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Our initial question on patterns

I Why the linear-time recognition algorithms based on LexBFS
for chordal, proper interval, interval and cocomparability
graphs produce an ordering that avoids their characteristic
pattern?

I Laurent did a summer inthernship in Santiago with R. Correa
and obtain some results published in 2015.

I Then during his PhD directed by Pierre Fraigniaud we obtain
our first resuts and he succeeded to convince Pierre to
consider patterns in distributed environnement for local
certification.

I Now it is an hot subject (lot of new results) and we hope that
it will become a common tool to study graph classes.
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Examples to start with

Chordal graphs: every cycle of length ≥ 4 has a chord.

Theorem Dirac 1961
A graph is chordal iff it admits a simplicial elimination scheme.

Simplicial elimination scheme

A vertex is simplicial if its neighbourhood is a clique.
σ = [x1 . . . xi . . . xn] is a simplicial elimination scheme if xi is
simplicial in the subgraph Gi = G [{xi . . . xn}]

In other words:
A graph is chordal iff it admits vertex ordering without
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Comparability graphs

Comparability graph

A graph G = (V ,E ) is a comparability graph if and only if G can
be transitively oriented.

Figure: A comparability graph G and a transitive orientation of G .

Cocomparability graph

A graph G = (V ,E ) is a cococomparability graph if and only if G
is a comparability graph.
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Cocomparability graphs

Definition:
For a total ordering τ of the set of vertices, an umbrella is a triple
of vertices a, b, c ∈ X such that: a <τ b <τ c and ac ∈ E and
ab, bc /∈ E .
A co-comparability (co-comp for short) ordering is an umbrella-free
total ordering of the vertices of G .

a, b, c, an umbrella

Remark:
A cocomp ordering corresponds to a linear extension of a transitive
orientation of the complement.



Cocomparability graphs

Definition:
For a total ordering τ of the set of vertices, an umbrella is a triple
of vertices a, b, c ∈ X such that: a <τ b <τ c and ac ∈ E and
ab, bc /∈ E .
A co-comparability (co-comp for short) ordering is an umbrella-free
total ordering of the vertices of G .

a, b, c, an umbrella

Remark:
A cocomp ordering corresponds to a linear extension of a transitive
orientation of the complement.



Vertex orderings

Vertex orderings are very useful for recognition algorithms, when a
graph class can be defined by the existence of an ordering avoiding
some patterns.

I A graph is a co-comparability graph iff it admits a cocomp
ordering.

I A graph is an interval graph iff it admits an interval ordering

a b c

I A graph is a proper interval graph iff it admits a proper

interval ordering and
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Formalization of our model of ordered patterns

1 2 3 4

For an ordered subgraph to match the pattern:

I plain edges must be present,

I dashed edges must be absent,

I non-edges have no constraint
(i.e., both are forbidden).



Vertex ordering
characterizations

A graph is a Coucoucouccc
⇔

there exists a vertex ordering
that avoids:

Pattern 1 Pattern 2 Pattern 3

...

First introduced by [Damaschke 90]



I The patterns we consider here are supposed to be finite.

I We can only define hereditary classes of graphs using this
definition.



I The patterns we consider here are supposed to be finite.

I We can only define hereditary classes of graphs using this
definition.



Examples
A zoo of classes



k-colourable q

A graph is a 3-colourable
⇔

there exists a vertex ordering
that avoids:



From Damaschke 90



We came interested to this topic via efficient
algorithms

I Most efficient recognition algorithms provide such an ordering.

I True for chordal, proper interval, interval, cocomparability . . .

I Often using a series of graph searches such as BFS, LexBFS,
LexDFS . . . (whose ordering of the vertices can also be
characterized using patterns).
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Some basic facts on patterns



Complement

Interval 
 Co-interval




Inversion of

dashed/plain

edges

⇔ Complement

class



Inclusion p

Interval ⊆ Chordal

⊆

Inclusion

of patterns
⇒ Inclusion

of classes



Pattern splitting

Co-comparability

&

Chordal

⊆
Interval
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Pattern splitting

Chordal ∩ Co-comparability = Interval

& =

Chordal ∩ Co-chordal = Split

& =

Chordal ∩ Triangle-free = Forest

& =

Comparability ∩ Triangle-free = Bipartite

& =



Diagram

Path
Truc-bidule

Star

SplitInterval

Proper interval

Co-interval Tree Bipartite
Permutation

ChordalCoChordal Triangle-free Comparability Co-comparability



0: Triangle-Free

1: mirror-Chordal

2: Comparability

3 co-Chordal

4: Chordal

5: co-Comparability

6: mirror-co-Chordal

7: co-Triangle-Free

8: Forest

9: mirror-Interval

10: mirror-co-Interval

11: co-Forest

12: Bipartite

13: Split

14: mirror-Split=co-Split

15: co-Bipartite

16: mirror-Forest

17: co-Interval

18: Interval

19: mirror-co-Forest

20: mirror-Star

21: mirror-co-Star

22: Linear Forest

23: co-Linear Forest

24: Star

25: co-Star

26: No Graph

Figure: The 27 patterns on three nodes. By convention since
mirror-Split=co-Split, we will ignore the pattern mirror-Split.



Recognition



NP

Recognition of classes defined by forbidden patterns
is in NP.

The ordering can be checked in polytime.
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On three nodes

Theorem Hell, Mohar, Rafiey 2014:
Classes defined by any set of patterns on three
nodes can be recognized in polynomial-time.

Proof history:
I step by step

I OK with one pattern (easy: already known Damaschke 90)
I OK with two patterns (still easy)
I OK with 3 patterns ....(tedious even if some classes are very

simple)

I a general algorithm [Hell, Mohar, Rafiey, 2014]
(quite hard to understand with a lot of cases) using a 2-SAT
based algorithm in O(mn);

I It is worth to realize that Golumbic’s comparability graphs
recognition algorithm can be translated in a 2-SAT fashion.

I Could we find a general algorithm with a simpler proof?
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Theorem (L. Feuilloley, MH 2018)

Up to complement and basic operations, the non-trivial classes
that can be characterized by a set of patterns on three vertices are
the following.

1. forests

2. linear forests

3. stars

4. interval

5. split

6. bipartite

7. chordal

8. comparability

9. triangle-free

10. permutation

11. threshold

12. proper interval

13. caterpillar

14. trivially perfect

15. bipartite chain

16. 2-star

17. 1-split

18. augmented
clique

19. bipartite
permutation

20. triangle-free
∩ co-chordal

21. clique

22. complete
bipartite



A surprising result

Only 22 well-known graph classes !
Cographs or Distance Hereditary are not in the list.
In fact the proof is a tedious case by case study of the 87
split-minimal families of patterns on 3 vertices (out of the 227

possible cases via a proved program).



First Consequences

Corollary

All classes of graphs defined with sets of patterns on 3 vertices can
be recognized in O(n2,3727).

Linear
All recognition are linear-time using graph searches, except for
Triangle-free and Comparability (and their complement). Checking
if an ordering avoid the pattern is the bottleneck part for these 4
cases.



Caterpillar

Bipartite chain

Threshold 2-stars

Linear forest

split ∩ permutation

Star

Split
Interval

Proper interval

Forest

Bipartite

Permutation

Trivially perfect

Chordal Triangle-free Comparability Co-comparability

Clique

Figure: Partial inclusion diagram of the classes that appear in
Theorem 1. More refined diagrams can be found in the next diagrams.



mirror-co-
Chordal

Chordal
co-

Comparability
Triangle-Free Comparability

co-Split Interval Forest Bipartite

Linear Forest Star

& &
&

&

Figure: Refinement of Figure 3 in which we represent the cases where
P = P1&P2 and the union-intersection property holds by a label & link
to P1 and P2 above, and P below.



Comparability Chordal Interval

Split Proper interval

ThresholdPermutation

co-mi

co

mi mi

co + co-mi

co

Figure: The edges labeled with “co” mean: the family made by taking
the pattern on the top endpoint and its complement characterize the
class below. The edges labeled with “mi” mean the same but with mirror
instead of complement. And “co-mi” designate both operations. The +
means that the edge has both labels.
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Patterns on 4 nodes

Bigger patterns are needed to characterize other well structured
classes of graphs, as for example cographs.



The particular case of cographs

Figure: The 12 different orderings of a P4.



Any hereditary class with a finite number of forbidden subgraphs,
can also defined using a finite number of patterns.
But three patterns are enough for cographs.

1 2 3 4

Figure: Forbidden patterns of cographs.



Twins

Twins x , y ∈ V are false- (resp. true-) twins if
N(x) = N(y) (resp. N(x) ∪ {x} = N(y) ∪ {y}.
x , y are false twins in G iff x , y are true twins in G .

Elimination scheme G is a cograph iff there exists an ordering of
the vertices
s.t. xi has a twin (false or true) in G{xi+1, . . . xn}

Fact Such an elimination ordering avoids the 3 forbidden
patterns of cographs.
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An example of cograph

e

Parallèle

Série Série Série Série

b

c

d

u

v

a

z

y
x

w Parallèle Parallèle

Série

Parallèle

d wy u

e

z

ax

v

c b

τ = x , a, cb, z , d , y , u, v ,w , e
is such an ordering.



Remarks

I But such an ordering cannot always be obtained using a
standard graph search (refinement of the generic search).

I For cographs to check is an ordering is an elimination
sequence requires linear-time, either using the elimination
ordering or the fact that cographs are permutation graphs
(the 2 patterns on three nodes) without P4 patterns.
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Patterns on 4 vertices

Unfortunately it seems that the 3 vertices case is a very particular
one.
The landscape is very different for sets of patterns on 4 vertices
we have polynomial (such as outerplanar) but also NP-complete
classes such as 3-colored graphs.
Can we understand the boarder in terms of patterns ?



On the polynomial side

I
1 2 3 4

Outerplanar graphs

I
1 2 3 4

Strongly chordal graphs

I patterns : K4 and K4.
Polynomial to recognize using Ramsey(4, 4) = 18. True for
any fixed size.

I K4-free graphs in O(mα). Same for K4-free graphs, also true
for any fixed size.
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1 2 3 4 1 2 3 4

1 2 3 4

Figure: Forbidden patterns of coTT (Complement of Threshold
Tolerance graphs.



On the NP-complete side

I 3 colorable graphs

I perfectly orderable graphs

1 2 3 4 1 2 3 4 1 2 3 4

I Forbidden pattern of the graphs of queue number 1.
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We restrict our attention on patterns with 4
vertices that have a geometric flavor
Grounded intersection of objects

Figure: A grounded intersection model

1 2 3 4

Figure: A pattern on four nodes

Figure: A grounded intersection model and a related pattern on four
nodes.



Grounded L-shapes and the associated grounded-L graph.



1 2 3 4

1 2 3 4

Forbidden patterns

For grounded L-graphs.





Permutation graph.

Co-comparability graph.

The permutation graph is a 4-cycle, that is not an interval graph.
The graph that illustrates the cocomparability graphs is not a
comparability graph, thus not a permutation graph.







a

d

b c

Figure: Description of abcd patterns.

We will consider the patterns that can be formed by having some
subset of the non-edges. For S a subset of {a, b, c , d}, the pattern
PS is the pattern with the two plain edges of the above Figure,
and the subset S of non-edges. The class CS is the class
associated with the pattern PS .
C∅ =Outerplanar graphs, Gb =Gounded Rectangle graphs
(Pbox-graphs).





Diagram of our results. The name of the classes in our vocabulary are
written in normal font, the names in the literature are written in italic
font. Edges represent inclusions. Thick edges are known strict inclusions.
G. stands for grounded, T-G stands for touching grounded, B-G. stands
for Bigrounded, and 2-G. stands for 2-grounded.



Our results : a classification of these geometric graph classes using
patterns.

1. The difficult part: proving strict inclusion between 2 classes,
we need to understand:
If a pattern P is strictly included in a pattern Q as signed
directed path graph under which conditions: CQ ( CP ?
Our proofs in the hierarchy were obtained by hand (or by
computer . . . )

2. Characterizations as graph classes of Ca, Cab, Cabc and Cabcd .
are still missing.
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Recent Results by D. Chakraborty, K. Gajjar
and I. Rusu (ArXiv 2022)

I Recognition of Grounded Rectangle graphs is now known to
be on the NP-complete side

1 2 3 4

I Recognition of Grounded L-graphs also NP-complete 2022

1 2 3 4

1 2 3 4
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For grounded L-graphs.
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Forbidden patterns and excluded subgraphs are complementary
approaches for hereditary classes of graphs.

I G chordal iff it admits a simplicial elemination scheme

iff it does not contain a subgraph isomorphic to a chorldess
cycle of length ≥ 4.

I G outerplanar iff it admits an ordering of the vertices avoiding

the pattern
1 2 3 4

iff it does not contain a cycle with two crossing edges.
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I The ordering provides a certificate in the YES-case

I An excluded subgraph provides a certificate in the NO-case

I For Kp and its complement the two viewpoints are the same.
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For simple patterns on three vertices

I Except for Triangle-free, Comparability and their complement
the ordering can be checked in linear time.

I In fact, R. McConnell and J. Spinrad (1995) proposed a linear
time algorithm to compute a comparability ordering (using
modular decomposition).

I But to certify this ordering, no linear time algorithm is known
(related to boolean matrix multiplication problem).
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Another interesting way to see our patterns

A pattern is an acyclic directed signed graph.

+ +

-

-

+ = a forced edge
- = a forced non edge
no arc = no constraint
Exchanging + and − corresponds to exchange C to co-C.



It allows to easily express what makes difficult the checking that an
ordering avoids a given pattern.
Work in progress with François Pitois (IRIS Lyon) and Guillaume
Ducoffe (Bucarest).
We want to characterize which patterns can be recognized in linear
time. Using algorithms and reductions.



As an apetizer

Recognition of a simplicial elemination scheme in linear time
Data: A graph G given by its adjacency lists, and σ = x1, . . . , xn

a total ordering of V (G )
Result: Yes :σ is a simplicial elimination scheme
No: a bad triple.

1 σ simplicial iff ∀i , 1 ≤ i ≤ n G (N(xi ) ∩ {xi+1, . . . , xn} is a clique.



The naive approach

1 Simpliciality;
Data: A graph G given by its adjacency lists, and σ = x1, . . . , xn

a total ordering of V (G )
Result: Yes :σ is a simplicial elimination scheme
No: a bad triple.

2 for i ← 1 to n do
3 Check if G (N(xi ) ∩ {xi+1, . . . , xn} is a clique

Complexity

Unfortunately this algorithm is not in linear time. If G itself is a
clique, it works in O(n3)). The worst case complexity is O(nm).



1 Simpliciality inspired from Tarjan and Yannakakis;
Data: A graph G given by its adjacency lists, and σ = x1, . . . , xn

a total ordering of V (G )
Result: Yes :σ is a simplicial elimination scheme
No: a bad triple.

2 Order the adjacency lists according to σ increasing;
3 for i ← 1 to n do
4 L(i)← N(xi ) ∩ {xi+1, . . . xn};
5 if L(i) contains all lists attached to xi then
6 xk ← First(L(i)); Extract xk from L(i);
7 Attach L(i) to xk
8 else
9 Extract a bad triple and STOP;



Proof

Main invariant :
∀i , 1 ≤ i ≤ n, after vertex xi is processed,
∀j < i , N(xj) ∩ {xj+1, . . . xi} is a clique



I Sorting the adjacency lists according to σ, can be done in
O(|V (G )|+ |E (G )|).

I For every vertex xi its adjacency list is visited at most twice,
first time to construct the list L(i) and a second time when
checking its first neighbour according to σ.

I The comparison between the ordered lists attached to xi can
be done in |L(i)| + the size of the lists attached to xi .

I So the whole complexity is O(|V (G )|+ |E (G )|).
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I For every vertex xi its adjacency list is visited at most twice,
first time to construct the list L(i) and a second time when
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I The comparison between the ordered lists attached to xi can
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In case of failure : some list L(i) attached to a vertex xj is not
contained in L(j). Therefore it exists xh ∈ L(i)-L(j), and we have a
bad triple: xi , xh, xj .
Fist linear time algorithm is from Tarjan Yannakakis
Remark: The algorithm is linear even if the input graph is not
chordal.



Algorithmic paradigm :

I Pass the work to your right neighour

I Can it be used to other elimination scheme ?
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We succeed with Lalla Mouatadib (2017) to put all known classes
for which the induced maximum matching is polynomial
in one unique statement using patterns.



Applications

to distributed decision



A distributed NP

1. A prover gives to each node a
small certificate

2. Every node gathers some
t-neighbourhood (structure and
certificates) and chooses to
accept or reject.

3. The graph is accept iff all nodes
accept.



A distributed NP

1. A prover gives to each node a
small certificate

2. Every node gathers some
t-neighbourhood (structure and
certificates) and chooses to
accept or reject.

3. The graph is accept iff all nodes
accept.



Distributed NP recognition

The ordering is a useful certificate

that can be checked locally for many classes when the pattern is
small.
This has been widely studied by L. Feuilloley and P. Fraigniaud.



I Question: comment l’ordre global est-il calculé ?

I La réponse de Laurent F. : Pour le distribué dans le modèle
de la certification locale, on ne se pose pas la question du
calcul des certificats, on se demande juste à quel point on a
besoin de gros certificats pour certifier telle ou telle propriété.
Après le modèle vient de l’autostabilisation, où (dans certains
cas) on peut faire plein de rondes de communication (donc en
particulier simuler des parcours dans tous les sens), du
moment que l’on n’utilise pas trop de mémoire à chaque
sommet.
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What else is known?

I Many recognitions are NP-complete, e.g. k-colourability
(pattern = a path of length k);

I Almost all the classes defined by 2-connected patterns are
NP-complete to recognize [Duffus, Ginn, Rodl, 1995].

I Hell, Mohar and Rafiey conjectured a dichotomy theorem.

I It seems that there is no such dichotomy [Nesetril 2017].
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S. Guzmán-Pro, P. Hell and C.
Hernández-Cruz (Arxiv 2021)

I Same results if we consider acyclic orientation avoiding a set
of patterns. More precisely the graph classes are the same.

I Some work on circular patterns.
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But there are still many open problems

What is the status of this pattern?

1 2 3 4

Could be NP-complete as well as for the 12 other drawings of a P4?
A question from Santiago Guzman: are they connected to some
kind of coloring?



And these two?

1 2 3 4

1 2 3 4

Which correspond to linear Hsu decomposable graphs or mimwidth
1 (cf. J.A. Telle).



Similarly

1 2 3 4

1 2 3 4

Which correspond to linear simwidth 1 graphs (cf. J.A. Telle). The
first pattern is P{a,b,c,d}.



Back to our initial question

Why the linear-time recognition algorithms based on LexBFS for
chordal, proper interval, interval and cocomparability graphs
produce an ordering that avoids their characteristic pattern?

I Not completely answered!

I Could be something related with geometric discrete convexity
and graph searches (cf. the cograph case).

I But it is the subject of another lecture (next 15th in
Montpellier) and not finished.
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Some extensions

I A better understanding of the landscape for patterns of size 4.

I Several nice patterns coming from geometric objects to study,
such as Pd .

1 2 3 4

Not yet properly inserted in our hierarchy!

I Some rule to extend a pattern by adding a vertex (as for the
path).
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Other interesting extensions

I Extension to patterns on 3 nodes with directed cycles, in order
to capture other graph classes (cf. Reza Naserasr?)

I Generalizations to temporal graphs . . . (cf. Laurent Viennot?)

I Some work already done on temporal extensions of
comparability graphs by Mertzios, Molter, Renken, Spirakis
and Zschoche ( ArXiv 2021)

I Many thanks for your attention !
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José R. Correa, Laurent Feuilloley, Pablo Pérez-Lantero, and José A. Soto.
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