Flows in Temporal Graphs Solving Methods and Open Questions

Mathilde Vernet {firstname.lastname}@univ-avignon.fr

LIA, Avignon Université

Poitiers November 25, 2022

The work of many people

- From my PhD thesis and after with Yoann Pigné and Éric Sanlaville
- Join work with Maciej Drozdowski
- Ongoing work

Outline

Introduction

- Flow problems
- Models
- Time-expanded graph
- Minimum Cost Flow
 - Problem
 - Algorithm
 - Experiments
- 3 Maximum Flow
 - Problem
 - Algorithms
 - Attempt with compact representation
- 4 Conclusion

In static graphs

- Maximum flow
- Minimum cost flow

In temporal graphs

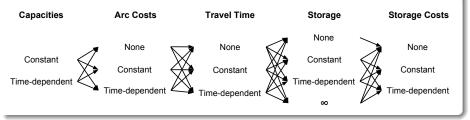
- Previous problems still exist
 - Maximum flow
 - Minimum cost flow
- Time creates more flow problems
 - Quickest flow
 - Earliest flow

How to solve them?

- Use the time-expanded graph
- Provide new method

Models

Various models

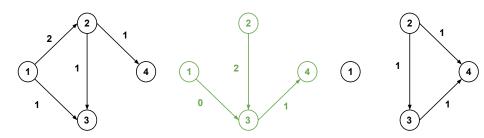


Remark

- The flow problem and its solution depend on the model
 - Max flow and fixed capacities ⇒ repeating flow
 - Max flow and no storage \Rightarrow solve each time step separately
 - Max flow and fixed/Infinite storage ⇒ different solutions

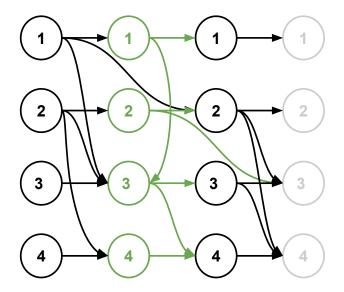
Time-expanded graph

Definition



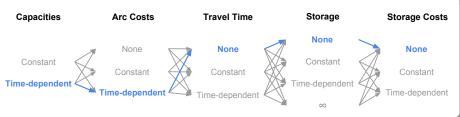
Building the time-expanded graph

- Duplicate each vertex *i* for each time step : $i_1 \dots i_T$
- For each arc ij at time t with travel time τ , create arc $i_t j_{t+\tau}$ of same capacity

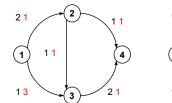


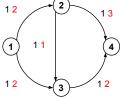
Problem

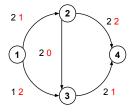
Model Parameters



Example







Arc Capacities Arc Unit Costs

Flows in Temporal Graphs

Problem Parameters

- Time horizon fixed
- Unique source and unique sink fixed
- Amount of flow to be sent fixed

Constraints

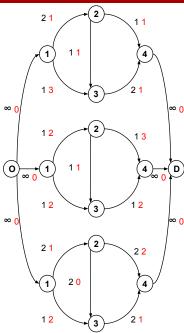
- Respect flow conservation on vertices
- Respect capacities on arcs
- Respect time horizon

Goal

• Send flow the cheapest possible way

Relevance

- Optimum \neq Solving at each time step
- Be more efficient



Size of the Time-Expanded Graph

- $T \cdot n + 2$ vertices
- $T \cdot m + 2 \cdot T$ arcs

Complexity

• Successive Shortest Path Algorithm on Static Graph

• $U \cdot (m + n \cdot log(n))$

• Successive Shortest Path on Time-Expanded Graph

•
$$U \cdot T \cdot (m + n \cdot \log(n \cdot T))$$

CAN IT BE IMPROVED ?

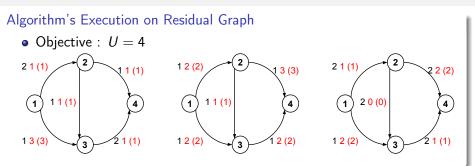
Presentation

Idea

• Based on the Successive Shortest Path Algorithm (SSP)

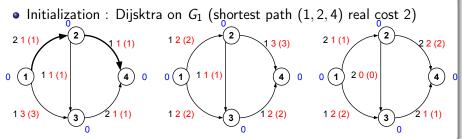
Outline of the Algorithm

- 1. Initialization : one iteration of SSP on each t-graph G_t
- 2. Iteration : one iteration of SSP on the best t-graph G_t
- 3. Back to 2 if there are flow units left to be sent



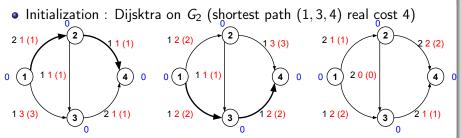
- Objective : U = 4
- Iteration 1 : Send 1 unit on path (1,2,4) in G_1 at cost 2
- Iteration 2 : Send 2 units on path (1, 2, 3, 4) in G_3 at cost 4
- Iteration 3 : Send 1 unit on path (1,2,3,4) in G_1 at cost 3
- End : 4 units sent with cost 9

Algorithm's Execution on Residual Graph



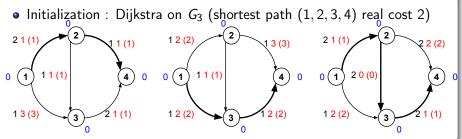
- Objective : U = 4
- Iteration 1 : Send 1 unit on path (1,2,4) in G_1 at cost 2
- Iteration 2 : Send 2 units on path (1, 2, 3, 4) in G_3 at cost 4
- Iteration 3 : Send 1 unit on path (1, 2, 3, 4) in G_1 at cost 3
- End: 4 units sent with cost 9

Algorithm's Execution on Residual Graph

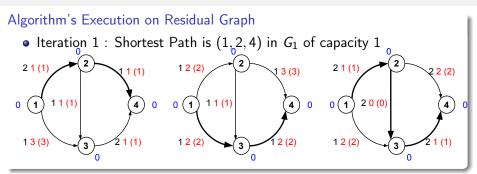


- Objective : U = 4
- Iteration 1 : Send 1 unit on path (1,2,4) in G_1 at cost 2
- Iteration 2 : Send 2 units on path (1, 2, 3, 4) in G_3 at cost 4
- Iteration 3 : Send 1 unit on path (1, 2, 3, 4) in G_1 at cost 3
- End : 4 units sent with cost 9

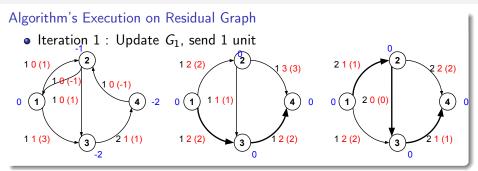
Algorithm's Execution on Residual Graph



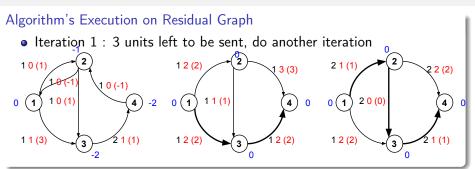
- Objective : U = 4
- Iteration 1 : Send 1 unit on path (1,2,4) in G_1 at cost 2
- Iteration 2 : Send 2 units on path (1, 2, 3, 4) in G_3 at cost 4
- Iteration 3 : Send 1 unit on path (1, 2, 3, 4) in G_1 at cost 3
- End : 4 units sent with cost 9



- Objective : U = 4
- Iteration 1 : Send 1 unit on path (1,2,4) in G_1 at cost 2
- Iteration 2 : Send 2 units on path (1, 2, 3, 4) in G_3 at cost 4
- Iteration 3 : Send 1 unit on path (1, 2, 3, 4) in G_1 at cost 3
- End : 4 units sent with cost 9

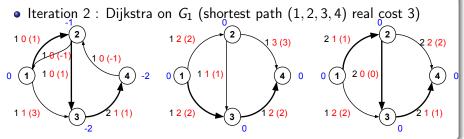


- Objective : U = 4
- Iteration 1 : Send 1 unit on path (1,2,4) in G_1 at cost 2
- Iteration 2 : Send 2 units on path (1, 2, 3, 4) in G_3 at cost 4
- Iteration 3 : Send 1 unit on path (1, 2, 3, 4) in G_1 at cost 3
- End : 4 units sent with cost 9

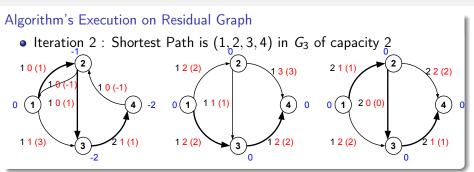


- Objective : U = 4
- Iteration 1 : Send 1 unit on path (1,2,4) in G_1 at cost 2
- Iteration 2 : Send 2 units on path (1, 2, 3, 4) in G_3 at cost 4
- Iteration 3 : Send 1 unit on path (1, 2, 3, 4) in G_1 at cost 3
- End : 4 units sent with cost 9

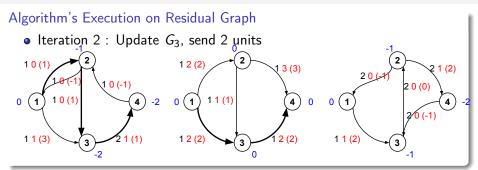
Algorithm's Execution on Residual Graph



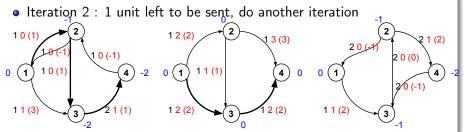
- Objective : U = 4
- Iteration 1 : Send 1 unit on path (1,2,4) in G_1 at cost 2
- Iteration 2 : Send 2 units on path (1, 2, 3, 4) in G_3 at cost 4
- Iteration 3 : Send 1 unit on path (1, 2, 3, 4) in G_1 at cost 3
- End : 4 units sent with cost 9



- Objective : U = 4
- Iteration 1 : Send 1 unit on path (1,2,4) in G_1 at cost 2
- Iteration 2 : Send 2 units on path (1, 2, 3, 4) in G_3 at cost 4
- Iteration 3 : Send 1 unit on path (1, 2, 3, 4) in G_1 at cost 3
- End : 4 units sent with cost 9

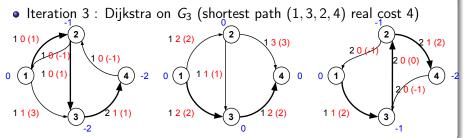


- Objective : U = 4
- Iteration 1 : Send 1 unit on path (1,2,4) in G_1 at cost 2
- Iteration 2 : Send 2 units on path (1, 2, 3, 4) in G_3 at cost 4
- Iteration 3 : Send 1 unit on path (1, 2, 3, 4) in G_1 at cost 3
- End : 4 units sent with cost 9

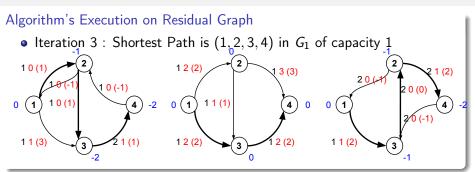


- Objective : U = 4
- Iteration 1 : Send 1 unit on path (1,2,4) in G_1 at cost 2
- Iteration 2 : Send 2 units on path (1, 2, 3, 4) in G_3 at cost 4
- Iteration 3 : Send 1 unit on path (1, 2, 3, 4) in G_1 at cost 3
- End: 4 units sent with cost 9

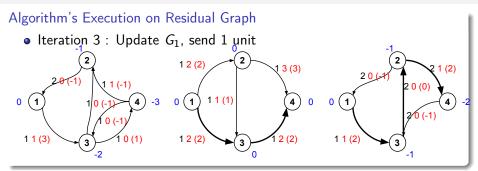
Algorithm's Execution on Residual Graph



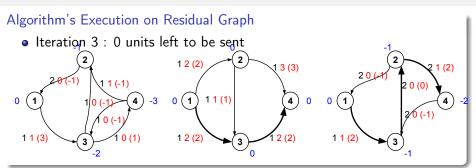
- Objective : U = 4
- Iteration 1 : Send 1 unit on path (1,2,4) in G_1 at cost 2
- Iteration 2 : Send 2 units on path (1, 2, 3, 4) in G_3 at cost 4
- Iteration 3 : Send 1 unit on path (1, 2, 3, 4) in G_1 at cost 3
- End : 4 units sent with cost 9



- Objective : U = 4
- Iteration 1 : Send 1 unit on path (1,2,4) in G_1 at cost 2
- Iteration 2 : Send 2 units on path (1, 2, 3, 4) in G_3 at cost 4
- Iteration 3 : Send 1 unit on path (1, 2, 3, 4) in G_1 at cost 3
- End : 4 units sent with cost 9

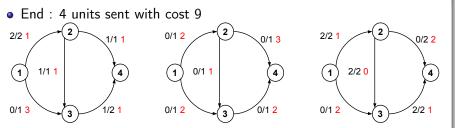


- Objective : U = 4
- Iteration 1 : Send 1 unit on path (1, 2, 4) in G_1 at cost 2
- Iteration 2 : Send 2 units on path (1, 2, 3, 4) in G_3 at cost 4
- Iteration 3 : Send 1 unit on path (1, 2, 3, 4) in G_1 at cost 3
- End: 4 units sent with cost 9



- Objective : U = 4
- Iteration 1 : Send 1 unit on path (1,2,4) in G_1 at cost 2
- Iteration 2 : Send 2 units on path (1, 2, 3, 4) in G_3 at cost 4
- Iteration 3 : Send 1 unit on path (1, 2, 3, 4) in G_1 at cost 3
- End: 4 units sent with cost 9

Algorithm's Execution on Residual Graph



- Objective : U = 4
- Iteration 1 : Send 1 unit on path (1, 2, 4) in G_1 at cost 2
- Iteration 2 : Send 2 units on path (1, 2, 3, 4) in G_3 at cost 4
- Iteration 3 : Send 1 unit on path (1, 2, 3, 4) in G_1 at cost 3
- End: 4 units sent with cost 9

Algorithm

Complexity

Outline of the Algorithm

- 1. Initialization : one iteration of SSP on each t-graph G_t $T \cdot (m + n \cdot \log(n))$
- 2. Iteration : one iteration of SSP on the best t-graph G_t $m + n \cdot log(n) + log(T)$
- 3. Back to 2 if there are flow units left to be sent At most U times

Complexity

•
$$O((U + T) \cdot (m + n \cdot \log(n)) + U \cdot \log(T))$$

Varying Number of Time Steps

Random Graph

- 500 vertices
- ulletpprox 1% density
- T time steps ($10 \le T \le 1000$)
- Randomly varying capacities and costs

On Time-Expanded (EXP)

- $U \cdot T \cdot (m + n \cdot log(n \cdot T))$
- *U* linear in *T*, *n* fixed, hence *m* fixed

 $\Rightarrow \mathbf{T}^2 \cdot \boldsymbol{log}(\mathbf{T})$

Ratio

•
$$\frac{EXP}{TEMP} \sim \frac{T^2 \cdot log(T)}{T \cdot log(T)} \sim \mathbf{1}$$

On Temporal (TEMP)

- $(U + T) \cdot (m + n \cdot \log(n)) + U \cdot \log(T)$
- *U* linear in *T*, *n* fixed, hence *m* fixed

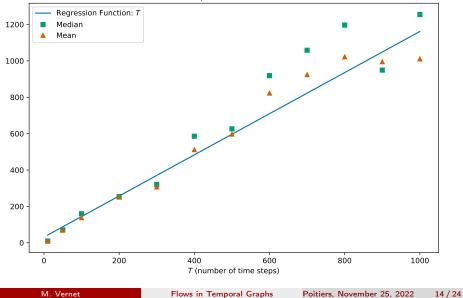
$\Rightarrow \mathbf{T} \cdot \mathbf{log}(\mathbf{T})$

Experiments

Varying Number of Time Steps

M. Vernet

Computation Time Ratio



Flows in Temporal Graphs

Poitiers, November 25, 2022

Varying Number of Vertices

Random Graph

- *n* vertices (500 \le *n* \le 2000)
- $\bullet~\approx 1\%$ density
- T = 100 time steps
- Randomly varying capacities and costs

On Time-Expanded (EXP)

•
$$U \cdot T \cdot (m + n \cdot \log(n \cdot T))$$

• U linear in n, T fixed,
$$m \sim n^2$$

 $\Rightarrow \mathbf{n}^3$

Ratio

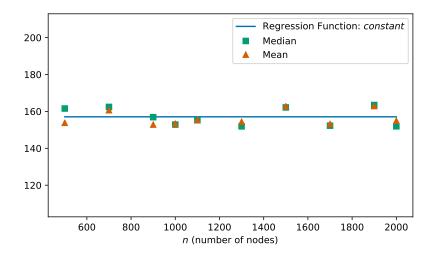
•
$$\frac{EXP}{TEMP} \sim \frac{n^3}{n^3} \sim 1$$

•
$$(U + T) \cdot (m + n \cdot log(n)) + U \cdot log(T)$$

•
$$U$$
 linear in $n,~T$ fixed, $m\sim n^2$

$$\Rightarrow n^3$$

Varying Number of Vertices



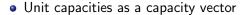
16/24

Graph model

- Discrete Time $\mathcal{T} = \{1, \dots, T\}$
- Temporal Graph $\mathcal{G} = \mathcal{G}_1, \dots, \mathcal{G}_T$
- Each snapshot $G_{\theta} = (V, E_{\theta})$
- Each time-arc $e = uv_{ heta} \in E_{ heta}$ with $u, v \in V$ has a capacity $u_{ heta}(uv)$
- Source vertex s and sink vertex t

Maximum Flow Problem

- Send the maximum amount of flow from s to t on \mathcal{T}
- No travel time
- Infinite and free storage



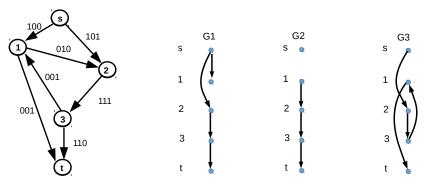


Figure: Sequence of snapshots

Figure: Compact Representation

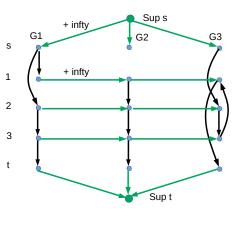


Figure: Time-expanded Graph

Time-expanded Graph

- A super-source and a super-sink are added
- storage arcs are added as horizontal links, with infinite capacity

Size

- Number of vertices:
 - $n \cdot T + 2 = \Theta(n \cdot T)$
- Number of arcs: $m \cdot T + (n-2) \cdot T + 2 \cdot T$ $= \Theta(m \cdot T)$ if n = O(m)

19/24

Efficient algorithms for maximum flows on static graphs

- Based on two ideas
 - SSP: compute a sequence of augmenting paths in the residual graph
 - PF: compute Pre-Flows, try to remove excess by local operations

Complexity of various algorithms

Algorithm	Static	"Expanded"
	complexity	complexity
Edmonds Karp (SSP)	n ² m	$n^2 m T^3$
Generic pre flow	n ² m	n ² mT ³
<i>PF</i> , FIFO order	n ³	n ³ T ³
PF, Highest distance order	$n^2\sqrt{m}$	$n^2 \sqrt{m} T^2 \sqrt{T}$

Remarks

- Most known algorithms have a T^3 factor on the time-expanded graph
- Except for the Highest Label (distance to the sink) first implementation of Pre-Flow: $T^2\sqrt{T}$

Can we do better than $T^{5/2}$?

- Ideas
 - Better use of the time-expanded graph?
 - Use capacity vectors on the compact representation?
- Wrong ideas
 - No direct result with structural consideration on expanded graph
 - Examples can be built, for which augmenting paths are arbitrary long
 - No optimum algorithm (so far) keeping compact representation

Idea

• Considering an arc:

- How much flow can get here?
- How much flow can be sent from here?
- Sum capacities

Remark

• Using what happens before and what happens after means we have to consider DAGs

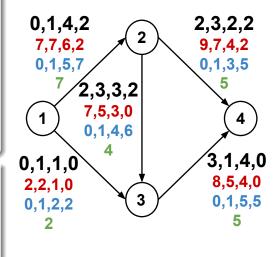
Upper Bound on Arc Capacity

- Capacities
- Backward Useful Cumulated Capacities
- Forward Useful Cumulated Capacities
- Upper Bound on global flow on each arc
- Preprocessing $O(m \cdot T)$

Upper Bound on max flow

- Use upper bound on capacities
- Compute static flow
- Total cost

 $O(m \cdot T + m + n \cdot \log(n))$



Concluding remarks

- Many different flow problems on temporal graphs
- Time-expanded graph is a safe method but unfortunately costly
- Need to develop specific algorithm for the temporal case
- Sometimes we succeed (Minimum cost flow)
- Sometimes we fail (Maximum flow)
- Still many open questions on many problems and whether it is possible or not to improve the complexity

24 / 24

Thank you for your attention

Flows in Temporal Graphs: Solving Methods and Open Questions

Mathilde Vernet {firstname.lastname}@univ-avignon.fr

LIA, Avignon Université

Poitiers November 25, 2022

> **AVIGNON** UNIVERSITÉ

