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Self-stabilization,

Correct behavior

Transient faults (finite and rare)
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Stabilization time

General approach for tolerating transient faults
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Self-stabilization vs. Faults

m Transient faults :
» Self-stabilization

m Permanent failures :

» process crashes ~~ fault-tolerant self-stabilization [Beauquier,
Kekkonen-Moneta, 97]
» Byzantine failures ~~ strict stabilization [Nesterenko, Arora, 02]

m Intermittent failures :
» message loss, duplication, and/or reordering [Delaét et al., 06]

. in static networks
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Self-stabilization vs. Dynamic Networks

m If topological changes are :
» rare
» eventually locally detected

~> self-stabilization is a good approach

m Variants dedicated to dynamic networks, e.g.:
» Superstabilization: quick convergence after few topological changes from
a legitimate configuration [Dolev and Herman, Chicago Journal of
Theoretical Computer Science, 1997]
» Robust convergence: quick convergence to a safe configuration, then

convergence to a legitimate configuration [Johnen and Nguyen,
OPODIS'06, Kakugawa and Masuzawa, IPDPS'06]

m But, highly ineffective when the frequency of topological changes
increases
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Challenge

Self-stabilization in Highly Dynamic Networks ?

where topological changes are not :

transient intermittent
but .
an anomaly inherent

To tolerate both transient faults and high dynamics

Case Study: Leader Election
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Self-stabilization in Highly Dynamic Systems

Negative result: Even if the network is always connected over the
time, silent self-stabilization is (almost always)
impossible!

[Braud-Santoni et al., IJNC, 2016]

Silence: converges within finite time to a configuration from
which the values of the communication registers used by the
algorithm remain fixed.
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Self-stabilizing leader election in highly dynamic message-passing systems

m Finding conditions under which self-stabilizing leader election can
be achieved.

We look for (non-silent) self-stabilizing algorithm for
general classes of dynamic networks

(e.g., we do not enforce the network to be in a particular topology at a given time)

m Finding the limits where self-stabilizing leader election becomes
impossible?

m Studying lower bounds on the convergence time
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Dynamics Model

Dynamics modeled with a Dynamic Graph on V/, V set of nodes.
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[Xuan et al., 03], [Casteigts et al., 13]
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Can transmit information to ?
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Can transmit information to ?
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Can transmit information to ?
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Can transmit information to ?
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Can transmit information to ?
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1,(d,c); 2,(c,b); 4,(b,a) = Journey from () to (o1 of length 4.
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Computation Model

Synchronous Rounds: @ @

[Charron-Bost and Moran, STACS'18 / Barjon et al., CJ, 2019]

Execution in G: infinite sequence of configurations ~p, 71, . .. such that
m 7 is arbitrary
m Vi > 0, ~; is obtained from ~;_1 as follows:

4 Every node p sends a message consisting of all or a part of its local

state in y;_1,
[a p receives all messages sent by nodes in N(p)’, and

a

@ . .
4" p computes its state in ;.

Vi >0,
m N(p)' set of nodes that are neighbor of p during the round i.
B ~;_1 is the configuration at the beginning of Round i

B 7; is the configuration at the end of Round i
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Considered Classes of TVGs

Class 7CB(A) with A € IN* (Bounded Temporal Diameter): Every
node can always reach any other node through a journey
of length < A, i.e., the temporal diameter is bounded by
A, [Gémez-Calzado et al., Euro-Par'15]

Class 7C2(A) with A € IN* (Quasi Bounded Temporal Diameter):
Every node can infinitely often reach any other node

through a journey of length < A. [Altisen et al.,
ICDCN'21]

Class 7C® (Recurrent Temporal Connectivity): every node can

infinitely often reach any other node through a journey.
[Casteigts et al., IJPEDS, 2012]

TCB(A) € TCS(A) C TCR

Colette Johnen Self-stabilizing Systems in Spite of High Dynamics o



Self-stabilization in an Highly Dynamic Context

Adaptation of the definition in the book [Self-Stabilization, Dolev, 2000]

Let V be a set of nodes.

An algorithm A is self-stabilizing for the specification SP(V) on a
class C of DGs if there exists a subset of configurations £(V') of A,
called legitimate configurations, such that:

for every G(V) € C and every execution of A in G(V) contains a
legitimate configuration 7/ € £(V) (Convergence), and

for every G(V) € C, every legitimate configuration v € L(V), SP(V)
holds on the execution of A in G(V) starting from ~ (Correctness).
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Leader Election

n identified nodes: Vp € V, id(p) is the unique identifier of p
Let IDSET be the definition domain of identifiers (|/[DSET| > n)

Vv € IDSET,
mvisareal IDifdpe V, id(p)=v
m v is a fake ID otherwise

lid(p) contains the identifier of the leader computed by p
Initially, /id(p) may contain a fake ID

GOAL: converge to a configuration from which all /id variables
constantly designates the same real ID
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Convergence Time of a Leader Election algorithm

Unboundable in TC9(A)

TCQ(A) — every node can infinitely often reach any other node through a
journey of length < A

For i€ IN* and G(V) € TCQ(A),
let Gi(V') be the dynamic graph Gisoiatea(V)' G(V).

Gi(V) € TC2(A)
In Gisolated( V') no node has a neighbor.

G/'so/ate(l({a- b}) G/'so/ated({a b}) Giso/ated({a- b}) Giso/ated({a- b})

N> AN~ AN~ Vad

Along Gisolated( V), no information is exchanged: leader election
impossible!
In G;(V) the leader election requires at least i + 1 rounds. [J
Since TC(A) C TCR, the result also holds for TC™.
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Speculation

Speculation [Kotla et al., ACM Trans. Comput. Syst., 2009]:
B the system satisfies its requirements for all executions,

B but also exhibits significantly better performances in a subset of
executions.

Idea: worst possible scenarios are often rare in practice.

When the stabilization time of an algorithm cannot be bounded in a
class (i.e. TC2(A) and TC®), we exhibit a bound of this algorithm in
the class 7CB(A) (i.e. every node can always reach any other node
through a journey of length < A).
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Overview of our algorithms

n identified nodes: Vp € V, id(p) is the unique identifier of p
Let IDSET be the definition domain of identifiers (|/[DSET| > n)

Vv € IDSET,
mvisareal IDifIpe V, id(p)=v
m v is a fake ID otherwise

Every node p computes the identifier of the leader in /id(p)
Initially, the value of lid(p) may be a fake ID

Strategy:
First, eliminate all fake IDs, and then
Compute in all output variables the minimum real ID, noted id(¢).
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Positive Results

Algorithm 3 Algorithm 2 Algorithm 1
Knowledge n n, A A
Class TCR TC(A) TCB(A)
Time not bounded not bounded 3A
Memory not bounded O(nlog(n + A)) O(log(n + A))

n: number of nodes
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Positive Results

Algorithm 3 Algorithm 2 Algorithm 1
Knowledge n n, A A
Class TCR TCB(A) | TC2(A) | TCB(A) TCB(A)
Time not bounded A+1 not bounded 2A 3A
Memory not bounded O(nlog(n + A)) O(log(n + A))

Speculation

n: number of nodes
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Conclusion

Results :

m Definition of self-stabilization in highly dynamic networks

m Focus on self-stabilizing leader election

» Negative Results:

® in TCB(A) if n is not known then the legitimate configurations set cannot
be closed
® in TC® or TC2(A), the leader election is impossible if n is not known

» Positive Results:
® we have circumvented the impossibility result of [Braud-Santoni et al.,

IJNC, 2016] by considering non-silent solutions algorithms for TCR,
TC2(A), TCE(A)

Future work: Other TVG classes
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B Karine Altisen, Stéphane Devismes, and Anais Durand, Colette Johnen, and
Franck Petit. Self-stabilizing Systems in Spite of High Dynamics. ICDCN21.

W full version of the paper in HAL :
[ https://hal.archives-ouvertes.fr/hal-02376832]
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