An Introduction to Temporal Spanners

Arnaud Casteigts
LaBRI, Université de Bordeaux

July 3, 2023
($2^{\text {ond }}$ TEMPOGRAL Meeting)

Based on joint works with:

Jason Schoeters Joseph Peters (Cambridge) (Vancouver)

Michael Raskin Malte Renken Viktor Zamaraev (Bordeaux)

(Berlin)
 (Liverpool)

Daniele Carnevale Timothée Corsini (L'Aquila)

Temporal graphs

(a.k.a. time-varying, time-dependent, evolving, dynamic,...)

Basic definition:
$\mathcal{G}=(\underline{V, E}, \lambda)$, where $\lambda: E \rightarrow 2^{\mathbb{N}}$ assigns presence times to edges.
footprint of \mathcal{G}

Example:

Temporal paths

- e.g. $\langle(a, c, 3),(c, d, 4),(d, e, 5)\rangle$
- e.g. $\langle(a, c, 3),(c, d, 4),(d, e, 4)\rangle$

Temporal connectivity: \exists temporal paths between all vertices.
\rightarrow Warning: Reachability is non-symmetrical... and non-transitive!
Some adjectives: simple ($\lambda: E \rightarrow \mathbb{N}$); proper (λ locally-injective), happy (both).

Impact of non-transitivity

(Example: connected components)
In static graphs

- Components define a partition
- Easy to compute

In temporal graphs

- Maximal components may overlap
- Can be exponentially many

Max Component is NP-hard! (from Clique)
Bui-Xuan, Ferreira, Jarry, 2003

- Replace edges with semaphore gadgets
- Cliques become temporal components

Temporal spanners

Input: a graph \mathcal{G} that is temporally connected $(\mathcal{G} \in T C)$
Output: a subgraph $\mathcal{G}^{\prime} \subseteq \mathcal{G}$ that preserves temporal connectivity $\left(\mathcal{G}^{\prime} \in T C\right)$
Cost measure: size of the spanner (\# labels or \# edges)

Can we do better?

- $2 n-4$ labels always needed for proper graphs (or strict journeys)
(Bumby'79)
Do spanners of size $2 n-4$ always exist?
- Some graphs with $\Theta(n \log n)$ labels are non-simplifiable
(Kleinberg, Kempe, Kumar, 2000)
- Some graphs with $\Theta\left(n^{2}\right)$ labels are non-simplifiable !!
(Axiotis, Fotakis, 2016)
Complexity?
- Minimum-size spanner is APX-hard

Bad news and good news

Recall the bad news:

- $\Omega(n \log n)$ - easy
- $\Omega\left(n^{2}\right)$ - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019):

- Spanners of size $O(n \log n)$ always exist in complete temporal graphs

Good news 2: (C., Raskin, Renken, Zamaraev, FOCS 2021):

- Nearly optimal spanners (of size $2 n+o(n)$) almost surely exist in random temporal graphs, as soon as the graph is temporally connected

Good news 1:

Temporal cliques admit sparse spanners

(with)

Some promising techniques? (spoiler: yes and no)

Pivotability

Pivot node v and time t such that:

- all nodes can reach v before t
- v can reach all nodes after t

Then in-tree \cup out-tree $=$ spanner of size $2 n-2$ (in fact $2 n-3$)

Dismountability

Three nodes u, v, w such that:

- $u v=\min -\operatorname{edge}(v)$
- $u w=\max -\operatorname{edge}(w)$

Then spanner $(\mathcal{G}):=\operatorname{spanner}(\mathcal{G}[V \backslash u])+u v+u w$

Recursively,

spanner of size $2 n-3$.
k-hop dismountability
If u has a journey towards v that ends at $e^{+}(v)$ and a journey from w that starts at $e^{-} w$, then u is k-hop dismountable.

Fireworks spanners

Principle

- Forest of all minimum edges, oriented temporally
- Only the leaves broadcast (leaves = emitters)
- Spanner = the forest + all edges of emitters

Backward fireworks also possible

- Forest of all maximum edges, oriented temporally
- Only the leaves aggregate (leaves = collectors)
- Spanner = the forest + all edges of collectors

Combining both directions

- Each vertex reaches at least one emitter u through u 's min edge
- All emitters reach all collectors (directly)
- Each vertex can be reached by a collector v through v 's max edge
\rightarrow Spanner $=$ min edges + max edges
+ edges between emitters and collectors

Recurse or sparsify?

If \#emitters $\geq n / 2$ or $\#$ collectors $\geq n / 2$
Then one of them is 2 -hop dismountable (call it v).
\rightarrow recurse on $\mathcal{G} \backslash\{v\}$.
Now, both are $\leq n / 2 \ldots$
Case 1: emitters \cup collectors $\neq V$
Lemma: At least one node is internal in both forests
\rightarrow this node is dismountable
\rightarrow recurse on $\mathcal{G} \backslash\{v\}$
Case 2: emitters \cup collectors $=V$
\rightarrow All vertices are either emitters or collectors!
A lot of structure to work with:

- Complete bipartite graph \mathcal{H} between emitters and collectors
- Min edges and max edges form two perfect matchings
- Min edges (and max edges) are reciprocal in \mathcal{H}

\rightarrow Sparsify \mathcal{H} while preserving reachability from emitters to collectors

Sparsification of the bipartite graph

New objective:
\rightarrow Sparsify \mathcal{H} while preserving journeys from each emitter to all collectors
Technique: Partial delegations among emitters

- Find a 2 -hop journey from one emitter to another, arriving through a "locally small" edge
- Pay extra edges (penalty) to reach missed collectors

Iterative procedure:
In each step i :

- Half of the emitters partially delegate to other half

- Penalty doubles in each step, but \#emitters halves
- $O(n)$ edges over $O(\log n)$ iterations $\rightarrow \boldsymbol{O}(n \log n)$ edges.

Conclusion:
\exists spanner of size $O(n \log n)$

Open questions (deterministic)

Better spanners for temporal cliques?

- Is $O(n \log n)$ optimal for cliques? Is $O(n)$ possible?
- Even better, does $2 n-4 \leq O P T \leq 2 n-3$? (so far, no counter-example found)

Relaxing the complete graph assumption

- Can more general classes of dense graphs be sparsified?
\rightarrow Recall that \exists unsparsifiable graphs of density $\Theta\left(n^{2}\right)$
\rightarrow Is there a family of graphs of density <1 which admits sparse spanners?
What about random temporal graphs?

Good news 2:

Spanners of size $2 n+o(n)$ almost surely exist in random temporal graphs
(with)

Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi $G \sim G_{n, p}$
2. Permute the edges randomly, interpret as (unique) presence time

Timeline for p (as $n \rightarrow \infty$):

All the thresholds are sharp.
(sharp: $\exists \epsilon(n)=o(1)$, not true at $(1-\epsilon(n)) p$, true at $(1+\epsilon(n)) p)$

