Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Routing and connectivity problems in forbidden-transition graphs

Thomas Bellitto

Tuesday, July 4, 2023

Sorbonne Université, LIP6

based on joint works with Jørgen Bang-Jensen Benjamin Bergougnoux Bruno Escoffier Shaohua Li Marcin Pilipczuk Manuel Sorge

Cyril Conchon-Kerjan Karolina Okrasa Anders Yeo

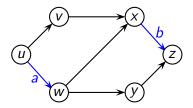
Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

- 2 Edge-coloured graphs
- Parametrized complexity
- Exploring temporal graphs

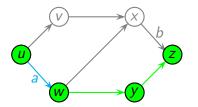
Example : we want to distinguish the walks from u to z.



Walk Signature

Forbidden-transition graphs ●0000000000	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Introduction			
Traffic Monit	oring		

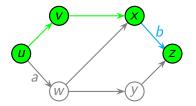
Example : we want to distinguish the walks from u to z.



Walk	Signature
uwyz	а

Forbidden-transition graphs ●0000000000	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Introduction			
Traffic Monit	oring		

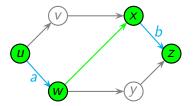
Example : we want to distinguish the walks from u to z.



Walk	Signature	
uwyz	а	
uvxz	Ь	

Forbidden-transition graphs ●0000000000	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Introduction			
Traffic Monit	oring		

Example : we want to distinguish the walks from u to z.



Walk	Signature
uwyz	а
uvxz	Ь
uwxz	ab

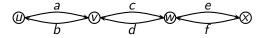
Forbidden-transition graphs ○●○○○○○○○○

Edge-coloured graphs

Parametrized complexity 0000000 Exploring temporal graphs

Introduction

Limitation of the classical graph model



Forbidden-transition graphs ○●○○○○○○○○ Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Introduction

Limitation of the classical graph model

Set of possible walks in a road network \neq set of walks in the graph.

- increases the computation time, decreases the size of the instance we can solve
- lower the quality of the solutions

We need a stronger model!

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Introduction

Forbidden-transition graphs

- Transition : pair of adjacent distinct edges.
- Forbidden-transition graph : G = (V, E, T) where T is the set of permitted transitions. Introduced by Kotzig in 1968.
- The walk $W = (v_1, v_2, ..., v_k)$ uses the transition $v_i v_{i+1} v_{i+2}$ for all *i* such that $v_i \neq v_{i+2}$.
- The walk *W* is *T*-compatible if and only if it only uses transitions from *T*.

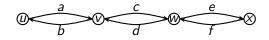
Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Introduction

Examples of applications



We can forbid ab, ba, cd, dc...

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Introduction

Examples of applications

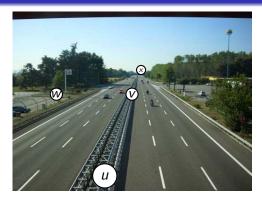
Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Introduction

Examples of applications



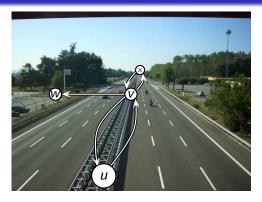
Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Introduction

Examples of applications



The transition *uvw* is forbidden.

Thomas Bellitto

Routing and connectivity problems in forbidden-transition graphs

Tuesday, July 4, 2023 6 / 47

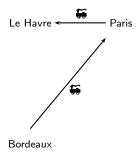
Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Introduction

Examples of applications



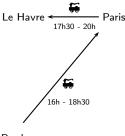
Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Introduction

Examples of applications



Bordeaux

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
0000000000			
Introduction			
Project			

Project : get a better understanding of forbidden-transition graphs. Develop a toolbox to study important problems on them.

- Eulerian/Hamiltonian cycles, travelling salesman problem.
- Linkage (looking for disjoint paths between a set of pairs of terminals).
- Shortest path, elementary path.
- Connectivity, robustness.
- Many others...

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Elementary paths			
Difficulty			
Difficulty			

Problem : everything is much harder is forbidden-transition graphs.

Theorem (Szeider, 2003)

Let G = (V, E, T) be a forbidden-transition graph and let uand v be vertices of V. It is NP-complete to determine if there exists an elementary path between u and v compatible with T.

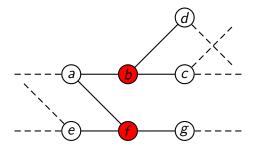
Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Elementary paths

Quick proof of Szeider's theorem



Is there a path between u and v that uses at most one red vertex ?

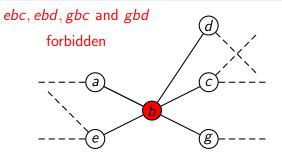
Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Elementary paths

Quick proof of Szeider's theorem



Is there a path between u and v that uses at most one red vertex ?

Is there a compatible elementary path between u and v?

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Elementary paths

Edge-coloured graphs

Parametrized complexity 0000000

Exploring temporal graphs

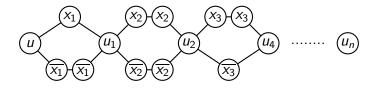
Elementary paths

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Elementary paths

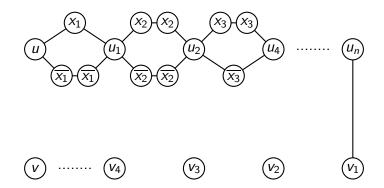


Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Elementary paths



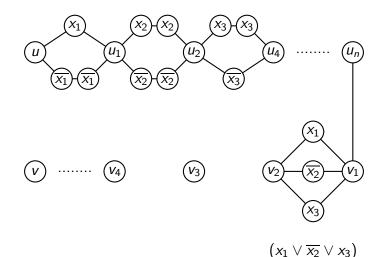
 $(x_1 \vee \overline{x_2} \vee x_3)$

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Elementary paths

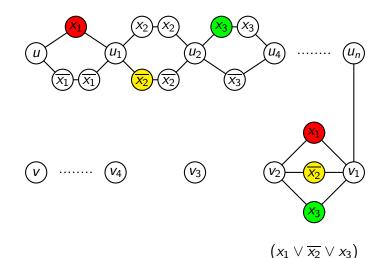


Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Elementary paths

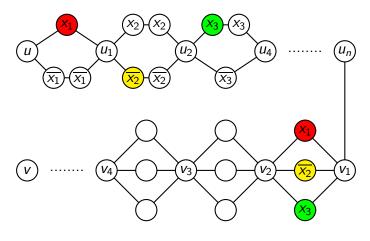


Edge-coloured graphs

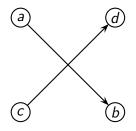
Parametrized complexity 0000000

Exploring temporal graphs

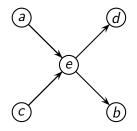
Elementary paths



Forbidden-transition graphs ○○○○○○○●○○	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Elementary paths			
Planarization			



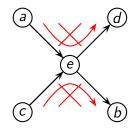
Forbidden-transition graphs ○○○○○○○●○○	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Elementary paths			
Planarization			



Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Elementary paths			

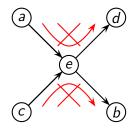
Planarization

Forbidden transitions : aed, ceb



Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Elementary paths			

Forbidden transitions : aed, ceb



Theorem (Kratochvíl, Lubiw, Nešetřil, 1991)

Planarization

Given a graph G drawn in the plane, it is NP-complete to decide if there exists a non-crossing path between two vertices u and v.

Forbidden-transition graphs ○○○○○○○●○ Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Minimum connecting transition set

T-connectivity

T-connectivity

A graph G = (V, E) is *T*-connected if and only if there exists a *T*-compatible walk between each pair of vertices. In this case, we say that *T* is a connecting transition set of *G*.

Minimum connecting transition set

Smallest set T such that a graph G is T-connected. (similar to minimum spanning trees)

Forbidden-transition graphs ○○○○○○○○○ Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Minimum connecting transition set

Results (with Benjamin Bergougnoux)

Complexity

Finding a minimum connecting transition set of a graph is NP-complete.

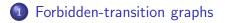
Approximation

There exists a $\frac{3}{2}$ -approximation that runs in time $O(|V|^2)$.

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs



- 2 Edge-coloured graphs
 - Definition
 - Hamiltonicity and Eulerianicity
 - Proper connection number
- Parametrized complexity

Definition

Edge-coloured graphs

Parametrized complexity 0000000

Exploring temporal graphs

Variants of forbidden-transition graphs

- Forbidden-transition directed graphs, multigraphs...
- Antidirected walks.
- Forbidden subpaths, subwalks...
- Non-crossing walks.
- Journeys in temporal graphs.
- Properly-coloured walks in edge-coloured graphs. ...

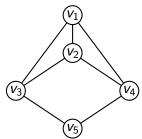
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definition			
Edge-colourin	וס		

Let G = (V, E) be an undirected graph.

 \mathbf{O}

 \circ

- *k*-edge-colouring : function $c : E \mapsto [1, k]$
- proper edge-colouring : $c(uv) \neq c(vw)$.



Forbidden-transition graphs	Edge-coloured graphs ○○●○○○○○○○	Parametrized complexity 0000000	Exploring temporal graphs
Definition			
Edge-colourir	וס		

Let G = (V, E) be an undirected graph.

 \mathbf{O}

 \circ

- *k*-edge-colouring : function $c : E \mapsto [1, k]$
- proper edge-colouring : $c(uv) \neq c(vw)$.

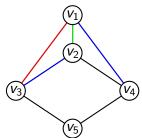


Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs		
Definition					
Edge-colouring					

 \mathbf{O}

 \circ

- *k*-edge-colouring : function $c : E \mapsto [1, k]$
- proper edge-colouring : $c(uv) \neq c(vw)$.

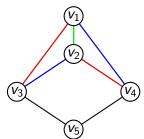


Forbidden-transition graphs	Edge-coloured graphs ○○●○○○○○○○	Parametrized complexity 0000000	Exploring temporal graphs		
Definition					
Edge-colouring					

 \mathbf{O}

 \circ

- *k*-edge-colouring : function $c : E \mapsto [1, k]$
- proper edge-colouring : $c(uv) \neq c(vw)$.

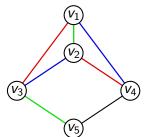


Forbidden-transition graphs	Edge-coloured graphs ○○●○○○○○○○	Parametrized complexity 0000000	Exploring temporal graphs		
Definition					
Edge-colouring					

 \mathbf{O}

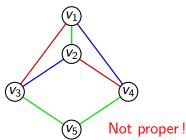
 \circ

- *k*-edge-colouring : function $c : E \mapsto [1, k]$
- proper edge-colouring : $c(uv) \neq c(vw)$.



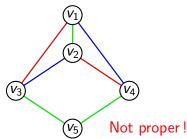
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definition			
Edge-colourir	ıg		

- *k*-edge-colouring : function $c : E \mapsto [1, k]$
- proper edge-colouring : $c(uv) \neq c(vw)$.



Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definition			
Edge-colourir	าย		

- *k*-edge-colouring : function $c : E \mapsto [1, k]$
- proper edge-colouring : $c(uv) \neq c(vw)$.



 Properly-coloured walk : does not use consecutively two edges of the same colour.

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
	000000000		
Definition			
Context			

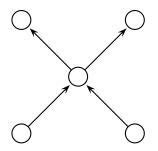
• Introduced by Chen and Daykin in 1976.

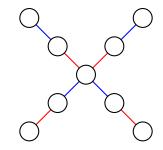
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
	000000000		
Definition			
Context			

- Introduced by Chen and Daykin in 1976.
- Applications in bioinformatics and chemistry.

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definition			
Context			

- Introduced by Chen and Daykin in 1976.
- Applications in bioinformatics and chemistry.
- Powerful model.





Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Hamiltonicity and Eulerianicity			
An open proh	lem		

- Already NP-hard in classical graphs.
- Even harder in edge-coloured or forbidden-transition graphs.

Forbidden-transition graphs	Edge-coloured graphs ○○○○●○○○○○○	Parametrized complexity	Exploring temporal graphs
Hamiltonicity and Eulerianicity			
An open prol	olem		

- Already NP-hard in classical graphs.
- Even harder in edge-coloured or forbidden-transition graphs.
- What if G is complete?

 Forbidden-transition graphs
 Edge-coloured graphs
 Parametrized complexity
 Exploring temporal graphs

 0000000000
 000000
 000000
 0000000
 0000000

 Hamiltonicity and Eulerianicity
 An open problem
 Edge-coloured graphs
 0000000

- Already NP-hard in classical graphs.
- Even harder in edge-coloured or forbidden-transition graphs.
- What if G is complete?
 - Trivial in classical graphs.

Forbidden-transition graphs cocococococo Hamiltonicity and Eulerianicity An open problem

- Already NP-hard in classical graphs.
- Even harder in edge-coloured or forbidden-transition graphs.
- What if G is complete?
 - Trivial in classical graphs.
 - Not easier than in the general case in forbidden-transition graphs.

 Forbidden-transition graphs
 Edge-coloured graphs
 Parametrized complexity
 Exploring temporal graphs

 0000000000
 000000
 000000
 000000
 000000
 000000

 Hamiltonicity and Eulerianicity
 An open problem
 Edge-coloured graphs
 0000000
 000000

Problem : does a graph G have a Hamiltonian cycle?

- Already NP-hard in classical graphs.
- Even harder in edge-coloured or forbidden-transition graphs.
- What if G is complete?
 - Trivial in classical graphs.
 - Not easier than in the general case in forbidden-transition graphs.
 - Polynomial in 2-edge-coloured graphs. Open with k ≥ 3 colours.

Also open in edge-coloured complete multipartite graphs even with 2 colours.

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Hamiltonicity and Eulerianicity

Spanning Eulerian subgraphs

General case (with Jørgen Bang-Jensen and Anders Yeo)

It is NP-complete to decide if a 2-edge-coloured graph is supereulerian.

Polynomial cases (with Jørgen Bang-Jensen and Anders Yeo)

One can determine in polynomial time if a 2-edge-coloured complete graph is supereulerien. This also holds for extension of M-complete graphs.

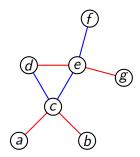
- Open for 2-edge-coloured multipartite graphs.
- Open for 3-edge-coloured complete graphs.

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity 0000000	Exploring temporal graphs
Proper connection number			
Proper conne	ctivity		

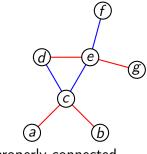
An edge-coloured graph $G_c = (V, E, c)$ is properly-connected if and only if there is a properly-coloured walk from every vertex to every other.

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs		
Proper connection number					
Proper connectivity					

An edge-coloured graph $G_c = (V, E, c)$ is properly-connected if and only if there is a properly-coloured walk from every vertex to every other.



An edge-coloured graph $G_c = (V, E, c)$ is properly-connected if and only if there is a properly-coloured walk from every vertex to every other.



Not properly-connected.

 $f \to e \to g$ $g \to e \to c \to b$ $f \to e \to d \to c \to b$ $a \to c \to e \to d \to c \to b$

No properly-coloured walk between g and d.

Edge-coloured graphs

Parametrized complexity 0000000 Exploring temporal graphs

Proper connection number

Proper connection number

Let G = (V, E) be a connected graph. A *k*-edge-colouring is connecting iff $G_c = (V, E, c)$ is properly-connected.

Proper-walk connection number : smallest *k* **such that there exists a connecting** *k***-edge-colouring of** *G* **?**

Edge-coloured graphs

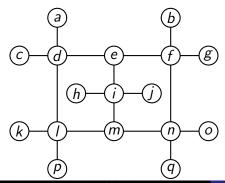
Parametrized complexity 0000000 Exploring temporal graphs

Proper connection number

Proper connection number

Let G = (V, E) be a connected graph. A *k*-edge-colouring is connecting iff $G_c = (V, E, c)$ is properly-connected.

Proper-walk connection number : smallest *k* **such that there exists a connecting** *k***-edge-colouring of** *G* **?**



Edge-coloured graphs

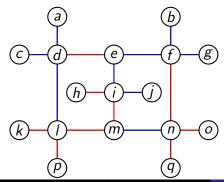
Parametrized complexity 0000000 Exploring temporal graphs

Proper connection number

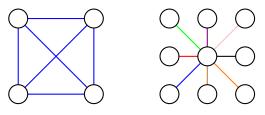
Proper connection number

Let G = (V, E) be a connected graph. A *k*-edge-colouring is connecting iff $G_c = (V, E, c)$ is properly-connected.

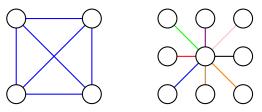
Proper-walk connection number : smallest *k* **such that there exists a connecting** *k***-edge-colouring of** *G* **?**



Forbidden-transition graphs	Edge-coloured graphs ○○○○○○○●○○	Parametrized complexity	Exploring temporal graphs
Proper connection number			
Easy bounds			

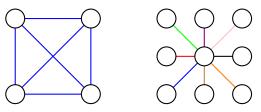


Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
	00000000000		
Proper connection number			
Easy bounds			

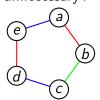


• The chromatic index of the graph is always enough.

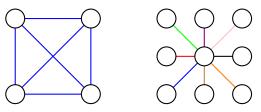
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
	00000000000		
Proper connection number			
Easy bounds			



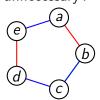
• The chromatic index of the graph is always enough. But often unnecessary !



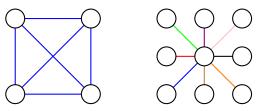
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
0000000000	00000000000	0000000	000000000000000000000000000000000000000
Proper connection number			
F b b .			
Easy bounds			



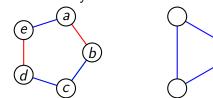
• The chromatic index of the graph is always enough. But often unnecessary !



Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
	00000000000		
Proper connection number			
Easy bounds			



• The chromatic index of the graph is always enough. But often unnecessary !



Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Proper connection number

Connecting 3-edge-colouring

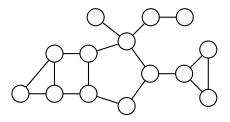
• If G is a tree, we need $\Delta(G)$ colours.

Edge-coloured graphs

Parametrized complexity 0000000 Exploring temporal graphs

Proper connection number

- If G is a tree, we need $\Delta(G)$ colours.
- If G has a cycle :

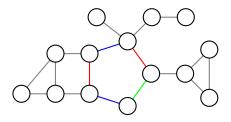


Edge-coloured graphs

Parametrized complexity 0000000 Exploring temporal graphs

Proper connection number

- If G is a tree, we need $\Delta(G)$ colours.
- If G has a cycle :

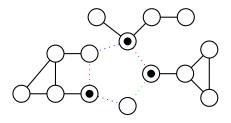


Edge-coloured graphs

Parametrized complexity 0000000 Exploring temporal graphs

Proper connection number

- If G is a tree, we need $\Delta(G)$ colours.
- If G has a cycle :

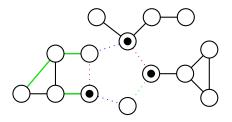


Edge-coloured graphs

Parametrized complexity 0000000 Exploring temporal graphs

Proper connection number

- If G is a tree, we need $\Delta(G)$ colours.
- If G has a cycle :

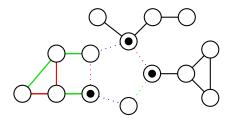


Edge-coloured graphs

Parametrized complexity 0000000 Exploring temporal graphs

Proper connection number

- If G is a tree, we need $\Delta(G)$ colours.
- If G has a cycle :



Edge-coloured graphs

Parametrized complexity 0000000 Exploring temporal graphs

Proper connection number

- If G is a tree, we need $\Delta(G)$ colours.
- If G has a cycle :



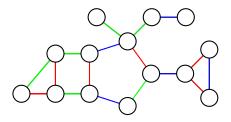
Edge-coloured graphs

Parametrized complexity 0000000

Exploring temporal graphs

Proper connection number

- If G is a tree, we need $\Delta(G)$ colours.
- If G has a cycle : 3 colours are always enough !



Edge-coloured graphs

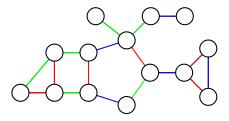
Parametrized complexity

Exploring temporal graphs

Proper connection number

Connecting 3-edge-colouring

- If G is a tree, we need $\Delta(G)$ colours.
- If G has a cycle : 3 colours are always enough !



The complicated part is to determine whether a graph with a cycle requires 3 colors or can be connected with 2.

Edge-coloured graphs

Parametrized complexity 0000000

Exploring temporal graphs

Proper connection number

Complexity of the problem

Previous results (Ducoffe, Marinescu-Ghemeci, Popa, 2017)

It is NP-complete to determine if there exists a 2-edge-colouring such that every pair of vertices of a directed graph is connected by properly-coloured elementary paths.

Our results (with Jørgen Bang-Jensen and Anders Yeo)

The minimum number of colours required for a connecting edge-colouring of an undirected graph G and an optimal connecting colouring can be found in polynomial time.

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

- 2 Edge-coloured graphs
- 3 Parametrized complexity
 - Parametrized compelxity
 - Our results (with S.Li, K.Okrasa, M.Pilipczuk and M.Sorge)

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity ○●00000	Exploring temporal graphs
Parametrized compelxity			
Context			

Let G be a graph : What is the chromatic number of G? the size of a maximum clique? the size of a minimum dominating set? the size of a minimum *vertex cover set*?

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Parametrized compelxity			
Context			

Let G be a graph : What is the chromatic number of G? the size of a maximum clique? the size of a minimum dominating set? the size of a minimum *vertex cover set*?

NP-complete

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Parametrized compelxity			
Context			

Let G be a graph : What is the chromatic number of G? the size of a maximum clique? the size of a minimum dominating set? the size of a minimum *vertex cover set*?

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity ○●00000	Exploring temporal graphs
Parametrized compelxity			
Context			

Let G be a graph : is G k-colorable? is there a clique of size k? a dominating set of size k? a vertex cover set of size k?

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity ○●○○○○○	Exploring temporal graphs
Parametrized compelxity			
Context			

Let G be a graph : is G k-colorable? NP-complete is there a clique of size k? a dominating set of size k? a vertex cover set of size k?

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity ○●00000	Exploring temporal graphs
Parametrized compelxity			
Context			

Let G be a graph : is G k-colorable? NP-complete is there a clique of size k? Polynomial a dominating set of size k? Polynomial a vertex cover set of size k? Polynomial

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Parametrized compelxity

Different ways to be polynomial

Vertex cover of size k:

- If G has no edge, YES
- If *k* = 0, **NO**
- Pick an edge *uv* arbitrarily.
 - If $G \setminus u$ has a vertex cover of size k 1, YES.
 - If $G \setminus v$ has a vertex cover of size k 1, YES.

NO

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Parametrized compelxity

Different ways to be polynomial

Vertex cover of size k:

- If G has no edge, YES
- If *k* = 0, **NO**
- Pick an edge *uv* arbitrarily.
 - If $G \setminus u$ has a vertex cover of size k 1, YES.
 - If G \ v has a vertex cover of size k − 1, YES.
 NO

Complexity : $O(2^k \times n^2)$.

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Parametrized compelxity

Different ways to be polynomial

Vertex cover of size k:

- If G has no edge, YES
- If *k* = 0, **NO**
- Pick an edge *uv* arbitrarily.
 - If $G \setminus u$ has a vertex cover of size k 1, YES.
 - If G \ v has a vertex cover of size k − 1, YES.
 NO

Complexity : $O(2^k \times n^2)$.

Brute force algorithm for clique : $O(n^k \times k^2)$.

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Parametrized compelxity

Different ways to be polynomial

Vertex cover of size k:

- If G has no edge, YES
- If k = 0, NO
- Pick an edge *uv* arbitrarily.
 - If $G \setminus u$ has a vertex cover of size k 1, YES.
 - If G \ v has a vertex cover of size k − 1, YES.
 NO

Complexity : $O(2^k \times n^2)$. Brute force algorithm for clique : $O(n^k \times k^2)$. A problem is FPT in k if we can solve it in time $O(f(k) \times poly(n))$.

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Parametrized compelxity

Choosing the parameter

- Parameter related to the solution.
- Any other graph invariant.

Theorem (Courcelle, 1990)

Any graph property definable in the monadic second-order logic can be decided in linear time on any class of graphs of bounded treewidth.

What makes the problem difficult? On which graph classes can we solve it efficiently?

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity ○○○○●○○	Exploring temporal graphs
Our results (with Shaohua Li, Ka	arolina Okrasa, Marcin Pilipczuł	<pre>< and Manuel Sorge)</pre>	
Elementary p	ath		

Let G = (V, E, T), $u, v \in V$. Is there an elementary path between u and v?

• NP-complete. (Szeider, 2003)

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity ○○○○●○○	Exploring temporal graphs		
Our results (with Shaohua Li, Karolina Okrasa, Marcin Pilipczuk and Manuel Sorge)					
- E-1					

Elementary path

Let G = (V, E, T), $u, v \in V$. Is there an elementary path between u and v?

• NP-complete. (Szeider, 2003)

• FPT in the length of the path. Is there a path of length at most k?

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity ○○○○●○○	Exploring temporal graphs
Our results (with Shaohua Li, Ka	rolina Okrasa, Marcin Pilipczuk	and Manuel Sorge)	

Elementary path

Let G = (V, E, T), $u, v \in V$. Is there an elementary path between u and v?

- NP-complete. (Szeider, 2003)
- FPT in the length of the path. Is there a path of length at most k?
- FPT in the detour.

Let *d* be the distance between *u* and *v* in the underlying classical graph. Is there a path of length at most d + k?

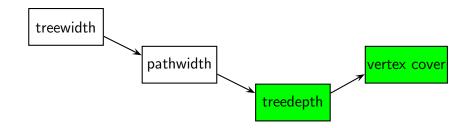
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
		0000000	
Our results (with Shaohua Li, Karo	lina Okrasa, Marcin Pilipczuk ar	nd Manuel Sorge)	

Other parameters

- FPT in the size of a smallest vertex cover set.
- FPT in the treedepth. Minimum depth of a spanning forest *F* such that every pair of adjacent vertices in *G* have an ancestor-descendant relationship in *F*.

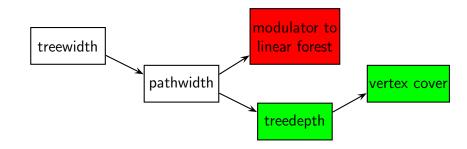
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity ○○○○○●○	Exploring temporal graphs
Our results (with Shaohua Li, K	arolina Okrasa, Marcin Pilipczuł	and Manuel Sorge)	
Other param	eters		

- FPT in the size of a smallest vertex cover set.
- FPT in the treedepth.



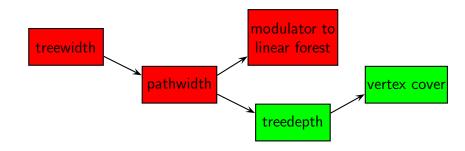
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity ○○○○○●○	Exploring temporal graphs
Our results (with Shaohua Li, Ka	rolina Okrasa, Marcin Pilipczuk	and Manuel Sorge)	
Other param	eters		

- FPT in the size of a smallest vertex cover set.
- FPT in the treedepth.



Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity ○○○○○●○	Exploring temporal graphs
Our results (with Shaohua Li, Ka	rolina Okrasa, Marcin Pilipczuł	< and Manuel Sorge)	
Other param	eters		

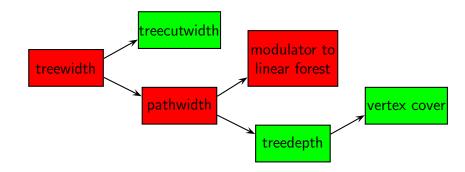
- FPT in the size of a smallest vertex cover set.
- FPT in the treedepth.



Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity ○○○○○●○	Exploring temporal graphs
Our results (with Shaohua Li, K	arolina Okrasa, Marcin Pilipczuł	and Manuel Sorge)	
Other param	eters		

• FPT in the size of a smallest vertex cover set.

• FPT in the treedepth.



Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
		0000000	
Our results (with Shaohua Li, Karo	lina Okrasa, Marcin Pilipczuk ar	nd Manuel Sorge)	

Other parameters

- FPT in the size of a smallest vertex cover set.
- FPT in the treedepth.
- W[1]-hard in the size of a modulator to a linear forest.
- W[1]-hard in the pathwidth.
- W[1]-hard in the treewidth.
- FPT in the treecutwidth :
 k^{O(k²)} ⋅ n² + O(n³) + O((4^k ⋅ k!)^{O(3k+1)}) ⋅ n².
 Analogous of treewidth with edges instead of vertices (highlights small edge cuts in the graph).

Hamiltonian cycles

Compatible Hamiltonian cycles and paths in forbidden-transition graphs :

• W[1]-hard in the size of a modulator to treewidth 2.

 Forbidden-transition graphs
 Edge-coloured graphs
 Parametrized complexity
 Exploring temporal graphs

 0000000000
 000000000
 000000
 0000000000

 Our results (with Shaohua Li, Karolina Okrasa, Marcin Pilipczuk and Manuel Sorge)
 Manuel Sorge)

Hamiltonian cycles

Compatible Hamiltonian cycles and paths in forbidden-transition graphs :

- W[1]-hard in the size of a modulator to treewidth 2.
- W[1]-hard in the pathwidth
- W[1]-hard in the treewidth.

 Forbidden-transition graphs
 Edge-coloured graphs
 Parametrized complexity
 Exploring temporal graphs

 0000000000
 00000000
 0000000
 00000000

 Our results (with Shaohua Li, Karolina Okrasa, Marcin Pilipczuk and Manuel Sorge)
 Sorge)

Hamiltonian cycles

Compatible Hamiltonian cycles and paths in forbidden-transition graphs :

- W[1]-hard in the size of a modulator to treewidth 2.
- W[1]-hard in the pathwidth
- W[1]-hard in the treewidth.

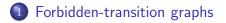
Properly-coloured Hamiltonian cycles :

FPT in the treewidth.
 2^{O(k)} · (|V(G)| + |V(T)| + ℓ) where k is the treewidth, T is the tree of the decomposition and ℓ is the number of colours of the edge-colouring.

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs



2 Edge-coloured graphs

Parametrized complexity

- Definitions
- Restlessness
- Our results (with Cyril Conchon-Kerjan and Bruno Escoffier)

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			

Our model

Temporal graph

A temporal graph is defined by

- a set of vertices V
- a sequence of set of edges E_1, E_2, \cdots that may or may not be finite

The graph $G_t = (V, E_t)$ is called the *snapshot* at time t.

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal
Definitions			

graphs

Our model

Temporal graph

A temporal graph is defined by

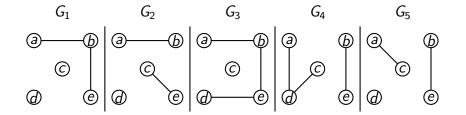
- a set of vertices V
- a sequence of set of edges E_1, E_2, \cdots that may or may not be finite

The graph $G_t = (V, E_t)$ is called the *snapshot* at time t.

Journey and exploration

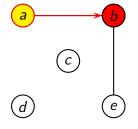
A *journey* in a temporal graph is a sequence of vertices v_0, v_1, \cdots such that for all $i, v_i = v_{i+1}$ or $v_i v_{i+1} \in E_i$. Given a temporal graph, the problem of *graph exploration* is to find a journey that goes through all the vertices

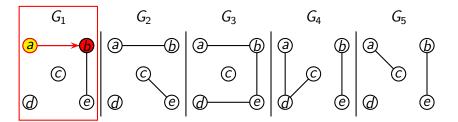
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			



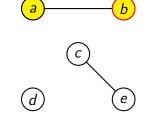
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			

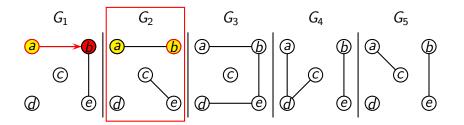
An example





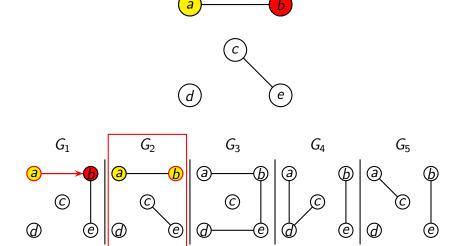
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			



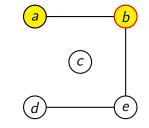


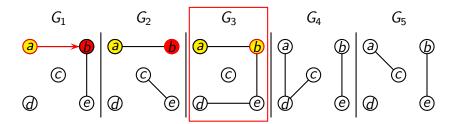
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			

An example

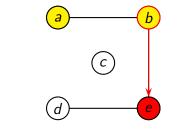


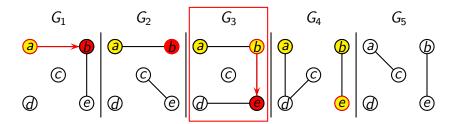
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			



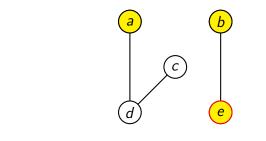


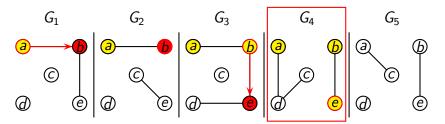
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			



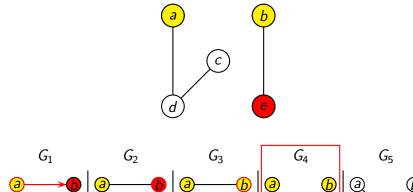


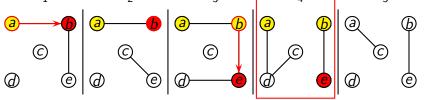
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			



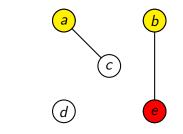


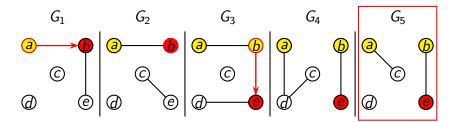
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			



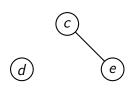


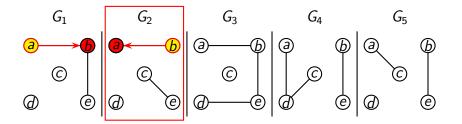
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			





Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			

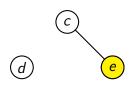


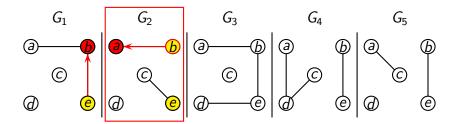


An example

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			

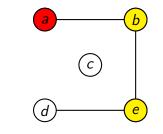
An example

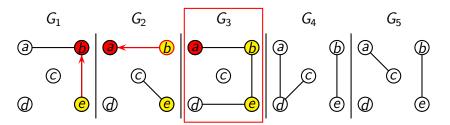




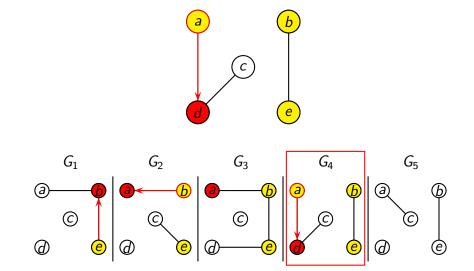
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			

An example

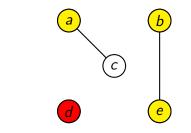


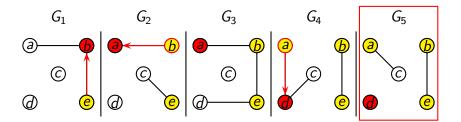


Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			

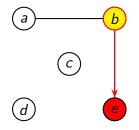


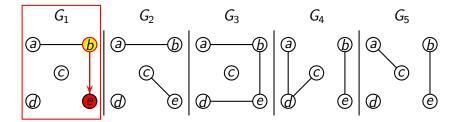
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			



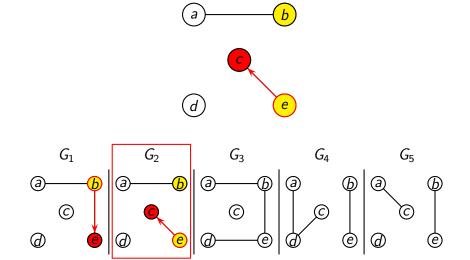


Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			

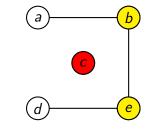


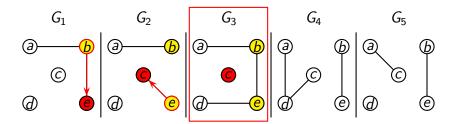


Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			

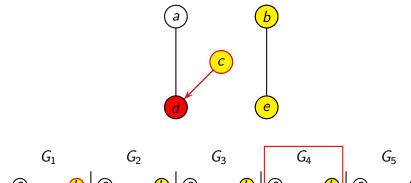


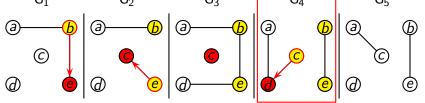
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			



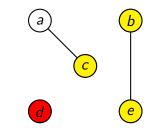


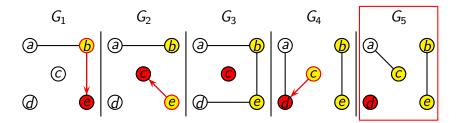
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			



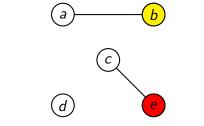


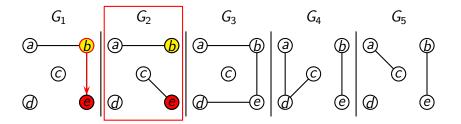
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			





Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			

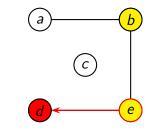


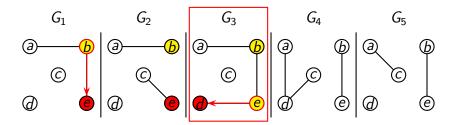


THOMAS BELLITTO

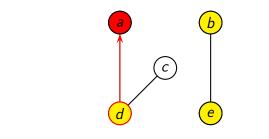
Routing and connectivity problems in forbidden-transition graphs

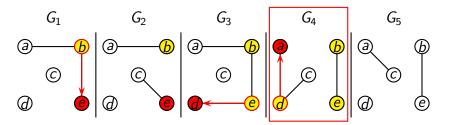
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			



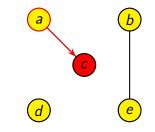


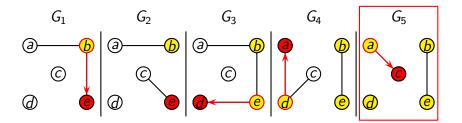
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			





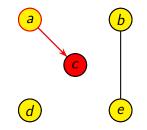
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			





Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Definitions			
An example			

L



NP-complete in the lifespan of the graph!

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal gra
Definitions			
Time bounds	;		

phs

How much time can it take to explore a graph?

• If every G_i is connected $O(n^2)$.

Forbidden-transition	graphs

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Definitions

Time bounds

How much time can it take to explore a graph?

- If every G_i is connected $O(n^2)$.
- In the general case, it might never be possible.

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Definitions

Time bounds

How much time can it take to explore a graph?

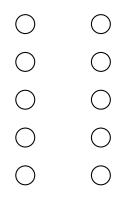
- If every G_i is connected $O(n^2)$.
- In the general case, it might never be possible.
- If the graph is periodic, possible iff the footprint is connected. O(pn)

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Definitions

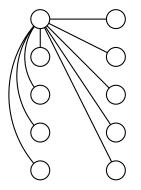


Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

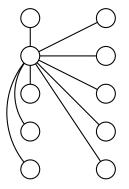
Definitions



Edge-coloured graphs

Parametrized complexity 0000000 Exploring temporal graphs

Definitions

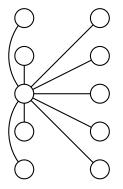


Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Definitions

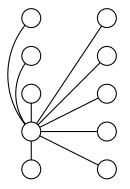


Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Definitions

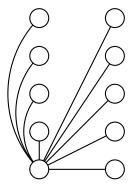


Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Definitions

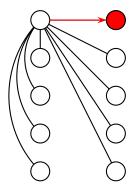


Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

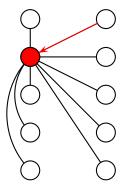
Definitions



Edge-coloured graphs

Parametrized complexity 0000000 Exploring temporal graphs

Definitions

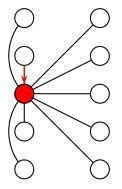


Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Definitions

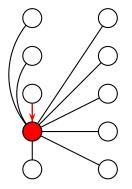


Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Definitions

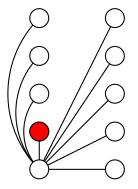


Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Definitions

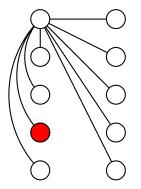


Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

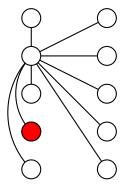
Definitions



Edge-coloured graphs

Parametrized complexity 0000000 Exploring temporal graphs

Definitions

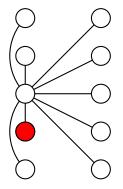


Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Definitions

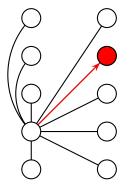


Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Definitions

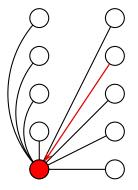


Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Definitions



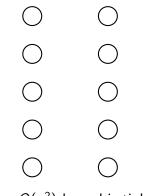
Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Definitions

Erlebach, Hoffmann and Kammer's construction



The $O(n^2)$ -bound is tight

Forbidden-transition	graphs

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Restlessness

Restlessness

Definition

A journey is $\Delta\text{-restless}$ is not allowed to wait Δ steps in a row. For example :

- routing in non delay tolerant network, with memory limitation on the nodes;
- the spread of the virus if patients recover in Δ steps.

Forbidden-transition	graphs

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Restlessness

Restlessness

Definition

A journey is $\Delta\text{-restless}$ is not allowed to wait Δ steps in a row. For example :

- routing in non delay tolerant network, with memory limitation on the nodes;
- the spread of the virus if patients recover in Δ steps.

Restless exploration is not always possible even if every snapshot is connected (cf previous construction).

Forbidden-transition	graphs

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Restlessness

Restlessness

Definition

A journey is $\Delta\text{-restless}$ is not allowed to wait Δ steps in a row. For example :

- routing in non delay tolerant network, with memory limitation on the nodes;
- the spread of the virus if patients recover in Δ steps.

Restless exploration is not always possible even if every snapshot is connected (cf previous construction).

Our problem

Given a periodic temporal graph, can we explore it restlessly?

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Restlessness

Edge-coloring and temporality

Strict alternance

In a k-edge-colored graph, a walk is *strictly alternating* if the edge between the vertices i and i + 1 is colored $i \mod k$.

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Restlessness

Edge-coloring and temporality

Strict alternance

In a k-edge-colored graph, a walk is *strictly alternating* if the edge between the vertices i and i + 1 is colored $i \mod k$.

Let $G_t = (V, (E_1, E_2, \dots, E_k))$ be a k-periodic temporal graph.

Let G_c be a k-edge-colored multigraph with :

- same vertex set as G_t
- an edge uv colored i for every $uv \in E_i$

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Restlessness

Edge-coloring and temporality

Strict alternance

In a k-edge-colored graph, a walk is *strictly alternating* if the edge between the vertices i and i + 1 is colored $i \mod k$.

Let $G_t = (V, (E_1, E_2, \dots, E_k))$ be a k-periodic temporal graph.

Let G_c be a k-edge-colored multigraph with :

- same vertex set as G_t
- an edge uv colored i for every $uv \in E_i$
- k-restless journey in G_t = properly-colored walk in G_c .
- 1-restless journey in G_t = strictly alternating walk in G_c .

Our results

Theorem

One can decide in polynomial time whether a 2-periodic temporal graph can be 1-restlessly explored.

Exploring temporal graphs

Our results (with Cyril Conchon-Kerjan and Bruno E

Our results

Theorem

One can decide in polynomial time whether a 2-periodic temporal graph can be 1-restlessly explored.

Theorem

For every $p \ge 3$, it is NP-complete to decide whether a *p*-periodic temporal graph can be 1-restlessly explored.

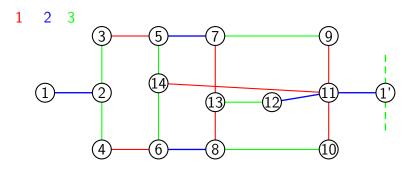
Forbidden-transition graphs Edg 00000000000 00

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Our results (with Cyril Conchon-Kerjan and Bruno Escoffier)



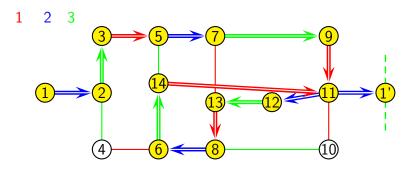
Forbidden-transition graphs Edge-0000000000 0000

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Our results (with Cyril Conchon-Kerjan and Bruno Escoffier)

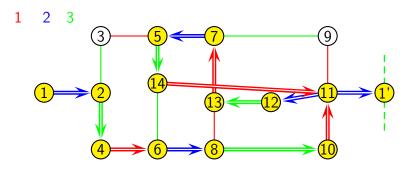


Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

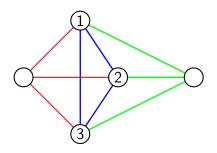
Our results (with Cyril Conchon-Kerjan and Bruno Escoffier)



 Forbidden-transition graphs
 Edge-coloured graphs
 Parametrized complexity
 Exploring temporal graphs

 0000000000
 000000000
 00000000
 00000000

 Our results (with Cyril Conchon-Kerjan and Bruno Escoffier)
 500000000
 000000000



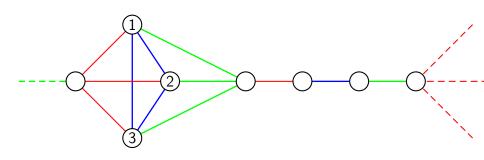
Forbidden-transition graphsEdge-colo00000000000000000

Edge-coloured graphs

Parametrized complexity 0000000

Exploring temporal graphs

Our results (with Cyril Conchon-Kerjan and Bruno Escoffier)

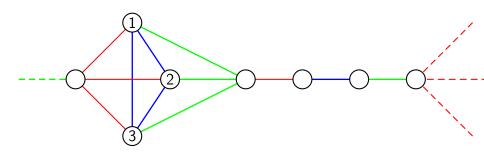


 Forbidden-transition graphs
 Edge-coloured graphs
 Parametrized complexity
 Exploring temporal graphs

 00000000000
 000000000
 0000000
 00000000
 00000000

Our results (with Cyril Conchon-Kerjan and Bruno Escoffier)

Idea of the proof



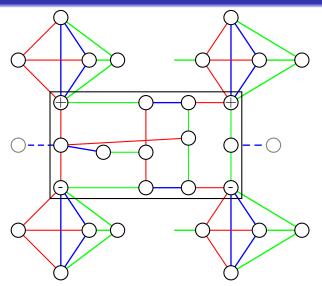
3-SAT-(2,2) : 3-sat where every variable has exactly 2 positive and 2 negative occurrences. NP-complete (Berman, Karpinski, Scott)

Edge-coloured graphs

Parametrized complexity

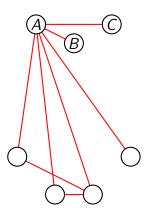
Exploring temporal graphs

Our results (with Cyril Conchon-Kerjan and Bruno Escoffier)

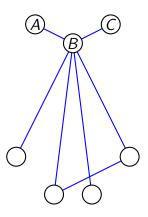


Forbidden-transition graphs	Edge-coloured graphs 00000000000	Parametrized complexity 0000000	Exploring temporal graphs
Our results (with Cyril Conchon-	Kerjan and Bruno Escoffier)		
The trap			

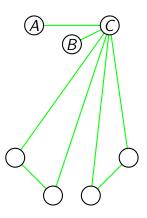
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
			000000000000000000000000000000000000000
Our results (with Cyril Conchon-	Kerjan and Bruno Escoffier)		
The trap			



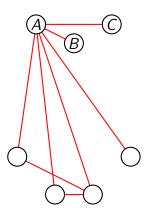
Exploring temporal graphs	Parametrized complexity	Edge-coloured graphs	Forbidden-transition graphs
000000000000000000000000000000000000000			
		Kerjan and Bruno Escoffier)	Our results (with Cyril Conchon-
			The trap
			The trap



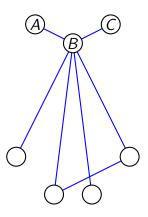
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
			000000000000000000000000000000000000000
Our results (with Cyril Conchon-	Kerjan and Bruno Escoffier)		
The trap			



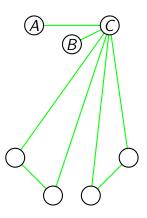
Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
			000000000000000000000000000000000000000
Our results (with Cyril Conchon-	Kerjan and Bruno Escoffier)		
The trap			



Exploring temporal graphs	Parametrized complexity	Edge-coloured graphs	Forbidden-transition graphs
000000000000000000000000000000000000000			
		Kerjan and Bruno Escoffier)	Our results (with Cyril Conchon-
			The trap
			The trap



Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
			000000000000000000000000000000000000000
Our results (with Cyril Conchon-	Kerjan and Bruno Escoffier)		
The trap			



Forbidden-transition graphs Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Our results (with Cyril Conchon-Kerjan and Bruno Escoffier)

Time bounds

Upper bound

Any restlessly-explorable *p*-periodic temporal graph can be explored restlessly in at most pn^2 steps.

Lower bound

For every $p \ge 2$ there are families of restlessly-explorable p-periodic temporal graphs that require $\Omega(pn^2)$ steps to be explored restlessly.

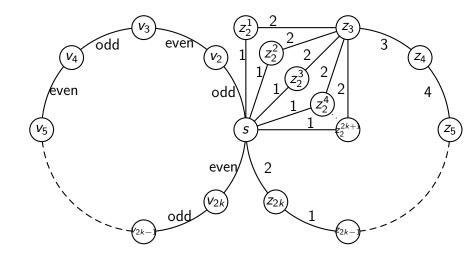
Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Our results (with Cyril Conchon-Kerjan and Bruno Escoffier)

Our construction



Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
			000000000000000000000000000000000000000
Our results (with Cyril Conchon-Kerjan and Bruno Escoffier)			
Open questic	ons		

• Every explorable *p*-periodic graph can be explored in time pn^2 and some require $\frac{pn^2}{18}$. Can we close the gap?

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Our results (with Cyril Conchon-K	erjan and Bruno Escoffier)		
Open questio	ns		

- Every explorable *p*-periodic graph can be explored in time pn^2 and some require $\frac{pn^2}{18}$. Can we close the gap?
- What about *k*-restlessness with *k* > 1?

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Our results (with Cyril Conchon-Kerjan and Bruno Escoffier)			
Open questic	inc		

- Every explorable *p*-periodic graph can be explored in time pn^2 and some require $\frac{pn^2}{18}$. Can we close the gap?
- What about *k*-restlessness with *k* > 1?
- FPT algorithm for the NP-complete case?

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs ○○○○○○○○○○○○○○○
Our results (with Cyril Conchon-Kerjan and Bruno Escoffier)			
Open questic	inc		

- Every explorable *p*-periodic graph can be explored in time pn^2 and some require $\frac{pn^2}{18}$. Can we close the gap?
- What about k-restlessness with k > 1?
- FPT algorithm for the NP-complete case?
- What if the graph cannot change too much between two consecutive frames?

Forbidden-transition graphs	Edge-coloured graphs	Parametrized complexity	Exploring temporal graphs
Our results (with Cyril Conchon-Kerjan and Bruno Escoffier)			
Open questions			

- Every explorable *p*-periodic graph can be explored in time pn^2 and some require $\frac{pn^2}{18}$. Can we close the gap?
- What about *k*-restlessness with *k* > 1?
- FPT algorithm for the NP-complete case?
- What if the graph cannot change too much between two consecutive frames?
- We could study criteria stronger than connectivity or explorability.

Edge-coloured graphs

Parametrized complexity

Exploring temporal graphs

Thank you!

THOMAS BELLITTO Routing and connectivity problems in forbidden-transition graphs Tuesday, July 4, 2023 47 / 47