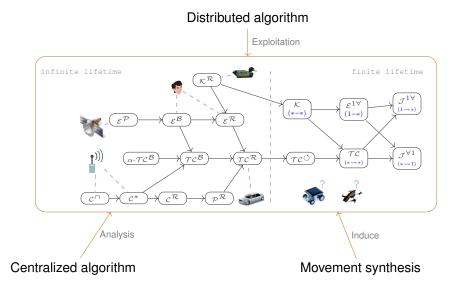
Properties :

 Temporal connectivity?
 \mathcal{TC}

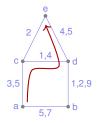

 Repeatedly?
 $\mathcal{TC}^{\mathcal{R}}$

 Recurrent links?
 $\mathcal{E}^{\mathcal{R}}$

 In bounded time?
 $\mathcal{E}^{\mathcal{B}}$


 \rightarrow Classes of temporal graphs

Some classes of temporal graphs


Distributed algorithm

Some classes of temporal graphs

TEMPOGRAL Project

Temporal graphs algorithms (for their own sake)

Fundamental questions :

- What makes temporal graphs different?
 - Why are temporal problems harder?
 - BTW, what is a "temporal" problem?

Basic definitions

Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...) $\mathcal{G} = (\underbrace{V, E, \lambda}_{i})$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges. *footprint* of \mathcal{G} Example : a, k.a. time-varying, time-dependent, evolving, dynamic,...) $\mathcal{G} = (\underbrace{V, E, \lambda}_{i})$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges. Can also be viewed as a sequence of *snapshots* { $G_i = \{e \in E : i \in \lambda(e)\}$ } Example :

Temporal paths

Non-strict - ex : $\langle (a, c, 3), (c, d, 4), (d, e, 4) \rangle$

5.7

(non-decreasing)

• Strict - ex : $\langle (a, c, 3), (c, d, 4), (d, e, 5) \rangle$

а

(increasing)

Temporal connectivity : \exists temporal paths between all vertices.

h

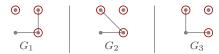
 \rightarrow Warning : Reachability is non-symmetrical... and non-transitive !

Different adaptations of a problem


E.g. : Covering problems like DOMINATINGSET

→ Temporal variant

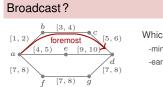
Different adaptations of a problem


E.g. : Covering problems like DOMINATINGSET

- → Temporal variant
- → Evolving variant (a.k.a. "dynamic graph algorithms")

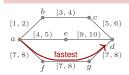
Different adaptations of a problem

E.g. : Covering problems like DOMINATINGSET


- → Temporal variant
- → Evolving variant (a.k.a. "dynamic graph algorithms")
- → Permanent variant

 $PermanentDS \supseteq EvolvingDS_i \supseteq TemporalDS.$

Note : Permanent version not appropriate for all problems...

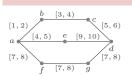

Which way is optimal from a to d? -min hop?

Which way is optimal from a to d?

-min hop?

-earliest arrival?

Broadcast?


Which way is optimal from a to d?

-min hop?

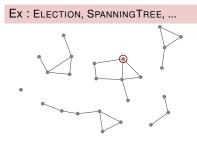
-earliest arrival?

-fastest traversal?

Broadcast?

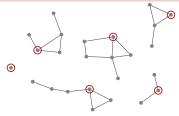
Which way is optimal from $a \mbox{ to } d \mbox{ ?}$ -min hop ?

-earliest arrival?


-fastest traversal?

Temporal paths under waiting time constraints

(with A. Himmel, H. Molter, P. Zschoche)



How are they defined?

 \rightarrow Several options

One global leader, elected once and forever

Ex: Election, SpanningTree, ...

How are they defined?

 \rightarrow Several options

- One global leader, elected once and forever
- One leader per component, changing as the graph changes

Ex: Election, SpanningTree, ...

Both are very different in essence !

How are they defined?

 \rightarrow Several options

One global leader, elected once and forever

 One leader per component, changing as the graph changes

Main axes and themes

The project focuses on three main *axes* (semantically equivalent to workpackages), namely "Classification of temporal problems" (C), "Tractability of temporal problems" (T), and "Algorithmic tools" (A). Each axis consists of three or four interconnected research *themes* (semantically equivalent to tasks):

C1. What makes a problem intrinsically temporal? How to characterize temporality?	р <mark>3</mark>
C2. Problems defined by the search for temporal substructures	р <mark>3</mark>
C3. Temporal versions of optimization problems on graphs	р4
C4. Problems related to the generation of temporal graphs	р <mark>5</mark>
T1. Restricting the snapshot or the underlying graph and corresponding parameters	р <mark>б</mark>
T2. Hierarchies of temporal graph classes	р <mark>7</mark>
T3. Forbidden temporal patterns vs. tractability	р <mark>8</mark>
A1. Design of advanced data structures	р <mark>10</mark>
A2. Generation of temporal graphs	р 11
A3. Specifically designed algorithms for temporal problems	р 12

(https://www.labri.fr/perso/acasteig/tempogral/tempogral.pdf)

Partners

Partner	Name	First Name	Position	Involv.	Themes	Coord.
LaBRI/ U. Bordeaux	Casteigts	Arnaud	MCF HDR	30	C1,C2,T1,T2,A2,A3	Global
	Corsini	Timothée	PhD std (MESR)	25	C2,T3,A3	
	Gavoille	Cyril	PR	16	C2,T3,A1	
	Hanusse	Nicolas	DR CNRS	15	C1,C3,T1,A1	
	Klasing	Ralf	DR CNRS	18	C1-C3,T1,A3	
	Johnen	Colette	PR	16	C3,T2,A3	
			PhD student	36	C2,T1,T2,A3	
LITIS/ U. Le Havre Normandie	Balev	Stefan	MC	16	C3,C4,A2,A3	
	Guinand	Frédéric	PR	11	C1,C4,A2,A3	
	Pigné	Yoann	MC	11	C2,C4,A2,A3	
	Sanlaville	Eric	PR	24	C1,C3,T1,T2,A3	Local
	Vernet	Mathilde	MC	12	C1,C3,T2,A3	
			PhD student	36	C1,C3,A3	
IRIF/ U. Paris Cité	Habib	Michel	PR Em.	15	C2,T2,T3,A3	
	de Montgolfier	Fabien	MCF	18	C2,T1,A3	
	Naserasr	Reza	CR CNRS	15	C1,C3,T1,T3,A3	
	Rabie	Mikaël	MCF	20	C1,T2,A1,A3	
	Viennot	Laurent	DR INRIA	27	C2,C4,T2,A1,A3	Local
			Post Doc	12	C1,T1,T2,A3	

(https://www.labri.fr/perso/acasteig/tempogral/tempogral.pdf)

Summary of the talks (today and tomorrow)

Dynamic/Temporal versions of :

- Autostabilization (Colette)
- Connected components (Jason)
- Flows (Mathilde)
- Coloring (Minh Hang)
- Property testing (Ralf)
- Generation (Vincent)

Topics without static analogs :

- Temporalisation (Laurent)
- Waiting constraints (Filippo)
- Expressivity of temporal graphs (Timothée)

Other related topics (graphs and/or mobility) :

- Graph classes based on patterns (Michel)
- Data structures for mobile networks (Nicolas)
- Robots in the plane (Cyril)

+ Open problem session, tomorrow at 11am.