An Introduction to Temporal Spanners

Arnaud Casteigts

LaBRI, Université de Bordeaux

July 3, 2023 (2^{ond} TEMPOGRAL Meeting)

Based on joint works with:

Jason Schoeters Joseph Peters (Cambridge) (Vancouver)

Michael Raskin Malte Renken Viktor Zamaraev (Bordeaux) (Berlin) (Liverpool)

P

Daniele Carnevale Timothée Corsini (L'Aquila) (Bordeaux)

Temporal graphs

Basic definition:

 $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *presence times* to edges. footprint of \mathcal{G} Can also be viewed as a sequence of 2 4.5 snapshots { $G_i = \{e \in E : i \in \lambda(e)\}$ } 1,4 Example: С C connec 3,5 1,2,9 а b 5.7

Temporal paths

▶ e.g. ((a, c, 3), (c, d, 4), (d, e, 5))

(strict)

▶ e.g. ((a, c, 3), (c, d, 4), (d, e, 4))

(non-strict)

Temporal connectivity: \exists temporal paths between all vertices.

→ Warning: Reachability is non-symmetrical... and non-transitive!

Some adjectives: *simple* ($\lambda : E \to \mathbb{N}$); *proper* (λ locally-injective), *happy* (both).

Impact of non-transitivity

(Example: connected components)

In static graphs

- Components define a partition
- Easy to compute

In temporal graphs

- Maximal components may overlap
- Can be exponentially many

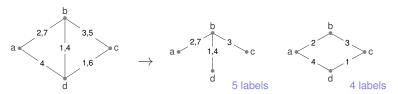
MAX COMPONENT is NP-hard! (from CLIQUE)

Bui-Xuan, Ferreira, Jarry, 2003

- Replace edges with semaphore gadgets
- Cliques become temporal components

Temporal spanners

Input: a graph \mathcal{G} that is temporally connected ($\mathcal{G} \in TC$) Output: a subgraph $\mathcal{G}' \subseteq \mathcal{G}$ that preserves temporal connectivity ($\mathcal{G}' \in TC$) Cost measure: size of the spanner (#labels or #edges)



Can we do better?

► 2n - 4 labels always needed for proper graphs (or strict journeys) (Bumby'79)

Do spanners of size 2n - 4 always exist?

- Some graphs with $\Theta(n \log n)$ labels are non-simplifiable (Kleinberg, Kempe, Kumar, 2000)
- Some graphs with $\Theta(n^2)$ labels are non-simplifiable !! (Axiotis, Fotakis, 2016)

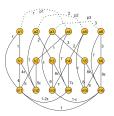
Complexity?

Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)

Bad news and good news

Recall the bad news:

- ▶ $\Omega(n \log n)$ easy
- $\Omega(n^2)$ rather unexpected



Good news 1: (C., Peters, Schoeters, ICALP 2019):

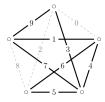
 Spanners of size O(n log n) always exist in complete temporal graphs

Good news 2: (C., Raskin, Renken, Zamaraev, FOCS 2021):

Nearly optimal spanners (of size 2n + o(n)) almost surely exist in random temporal graphs, as soon as the graph is temporally connected

Good news 1:

Temporal cliques admit sparse spanners



(with)

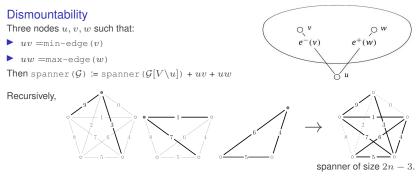
Some promising techniques ? (spoiler: yes and no)

Pivotability

Pivot node v and time t such that:

- \blacktriangleright all nodes can reach v before t
- \triangleright v can reach all nodes after t

Then in-tree \cup out-tree = spanner of size 2n - 2 (in fact 2n - 3)



k-hop dismountability

If u has a *journey* towards v that *ends* at $e^+(v)$ and a journey from w that *starts* at e^-w , then u is k-hop dismountable.

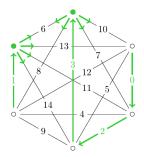
Fireworks spanners

Principle

- Forest of all minimum edges, oriented temporally
- Only the leaves broadcast (leaves = emitters)
- Spanner = the forest + all edges of emitters

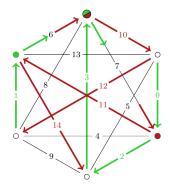
Backward fireworks also possible

- Forest of all maximum edges, oriented temporally
- Only the leaves aggregate (leaves = collectors)
- Spanner = the forest + all edges of collectors



Combining both directions

- Each vertex reaches at least one emitter u through u's min edge
- All emitters reach all collectors (directly)
- Each vertex can be reached by a collector v through v's max edge
- $\label{eq:spanner} \begin{array}{l} \rightarrow \mbox{ Spanner = min edges + max edges} \\ \mbox{ + edges } \underline{\mbox{ between }} \mbox{ emitters and } \mbox{ collectors} \end{array}$



Recurse or sparsify?

If $\# \text{ emitters} \ge n/2 \text{ or } \# \text{ collectors} \ge n/2$

Then one of them is 2-hop dismountable (call it v). \rightarrow recurse on $\mathcal{G}\setminus\{v\}.$

```
Now, both are \leq n/2...
```

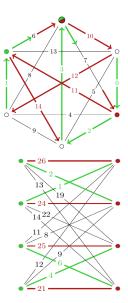
Case 1: emitters \cup collectors $\neq V$

Lemma: At least one node is internal in both forests

- \rightarrow this node is dismountable
- \rightarrow recurse on $\mathcal{G} \setminus \{v\}$

Case 2: emitters \cup collectors = V

- \rightarrow All vertices are <u>either</u> emitters or collectors!
- A lot of structure to work with:
- Complete bipartite graph H between emitters and collectors
- Min edges and max edges form two perfect matchings
- Min edges (and max edges) are reciprocal in H
- \rightarrow Sparsify ${\cal H}$ while preserving reachability from emitters to collectors



Sparsification of the bipartite graph

New objective:

 \rightarrow Sparsify ${\cal H}$ while preserving journeys from each emitter to all collectors

Technique: Partial delegations among emitters

- ► Find a 2-hop journey from one emitter to another, arriving through a "locally small" edge
- Pay extra edges (penalty) to reach missed collectors

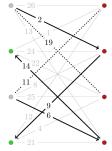
Iterative procedure:

In each step *i*:

- Half of the emitters partially delegate to other half
- Penalty doubles in each step, but #emitters halves
- O(n) edges over $O(\log n)$ iterations $\rightarrow O(n \log n)$ edges.

Conclusion:

 \exists spanner of size $O(n \log n)$ \Box



Open questions (deterministic)

Better spanners for temporal cliques?

- ls $O(n \log n)$ optimal for cliques? Is O(n) possible?
- Even better, does $2n 4 \le OPT \le 2n 3$? (so far, no counter-example found)

Relaxing the complete graph assumption

- Can more general classes of dense graphs be sparsified?
 - \rightarrow Recall that \exists unsparsifiable graphs of density $\Theta(n^2)$
 - \rightarrow Is there a family of graphs of density < 1 which admits sparse spanners?

What about random temporal graphs?

Good news 2:

Spanners of size 2n + o(n) almost surely exist

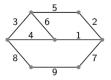
in random temporal graphs

(with)

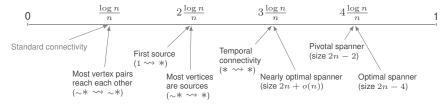
Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

- 1. Pick an Erdös-Rényi $G \sim G_{n,p}$
- 2. Permute the edges randomly, interpret as (unique) presence time



Timeline for p (as $n \to \infty$):



All the thresholds are sharp.

(sharp: $\exists \epsilon(n) = o(1)$, not true at $(1 - \epsilon(n))p$, true at $(1 + \epsilon(n))p$)