Forbidden Patterns in Temporal Graphs resulting from Encounters in a Corridor ANR TEMPORAL meeting

Minh Hang Nguyen

joint work with Michel Habib, Mikaël Rabie, Laurent Viennot

July 2023

Mobility Graphs

2 Forbidden Patterns and Recognize Algorithm

3 Counting and Spanner

4 Multi-Crossing

Model

Ordered Temporal Graph

•
$$\mathcal{G} = (V, E, \lambda)$$

 $\lambda : E \to 2^{\mathbb{N}}$

(G, π)
 π: vertex ordering

Ordered Temporal Graph

•
$$\mathcal{G} = (V, E, \lambda)$$

 $\lambda : E \to 2^{\mathbb{N}}$

(G, π)
 π: vertex ordering

Incremental $\lambda(e) \cap \lambda(f) = \emptyset$

 $\begin{array}{lll} \Phi & & V(\mathcal{H}) & \to & V(\mathcal{H}') \\ \\ \text{Ordering} & \pi(u) < \pi(v) & & \pi'(\Phi(u)) < \pi'(\Phi(v)) \\ \mathcal{R} & & \dots, (u,v,t_i), \dots & & \dots, (\Phi(u), \Phi(v), t'_i), \dots \end{array}$

Model

n agents move on a line.

- $\pi_0 = 1, \dots, n$
- time t: i cross j $\rightarrow x_t = ij$

Schedule x

- from π_0
- $x = x_1, \ldots, x_T$

Model

n agents move on a line.

π₀ = 1,..., n
time t: *i* cross *j*

$$\rightarrow x_t = ij$$

Schedule x

- from π_0
- $x = x_1, ..., x_T$

Graph $\mathcal{G}_{\pi_0,x}$:

V = {1,..., n},
E = {uv : ∃t, x_t = uv},
λ(uv) = {t : x_t = uv}.

 ${\mathcal G}$ is a mobility graph if there are π and x s.t. ${\mathcal G}\equiv {\mathcal G}_{\pi,x}$.

 \mathcal{G} is a mobility graph if there are π and x s.t. $\mathcal{G} \equiv \mathcal{G}_{\pi,x}$.

 ${\mathcal G}$ is a mobility graph if there are π and x s.t. ${\mathcal G}\equiv {\mathcal G}_{\pi,x}$.

 $\nexists \pi$

Additional assumption: Each pair of agents cross exactly once.

 $\rightarrow \mathcal{G}_{\pi,x}$: mobility clique.

D Mobility Graphs

2 Forbidden Patterns and Recognize Algorithm

3 Counting and Spanner

4 Multi-Crossing

$(\mathcal{G},\pi') \text{ excludes } (\mathcal{H},\pi) \quad \text{ if } \quad \mathcal{G} \nsupseteq \mathcal{H}' \quad \text{ s.t. } \quad (\mathcal{H}',\pi'|_{\mathcal{H}'}) \cong (\mathcal{H},\pi).$

 (\mathcal{G},π') excludes (\mathcal{H},π) if $\mathcal{G} \not\supseteq \mathcal{H}'$ s.t. $(\mathcal{H}',\pi'|_{\mathcal{H}'}) \cong (\mathcal{H},\pi)$.

 (\mathcal{G},π') excludes (\mathcal{H},π) if $\mathcal{G} \not\supseteq \mathcal{H}'$ s.t. $(\mathcal{H}',\pi'|_{\mathcal{H}'}) \cong (\mathcal{H},\pi)$.

Theorem

A temporal clique is a mobility clique iff there exists an ordering of its nodes that excludes the patterns:

Given a temporal clique G, potential vertex ordering π ?

 $\pi = e, ..., d$

 $\pi = e, ..., d$

$$\pi = e, b..., d$$

 $\pi = e, b..., d$

$$\mathcal{R} = \{(a, d, 1), (b, c, 6), (b, d, 9), (e, c, 10), \ldots\}$$

 $\pi_0 = e, b, c, a, d$

$$\mathcal{R} = \{(a, d, 1), (b, c, 6), (b, d, 9), (e, c, 10), \ldots\}$$

 $\pi_0 = e, b, c, a, d$
 $\pi_0 = b \ c \ a \ d$
 $\pi_1 = e \ b \ c \ d \ a$

$$\mathcal{R} = \{(a, d, 1), (b, c, 6), (b, d, 9), (e, c, 10), \ldots\}$$

 $\pi_0 = e, b, c, a, d$
 π_1 e b c d a
 π_2 e c b d a

$$\mathcal{R} = \{(a, d, 1), (b, c, 6), (b, d, 9), (e, c, 10), \ldots\}$$

 $\pi_0 = e, b, c, a, d$
 π_2 e c b d a
 π_3 c e d b a

$$\mathcal{R} = \{(a, d, 1), (b, c, 6), (b, d, 9), (e, c, 10), \ldots\}$$

 $\pi_0 = e, b, c, a, d$
 π_3 c e d b a
 π_4 e c b d a

$\mathcal{R} = \{(a, d, 1), (b, c, 6), (b, d, 9), (e, c, 10), \ldots\}$

π_0	e	b	с	а	d
			•••		
π_T	d	а	с	b	е

1 Mobility Graphs

2 Forbidden Patterns and Recognize Algorithm

Counting and Spanner

4 Multi-Crossing

Reduced Decomposition

Adjacent transposition

Adjacent transposition

Reduced decomposition

 $1234 \xrightarrow{s_3} 1243 \xrightarrow{s_2} 1423 \xrightarrow{s_1} 4123 \xrightarrow{s_2} 4213$

Adjacent transposition

Reduced decomposition

 $1234 \xrightarrow{s_3} 1243 \xrightarrow{s_2} 1423 \xrightarrow{s_1} 4123 \xrightarrow{s_2} 4213$

 $(3, 2, 1, 2) \in R(4231)$

For $w \in S_n$, R(w): set of all reduced decompositions of w.

Adjacent transposition

Reduced decomposition

 $1234 \xrightarrow{\boldsymbol{s}_3} 1243 \xrightarrow{\boldsymbol{s}_2} 1423 \xrightarrow{\boldsymbol{s}_1} 4123 \xrightarrow{\boldsymbol{s}_2} 4213$

 $(3, 2, 1, 2) \in R(4231)$

For $w \in S_n$, R(w): set of all reduced decompositions of w. Stanley gave a way to caculate |R(w)|.

•
$$f: \{(\mathcal{G}, \pi_0)\} \rightarrow R(w_n) \text{ is a bijection.}$$

 $w_n = n, (n-1), \dots, 1.$

• Each mobility clique, \mathcal{G} , has two possible vertex ordering.

•
$$f: \{(\mathcal{G}, \pi_0)\} \rightarrow R(w_n) \text{ is a bijection.}$$

 $w_n = n, (n-1), \dots, 1.$

- \bullet Each mobility clique, $\mathcal{G},$ has two possible vertex ordering.
- The number of mobility cliques on *n* nodes is

$$\frac{|R(w_n)|}{2} = \frac{1}{2} \frac{\binom{n}{2}!}{1^{n-1}3^{n-2}\cdots(2n-3)^1}.$$

Theorem

Given a mobility clique \mathcal{G} , let \mathcal{H} be the subgraph of \mathcal{G} consisting the (2n-3) edges which are adjacent with either node 1 or node n. \mathcal{H} is a temporal spanner of \mathcal{G} .

1 Mobility Graphs

- 2 Forbidden Patterns and Recognize Algorithm
- 3 Counting and Spanner

4 Multi-Crossing

Theorem (Unordered Patterns)

For $n \in \mathbb{N}$, there exists a graph on n nodes, not be a mobility graph, s.t. no pattern on a subset of its nodes can be forbidden.

 \rightarrow Forbidden ordered patterns on three nodes.

The ordered sequence of edges as a word in Σ^* with $\Sigma = \{ab, bc, ac\}$.

- Agents move with constant speeds?
- 2D mobility model?

This program has received funding from ANR project TEMPOGRAL (ANR-22-CE48-0001), and the European Union's Horizon

2020 research and innovation programme under the Marie Skłodowska -Curie grant No 945332.

- Agents move with constant speeds?
- 2D mobility model?

Thank you!

This program has received funding from ANR project TEMPOGRAL (ANR-22-CE48-0001), and the European Union's Horizon

2020 research and innovation programme under the Marie Skłodowska -Curie grant No 945332.