
VRGrid: Efficient Transformation of 2D Data into
Pixel Grid Layout

Adrien Halnaut, Romain Giot, Romain Bourqui, David Auber
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

{adrien.halnaut,romain.giot,romain.bourqui,david.auber}@labri.fr

Abstract—Projecting a set of n points on a grid of size
√
n×

√
n

provides the best possible information density in two dimensions
without overlap. We leverage the Voronoi Relaxation method to
devise a novel and versatile post-processing algorithm called
VRGrid: it enables the arrangement of any 2D data on a
grid while preserving its initial positions. We apply VRGrid
to generate compact and overlap-free visualization of popular
and overlap-prone projection methods (e.g., t-SNE). We prove that
our method complexity is O (

√
n.i.n.log(n)), with i a determined

maximum number of iterations and n the input dataset size. It
is thus usable for visualization of several thousands of points.
We evaluate VRGrid’s efficiency with several metrics: distance
preservation (DP), neighborhood preservation (NP), pairwise
relative positioning preservation (RPP) and global positioning
preservation (GPP). We benchmark VRGrid against two state-
of-the-art methods: Self-Sorting Maps (SSM) and Distance-
preserving Grid (DGrid). VRGrid outperforms these two methods,
given enough iterations, on DP, RPP and GPP which we identify
to be the key metrics to preserve the positions of the original set
of points.

Index Terms—visualization, compact visualization, evaluation

I. INTRODUCTION

Data visualization is an efficient way to analyze and commu-
nicate numerical data [1] that are intractable in tabular or textual
formats. Such numerical data are varying in size (i.e., number
of elements in the dataset) and dimensionality (i.e., number of
features for each element). Many visualization techniques [2]
have been designed to get insights from high-dimensional
datasets, for instance, histograms, scatter plots, etc... However,
all these techniques are constrained by the resolution of the end-
user screen (i.e., number of available pixels). This constraint
makes visualization of high-dimensional data challenging,
especially when the number of dimensions is higher than
the number of available visual attributes [3]. Tackling these
challenges is crucial as usage of high-dimensional data is now
common in many research and industrial fields.

High dimensional data visualization is usually done by
reducing the number of dimensions until it fits into the number
of available visual attributes. Various dimension reduction
techniques exist for different purposes [4]; they focus on
optimizing different criteria, and their visualization method
is usually a scatter plot. High-dimensional data visualization
techniques are efficient in many fields [5], but the larger the
dataset is, the larger the drawing space needs to be [6]. Popular
modern high-dimension reduction techniques such as t-SNE [7]

or UMAP [8] produce non-uniform data projections that group
together similar elements of the dataset; as the size of the high-
dimensional dataset increases, those groups are getting denser,
and the visual occlusion of individual elements is globally
increased. If not handled properly, this visual occlusion results
in wrong assumptions about the dataset’s nature. For example,
in Figure 1, MNIST dataset (third column, top row) is visualized
using UMAP dimension reduction technique, and each element
is colorized according to its class. The yellow cluster on the
top-left part of the projection seems to be composed of only
about 4 outliers, while in reality there are more than 20 outliers
hidden behind other elements which are properly displayed
with VRGrid (third column, second and third rows).

Several methods exist to increase the perceptual scalability
of dimension reduction methods. In this paper, we make the
choice to design a pixel-oriented method that relies on a grid
layout. Pixel-oriented methods aim to provide informative
data visualization while prioritizing perceptual scalability
over accurate spatial fidelity. This perceptual scalability is
achieved by removing visual occlusion and maximizing drawing
space usage, resulting in a compact visualization technique of
data. Grid-layout arrangements are a subset of pixel-oriented
visualization methods which are scaled to the pixel size, free
of any overlapping data. State-of-the-art method Self-Sorting
Map [9] provides compact results with good information
retention compared to regular non-uniform data projections.
The method consists in populating a grid with high-dimensional
data and performing permutations to optimize a correlation
metric based on the dissimilarity between elements in both the
high-dimensional space and in the grid’s 2D space. Despite
the good results, focusing on a single comparison criterion
seems limited compared to the numerous regular data projection
methods existing in the dimension reduction field. State-of-
the-art method DGrid [10], [11] is a two-step process that
takes as input an already projected and performs arrangements
on projected elements. Those arrangements are processed
by first partitioning the drawing space and then performing
arrangements locally. It prioritizes neighborhood conservation
and is designed to scale easily to larger datasets.

We propose a novel method that produces a grid arrangement
of any 2D data, Voronoi Relaxation Grid (VRGrid). Compared
to other arrangement methods, VRGrid takes 2D data as input
(which may be projected high-dimensional data) and makes

UMAP on Swissroll MDS on Helix UMAP on MNIST t-SNE on Fashion

Input
Dataset

VRGridF

VRGridP

SSM

DGrid

Fig. 1. Sample of processed scenario for all four methods. Each presented scenario is shown using two colorization rules. The left column of each scenario
has elements colorized according to their class in the original dataset. The right column of each scenario has elements colorized according to their 2D position
before being processed by the methods. In both cases, elements are keeping their color before (first line) and after processing.

use of a relaxation algorithm to uniformly scatter the 2D
points into a finite space. Points are progressively assigned
into grid cells while respecting the configuration computed
by the relaxation method. The relaxation is applied multiple
times to progressively refine the placements of points that are
still unassigned to grid cells. This process is done until all
points are assigned to a grid cell. VRGrid can be used as
a complementary visualization method of already projected
high-dimensional data.

In this paper, the relaxation method used by VRGrid is
Lloyd’s algorithm [12], which is used to compute Centroid
Voronoi Tessellations [13], [14] (CVT) configurations that is
helpful in uniformly scattering a set of coordinates in a 2D
space. We conduct a quality evaluation of VRGrid arrangements
using various datasets, against state-of-the-art methods. The
contributions of this paper are:

• a novel iterative method able to arrange any set of 2D
points into a grid with minimal deformation

• a public implementation of the algorithm
• an exhaustive comparison between VRGrid and state-of-

the-art methods SSM and DGrid

The outline of this paper is as follows. Section II presents
state-of-the-art methods to produce grid-based arrangements.
Section III presents the VRGrid algorithm, its limitations and
an analysis of its computation cost. Section IV presents how
the evaluation protocol has been conducted and Section V its
results. Finally, Section VI summarizes the paper and highlights
how VRGrid can be improved.

II. RELATED WORKS

Regular data projections are efficient in representing data
on a screen, but their construction requires empty drawing
space to represent differences between two elements and often
results in overlapping data when the drawing space is too
small. Various techniques exist to project methods that aim to
optimize readability over accurate distance encoding in data
representation, and are presented in this section.

A. General Space-Filling Methods

Space-filling visualization is a way to improve this drawing
space usage by encoding input data into a structure that fills a
squared drawing space. Fractal Curves are an efficient way
to represent data organization. It consists in ordering high-
dimensional data along a fractal curve using a dissimilarity
metric. Fractal curves such as Hilbert’s [15] are designed to
preserve the proximity of their elements once they are drawn in
a 2D space. Keim’s work on pixel-oriented visualization [16]
shows that this technique is used in several application domains.
Those fractal curves are not limited to orthogonal structures;
GosperMap [17] makes use of Gosper curves to present
hierarchical data in an undetermined visual structure, resulting
in a geographic map-looking visualization. However, while
being efficient in their application domain, it is necessary to
reduce the input data to a 1D-space (i.e., the order on the
fractal curve), which implies a large information loss in the
case of complex data.

VRGrid

Relaxation Method

Output Data

Arranged data

Lloyd's Algorithm

Is stable ?

Points movements

Cell centroid
computations

Voronoi diagram
computation

No

Initialization

Dummy data addition

Convex hull definitions

2D Points rescaling

Yes

Point Assignement to Cells

Unassigned point rescaling

Selection of new border cells

Assignement of nearest points
to the cells

Definition of next convex hull

Grid completed ?
No Yes

Input Data

Two-dimensional
data

Fig. 2. VRGrid usage presentation. It consumes a set of 2D points and outputs a grid-based arrangement of it. It first initializes the grid structure and prepares
the data to be processed. Then, VRGrid iteratively scatter data using a relaxation method and assign points in the current border cells until all points are
assigned.

B. Grid Arrangement Methods

Grid-based projection methods can be categorized into two
subsets, the first one projects data directly into a grid layout
starting from high-dimensional space, while the other makes
use of an intermediate dimensional reduction method before
organizing the lower-dimensional result into a grid.
IsoMatch [18] makes use of the IsoMap [19] dimension
reduction technique to project high dimensional data into
a 2D space, followed by the Hungarian algorithm [20] to
fit projected data into a specific structure (usually a grid).
The Hungarian algorithm performs combination optimizations
over an assignment problem. In compact data projection, the
assignment problem is presented as positioning elements into
a grid with each possible assignment associated with a cost
function, usually representative of the data deformation it would
create. While the Hungarian algorithm is designed to find the
best possible configuration, its high computational cost of
O(n4), with n being the dataset’s size, makes it hardly usable
for large dataset, and by extension the IsoMatch method itself.

VRGrid uses a similar approach as it consumes projected
data as an input and performs arrangement from it to build
a grid. However, VRGrid’s computational complexity can be
adapted to scale to large datasets at the cost of arrangement
quality, as explained in Section III-B.
DGrid (Distance-preserving Grid) [10], [11] is a grid ar-
rangement method designed to be a post-processing step
of reduction dimension method. It consumes projected data
positions as input and partitions the drawing space according
to their sorting order on both x and y axes. Partitions are then
progressively split in half until they can fit in a predetermined
grid cell. This method is shown to be very efficient in
both neighborhood preservation and processing time, and its
complexity of O(N.logN) makes it scalable to large problems.
However, due to the partitioning strategy, deformation of data
topology can occur on unevenly scattered data (e.g., t-SNE).

In comparison, VRGrid strategy is not based on partitioning
data and thus its grid arrangement does not produce such
deformations, but at the cost of a higher computational cost.
Self-Sorting Map (SSM) [9] takes high-dimensional data and
arranges them onto a grid such that the distance between
arranged elements represents dissimilarity between them. El-
ements are first randomly disposed into a grid, then smartly
swapped to maximize the correlation between distances and
a given dissimilarity metric. SSM progressively split the grid
and manages to produce structured layouts in a relatively short
time frame with a given complexity of O(L(logN)2) and can
be lowered using parallel computing. This method is proven
to be efficient, but only dissimilarity information is used to
arrange the input data. Topology data such as the positions of
the input dataset are unused. VRGrid strongly differs from this
approach as the input data coordinates are taken into account
during the grid construction, and relies on already projected
data to work.

III. VORONOI RELAXATION GRID

The VRGrid method (summarized in Figure 2) aims at
computing a square grid-layout arrangement for a given dataset
P (but can be easily generalized for rectangles). There is no
restriction on the nature of the dataset if each element of the
dataset is a 2D coordinate. VRGrid relies on the application of
a relaxation algorithm able to evenly scatter 2D points into a
convex and bounded 2D space. It first initializes a structure for
the 2D points of the input dataset to be placed into, then, for
every iteration of the method, applies the relaxation algorithm
and iteratively assigns scattered 2D points to the grid cells.
Only a subset of points is assigned at each VRGrid iteration,
starting from the edges of the grid toward its center, to prevent
distortion of the configurations computed by the relaxation
method. The relaxation method is then reapplied on unassigned
points in a smaller space and the process goes on until all

B5 C5
C4
C3
C2
C1
C0

B3

B2

B1

B4

Fig. 3. Definition of convex hulls (B1 to B5) and associated delimiting cells
(C0 to C5, colorized according to their appropriated convex hull) for a 11×11
sized grid used for a 9× 9 sized dataset.

points are assigned to a grid cell. This section describes each
step of VRGrid’s process and explains the design choices.

A. Algorithm

Initialization. For a given dataset P composed of n 2D
points, we note G the grid structure where P will be arranged.
G is a square grid composed of (⌈

√
n⌉+ 2)×(⌈

√
n⌉+ 2) cells:

the ⌈
√
n⌉×⌈

√
n⌉ cells where P points will be assigned during

the VRGrid application, and 4× (⌈
√
n⌉+ 1) additional cells

around it to facilitate the algorithm execution. However, these
cells will not contain points. We note B0,B1, ...Bk the convex
hulls centered around the middle of G, with k = ⌈

√
n/2⌉+ 1.

Each convex hull Bi corresponds to a square with a width
of wi cells such as wi = (2i − 1) if ⌈

√
n+ 1⌉ is odd and

wi = 2(i+ 1) otherwise.
Figure 3 illustrates the construction of the borders of the

convex hulls and their appropriate representing cells for an
11 × 11 sized grid. We note Ci the set of cells of G that
represents Bi for each convex hull. If ⌈

√
n+ 1⌉ is odd, C0

is composed of the middle cell of G. These sets are chosen
in a way that at the i-th iteration of VRGrid, 2D points are
relaxed inside the space delimited by Bk−i and are assigned
to the cells in the Ck−i−1 set.

Next, 2D coordinates of the points of P are rescaled to fit
into Bk; this ensures that there is enough grid cells inside Bk for
the 2D points to be assigned to: |Ck−1∪Ck−2∪ ...∪C0| ≥ |P |.
The last initialization step of VRGrid aims to handle cases
where |P | < ⌈

√
n⌉2 where there are more grid cells than

points to assign. This configuration would result in empty
cells and because of VRGrid’s iterative nature, these empty
cells would be located toward the middle of the grid and
hinder its visualization. To prevent this configuration from
happening, we add “dummy” data into P . These “dummy”
points are processed in the same way as the rest of P but are
removed from the result to not be confused with the actual
data. We chose to uniformly place them in Bk−1, the relaxation
algorithm can still change their coordinates in next step. To
illustrate an iteration of VRGrid step by step, Figure 4a shows
complete initialization of VRGrid on a randomly generated
dataset of 78 points, distributed as three clusters.

Relaxation Method. VRGrid makes use of relaxation
algorithm to scatter 2D points in a finite and convex space. At

B5

C4

(a) VRGrid initialization

B5

C4

(b) Result of Lloyd’s algorithm after
223 iterations

Fig. 4. Overview of VRGrid’s first iteration on a sample dataset. In (a),
current convex hull is B5 and C4 (light blue cells) is the first set of cells to
be assigned P points to, as defined in Figure 3. Points have been rescaled to
fit into the convex hull and 9× 9− 78 = 3 dummy points (grey circles) have
been placed in C4 to use all grid’s cells at the end of the algorithm. In (b),
segments represent the nearest point of P0 for every cell of C4. Red dashed
circle highlights assignments that may seem unintuitive due to the assignment
order. This is due to how the order of assignments is computed which results
in farther candidates as the assignments go.

the i-th iteration of VRGrid starting with i = 0, this space is
defined by the Bk−i convex hull, and unassigned points Pi are
processed by the relaxation algorithm such as Pi = Pi−1\Ck−i

with P0 = P . The relaxation algorithm needs to evenly scatter
Pi points toward the cells in Ci−1.

In this paper, we chose to use Lloyd’s algorithm [12] to
compute the relaxation of 2D points. It takes as input a set
of coordinates D and iteratively processes them to compute a
Centroid Voronoi Tesselation [14] (CVT) configuration. This
configuration implies that for a computed Voronoi diagram
based on a set of 2D points, each generating point of a cell is
also its centroid. This disposition results in evenly scattered
points into the finite space. While its convergence has been
proven in 1D spaces [13], the convergence of the algorithm in
higher dimensional spaces, including 2D spaces, has yet to be
proven. However, it has been proven [21] that in a bounded
convex space, the algorithm always converges toward a CVT
configuration. This condition is respected by the usage of
convex hulls defined during the initialization step.

Lloyd’s algorithm consists in repeating the following steps
until stabilization: (1) The Voronoi diagram V is computed
based on D. Each point d ∈ D is associated with its
corresponding Voronoi cell vd ∈ V . (2) The centroid C(vd)
of the cell vd is computed. (3) Each point d is moved to their
corresponding C(vd).
Stabilization is reached when the distance between each point
d and their respective centroid C(vd) is smaller than a given
ϵ. Smaller ϵ values give a more precise coordinate disposition
and need more algorithm iterations.

In our case initialized in the first step, Figure 4b shows
stabilization reached after 223 iterations of Lloyd’s algorithm
on the sample dataset from the initialization step.

Since VRGrid only focuses on the position assignment of the
points closest to the convex hull edges, we can impose a fixed
number of iterations to Lloyd’s algorithm to separate these
candidates from the other points without waiting for complete

B5

C4

(a) Assignation to C4

B4
C3

(b) Next iteration preparation

Fig. 5. Point assignation step (a) and preparation for next VRGrid iteration (b).
Convex hull is changed to B4 and C3 is the next set of cells to be assigned
points to. Other P points are rescaled to a smaller scale to stay inside of B4.

Bi

(a) Assignation to Ci−1

Bi

Bi-1

(b) Next iteration preparation

Fig. 6. Problematic configuration where a point (red circle) is not chosen
to be assigned in Ck−i−1 cells (blue circles) despite being close to Bk−i.
Because of that, when defining the new convex hull Bk−i−1, the point is
outside of it, and cannot be processed by the relaxation method as intended
on the next VRGrid iteration. Rescaling unassigned data solves this issue.

stabilization. Doing so reduces the number of iterations and
thus the overall computing time, but potentially lowers the
final arrangement quality.

Point Assignation to Grid Cells. After the relaxation step
(i.e., once points are scattered enough into the current convex
hull Bk−i), we compute for each cell c ∈ Ck−i−1 its closest
point p ∈ Pi. p is then assigned to c’s position. In our case in
Figure 4b, the assignment of closest points is represented by a
segment toward their respective cell.

We then prepare the next iteration i+ 1 of VRGrid; convex
hull Bk−i−1 defines the area for the next application of the
relaxation method and Ck−i−2 the next grid cells to assign
2D points to. However, there is no guaranty that every point
of Pi+1 is inside Bk−i−1 after Ck−i−1 assignment. Indeed,
the relaxation step is applied on the whole space delimited by
Bk−i−1, so any point of Pi could be close to the hull border
and still not be assigned to a Ck−i−1 cell. Since only |Ck−i−1|
points are assigned to grid cells, one or more points can be left
out between the border of Bk−i and Bk−i−1. Figure 6 presents
an example where such a situation occurs.

To ensures this does not happen before the next relaxation
algorithm application, we apply a rescale of Pi+1 points to
fit into the newest convex hull at the end of each VRGrid
iteration. Figure 5 shows the assignment result following
Lloyd’s algorithm application and preparation for the next
VRGrid’s iteration.

End of VRGrid Iteration. Following the assignment of Pi

points in Ck−i−1 and the rescaling of remained unassigned
points, the next iteration i + 1 is applied (i.e., application
of the relaxation method in the Bk−i−1 bounded space then

assignment of P points into Ck−i−2 cells). This iterative
process is applied until all grid cells (except Ck cells) are
assigned a point of the input dataset.

B. Complexity Analysis

This section details the computational complexity of VRGrid
by inspecting each step of the algorithm. For better readability,
we name n the size of the input dataset including eventual
dummy points.

Initialization. VRGrid initialization step consists in building
a set of convex hulls and rescaling input data of size n which
can be summarized as the computational complexity of O(n).

Relaxation Method. This part differs depending on the
chosen relaxation method for VRGrid. In this paper, we
make use of Lloyd’s algorithm, which consists of three steps:
computing the Voronoi diagram (O(n.log(n))), computing the
centroid of each cell (O(n)) and moving coordinate to the
corresponding cell’s centroid (O(n)).

The computational complexity of each iteration of the
algorithm is thus O(n.log(n)). The number of iterations i
needed for Lloyd’s algorithm depends on the density of the
processed data (denser data needs more iterations than already
evenly scattered data), and the stabilization factor ϵ (lower
values and needs more iterations than higher values). As
presented in the previous section, i can also be fixed to not
wait for stabilization and thus lower the overall complexity of
the relaxation method. For this relaxation method, the resulting
computational complexity is O(i.n.log(n)).

Point assignment to cells. VRGrid’s point assignment steps
consist in looking in P for the closest points of each cell in Ci,
assigning them and scaling the remaining unassigned P points
to the next convex space. The nearest element of any coordinate
in a 2D space can be efficiently computed using a quad-tree
structure of O(n.log(n)) complexity. Assigning points and
the scaling process are both O(n). The point assignment step
results in the computational complexity of O(n.log(n)).

VRGrid iterations. VRGrid re-applies the relaxation method
until all G\Ck cells are used. The number of iterations is
defined by the number of convex hulls k built during the
initialization step. VRGrid thus needs to iterate ⌈

√
n/2⌉ +

1 times. As a result, VRGrid’s complexity is bound to
O (

√
n.i.n.log(n)) = O

(
i.n

3
2 .log(n)

)
.

IV. EXPERIMENTAL PROTOCOL

We evaluate how VRGrid competes against state-of-the-art
methods by looking at how well data topology is represented by
the method and how different are the proposed arrangements
from their input data. Five aspects are evaluated: pairwise
distance preservation, neighborhood preservation, pairwise
relative positioning, global positioning, and computation time.

In the evaluation, we focus on VRGrid, and the baselines
Self Sorting Maps [9] and DGrid [10], [11]. We perform the
evaluation in a context of large dataset processing (≥ 1 000
elements). Self-Sorting Maps (SSM) is used and evaluated as
a post-processing method, meaning its input data is already
projected, 2D data.

VRGrid varies in its accuracy by changing the ϵ value and
its number of fixed iterations i. Smaller ϵ values would result
in more precise data representation but slower processing time
while higher ϵ values would result in faster processing time but
imprecise data positioning. Similarly, higher i values would
result in better data representation at the expense of longer
processing time, while lower i values would result in faster
processing time for worse data positioning. In this evaluation,
we test two configurations of VRGrid: VRGridP is computing
Lloyd Algorithm until stable configuration with an ϵ value
fixed to 10−3. VRGridF is using a fixed number of iterations
i which results in faster processing times at the cost of quality
degradation. We fix i to 10 for Lloyd’s algorithm to limit
the relaxation mainly on the closest points of the convex hull
border instead of the most denser point area.

A. Evaluation Metrics

The evaluation focuses on manifold understanding (reflected
by pairwise distance preservation and neighborhood preser-
vation) and drawing deformation minimization (depicted by
relative and global positioning movements). We measure these
aspects for each scenario using the following metrics:

Distance Preservation (DP) is evaluated using the Cross-
Correlation metric to compare the distance between the grid
arrangement and the 2D input data spaces. It is used by SSM
as a loss function [9]. This comparison is done by computing
pairwise distances in the input data and how they are correlated
in the arrangement. Distances that are not correctly represented
in the grid arrangement bring an empirical penalty to the
evaluation. Higher DP values mean better distance preservation
and thus better results.

Neighborhood Preservation (NP). As scatter plots are
usually interpreted by how elements are positioned compared
to the others, this metric rates how similar is each element’s
neighborhood in the grid arrangement to the input data.

Usually, neighborhood preservation is evaluated by com-
puting the ratio of the k-nearest neighbors for each element
between the input dataset and the projection. As this evaluation
is focused on grid arrangements, we consider the neighborhood
knnG(k, i) of the element i to be composed of the elements
around i within a square area of k cells size, including diagonals.
This also means that elements close to the border of the grid
have a smaller neighborhood than others. This neighborhood is
then compared with the input data using the same number of
neighbors. The higher this value is, the better the neighborhood
is preserved.

Relative Positioning Preservation (RPP) is computed using
the Orthogonal Ordering metric primarily designed to evaluate
shape preservation of overlap solvers in graph drawing [22]. We
use this metric to evaluate how well the position of each element
relative to others is preserved before and after computing the
grid arrangement. Lower RPP values mean better preservation
of elements relative to others and thus better results, while
higher values mean higher deformation and thus worst results.

Global Positioning Preservation (GPP) is being computed
using the Node Movements metric. It evaluates how coordinates

TABLE I
EVALUATED DATASET SUMMARY

Name Size × Dimension Source

Swiss 1 024 × 3 [23]
Broken swiss 1 024 × 3 [23]
Helix 1 024 × 3 [23]
Twinpeaks 1 024 × 3 [23]
MNIST 10 000 × 784 [24]
Fashion 10 000 × 784 [25]

moved from the original projection to the resulting arrange-
ment [22]. While coordinate movements are unavoidable if the
shape of the projection is altered, we assume the faithful grid
arrangement of 2D data involves minimal movements. Lower
GPP values mean smaller alterations from the original positions
and thus better results, while higher values mean worst results.

B. Datasets and Visualization Methods

Datasets. In the evaluation, we use datasets varying in sizes,
dimensions, and natures, as referenced in Table I. Datasets
“Swissroll”, “Broken swissroll”, “Helix” and “Twinpeaks”,
generated with the Matlab Toolbox for Dimensionality Reduc-
tion [23], have very specific shapes in a 3D space and are often
tested in dimension reduction research field, including SSM [9].
Their shape reveals the strategies of the projection methods and
their limitation. To reflect actual real-life scenarios, we also
proceed with our evaluation on real-life datasets MNIST [24]
and Fashion-MNIST [25] which are both commonly used in
the machine learning field. Using t-SNE [26], [27], UMAP [8],
MDS [4], [27] and IsoMap [19], [27], we then project the
datasets in a 2D space to generate our evaluation datasets.
Every combination result of the datasets presented in Table I
and are called real datasets in our evaluation.

We also proceed with our evaluation on 800 random 2D
datasets varying in sizes (64, 100, 1 000 and 10 000 points)
and scattering distribution methods (evenly scattered using
Permuted Congruential Generator [28] and dense using normal
distribution). These datasets are used to evaluate the stability
of the grid arrangement methods.

Data Visualization. In this evaluation, we focus on how well
evaluated methods can represent their 2D input data into a grid.
Dimension reduction methods used to generate testing datasets
are renowned for their efficiency, and it is common to colorize
projected data using class information. This colorization usually
reveals data clusters and outliers. However, well-clustered
points can hardly be visually compared against each other
since they have the same color. To visually evaluate how grid
arrangement result differs from its input data, we colorize
arranged points according to their initial 2D positions. Doing
so shows initially close points with a similar hue while initially
distant points will have a strongly different color. We can thus
compare how points moved compared to their neighbors after
the arrangement even if they were inside the same cluster.

Self Sorting Map and DGrid Implementations. At the
time of the redaction of this paper, the SSM algorithm
implementation of its authors is no more available [29]. The

TABLE II
COMPUTED p-VALUES OF THE WILCOXON SIGNED RANK TEST PERFORMED

ON VRGRIDP AND VRGRIDF AGAINST SSM AND DGRID

Method Metric SSM DGrid

VRGridP

DP 3.52× 10−56 6.51× 10−67

NP 1.03× 10−83 7.20× 10−34

RPP 6.14× 10−125 1.37× 10−27

GPP 2.55× 10−125 4.20× 10−43

VRGridF

DP 2.00× 10−4 1.66× 10−28

NP 7.71× 10−114 1.93× 10−6

RPP 1.70× 10−89 6.17× 10−19

GPP 2.01× 10−104 3.92× 10−7

SSM algorithm used in this study is implemented in Rust
following the directives of the authors’ paper [9]. According
to our evaluation of the Cross-Correlation Score, which is also
used in the authors’ paper, the quality of our produced results
is very close to the authors’ algorithm performances.

Both Orthogonal Ordering and Node Movement Minimiza-
tion metrics are comparing the positioning of coordinates
between the original projection and grid arrangement, which
preservation is not guaranteed by the SSM method by design.
To evaluate SSM with RPP and GPP, we automatically correct
SSM results by applying all possible orthogonal transformations
to the arrangement: flip of grid cells on X-axis and/or Y-axis
and retaining the configuration which has the best GPP value.

DGrid has been implemented following the algorithm pre-
sentation given by the authors [11] in Python. Obtained results
in both computation times and neighborhood preservation
correlate with the performances presented in the authors’
paper [10].

V. RESULTS AND DISCUSSION

We compare methods across the five metrics presented in
Section IV-A and present several results computed on real
data, colorized accordingly to the original dataset labeling and
their 2D position in the input dataset in Figure 1. To evaluate
whenever a method is significantly better than the other on
a given metric, we make use of the Wilcoxon signed rank
statistical test [30] computed on the random datasets. If the
computed p-value is lower than 5× 10−2, then the results are
significantly different. Wilcoxon signed rank test’s p-values
between VRGrid configurations and both SSM and DGrid are
presented in Table II and are all lower than 5 × 10−2. All
differences between VRGridP , VRGridF , SSM and DGrid
evaluations are thus statistically significant.

Visual Inspection. Input data are identifiable in
VRGridP and VRGridF results, the initial positions of
clusters and their composition are preserved in the grid
arrangements. However, VRGridF has distortions along
both diagonals especially noticeable using position-based
colorization. VRGridP has no such visible distortions and
has a better-looking separation between the different element
classes. In SSM arrangements, the position of the different
item groups is slightly different compared to the input data,

while still being recognizable (e.g., UMAP projection of
MNIST and t-SNE projection of Fashion dataset are slightly
rotated clockwise by SSM compared to the input data). Aside
from that, SSM arrangements look quite like VRGridP ’s with
sharper borders between each data class. However, when using
position-based colorization, we can notice a few elements far
from their original neighbors, notably in the UMAP/Swissroll
scenario. In DGrid arrangements, the partitioning strategy
is very noticeable on MNIST and Fashion results in the
form of small square-shaped areas. In the Swissroll/UMAP
arrangement, the placement of the red classes in the lower-left
part of the grid does not seem intuitive. Position-based
colorization reveals partitioning artifacts even more which can
disturb data visualization interpretation.

Distance Preservation (DP) is computed using Cross-
Correlation and results are depicted in Figure 7a, with higher
values meaning better pairwise distance preservation. On
real datasets, distances are well preserved across all meth-
ods. VRGridP produces the best results overall with values
about 2.57% better than SSM, 2.61% better than DGrid and
5.41% better than VRGridF . On randomly generated datasets,
VRGridP is also better with results about 1.77% better than
SSM, 6.73% better than DGrid and 2.63% better than VRGridF .
It can be concluded that all four methods manage to preserve
distances when arranging data into a grid on real datasets, but
VRGridP performs better.

Neighborhood Preservation (NP) results are depicted in
Figure 7b, with higher values meaning better neighborhood
preservation across elements. On real datasets, DGrid produces
the best results which are overall 8.94% better than SSM,
19.44% better than VRGridP and 37.52% better than VRGridF .
On random datasets, SSM produces the best arrangement with
values about 4.76% better than VRGridP , 12.16% better than
DGrid and 16.19% better than VRGridF .

SSM is better than VRGridP at preserving neighborhoods
on both real and randomly generated data. DGrid is better
than VRGridP on real data but not on randomly generated
data. VRGridF has the worst results on both real and random
datasets.

Differences in quality between methods can be visually
observed in proposed arrangements in Figures 1 where SSM
separates different data classes with sharp separations between
groups while VRGridP and VRGridF slightly mix those sepa-
rations. As for DGrid, despite its locally focused arrangements,
the method preserves neighborhood very well on real data but
not as well on random data, mainly on random datasets of
size 10 000 regardless of the distribution method. This behavior
requires additional investigation as it seems that the partitioning
technique of DGrid handles badly grids of sizes different than
a power of 2, yet the method still performs well with MNIST
and Fashion-MNIST which are the same size.

Relative Position Preservation (RPP)
values are presented in Figure 7c, with lower values meaning

lower local permutations in the grid arrangement resulting
in better representation of input data. On real data, relative
positioning in VRGridP arrangements are conserved about

0.5

0.6

0.7

0.8

0.9

1

VRGrid
F

VRGrid
P

SS
M

DGrid

Di
st

an
ce

 P
re

se
rv

a�
on

 (D
P)

Real data

0.5

0.6

0.7

0.8

0.9

1

VRGrid
F

VRGrid
P

SS
M

DGrid

Di
st

an
ce

 P
re

se
rv

a�
on

 (D
P)

Random data

(a) Distance Preservation measure.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

VRGrid
F

VRGrid
P

SS
M

DGrid

N
ei

gh
bo

rh
oo

d
Pr

es
er

va
�o

n
(N

P)

Random data

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

VRGrid
F

VRGrid
P

SS
M

DGrid

N
ei

gh
bo

rh
oo

d
Pr

es
er

va
�o

n
(N

P)

Real data

(b) Neighborhood Preservation measure.

0

0.05

0.1

0.15

0.2

0.25

0.3

VRGrid
F

VRGrid
P

SS
M

DGrid

Re
la

�v
e

Po
si�

on
 P

re
se

rv
a�

on
 (R

PP
)

Real Data

0

0.05

0.1

0.15

0.2

0.25

0.3

VRGrid
F

VRGrid
P

SS
M

DGrid

Re
la

�v
e

Po
si�

on
 P

re
se

rv
a�

on
 (R

PP
)

Random Data

(c) Relative Position Preservation measures.

0

0.05

0.1

0.15

0.2

VRGrid
F

VRGrid
P

SS
M

DGrid
Gl

ob
al

 P
os

i�
on

 P
re

se
rv

a�
on

 (G
PP

)

Real data

0

0.05

0.1

0.15

0.2

VRGrid
F

VRGrid
P

SS
M

DGrid

Gl
ob

al
 P

os
i�

on
 P

re
se

rv
a�

on
 (G

PP
)

Random data

(d) Global Position Preservation measure.

Fig. 7. Evaluation results for real and random datasets. For Distance and Neighborhood Preservation measures, higher values are better. For Relative and
Global Preservation measures, lower values are better.

44.22% better than SSM, 6.53% better than DGrid and 29.04%
better than VRGridF . On randomly generated data, VRGridP is
about 62.04% better than SSM, 15.01% better than DGrid and
34.04% better than VRGridF . SSM’s poor performances can be
visually observed on produced arrangements in Figure 1 where
arrangements are slightly rotated and distorted compared to
the input data, when VRGridP , VRGridF and DGrid manage
to preserve the overall positioning of the elements in their
arrangements.

By design, SSM does not preserve the input data positions,
which can explain its poor performance in that aspect of the
evaluation. DGrid has retention information but is outperformed
by VRGridP .

Global Position Preservation (GPP) values are presented in
Figure 7d, with lower values meaning less overall deformation
of the original data projection. On real datasets, VRGridP pro-
duces arrangement with 46.59% less movements than SSM,
14.83% less than DGrid and 21.60% less than VRGridF . On
random datasets, VRGridP arrangements are also 46.47% better
than SSM, 23.55% better than DGrid and 17.66% better than
VRGridF . Thus, VRGridP produces an arrangement with fewer
distortions than other methods.

Observed GPP values also show that the fragmented aspect
of DGrid arrangements or the distortions in VRGridF arrange-
ments is as highly penalized as SSM.

Computation Time are presented in Table III, with lower
values meaning faster processing. When used as a post-
processing method, SSM yields faster computation times

TABLE III
AVERAGE COMPUTATION TIME1 ON TESTED DATASETS2

Dataset
type

Dataset size VRGridF VRGridP SSM DGrid

Real 1024 1.65 66.94 0.93 <0.01
10 000 46.17 5594.37 16.13 0.01

Random
(dense)

64 0.04 0.46 0.02 <0.01
100 0.07 1.01 0.03 <0.01

1000 1.65 68.53 0.52 <0.01
10 000 46.94 5628.95 15.92 0.01

Random
(scat-
tered)

64 0.05 0.40 0.03 <0.01
100 0.07 0.98 0.04 <0.01

1000 1.64 63.10 0.55 <0.01
10 000 46.57 4999.92 9.46 0.01

1 in seconds, lower values are better.
2 organized by their nature and sizes, see Section IV-B.

than VRGrid. DGrid surpasses all other methods as it takes
less than 0.02 second to process the largest datasets in our
evaluation. VRGridP , despite its overall good quality results
except in neighborhood preservation, is about 270 times
slower than SSM and cannot compete to DGrid, making it
currently hardly practical for large datasets such as MNIST
by taking around 90 minutes to process against 15 seconds
for SSM and 0.015 second for DGrid. By not limiting the
number of iterations, VRGridP can reach up to ten times the
number of processed elements, which is hardly comparable
to VRGridF at larger scales. Furthermore, density of data
seems to have a lesser impact on VRGridP total computation

time with a 11% difference between dense and scattered data.
VRGridF computation times are between up to 100 times faster
than VRGridP , but are still slower than SSM.

Discussion. The evaluation shows that VRGridP brings
better results than SSM, DGrid and VRGridF on distance
preservation (DP) and minimizes deformation of the initial
data (RPP and GPP). However, neighborhood preservation
(NP) is a weak point of VRGridP , as it is outclassed by both
SSM and DGrid despite its longer processing time.

SSM is significantly weaker at globally staying faithful
to the original data projection shape. Indeed, even using
minimal deformation configuration of SSM’s results explained
in Section IV-B, both positioning metrics show that SSM
arrangements are more distorted than VRGridP , sometimes pro-
ducing sources of visual misinterpretation as shown in Figure 1
between the two colorization methods of the UMAP/Swissroll
scenario (first columns, second row). While DGrid evaluation
values are closer yet lower than VRGridP in retaining input
data shape, the visualization method proposed in Section IV-B
shows that DGrid’s arrangements are locally very fragmented
compared to other methods. However, this distortion is not
very apparent in our evaluation results, notably by the RPP and
GPP metrics, whereas SSM’s outliers seem to be detected and
penalized accordingly, as seen in the UMAP/Swissroll scenario.
A dedicated novel metric that detects this issue should be
designed in future works.

With those observations, we can affirm that all methods are
useful in different usage scenarios. Scenarios only requiring
compact projection of data (i.e., ignoring input data’s shape) can
already make good use of SSM as a post-processing method,
since neighborhood and distances are well preserved with
reasonable processing time. However, VRGrid and DGrid are
useful for producing compact projections as an additional tool
to the regular data projection, such as data overlap solving tasks
and/or numerous dataset projection navigation in a dynamic
environment. In that aspect, we showed that, given a larger
processing time, VRGrid brings significantly better results than
DGrid, and does process its arrangement globally on its input
data compared to DGrid’s locally focused strategy. Dynamic
or multi-view visualization tools would better benefit from
VRGrid arrangements than other tested methods’ as VRGrid
produces overall fewer distortions.

Finally, our evaluation shows that VRGrid can hardly
compete against SSM and DGrid for the fastest processing
methods with its current implementation, the number of
iterations needed for VRGridP is of the same order as the
dataset size n if not higher, which implies a computational
complexity of O

(
n

5
2 .log(n)

)
. The cut in computation time of

VRGridF by imposing a fixed number of iterations is hindering
the overall quality of the arrangement visually and is apparent
in the evaluation metrics but reduces the computation time by
up to 100 times. But this tradeoff in quality is still insufficient
to surpass SSM on larger datasets.

As it stands now, VRGridP would benefit from improvement
on Lloyd’s algorithm implementation, as cutting down iteration

count results in a large decrease in overall arrangement
quality. Lloyd’s algorithm had several ways to be improved
with algorithmic techniques such as over-relaxation [31] and
hardware optimization [32], [33]. Those improvements led the
computation of CVT to at least 10 times faster than the classic
Lloyd’s algorithm running on CPU. This improvement potential
could be a way to mitigate the high computational complexity
of VRGridP and make it usable for bigger dataset processing.

VI. CONCLUSION

When visualizing projected data, overlap may occur and
hinder the data analysis. Clustering methods such as t-SNE
are popular high-dimension reduction techniques emphasizing
even more visual occlusion in their results. Pixel-oriented
visualization techniques, such as grid arrangement methods, are
an efficient way to eliminate this visual occlusion and improve
the perceptual scalability of dimension reduction methods.

We presented VRGrid, a post-processing technique using
relaxation methods to provide a grid arrangement for 2D data.
VRGrid consumes the position of input data and incrementally
transforms them into a grid disposition while limiting the
deformation of the initial data shape. We evaluated this
method against state-of-the-art methods Self-Sorting Maps and
DGrid on several aspects focused on data understanding and
minimizing distortions.

In this evaluation, we showed that VRGrid using Lloyd’s
algorithm surpasses SSM and DGrid with better distance
preservation and minimal deformation but falls short in
neighborhood preservation and more specifically in computing
time. We showed that limiting the number of Lloyd’s algorithm
iterations significantly reduces processing time but at the cost
of a grid arrangement of lower quality across all four metrics.

These two observations showed that the usage of a relaxation
method by VRGrid to converge toward a CVT configuration can
be used to produce a grid arrangement for 2D data. To prevent
deformations seen with VRGridF , the relaxation method must
process enough iterations before VRGrid’s iterative border-
building step. This requirement may result in larger computation
time, as seen with VRGridP , which is not desirable when
working with large datasets. Lloyd’s algorithm implementation
can already be improved in several ways thanks to previous
works in the domain. Other relaxation techniques can also be
used with VRGrid, Broyden-Fletcher-Goldfarb-Shanno method
(or BFGS) and its variants [34] are optimization methods
that can be used to compute CVT configurations with fewer
iterations than Lloyd’s algorithm. Finally, RPP and GPP metrics
were efficient to detect misarranged elements by SSM in the
resulting grid but have not penalized VRGridF and DGrid
as much for their visually different results from VRGridP .
Further work on the evaluation of grid arrangement quality
and practicability would be useful as the three methods may
be interpreted differently by the end-user if given as is.

ACKNOWLEDGMENT

This work has been carried out with financial support from
the French State, managed by the French National Research

Agency (ANR) in the frame of the Involvd project (ANR-20-
CE23-0023-04). Experiments presented in this paper were
carried out using the Labo’s in the Sky with Data(LSD),
the LaBRI data platform partially funded by Region Nou-
velle Aquitaine, and using PlaFRIM experimental testbed,
supported by Inria, CNRS (LABRI and IMB), Université de
Bordeaux, Bordeaux INP and Conseil Régional d’Aquitaine
(see https://www.plafrim.fr/).

REFERENCES

[1] M. Friendly, “A brief history of data visualization,” in Handbook of data
visualization. Springer, 2008, pp. 15–56.

[2] S. Liu, W. Cui, Y. Wu, and M. Liu, “A survey on information visualization:
recent advances and challenges,” The Visual Computer, vol. 30, no. 12,
pp. 1373–1393, 2014.

[3] J. Bertin, “Sémiologie graphique: Les diagrammes-les réseaux-les cartes,”
Gauthier-VillarsMouton & Cie, Tech. Rep., 1973.

[4] D. Engel, L. Hüttenberger, and B. Hamann, “A survey of dimension
reduction methods for high-dimensional data analysis and visualization,”
in Visualization of Large and Unstructured Data Sets: Applications in
Geospatial Planning, Modeling and Engineering-Proceedings of IRTG
1131 Workshop 2011. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2012.

[5] S. Liu, D. Maljovec, B. Wang, P.-T. Bremer, and V. Pascucci, “Visualizing
high-dimensional data: Advances in the past decade,” IEEE transactions
on visualization and computer graphics, vol. 23, no. 3, pp. 1249–1268,
2016.

[6] D. L. Donoho et al., “High-dimensional data analysis: The curses and
blessings of dimensionality,” AMS math challenges lecture, vol. 1, no.
2000, p. 32, 2000.

[7] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[8] L. McInnes, J. Healy, N. Saul, and L. Grossberger, “Umap: Uniform
manifold approximation and projection,” The Journal of Open Source
Software, vol. 3, no. 29, p. 861, 2018.

[9] G. Strong and M. Gong, “Self-sorting map: An efficient algorithm for
presenting multimedia data in structured layouts,” IEEE Transactions on
Multimedia, vol. 16, no. 4, pp. 1045–1058, 2014.

[10] G. M. Hilasaca and F. V. Paulovich, “A visual approach for user-guided
feature fusion,” in Anais Estendidos da XXXII Conference on Graphics,
Patterns and Images. SBC, 2019, pp. 133–139.

[11] G. M. H. Mamani, “A visual approach for user-guided feature fusion,”
Ph.D. dissertation, Universidade de São Paulo.

[12] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129–137, 1982.

[13] Q. Du, M. Emelianenko, and L. Ju, “Convergence of the lloyd algorithm
for computing centroidal voronoi tessellations,” SIAM journal on
numerical analysis, vol. 44, no. 1, pp. 102–119, 2006.

[14] Q. Du, V. Faber, and M. Gunzburger, “Centroidal voronoi tessellations:
Applications and algorithms,” SIAM review, vol. 41, no. 4, pp. 637–676,
1999.

[15] D. Hilbert, “Über die stetige abbildung einer linie auf ein flächenstück,”
in Dritter Band: Analysis· Grundlagen der Mathematik· Physik Ver-
schiedenes. Springer, 1935, pp. 1–2.

[16] D. A. Keim, “Designing pixel-oriented visualization techniques: Theory
and applications,” IEEE Transactions on visualization and computer
graphics, vol. 6, no. 1, pp. 59–78, 2000.

[17] D. Auber, C. Huet, A. Lambert, B. Renoust, A. Sallaberry, and A. Saulnier,
“Gospermap: Using a gosper curve for laying out hierarchical data,” IEEE
transactions on visualization and computer graphics, vol. 19, no. 11, pp.
1820–1832, 2013.

[18] O. Fried, S. DiVerdi, M. Halber, E. Sizikova, and A. Finkelstein,
“Isomatch: Creating informative grid layouts,” in Computer graphics
forum, vol. 34, no. 2. Wiley Online Library, 2015, pp. 155–166.

[19] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” science, vol. 290, no.
5500, pp. 2319–2323, 2000.

[20] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[21] M. Emelianenko, L. Ju, and A. Rand, “Nondegeneracy and weak global
convergence of the lloyd algorithm in rˆd,” SIAM Journal on Numerical
Analysis, vol. 46, no. 3, pp. 1423–1441, 2008.

[22] F. Chen, L. Piccinini, P. Poncelet, and A. Sallaberry, “Node overlap
removal algorithms: an extended comparative study,” Journal of Graph
Algorithms and Applications, 2020.

[23] L. Van Der Maaten, E. Postma, and J. Van den Herik, “Dimensionality
reduction: a comparative,” J Mach Learn Res, vol. 10, no. 66-71, p. 13,
2009.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[25] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[26] L. Van Der Maaten, “Accelerating t-sne using tree-based algorithms,” The
Journal of Machine Learning Research, vol. 15, no. 1, pp. 3221–3245,
2014.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[28] M. E. O’Neill, “Pcg: A family of simple fast space-efficient statistically
good algorithms for random number generation,” ACM Transactions on
Mathematical Software, 2014.

[29] M. Gong, “Organize data into structured layout,”
http://www.cs.mun.ca/ gong/research/DataOrganization.html, 2019.

[30] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in statistics. Springer, 1992, pp. 196–202.

[31] X. Xiao, Over-relaxation Lloyd method for computing centroidal Voronoi
tessellations. University of South Carolina, 2010.

[32] G. Rong, Y. Liu, W. Wang, X. Yin, D. Gu, and X. Guo, “Gpu-assisted
computation of centroidal voronoi tessellation,” IEEE transactions on
visualization and computer graphics, vol. 17, no. 3, pp. 345–356, 2010.

[33] J. Zheng and T.-S. Tan, “Computing centroidal voronoi tessellation using
the gpu,” in Symposium on Interactive 3D Graphics and Games, 2020,
pp. 1–9.

[34] Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu, and C. Yang, “On
centroidal voronoi tessellation—energy smoothness and fast computation,”
ACM Transactions on Graphics (ToG), vol. 28, no. 4, pp. 1–17, 2009.

