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1 Proposal’s context, positioning and objectives

1.1 Context

Graphs are a fundamental modeling tool in science. They have been used for modeling phenom-
ena in fields ranging from statistical physics to communication networks, distributed algorithms,
logistics, biology, medicine, and social networks. Despite great successes in these areas, many real-
world phenomena are dynamic and fall beyond the expressivity of standard graphs. In the past
two decades, increasing interest has been devoted to temporal graphs (also called time-varying,
time-dependent, evolving, or simply dynamic), in which the presence of edges and (sometimes)
nodes depends on time. A basic example of temporal graphs is shown in Figure 1. In this example,
time is discrete, more sophisticated settings exist (see e.g. [30], [16]).
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Figure 1: Two possible ways of representing the same evolution: As a sequence of “snapshots”
(left), and as a graph whose labels encode presence times (right).

Early studies of temporal graphs occurred, independently, in each of the above fields. This
led to a proliferation of new concepts and algorithmic questions, some of which are specific to
a domain, while others are general, yet discovered independently and under various names. A
typical example is the one of temporal paths, which are paths that can be realized over time (along
ascending labels), also known as time-respecting paths or journeys.

The aim of our project is to develop a fundamental, i.e. domain-independent, theory of tempo-
ral graphs, with a focus on characterizing algorithmic problems and tools which are intrinsically
temporal. The project has three main axes, which are (1) Classification of problems, (2) Tractabil-
ity aspects, and (3) Algorithmic techniques.

1.2 Main themes

The project focuses on three main azes (semantically equivalent to workpackages), namely “Clas-
sification of temporal problems” (C), “Tractability of temporal problems” (T), and “Algorithmic
tools” (A). Each axis consists of three or four interconnected research themes (semantically equiv-
alent to tasks):

C1. What makes a problem intrinsically temporal? How to characterize temporality? p3
C2. Problems defined by the search for temporal substructures p3
C3. Temporal versions of optimization problems on graphs p4
C4. Problems related to the generation of temporal graphs po
T1. Restricting the snapshot or the underlying graph and corresponding parameters pb6
T2. Hierarchies of temporal graph classes p7
T3. Forbidden temporal patterns vs. tractability p8
A1l. Design of advanced data structures p 10
A2. Generation of temporal graphs p 1l
A3. Specifically designed algorithms for temporal problems p 12

To summarize the objectives of this project, it is about proposing a global and integrated vision
of the new questions arising on temporal graphs. The construction of a typology of problems, the
proposal of new analysis tools for the design of algorithms, will pave the way for the building of
a theory of temporal graphs. Not all of the knowledge can be produced within the framework of
this project, but we hope that it will significantly contribute to its development.

1.3 Classification of temporal problems (C)

Algorithmic problems can be classified in various ways. The most common is certainly in terms
of their computational complexity, i.e. the amount of resources an algorithm uses to solve the
problem. Another, perhaps more qualitative way, is in terms of the expressivity required to
formulate the problem, e.g. first-order or second-order logic. In the case of temporal problems,
another natural question is the extent to which the problem is intrinsically temporal. The question
is not so simple, because many of the temporal problems that matter in application scenarios
are ultimately reducible to standard (i.e. non-temporal) NP-hard problem. Thus, what makes a
problem truly temporal is not clear. We will explore different ways of answering this question.



Theme C1: What makes a problem intrinsically temporal? How to characterize temporality?

Some problems are more temporal than others. Consider a typical graph problem like finding a
maximum (or maximal) dominating set. Given a temporal graph G, one may reformulate this
problem as finding a set of vertices S such that all vertices in the graph are dominated by a vertex
of S in (i) at least one snapshot, or (ii) in all snapshots. (See Section 1.4 of [15] for a general
discussion on such adaptations.) It turns out that the former problem amounts to computing
a standard dominating set in the union of all snapshots, while the latter is strongly related to
computing one in the intersection of all snapshots. In other words, these problems are naturally
reducible to instances of static graph problems. For other problems, e.g. for temporal flows [49],
reductions also exist to static graph problems (e.g. using the concept of time-expanded graph);
however, the transformations are more costly in time and space. For yet other problems, such
as problems related to temporal reachability (discussed later on), no natural reduction to static
graph problems have yet been identified. What does make these problems different? Can these
differences be characterized, leading to several types (or degrees) of temporal graph problems?

Beyond the scale of the transformation from temporal problems to static problems, qualitative
properties of a problem may indicate the degree to which it is temporal. In the above example,
where the solutions are defined in the union or the intersection of the snapshots, one can observe
that these solutions remain stable under reshuffling of the snapshots —i.e. the order of the events
does not matter. Other ways of adapting the same kind of static problems have been considered,
resulting in less straightforwardly reducible problems. For instance, if the solution is allowed to
evolve over time, though in a restricted way, this creates interesting dependencies between the
snapshots in which the order of events does matter. In reconfiguration problems, for instance, the
goal is to produce a sequence of elementary changes to go from one solution to another solution
(see e.g. [12]). The aim is to figure out what are the global optimization goals and modification
constraints that make such problems temporally interesting, and connect this literature to existing
temporal reformulations of certain problems (possibly through new reductions).

Objectives:
1. Make an inventory of existing reductions from temporal problems to static problems.

2. Identify abstract properties of problems that hint at its temporality.
(E.g. the property that solutions are not invariant under reshuffling of the snapshots.)

3. Define various classes of reductions from temporal to static problems.
(E.g. is the transformed instance the same size as the original? Can the problem be
reduced to a static problem on the same set of vertices? To reconfiguration problems?)

Related themes: C2,C3,T1,T2,A1,A3

Theme C2: Problems defined by the search for temporal substructures

An entire class of static graph problems consists of searching for specific substructures in a
graph. An archetypal example in this class is that of computing a spanning tree (minimum or
not, distributed or centralized). In temporal graphs, several analogs of such problems can be
defined, a possible approach being to formulate the question with respect to the snapshots or to
the underlying graphs. However, more interesting phenomena seem to occur when the substructure
itself involves temporal concepts. In their seminal paper, Kempe, Kleinberg, and Kumar [39] asked
the following question:

“Given a temporally connected network G = (V| E) on n nodes, is there a set ' C E
consisting of O(n) edges so that the temporal network on the subgraph (V, E') is also
temporally connected? In other words, do all temporal networks have sparse subgraphs
preserving this basic connectivity property?”



In this question, they consider a model where each edge has a single time label, but the
discussion is more general. Essentially, they ask whether temporal analogs of spanning trees, or
more generally, temporal analogs of sparse spanners always exist in temporal graphs. Surprisingly,
after nearly two decades, the answer turned out to be negative: some temporal graphs use ©(n?)
labels for their temporal connectivity, and all of these labels are necessary [6]. Guaranteeing
the existence of sparse spanners (i.e. spanners of size o(n?)) requires severe restrictions, such as a
complete underlying graph [19]. An example of a minimum temporal spanner is shown in Figure 2.
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Figure 2: Minimum temporal spanner in a complete temporal graph (with single time labels).

The above example shows that searching for temporal substructures, even natural ones, may
lead to unexpected results. Another example is the search for maximum temporal components [11],
which turns out to be a problem very related to finding maximum cliques in static graphs. We will
investigate spanner problems and other problems involving the search for particular substructures,
trying to extract from these investigations a number of common knowledge (facts, reductions).

Doing so, we will consider other typical structures searched in static graphs and make a list of
the ones that have already been considered in a temporal setting, such as Hamiltonian and Eulerian
cycles [44]. Note that for cliques and independent sets, the natural extensions lead to solving the
static version on the union of all snapshots whereas the direct extension to spanning trees leads
to work on the intersection graph. Some of the questions will be highly related to the problem of
temporal subgraph isomorphism, which has been considered for some specific applications so far,
like modeling car traffic at an intersection, or strategies in a collective sport (see e.g. [45]). In the
latter case, one may be interested in identifying a given sequence of passes during some given time
interval, i.e. a temporal pattern. The definition of temporal patterns is also discussed in item T3.

Objectives:
1. Identify interesting temporal substructures.
2. Investigate spanner problems.

Related themes: C1,C3,C4,T1,T3,A1,A2 A3

Theme C3: Temporal versions of optimization problems on graphs

This theme focuses on optimization problems. Shortest paths and flow problems, among others,
have natural counterparts in temporal graphs, and have already been studied. However, some open
questions remain; for example, is it possible to solve some flow or path problems without using
time expanded graphs? Generally speaking, problems based on paths (as TSP, VRP) have often a
quite direct temporal version and some results can be found in the literature, see for instance [44]
for the TSP. Interestingly, various shortest paths problems can be naturally defined in temporal
graphs for various definitions of lengths: length can be defined in terms of duration of the temporal
path, its number of edges, or its sum of costs when each temporal edge is associated to a cost. Is
it always possible to reduce such computations to shortest paths in the time expanded graph? As



a follow-up to our work on providing a generic algorithm for solving the shortest temporal paths
problem for an algebraic definition of cost [13], we would like to investigate if this framework can
be extended to temporal walks with restricted waiting at nodes, a setting where the computation
of temporal paths becomes NP-hard [18] while temporal walks can still be computed in polynomial
time [10].

For other optimization problems, defining the temporal version is not immediate. For instance,
the static Steiner tree problem in its simplest version arises from the wish to connect a fixed subset
of vertices, using a minimal number of additional vertices. In a temporal graph, one may wish
to keep that property for each snapshot. Using always the same set of edges is impossible. On
the other side, computing a new Steiner tree for each snapshot might be unwise, as it produces
potentially very different solutions at each time. One first interesting variant consists in computing
a Steiner set (set of vertices) of minimum size, allowing connectivity at each snapshot through
varying edge sets. Another variant is to look for successive solutions that differ by a minimum
number of changes (note the closeness here to reconfiguration problems already mentioned).

Hence, it might be fruitful to investigate systematic ways to build temporal counterparts and,
according to these methods, to identify problems that might admit some specific algorithms, more
efficient (in time and/or space) than the direct use of the classical ones.

Objectives:
1. Study problems that results from considering temporal paths instead of paths.
2. Make an inventory of temporal versions of most classical optimization problems.

3. Identify canonical ways of (re)defining problems, beyond temporal paths.
(E.g. by considering a sliding window)

Related themes: C1,C2,T1,T2,A3

Theme C4: Problems related to the generation of temporal graphs

We will consider various generative models of temporal graphs. Some of these models are
already identified, including;:

Evolutionary models: What are the interesting evolution models? A first aspect of this question
concerns models where elementary operation are performed on a snapshot to obtain the next
one. This typically includes random Markovian models where random edge insertions and
deletions are performed based on the current snapshot and two parameters (birth rate, death
rate), see e.g. [24]. The graph may also result from the evolution of another underlying model.
A typical example comes from moving particles, objects or agents in some metric space where
the edges at a given time depend on proximity. One may generate temporal graphs that
satisfy desired properties by choosing carefully how the agents are moving [46].

Temporalisation: Given a static graph, assign time labels to its edges. A basic example is
a temporal clique which is obtained by assigning one time label to each edge of a clique
as studied in [20]. Another typical example comes from network design problems where
interactions are known in advance but where there is some degree of freedom or uncertainty
on when they can occur. For example, in a public transport network, the operator can
change the departure time of the vehicles to obtain a temporal graph with better temporal
connectivity.

Random edge ordering: In [21], a random model of temporal graphs with only two parameters
n and p is defined as follows: (1) pick a random Erd6s-Rényi using the same parameters,
(2) decide of a random permutation of the existing edges, (3) interpret the rank in this
permutation as the presence time.



We will study what are the interesting graph properties that are guaranteed by these main
generative models, in a way similar to static graphs, see e.g. [32] for a recent attempt to classify
random generators according to the satisfaction of various static graph properties. We think of
natural properties for solving main problems, such as temporal connectivity, stating that each node
is temporally connected to each other node, which seems a natural assumption when considering
many problems. For example, it was shown in [21] that for sufficiently large n, the graph becomes
temporally connected at p = 3logn/n. We will also consider the generation of graphs satisfying
deterministic properties related to the tractability of problems (related to theme T1), as well as
the algorithmic problem of the generation itself (theme A2). Indeed, the latter question becomes
central when considering the exhaustive enumeration of all temporal graphs in a certain class, or
the generation of an instance chosen uniformly in this class.

Objectives:

1. Identify main generative models of temporal graphs.

2. Classify generative models with respect to the temporal graph properties they guarantee.
3. Find interesting temporal graph classes that can be generated exhaustively or randomly.

Related themes: C2,T2,/T3 /A2

1.4 Tractability of temporal problems (T)

The search for efficient algorithms to solve temporal problems often comes up against difficulties
due precisely to the temporal dimension. For example, it was shown in [38] that deciding whether
k vertex-disjoint temporal paths exist between two vertices is NP-complete in temporal graphs,
whereas the analog problem is tractable in static graphs. In static graphs, the tractability of this
problem is due to a duality between maximum flows and minimum cuts that breaks in temporal
graphs. Similarly, computing a maximum connected component based on temporal paths is as
hard as finding a maximum clique in static graphs [11], mainly due to the fact that temporal
components do not form equivalence classes, in contrast to their static analogs. Since then,
many other tractable (or approximable) static problems have been shown to have intractable (or
inapproximable) analogs in temporal graphs (see e.g. [2, 17, 29, 33]). (A notable counter-example
is the case of flows, see for instance [49].) The main goal of this part is to understand the typical
source of intractability in temporal problems, and to identify various ways to circumvent it.

Theme T1: Restricting the snapshot or the underlying graph and corresponding parameters

A natural way to make a (difficult) graph problem tractable is by restricting the class of
graphs that the algorithm addresses (trees, planar graphs, etc.). Such restrictions also impact
the very existence of solutions; for example, no o(n?)-sparse spanners are guaranteed to exist in
general temporal graphs [6], but they do if the underlying graph is complete [19] (incidentally,
they also do if the time labels are random [21]). Similarly, exploration by mobile agents is
facilitated if the snapshots are all connected and the underlying graph is a cactus [37]. A more
subtle way of analyzing tractability is to characterize the way certain graph parameters impact the
computational complexity of a considered problem, with a focus on those parameters whose fixed
value causes the problem to be tractable. Typical parameters include treewidth, feedback vertex
set, and cliquewidth, among many others (see [47] for a hierarchy). It is natural to apply this
approach in temporal graphs by restricting the snapshot or the underlying graph. This approach
has been considered, for example in [31], to characterize the tractability boundary of separation
problems in temporal graphs. In [18], it was considered for the following basic problem: given two
vertices u and v and a certain duration A, is there a temporal path from « to v that pauses at most
A units of time at each intermediate node (a.k.a. a A-restless path). This problem is NP-hard



even under severe restrictions (e.g. when the lifetime is only 3). However, it is fixed-parameter
tractable (FPT) for natural parameters like treedepth or feedback edge number. The tractability
boundary is illustrated in Figure 3.
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Figure 3: Tractability of temporal paths with bounded waiting times, in terms of parameters of
the underlying graph. (Picture from [18].)

We will study such boundaries for a number of basic temporal graph problems. In doing so,
we will try to understand what parameters are more inherently related to the (in)tractability of
temporal problems. Another goal is to define parameters which are themselves temporal. In [18],
a first step towards this goal was made by introducing a new parameter called “timed feedback
vertex number”, which counts the number of vertex appearances that have to be removed for
the underlying graph to become cycle-free. While it is finer, this parameters still does not fit
all standards discussed in C1 for being truly temporal (e.g., its value remains invariant under
reshuffling of the snapshots). We will design parameters of a temporal nature and investigate
their impact on basic temporal problems. For example, the number of temporal cycles may play
a role in the above problems. Another temporal parameter of interest could be the number of
temporal paths that one can use over disjoint time intervals between any two vertices (i.e. a
measure of how many times one can go back and forth between these vertices).

Objectives:
1. Find how tractability can arise from restricting the snapshots or the underlying graph.
2. Identify new temporal parameters and their impact on difficult problems.

Related themes: C1,02,C3,T2,T3,A1,A3

Theme T2: Hierarchies of temporal graph classes

Previous attempts at defining temporal restrictions that make a problem tractable were made
in the context of distributed network algorithms. While the set of communication links in many
types of networks (e.g. vehicular networks, sensor networks) often varies in unpredictable ways,
they often satisfy weaker types of properties over time and space. For example, the network may
never be connected at a given instant, and yet offer temporal reachability between all pairs of
nodes (i.e. temporal connectivity). The network may also offer that all pairs of nodes interact at
least once, or recurrently, or that the interactions are periodic, etc. All these properties impact
the feasibility and tractability of temporal problems. Furthermore, the corresponding classes of
temporal graphs can be related through inclusion, leading to a hierarchy illustrated in Figure 4.
(More details in [16, 15].)

We will study the impact of such properties on (non-distributed) temporal graph problems and
characterize their impact on tractability. Observe that many of the above classes are defined over
an infinite lifetime, which is very appropriate in a distributed context (long-lived networks), but less
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Figure 4: Hierarchy of temporal graph classes, in relation to various distributed tasks.

common in centralized algorithmics, where the input is usually finitely represented. Two directions
are envisioned here: (1) looking at temporal graph problems whose input is discovered in an online
fashion (e.g.[22]), and (2) looking at infinite temporal graphs which are finitely represented, e.g.
periodic temporal graphs or graphs generated by finite computational objects (e.g. automata and
algorithms). It is expected that the above properties will impact the tractability of algorithmic
problems in a similar way as for distributed algorithms. Doing so, we will also define new classes of
temporal graphs which impact the tractability of problems in various ways. We will also continue
to study the impact of these classes from the point of view of distributed computing (and self-
stabilization, as done recently in [4]). For example, the last parameter mentioned in T1 (number
of back and forth temporal paths) could define an infinite hierarchy of classes of temporal graphs,
whose levels are related to specific distributed tasks, e.g. broadcasting in level 1, broadcasting
with acknowledgement in level 2, etc.

Objectives:

1. Differentiate online versus offline tractability.

2. Study periodic temporal graphs and finitely represented infinite temporal graphs.

3. Identify hierarchies of temporal graph classes in the spirit of distributed classifications.

Related themes: C1,C3,C4,T1,A2

Theme T3: Forbidden temporal patterns vs. tractability

Many graph classes can be defined in terms of forbidden patterns. A famous example is the
class of planar graphs which are the graphs excluding K5 and K33 as a minor. Such structure
can typically be exploited to obtain better tractability. A first track of research consists in finding
natural temporal versions of patterns used in static graphs. Topological minors could be a promis-
ing target: as they can be defined in terms of paths, it is natural to consider a similar structure
with temporal paths. However, this naive approach hits the asymmetry of time: time intrinsically
induces an asymmetry (even with symmetric edges) which seems incompatible with the classical
minor theory which concerns inherently undirected graphs. However, current work on extending
minor theory to directed graphs could shed light on this approach. Another challenging task is
then to identify problems where tractability improves when restricting the problem to temporal
graphs excluding such a temporal minor.



As an orthogonal direction, we will consider patterns related to some ordering of the vertices.
Indeed, many hereditary classes of graphs can be defined this way: a graph is in the class when
it admits a total ordering of the vertices avoiding a set of edge or non-edge patterns with respect
to the ordering, see [30] for an extensive study of all elementary patterns. Equivalently, such an
ordering can be seen as a certificate that the graph belongs to the class. Moreover, computing
it is often inherent in efficient recognition. In the temporal context, it seems natural to suppose
that some sequences of edges are forbidden. The time ordering is then the important dimension.
Do the characterizations developed for the vertex dimension can help understand patterns defined
on the temporal dimension? Alternatively, can we define temporal graph classes by playing on
both dimensions considering graphs where there exists a vertex ordering avoiding some temporal
patterns of edges? Figure 5 illustrates some possible patterns.
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Figure 5: Forbidden patterns: (a) Interval graphs have a vertex ordering excluding this static
pattern (the dashed line represents the absence of the edge). (b) Forests have a vertex ordering
excluding this pattern. (c) Excluding this temporal pattern restricts the structure of temporal
spanners (two nodes on the same line represent the same node at two distinct instants). (d)
A temporal pattern using both a vertex ordering and time; excluding it implies some kind of
topological ordering with respect to temporal paths.

Another approach in this theme is to study patterns that can naturally arise in practical
temporal graphs or networks. For example, a public transit network can naturally be represented
by a temporal graph where nodes correspond to bus stops and where a temporal edge represents an
elementary movement of a bus from a stop to the next one in its trip. Such networks mostly satisfy
a symmetry property: for each sequence of edges corresponding to a trip of a bus, there often exists
a symmetric sequence of edges visiting the same nodes in reverse order as a bus line generally has
buses circulating in both directions. Does such symmetry have tractability consequences?

Objectives:
1. Identify forbidden patterns enabling better tractability.

2. Investigate elementary edge patterns related to time ordering and possibly an additional
vertex ordering.

3. Find interesting patterns inspired from practical temporal networks.

Related themes: C2,C4,T1,A1,A2 A3

1.5 Algorithmic tools (A)

The third part of this project will be devoted to positive results and algorithmic techniques, with
a broad perspective. This objective will interact strongly with the other parts; in particular, in



identifying how restrictions on the input can be exploited algorithmically. We will also develop a
set of tools and techniques, with the same underlying motivation as in the entire project, that is,
focusing on techniques of ubiquitous uses in temporal graph problems.

Doing so, we will also develop algorithms for the generation of temporal graphs satisfying cer-
tain properties (e.g. for experimentation or conjecture testing). Preliminary work in this direction
by some of the participants include [48] (spatio-temporal graphs) and [21] (random temporal
graphs satisfying certain reachability properties). The generation of a temporal graph can also be
seen as an inverse problem: given a static graph and some scheduling constraints on the edges, how
to associate a presence time with each edge so as to guarantee certain properties, such as a good
temporal connectivity for example? Finally, we will revisit, extract, and attempt to generalize
techniques developed in the recent literature on temporal graphs, as well as in neighbor fields like
re-optimization (a.k.a. “dynamic” graph algorithms) and reconfiguration problems. The project
will also benefit from the experience of some of its members in tackling optimisation problems on
temporal graphs (e.g., Pareto optimal paths [13], maximal persistent connected components [50],
minimum cost flows [49]) and in distributed reconfiguration [23].

Theme Al: Design of advanced data structures

Several data structures are classically used to represent a temporal graph: sequences of graphs,
sequences of links [42], sequences of events [27], and ordered adjacency lists [14], to name a few.
One representation can generally be transformed into the other in polynomial time under mild
assumptions.

It is interesting to notice that these representations are generally sorted according to time.
While this seems a minor assumption as an unsorted representation could be sorted within a
logarithmic factor from linear time, it becomes important when considering problems that can be
solved in near linear time. A first study will consider the benefit of sorted data structures. For
example, when do they allow to save a logarithmic factor?

A main study in this theme will focus on answering basic queries beyond what basic data
structures enable. We are thinking in particular of distance queries, reachability queries, or adja-
cency queries. In the context of static graphs, there is a vast literature around oracles and labeling
schemes about computing advanced data structures enabling fast answers to such queries. Some
participants of the project have strong expertise in this domain, see e.g. [26, 40, 41]. For example,
a distance oracle is a data structure allowing to answer distance queries between two nodes. A
crucial point in its design is the trade-off between space and time: the size of the data structure
versus its query time. An elegant and efficient way of building such a distance oracle consists
in assigning a short bit-string label to each node such that the distance between two nodes can
be obtained from their labels. This is what is called a distance labeling scheme. There is a vast
literature studying the possible theoretical trade-offs of such data structures as well as more recent
works on the efficiency of distance oracles in practice, see e.g. [7].

Adapting such techniques to temporal graphs is still a wide open area. A first seminal work
in that direction is [1] where a distance labeling scheme is maintained dynamically as edges are
added to an evolving graph. Its main intent is to maintain dynamically distance labels of the
nodes of the current graph in the incremental model (where edges and nodes are added but never
deleted), and many follow-up works followed that direction. Such work does not address distances
with respect to temporal connectivity. Interestingly, [1] supports historical queries reporting the
evolution of the distance between two nodes from snapshot to snapshot. A similar example is
that of kinetic data structures [9, 34], where the adjacency information is updated as efficiently as
possible after the nodes move in the euclidean plane (based on proximity). However, addressing
intrinsically temporal queries is still beyond such approaches.

A first step in that direction is made in [25] where a labeling scheme for (temporal) reachability
queries is proposed. It is based on using the classical 2-hop labeling approach (see e.g. [7, 40, 41])
on the time expanded graph representation of the temporal graph. The data structure indeed
solves a more difficult problem: it allows to test whether a node v is reachable before time ¢’ when
starting from a node u at time ¢. This leaves open the possibility of more efficient approaches for
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basic reachability over the whole temporal graph history, and more generally to design labeling
schemes that encapsulate the temporal dimension more globally. Moreover, such experimental
works do not provide any theoretical insight concerning their efficiency in terms of memory usage
or query time. We believe that particular temporal graph structures could allow such guarantees
as it is the case in static graphs, see e.g. [26, 40].

Objectives:

1. Identify the benefit of sorting in basic data-structures.

2. Find labeling schemes for basic temporal queries such as reachability.

3. Study spatio-temporal data structures (e.g. considering physical movements).

Related themes: C1,C2,C3,T1,T3,A3

Theme A2: Generation of temporal graphs

Generating temporal graphs is a multi-facet and difficult question. As stated for Theme C4,
a natural objective is to generate a set of instances (possibly a singleton, possibly the complete
set), satisfying some temporal property, either deterministically or randomly. It seems natural,
and indeed it is usually the case, to consider sequential or incremental mechanisms (one snapshot
graph being obtained from the previous one). Many random generators have been proposed,
usually to build static graphs. First the Erdés-Rényi model, and later preferential attachment
based models, see [3, 5], build a sequence of graphs with increasing number of edges and vertices.
Usually, the process is stopped when reaching a given number of vertices. Preferential attachment
guarantees a scale-free property (that is the degree distribution follows a power law).

When looking for temporal graph generation, the first and quite natural kind of mechanisms
builds a temporal graph with a constant number of vertices. It starts from the underlying graph,
which may or may not be complete. It then iteratively and independently adds or removes edges
from this graph, according to some random mechanism like Markov chains, see [24, 50]. This
method allows one to guarantee a kind of stability in the snapshot graph size. However, because
of the independence of the evolution of edges, this mechanism does not by itself guarantee the
persistence of some global properties, even if the underlying graph satisfies it. One may try to
obtain this guarantee by other means. [51] proposes a memory of the links based mechanism for
social networks. Other processes may use spatial features associated to vertices: those have a
location and an edge exists if the spatial distance between two vertices is less than a threshold
(random geometric graphs, see [28]). The temporal feature is obtained, for instance, by the
birth or death of a vertex according to its neighborhood (rules similar to those used in cellular
automata), or by moves performed by the vertices, inspired by communication networks between
mobile sensors, see [16]. In the first case, the challenge is to maintain a relative stability of the
network (avoid explosion or disappearance of the vertices) by identifying the generator parameter
values leading for instance to some phase change effects, coupled with a given variability of the
temporal graph. Patterns as clusters, specific subgraphs, may also appear which are difficult to
anticipate by the random mechanism alone. In the second case, it leads to identify the simplest
mobility models allowing to satisfy a given property.

Our goal in this theme is the search for temporal graph generators that will satisfy, maybe only
with high probability, some of the temporal properties that other themes identified. Some examples
are also mentioned in Theme C4. In this theme, we will mainly focus on mechanisms based on
spatial features, either inspired by cellular automata, or by movement patterns of underlying
agents. Another, perhaps more exploratory question is the search for non incremental generation
mechanisms that may be more appropriate for satisfying desired temporal properties.
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Objectives:

1. Study generation mechanisms that induce given temporal properties.

2. Consider these models from the standpoint of enumeration or uniform sampling.
3. Investigate non incremental generation mechanisms.

Related themes: C2,C4,T2,T3

Theme A3: Specifically designed algorithms for temporal problems

The ambition of this theme is the design of new algorithms and techniques that are relevant
to various types of temporal graph problems (in the sense of Theme C1). To achieve this goal,
we will first survey existing techniques in classical algorithmic topics, which seem appropriate
for some types of temporal problems. For example, the field of re-optimization algorithms (also
called multi-stage algorithms, or sometimes dynamic algorithms) is concerned with updating a
solution relative to a certain graph after some modifications have been made. This field may
provide interesting concepts and results, such as the fact that, for NP-hard problems, knowing the
optimal solution for a certain graph does not help solving another graph, even if their symmetric
distance is small. Other concepts of interest include sensitivity analysis in linear programming,
that computes the extent of changes to which a solution remains optimal. All these techniques
are relevant for some types of temporal graph problems, where a solution to the current snapshot
must be updated for the next snapshot.

Similarly, the field of online algorithms could provide interesting tools for tackling problems
on infinite temporal graphs (see also Theme T2), whether the property of interest relates to
the current snapshot or is itself temporal. Online techniques may also be appropriate for finite
problems. For instance, the algorithm in [50] for computing non dominated persistent connected
components is an online algorithm, and in fact, no offline algorithm of better complexity exists.
The same holds for [22]. Note that, in the former, partial solutions computed at time ¢ are
solutions of the problem for time interval [0,¢], i.e. the solutions are prefix-stable, which is not
the case for all problems.

We will also review, in the framework of this theme, a number of simple techniques such as
the ones mentioned in Theme C1, including basic reductions from and to static problems defined
on the union and/or intersection of the snapshots, or problems reducible to static questions about
the time expanded graph (when looking for temporal paths or flows).

Some generic techniques have recently been developed for problems defined on a sliding window,
in the context of coloring and matching. In [43], a vertex coloring must verify the classical condition
at least once in every time window of size A. The authors show that this problem admits a
polynomial kernel in the number of vertices (for a fixed number of colors). Kernel techniques,
in relation to fixed-parameter tractability (see also Theme T1) may offer interesting ground for
developing generic techniques for various window based problems (and beyond). Similarly, [8]
considers kernels for the matching problem in sliding windows. Interestingly, they show that the
problem can be transformed into a static problem instance whose size is independent of the graph
lifetime (but exponential in the size of the input). Such transformations are reminiscent of time
expanded graphs, although they are not based on the same ideas.

Another direction, perhaps more speculative, will focus on brand new algorithmic techniques.
This will probably be related also to the design of advanced data structures (Theme Al). It is
expected that a number of these techniques address problems about temporal reachability, where
the order of events matters and which cannot therefore be simply defined in terms of union or
intersection of snapshots. We will investigate the similarity between existing temporal algorithms
for identifying common techniques. For example, the profile problem consists in computing, for a
given source, the arrival time to a destination as a function of the departure time from the source.
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It appears that some algorithms for this problem are similar to the best algorithms for finding a
temporal path with shortest duration (i.e. a fastest temporal path). This similarity was observed
in [13], and used to design a generic algorithm allowing to find minimum-cost temporal paths for
a large variety of costs such as fewest number of edges or minimum travel time (shortest) when
different algorithms were proposed for the large variety of classical costs. We will investigate in
particular algorithms for finding specific substructures.

Finally, we will investigate possible approaches for decomposing a temporal graph as a general
technique for reducing the size of a problem. We will in particular investigate how to extend the
notion of module, which is at the core of the modular decomposition. Several such extensions are
possible for hypergraphs and all result in polynomial time decomposition algorithms [35]. We will
investigate decompositions associated to other graph combinations such as direct products that
play a special role in median graphs. A temporal version could be adapted to temporal graphs
where each snapshot is a matching (also called simple temporal graphs in [20]).

Objectives:
1. Make a survey of techniques from related domains (e.g. from re-optimization).
2. Unify existing techniques for temporal graph problems.

3. Design new techniques of ubiquitous use in temporal graphs.

Related themes: C1,C2,C3,T1,T3,A1

1.6 Risk management and methodology

Extending graph theory and algorithms to temporal graphs appears as a challenging program
as various options are possible for generalizing a given graph concept to the temporal setting.
The originality of our approach consists in trying to classify how static problems are extended to
the temporal setting, and to focus on those that are intrinsically temporal. We think that this
approach is rather safe as we already have a simple criterion for such identification through the
sensibility to reshuffling of snapshots, even though we will also consider other such criteria. It
is also safe to restrict our research space. The associated risk is that we will probably focus on
the most difficult versions of the problems: those where new algorithmic techniques are the most
needed.

Our main methodology for overcoming such difficulties is to propose a large variety of ap-
proaches for understanding the boundaries were interesting problems become difficult. In partic-
ular, we review several classes of possible assumptions that can help with respect to tractability.
The themes and objectives we propose are based both on our experience of temporal graphs and
on our expertise with the classical properties bringing tractability in static graphs. We have a
large list of objectives around tractability and algorithm design, and reaching a significant fraction
of them would already be a success.

We now detail the risk estimated for all themes. For each theme, we listed several objectives,
usually mixing both ambitious ones and more restricted ones where we are rather confident of
obtaining results. This is the case for Themes C2, C3, C4, T2, A1, A2, for which the frontier
between low and higher risked objectives is clear. As already said, the risks in the objectives listed
in C1 are rather low. In Theme T1, the risks on restricting snapshots or the underlying graph seem
moderate from preliminary works, while we are conscious that the part about temporal parameters
has higher risk. However, we can rely on the growing knowledge corpus from parameterized
complexity. For instance, graph parameters are usually related to graph classes and we can
first restrict the study to the most basic temporal graph classes. Theme T3 about forbidden
temporal patterns is also quite ambitious, but we think that we have sufficiently many directions
for exploring it. Theme A3 which aims at a breakthrough in the understanding of temporal graph
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algorithms is certainly the most ambitious. That is why the general organization of the project
aims at providing various distinct tracks towards this goal.

Even if the project proposes ten different themes and many objectives, they are tightly related
to each other. For each axis, we already enumerated the related themes. We now outline some of
these links and the timeline we envision. Theme C1 that addresses the fundamental question of
what makes a problem intrinsically temporal will naturally enhance the starting ideas of most of
the other themes, and activities in this area should start as early as possible. It is expected the
teams will be able to provide some clear answers before the end of the third year. In the same way,
the other themes related to classification questions (C2,C3,C4) should start from the beginning,
and hopefully will provide main results during the first half of the project. On the other hand, some
themes will highly benefit from the reflections led in these themes, hence they are not scheduled
from the beginning of the project. Obviously, the first reflections about generation problems in
C4 will boost the search for efficient generation algorithms in A2. In the same manner, 73 will
rely on C2: Among the substructures identified as the core of a given problem, which ones are
identified as cornerstones for tractability? Theme C2 should also help building new temporal
graph class hierarchies (theme 72). Finally, theme A3 which will provide new insight in the
design of algorithms specific for temporal graph problems will benefit from the results of most of
the themes, especially from C2, C3, T'1, T'3, and Al. Experimenting on these algorithms calls for
the design of adhoc instances provided by A2.

The following diagram provides an overview of the project planning. The first line of the
diagram represents the global project management, and the deliveries: four annual reports, plus
the final report. Each line represents the time span of one theme. Obviously, these spans are only
indicative as each theme is not seen as a task with easy to specify deliverables and milestones,
but as a research question that we will, at least partially, answer. Note also in the first column,
the involvement of the three partners. The participation of each partner to most of the themes
(see also the table at the beginning of the document for individual involvement) guarantees a
real cooperation between the three partners, even if for management motives, each axis will be
coordinated by one different partner.

Project Man.

Classification

Tractability

T1

T2

T3
Algorithms ‘
Al
A2

A3

Partners: 1 = LABRI, 2 = LITIS, 3 = IRIF

- Coordinator - Participant

Deliverables [7#/7| Annual report |72 Final report

Figure 6: Task Chronograph

2 Project organization and means implemented

2.1 Coordinator

Arnaud Casteigts is an associate professor at University of Bordeaux. He is the head of the dis-
tributed algorithm group at LaBRI. His research interests are in theoretical computer science, with
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a focus on algorithms (distributed and non-distributed) and dynamic networks. He is associate
editor of the TCS journal. He was the local scientific coordinator of a previous ANR project (ES-
TATE: Autonomic Computing in distributed and highly dynamic systems and networks, 2016).
He has co-supervised three PhD theses on temporal graphs, co-organized several workshops on
this topic (DGDC 2016, CoDyn 2017, and the first Dagstuhl seminar on temporal graphs in 2021).
He is also involved in the creation of the new born SAND conference, which aims at becoming
the main international venue on dynamic networks. He is internationally renowned as one of the
main contributors of temporal graph theory.

2.2 Comnsortium

e The LaBRI partner has a strong background in graph theory and distributed algorithms.
Its members have been involved in the early development of temporal graph theory, through
the lenses of highly-dynamic communication networks, self-stabilization, mobiles agents, and
transportation mobility (four PhDs on these topics in the past 10 years, and the ESTATE
ANR project mentioned above). The team is composed of Arnaud Casteigts (global coordi-
nator, UB: University of Bordeaux), Cyril Gavoille (UB), Nicolas Hanusse (CNRS), Colette
Johnen (UB), and Ralf Klasing (CNRS).

e The LITIS partner has been considering temporal graphs since the first version of the Graph-
Stream software [27]. More recently they have been involved in the design of optimisation
algorithms and in the study and design of generation processes (through three PhDs, two
postdocs and one regional project). The team is composed of Eric Sanlaville (scientific coor-
dinator), Stefan Balev, Frédéric Guinand, Yoann Pigné, and Mathilde Vernet, now assistant
professor at Avignon University.

e The IRIF partner brings expertise in structural aspects of graphs, both with theoretical per-
spectives (excluded minor, colorability, reconfiguration) and practical tractability (skeleton
dimension, diameter certificates). The team has a particular focus on practical distance
labelings and has experience in routing algorithms for temporal graphs in the context of
transportation networks (one PhD, collaborations with Instant-System and D-ICE Engi-
neering). It is composed of Laurent Viennot (scientific coordinator, INRIA), Michel Habib
(emeritus professor), Fabien de Montgolfier (UP: University of Paris Cité), Reza Naserasr
(CNRS), Mikaél Rabie (UP).

The three partners of this project have been involved in several works addressing (presumably
intrinsic) temporal problems, ranging over the three axes: classification, tractability, algorithms,
and considering structural, generation and optimisation temporal problems. Some of these works
have been quite influential in the domain. The table below only mentions the projects where the
coordinators are implied at the starting time of TEMPOGRAL. The synergy between the teams
will be ensured by frequent meetings and visits, and long stays of the people recruited for the
project, namely one PhD student at LaBRI and one at LITIS, and two post-docs at IRIF. In
particular, the PhD student in Le Havre (resp. in Bordeaux) will spend 6 months in Bordeaux
(resp. Le Havre), and one postdoc at IRIF will also spend 6 months in Bordeaux.

Name Involv. Funding agency Project Coordinator | Dates
(months) and amount title

Casteigts ANR Dreamy | T. Nowak & M. Fuegger, | 2021-
5 401 k€ LISN & LMF 2025

Sanlaville Normandy Region, DYnamic P. Dorbec, 2021-
8 228 k€ | NETworks GREYC 2022

Viennot ANR | Multimod D. Coudert | 2018-
24 701 k€ Inria 2023

Viennot DGA | Brainside E. Natale | 2019-
6 270 k€ Inria 2023
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2.3 Justification of requested resources

The grants requested by our consortium are of three types: (i) Staff, mainly two PhD students
and two years of Postdoc, plus five Master internships; (i7) Equipments laptops, books and little
devices dedicated to provide decent resources to the students and participants, and (i#4) Travel
costs, mainly used to visit each others and to disseminate our results at international events.

More specifically, one meeting will be organized each year between all members of the project
(hence a total of five meetings). Four two-week visits are budgeted for each partner, so that
members of one team could spend some time in the other partner teams, thus supporting real
collaborative work. It is also expected that PhD students and post-docs financed by the project
will spend several months with another team of the project, to promote a deep cooperation.
Finally, a significant part of the travel budget is allowed for knowledge dissemination at national
and international levels, see below.

The PhD student recruited by the LITIS will work primarily on the search for specific algo-
rithms to solve temporal optimization problems. Hence, this student will contribute to themes C3
and A3, and participate in the thinking around theme C'1. It is also expected that the student
will follow closely the works about tractability. The PhD student at LaBRI will mainly work on
themes related to tractability, in particular on fixed-parameter tractability (T1) and hierarchies
of temporal graph classes (T2). He or she will apply this general approach (of restricting the
instances of a problem) to the search for temporal substructures (theme C2) and develop new
techniques to exploit the restrictions (A3). IRIF will host two postdocs on advanced data struc-
tures (theme A1, in relation to C2, T1, and T2) and on problems with restricted evolution of the
solution (theme C1 in relation with T1, T2, and A3).

The amounts in euros are summarized in the following table:

Type Description LABRI LITIS IRIF ALL
Staff 2 PhD scholarships 117 000 110 052 227 052
2 years of Postdoc 101 520 101 520
Master Internships 4 920 4 800 3 606 13 326
Subtotal 121 920 114 852 105 126 | 341 898
Equipments PCs and Laptops 4 000 4 000 4 000 12 000
Books and little devices 1 000 1 000 1 000 3 000
Subtotal 5 000 5 000 5 000 15 000
Travel costs Project Meetings 10 500 7 500 9 000 27 000
Visits 6 000 6 000 6 000 18 000
International Conferences 15 000 15 000 15 000 45 000
National Conferences 8 000 8 000 8 000 24 000
Subtotal 39 500 36 500 38000 | 112 400
Total 166 420 156 352 148 126 | 470 898
Env.Costs 13% 188 054 | 176 677 | 167 382 532 114

3 Impact and benefits of the project

3.1 Scientific, economic, social impact

Graphs have been a fundamental modeling tool in science since the second world war at least. But
as many real-world phenomena are dynamic, they fall beyond the expressivity of standard graphs.
This project is launched on the belief that temporal graphs will prove to be a major modeling tool
for many application fields. Indeed, they have already been used with significant success these
two last decades in statistical physics, communication networks, distributed algorithms, logistics,
and social networks. These researches are motivated by the high impact of these different domains
in the economic and social spheres. Consider for instance the logistic challenges emphasized by
recent world crises, or the large demand for a better understanding of the mechanisms that rule
the growth and functioning of social networks.
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However, these early studies of temporal graphs have been led independently, which resulted in
the difficulty to unify concepts and vocabulary, hence to slow the scientific advances. The scientific
community recently proposed some unification initiatives, like multi-disciplinary conferences on
complex networks, or the new SAND conference (Symposium on Algorithmic Foundations of Dy-
namic Networks) that focuses on fundamental aspects of dynamic networks. The TEMPOGRAL
project proposes to consider these fundamental aspects independently of the application fields,
with the objective to provide new insights and results which, in turn, should allow significant
advances in the different application fields of temporal graphs. The large experience and skills of
the three partners, and their complementarity, will allow to reach these objectives and to publish
the obtained results in the best international journals and conferences. Finally, the project will
contribute to organize the French community on temporal graphs, and therefore to increase its
international visibility.

TEMPOGRAL will participate in the training of at least 7 students (2 PhD and 5 Master
students). This represents roughly two years in internships and six years for PhD students. They
will gain strong skills in the area and will be encouraged to go on research activities or to take up
positions in the research department of companies related to modeling and computing after they
finish their university training.

3.2 Dissemination strategy

Research results from TEMPOGRAL will be presented at the leading international conferences
and in the leading scientific journals concerned by graph theory, to generate a level of awareness
and constructive feedback from the scientific community. At the national level, the new results on
temporal graphs will be presented to the community through the working group on graphs of the
CNRS GdR IM (Computer science and Mathematics).

TEMPOGRAL members will also contribute to conferences and workshops that seek to attract
members from the neighbor communities concerned by temporal graphs, like complex network-
ing (via Complex Network international conference), distributed computing, operations research.
Joint meetings may be organized with ANR DUCAT that uses temporal graphs as models of faults
in distributed systems. Rapprochements with the working axis CAGDO: Complexity Approxima-
tion and Graphs for Decision and Optimization, of CNRS GdR RO (Operations Research), and
the Distributed System cluster of CNRS GdR RSD (Networks and distributed systems) are also
planned.

Information dissemination will also be carried out through the events organized by TEM-
POGRAL members, like seminars, special sessions, workshops. Organizing a summer school cen-
tered on temporal graphs, concepts and usage, is also an objective of TEMPOGRAL.

3.3 Success Criteria

We will use classical evaluation criteria in academic research, namely: (¢) the number of scientific
publications in top-level conferences and journals, (i¢) the number of scientific publications in
communities which are not the original community of the authors (to show the success of the
association of the complementary teams, and of the dissemination policy toward application fields
of temporal graphs), (#i7) the number of effective collaborations with other projects, like ANR
projects, and (iv) the organization of open workshops and seminars to promote the results.
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