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Dynamic graphs: Various forms: TVG, Evolving graphs
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Dynamic graphs classes: [Casteigts, Flocchini, Quattrociocchi et Santoro, 2011]
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The total length of the
ladders is O(δ)
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The optimal algorithms can be adapted to an online setting

The sequence of graphs G1, G2, G3, ... of G is processed in the order
of reception

Amortized cost of O(1) elementary operations per graph received

Dynamic version: consider only the recent history
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Framework generalization

Transitive closures concatenation

→ Composition operation

Completeness test

→ Test operation

Transitive closure

→ Super node
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test(G(i,j)) = true ⇔ {Gi , Gi+1, . . . , Gj } satisfies the property P
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Round-trip Temporal Connectivity
A dynamic graph G is round-trip temporal connected if and only if a
back-and-forth journey exists from any node to all other nodes.

Round-Trip-Temporal-Diameter(minimization)
Finding the smallest duration in which there exists a back-and-forth
journey from any node to all other nodes.
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back-and-forth journey exists from any node to all other nodes.
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Super node: Round-trip transitive closure
Composition operation: Round-trip transitive closure concatenation
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Test operation: Round-trip completeness
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Time-bounded edge reappearance
A dynamic graph G has a time-bounded edge reappearance with a bound b if
the time between two appearances of the same edge is at most b.

Bounded-Realization-of-the-Footprint(minimization)
Finding the smallest b such that in every subsequence of length b in the
sequence G, all the edges of the footprint appear at least once.
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Time-bounded edge reappearance
A dynamic graph G has a time-bounded edge reappearance with a bound b if
the time between two appearances of the same edge is at most b.

Bounded-Realization-of-the-Footprint(minimization)
Finding the smallest b such that in every subsequence of length b in the
sequence G, all the edges of the footprint appear at least once.

Super node: Union graphs
Composition operation: Union
Test operation: Equality to the footprint
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Definition: T -interval connectivity
A dynamic graph G is T -interval connected if and only if every T length
sequence of graphs has a common connected spanning sub-graph.
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Super node: Intersection graph
Composition operation: Intersection
Test operation: Connectivity test
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Definition: T -interval connectivity
A dynamic graph G is T -interval connected if and only if every T length
sequence of graphs has a common connected spanning sub-graph.

T-Interval-Connectivity (maximization)
Finding the largest T for which the graph is T -interval connected.

GT

× ×× ××
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Symmetric Problems
A minimization or maximization problem is symmetric if:
for all i , j , i ′, j ′ ≤ δ , i ≤ i ′ ≤ j , composition(G(i,j), G(i′,j′)) = G(i,j′).

e.g T-Interval-Connectivity and Bounded-Realization-of-the-Footprint
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Symmetric problems (maximization)

O(δ log δ) elementary operations

O(δ) composition per row

O(δ) tests per row

O(log δ) rows

×

×
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Symmetric problems are solvable in
O(log2 δ) on an EREW PRAM with
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Conclusion

High-level strategies for computing minimization and
maximization parameters
Algorithms that use only O(δ) elementary operations
Parallel versions on PRAM (in Nick’s class)
Online algorithms with amortized cost of O(1) elementary
operations per graph received

Perspectives
How about other classes?
Generic Framework

▶ What if the evolution of the dynamic graph is constrained?
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Thank you !
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