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Temporal graphs (a.k.a. time-varying, time-dependent, evolving, dynamic,...)

Basic definition:

G = (V,E, λ), where λ : E → 2N assigns presence times to edges.
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Example:

Can also be viewed as a sequence of

snapshots {Gi = {e ∈ E : i ∈ λ(e)}}
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▶ e.g. ⟨(a, c, 3), (c, d, 4), (d, e, 5)⟩ (strict)

▶ e.g. ⟨(a, c, 3), (c, d, 4), (d, e, 4)⟩ (non-strict)

Temporal connectivity: ∃ temporal paths between all vertices.

→ Warning: Reachability is non-symmetrical... and non-transitive!

Some adjectives: simple (λ : E → N); proper (λ locally-injective), happy (both).
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Impact of non-transitivity (Example: connected components)

In static graphs

- Components define a partition
- Easy to compute

In temporal graphs

2 1,3 2 - Maximal components may overlap
- Can be exponentially many

MAX COMPONENT is NP-hard! (from CLIQUE) Bui-Xuan, Ferreira, Jarry, 2003
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2 - Replace edges with semaphore gadgets
- Cliques become temporal components
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Temporal spanners

Input: a graph G that is temporally connected (G ∈ TC)

Output: a subgraph G′ ⊆ G that preserves temporal connectivity (G′ ∈ TC)

Cost measure: size of the spanner (# labels or # edges)
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Can we do better?
▶ 2n− 4 labels always needed for proper graphs (or strict journeys) (Bumby’79)

Do spanners of size 2n− 4 always exist?
▶ Some graphs with Θ(n logn) labels are non-simplifiable (Kleinberg, Kempe, Kumar, 2000)

▶ Some graphs with Θ(n2) labels are non-simplifiable !! (Axiotis, Fotakis, 2016)

Complexity?
▶ Minimum-size spanner is APX-hard (Akrida, Gasieniec, Mertzios, Spirakis, 2017)
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Bad news and good news

Recall the bad news:

▶ Ω(n logn) - easy

▶ Ω(n2) - rather unexpected

Good news 1: (C., Peters, Schoeters, ICALP 2019):
▶ Spanners of size O(n logn) always exist

in complete temporal graphs

Good news 2: (C., Raskin, Renken, Zamaraev, FOCS 2021):
▶ Nearly optimal spanners (of size 2n+ o(n)) almost surely exist in random

temporal graphs, as soon as the graph is temporally connected
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Good news 1:

Temporal cliques admit sparse spanners

(with)
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Some promising techniques ? (spoiler: yes and no)

Pivotability
Pivot node v and time t such that:
▶ all nodes can reach v before t

▶ v can reach all nodes after t

Then in-tree ∪ out-tree = spanner of size 2n − 2 (in fact 2n − 3)

Dismountability
Three nodes u, v, w such that:
▶ uv =min-edge(v)

▶ uw =max-edge(w)

Then spanner(G) := spanner(G[V \u]) + uv + uw

Recursively,

→

spanner of size 2n − 3.

k-hop dismountability
If u has a journey towards v that ends at e+(v) and a journey from w that starts at e−w, then u is
k-hop dismountable.
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Fireworks spanners

Principle
▶ Forest of all minimum edges, oriented temporally
▶ Only the leaves broadcast (leaves = emitters)
▶ Spanner = the forest + all edges of emitters

Backward fireworks also possible
▶ Forest of all maximum edges, oriented temporally
▶ Only the leaves aggregate (leaves = collectors)
▶ Spanner = the forest + all edges of collectors
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Combining both directions

▶ Each vertex reaches at least one emitter u
through u’s min edge

▶ All emitters reach all collectors (directly)
▶ Each vertex can be reached by a collector v

through v’s max edge

→ Spanner = min edges + max edges

+ edges between emitters and collectors
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Recurse or sparsify?

If # emitters ≥ n/2 or # collectors ≥ n/2

Then one of them is 2-hop dismountable (call it v).

→ recurse on G \ {v}.

Now, both are ≤ n/2...

Case 1: emitters ∪ collectors ̸= V

Lemma: At least one node is internal in both forests

→ this node is dismountable

→ recurse on G \ {v}

Case 2: emitters ∪ collectors = V

→ All vertices are either emitters or collectors!

A lot of structure to work with:
▶ Complete bipartite graph H between emitters and collectors
▶ Min edges and max edges form two perfect matchings
▶ Min edges (and max edges) are reciprocal in H

→ Sparsify H while preserving reachability from emitters to collectors
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Sparsification of the bipartite graph

New objective:

→ Sparsify H while preserving journeys from each emitter to all collectors

Technique: Partial delegations among emitters

▶ Find a 2-hop journey from one emitter to another,
arriving through a “locally small” edge

▶ Pay extra edges (penalty) to reach missed collectors

Iterative procedure:

In each step i:
▶ Half of the emitters partially delegate to other half

▶ Penalty doubles in each step, but #emitters halves
▶ O(n) edges over O(logn) iterations → O(n logn) edges.

Conclusion:

∃ spanner of size O(n logn)



12/14 12/14

Open questions (deterministic)

Better spanners for temporal cliques?
▶ Is O(n logn) optimal for cliques? Is O(n) possible?
▶ Even better, does 2n− 4 ≤ OPT ≤ 2n− 3?

(so far, no counter-example found)

Relaxing the complete graph assumption
▶ Can more general classes of dense graphs be sparsified?

→ Recall that ∃ unsparsifiable graphs of density Θ(n2)

→ Is there a family of graphs of density < 1 which admits sparse spanners?

What about random temporal graphs?
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Good news 2:

Spanners of size 2n+ o(n) almost surely exist

in random temporal graphs

(with)
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Sharp thresholds in random temporal graphs (C., Raskin, Renken, Zamaraev, 2021)

Random simple temporal graphs:

1. Pick an Erdös-Rényi G ∼ Gn,p

2. Permute the edges randomly,
interpret as (unique) presence time

Timeline for p (as n → ∞):
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Standard connectivity

Most vertex pairs
reach each other
(∼∗⇝ ∼∗)

2 logn
n

First source
(1⇝ ∗)

Most vertices
are sources
(∼∗⇝ ∗)
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Pivotal spanner
(size 2n − 2)

3 logn
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Temporal
connectivity
(∗⇝ ∗)

Nearly optimal spanner
(size 2n + o(n))

Optimal spanner
(size 2n − 4)

All the thresholds are sharp.
(sharp: ∃ϵ(n) = o(1), not true at (1 − ϵ(n))p, true at (1 + ϵ(n))p)


