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Self-stabilization vs. Faults

� Transient faults :
I Self-stabilization

� Permanent failures :
I process crashes  fault-tolerant self-stabilization [Beauquier,

Kekkonen-Moneta, 97]
I Byzantine failures  strict stabilization [Nesterenko, Arora, 02]

� Intermittent failures :
I message loss, duplication, and/or reordering [Delaët et al., 06]

... in static networks
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Self-stabilization vs. Dynamic Networks

� If topological changes are :
I rare
I eventually locally detected

 self-stabilization is a good approach

� Variants dedicated to dynamic networks, e.g.:
I Superstabilization: quick convergence after few topological changes from

a legitimate configuration [Dolev and Herman, Chicago Journal of
Theoretical Computer Science, 1997]

I Robust convergence: quick convergence to a safe configuration, then
convergence to a legitimate configuration [Johnen and Nguyen,
OPODIS’06, Kakugawa and Masuzawa, IPDPS’06]

� But, highly ineffective when the frequency of topological changes
increases
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Challenge

Self-stabilization in Highly Dynamic Networks ?

where topological changes are not :{
transient
an anomaly but

{
intermittent
inherent

To tolerate both transient faults and high dynamics

Case Study: Leader Election
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Self-stabilization in Highly Dynamic Systems

Negative result: Even if the network is always connected over the
time, silent self-stabilization is (almost always)
impossible!
[Braud-Santoni et al., IJNC, 2016]
Silence: converges within finite time to a configuration from
which the values of the communication registers used by the
algorithm remain fixed.
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Objectives
Self-stabilizing leader election in highly dynamic message-passing systems

� Finding conditions under which self-stabilizing leader election can
be achieved.

We look for (non-silent) self-stabilizing algorithm for
general classes of dynamic networks

(e.g., we do not enforce the network to be in a particular topology at a given time)

� Finding the limits where self-stabilizing leader election becomes
impossible?

� Studying lower bounds on the convergence time
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Context
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Dynamics Model

Dynamics modeled with a Dynamic Graph on V , V set of nodes.
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[Xuan et al., 03], [Casteigts et al., 13]
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Journey

Can d transmit information to a ?
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1, (d , c); 2, (c, b); 4, (b, a) = Journey from d to a of length 4.
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Computation Model

Synchronous Rounds:
[Charron-Bost and Moran, STACS’18 / Barjon et al., CJ, 2019]

Execution in G: infinite sequence of configurations γ0, γ1, . . . such that
� γ0 is arbitrary
� ∀i > 0, γi is obtained from γi−1 as follows:

Every node p sends a message consisting of all or a part of its local
state in γi−1,

p receives all messages sent by nodes in N (p)i , and
p computes its state in γi .

∀i > 0,
� N (p)i set of nodes that are neighbor of p during the round i .
� γi−1 is the configuration at the beginning of Round i
� γi is the configuration at the end of Round i
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Considered Classes of TVGs

Class T CB(∆) with ∆ ∈ N∗ (Bounded Temporal Diameter): Every
node can always reach any other node through a journey
of length ≤ ∆, i.e., the temporal diameter is bounded by
∆, [Gómez-Calzado et al., Euro-Par’15]

Class T CQ(∆) with ∆ ∈ N∗ (Quasi Bounded Temporal Diameter):
Every node can infinitely often reach any other node
through a journey of length ≤ ∆. [Altisen et al.,
ICDCN’21]

Class T CR (Recurrent Temporal Connectivity): every node can
infinitely often reach any other node through a journey.
[Casteigts et al., IJPEDS, 2012]

T CB(∆) ⊆ T CQ(∆) ⊆ T CR
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Self-stabilization in an Highly Dynamic Context
Adaptation of the definition in the book [Self-Stabilization, Dolev, 2000]

Let V be a set of nodes.

An algorithm A is self-stabilizing for the specification SP(V ) on a
class C of DGs if there exists a subset of configurations L(V ) of A,
called legitimate configurations, such that:

1 for every G(V) ∈ C and every execution of A in G(V) contains a
legitimate configuration γ′ ∈ L(V ) (Convergence), and

2 for every G(V) ∈ C, every legitimate configuration γ ∈ L(V ), SP(V )
holds on the execution of A in G(V) starting from γ (Correctness).
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Leader Election

n identified nodes: ∀p ∈ V , id(p) is the unique identifier of p

Let IDSET be the definition domain of identifiers (|IDSET | � n)

∀v ∈ IDSET ,
� v is a real ID if ∃p ∈ V , id(p) = v
� v is a fake ID otherwise

lid(p) contains the identifier of the leader computed by p
Initially, lid(p) may contain a fake ID

GOAL: converge to a configuration from which all lid variables
constantly designates the same real ID
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Convergence Time of a Leader Election algorithm
Unboundable in T CQ(∆)
T CQ(∆) – every node can infinitely often reach any other node through a
journey of length ≤ ∆

For i ∈ N∗ and G(V ) ∈ T CQ(∆),
let Gi (V ) be the dynamic graph Gisolated (V )i G(V ).

Gi (V ) ∈ T CQ(∆)
In Gisolated (V ) no node has a neighbor.

Gisolated ({a, b})
a b

Gisolated ({a, b})
a b

Gisolated ({a, b})
a b

Gisolated ({a, b})
a b

Along Gisolated (V )i , no information is exchanged: leader election
impossible!

In Gi (V ) the leader election requires at least i + 1 rounds. �
Since T CQ(∆) ⊂ T CR, the result also holds for T CR.
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Speculation

Speculation [Kotla et al., ACM Trans. Comput. Syst., 2009]:
� the system satisfies its requirements for all executions,
� but also exhibits significantly better performances in a subset of

executions.

Idea: worst possible scenarios are often rare in practice.

When the stabilization time of an algorithm cannot be bounded in a
class (i.e. T CQ(∆) and T CR), we exhibit a bound of this algorithm in
the class T CB(∆) (i.e. every node can always reach any other node
through a journey of length ≤ ∆).
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Overview of our algorithms

n identified nodes: ∀p ∈ V , id(p) is the unique identifier of p

Let IDSET be the definition domain of identifiers (|IDSET | � n)

∀v ∈ IDSET ,
� v is a real ID if ∃p ∈ V , id(p) = v
� v is a fake ID otherwise

Every node p computes the identifier of the leader in lid(p)
Initially, the value of lid(p) may be a fake ID

Strategy:
1 First, eliminate all fake IDs, and then
2 Compute in all output variables the minimum real ID, noted id(`).
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Positive Results

Algorithm 3 Algorithm 2 Algorithm 1

Knowledge

Class

Time

Memory

n n, ∆ ∆

T CR T CQ(∆) T CB(∆)

not bounded O(n log(n + ∆)) O(log(n + ∆))

not bounded not bounded 3∆

n: number of nodes
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Time

Memory

n n, ∆ ∆

T CR T CB(∆) T CQ(∆) T CB(∆) T CB(∆)

not bounded O(n log(n + ∆)) O(log(n + ∆))

not bounded ∆ + 1 not bounded 2∆ 3∆

Speculation

n: number of nodes
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Conclusion

Results :
� Definition of self-stabilization in highly dynamic networks

� Focus on self-stabilizing leader election

I Negative Results:
• in T CB(∆) if n is not known then the legitimate configurations set cannot

be closed
• in T CR or T CQ(∆), the leader election is impossible if n is not known

I Positive Results:
• we have circumvented the impossibility result of [Braud-Santoni et al.,

IJNC, 2016] by considering non-silent solutions algorithms for T CR,
T CQ(∆), T CB(∆)

Future work: Other TVG classes
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� full version of the paper in HAL :
[ https://hal.archives-ouvertes.fr/hal-02376832]
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