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Abstract

We give a simple, direct, and constructive proof of memoryless determinacy for parity and
mean payo& games. First, we prove by induction that the 8nite duration versions of these games,
played until some vertex is repeated, are determined and both players have memoryless winning
strategies. In contrast to the proof of Ehrenfeucht and Mycielski, Internat. J. Game Theory,
8 (1979) 109–113, our proof does not refer to the in8nite-duration versions. Second, we show
that memoryless determinacy straightforwardly generalizes to in8nite duration versions of parity
and mean payo& games.
c© 2003 Elsevier B.V. All rights reserved.

1. Introduction

Parity games are in8nite duration games played by two adversaries on 8nite leaf-
less graphs with vertices colored by nonnegative integers. One of the players tries to
ensure that the maximal vertex color occurring in the play in8nitely often is even,
while the other wants to make it odd. The problem of deciding the winner in parity
games is polynomial time equivalent to the Rabin chain tree automata (or parity tree
automata) nonemptyness, and to the model checking problem for the �-calculus [6], one
of the most expressive temporal logics of programs, expressively subsuming virtually
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all known such logics. For these reasons, parity games are of considerable importance
and have been extensively studied by the complexity-theoretic, automata-theoretic, and
veri8cation communities.
One of the fundamental properties of parity games, which almost all decision algo-

rithms rely upon, is the so-called memoryless determinacy. Vertices of every game can
be partitioned into winning sets of both players, who possess positional winning strate-
gies from all vertices in their winning sets. This means that for each vertex owned
by a player, the player can decide in advance what to do if the play reaches that
vertex, by deterministically selecting one of the outgoing edges independently of the
history of the play. Moreover, revealing this positional strategy in advance is not a dis-
advantage.
Emerson [4] sketched the 8rst memoryless determinacy proof for parity games 1 as

early as in 1985. His proof is based on a (fairly complicated) simpli8cation by Hossley
and Racko& [8] (relying on K-onig’s lemma) of Rabin’s original proof [12] of the
nonemptyness problem for Rabin automata. A later, more self-contained, determinacy
proof by Emerson and Jutla [5] relies heavily on the �-calculus, and is non-constructive.
For example, the de8nition of a strategy in [5] uses properties of all paths in a binary
tree, a set of continuum cardinality. Later McNaughton [10] and Zielonka [15] gave
alternative proofs discussed below.
Today it is interesting to note that memoryless determinacy of parity games is a one-

line consequence (using a simple reduction; see, e.g., Puri [11]) of the earlier more
general result of Ehrenfeucht and Mycielski [2,3] on memoryless determinacy of the
so-called mean payo8 games.
Mean payo& games are also in8nite duration games played by two adversaries on

8nite graphs, but with weighted edges. Players try to maximize/minimize the limit mean
value of edge weights encountered during the play. It was proved by Ehrenfeucht and
Mycielski [2,3] that every mean payo& game has a unique value � such that Player 0
can ensure a gain of at least � and Player 1 can ensure a loss of at most �, i.e.,
the games are determined. Furthermore, each player can secure this value by using a
positional (memoryless) strategy.

The proof for mean payo& games given by Ehrenfeucht and Mycielski [3] relies
upon a sophisticated cyclic interplay between in&nite duration games and their &nite
counterparts. Proofs for in8nite games rely on properties of 8nite games and vice versa.
The authors asked whether it is possible to give a direct, rather than roundabout proof,
a question we succeeded to answer aNrmatively in this paper. Memoryless determinacy
for mean payo& games was later shown constructively by Gurvich et al. [7], but their
proof is rather involved, using estimates of norms of solutions to systems of linear
equations, convergence to the limit, and precision arguments.
The purpose of this paper is to give a simple and direct proof that works uniformly

for both parity and mean payo& games. Our proof does not involve any auxiliary
constructions or machinery (like �-calculus, or linear algebra, or limits), proceeds by
elementary induction, and constructs positional strategies for more complicated games
from strategies for simpler ones. Similar to [3], we rely on &nite duration versions

1 Actually for Rabin pairs automata, but easily transfers to parity games/automata.
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of the games, played until the 8rst vertex repetition. However, in contrast to [3], we
completely avoid roundabout proofs of the properties of 8nite games using in8nite
ones and vice versa. Our proof is constructive, although the algorithm it provides is
not intended to be very eNcient. Due to the importance of parity games and mean
payo& games, we feel that a straightforward and constructive proof of memoryless
determinacy, common to both games, and without involving external powerful methods
should be interesting and useful.
Two interesting memoryless determinacy proofs were given by McNaughton [10]

and Zielonka [15], and both have very nice features. McNaughton studies a broad
abstract class of games on &nite graphs (including parity games), for which the winning
conditions can be stated in terms of winning subsets of vertices. His proof provides a
necessary and suNcient condition for such games to possess memoryless determinacy.
This proof is constructive, but does not apply directly to mean payo& games, since the
set of vertices visited in8nitely often in a play does not uniquely determine its value.
Zielonka [15] gives two simple and elegant proofs that work for parity games with a
possibly in&nite number of vertices, but not for mean payo& games. The 8rst version
of Zielonka’s proof is constructive and uses induction on the number of colors and
vertices (trans8nite induction if there are in8nitely many vertices). The second version
is shorter but nonconstructive.
In contrast, our argument exploits structural similarities of parity and mean payo&

games to give a uniform proof for both. It would be interesting to know whether our
proof technique can be extended to more general classes of discounted and simple
stochastic games [16]. Our current assumption on a winning condition, which allows
to reduce in8nite to 8nite duration games and conduct the uniform proof, is too strong,
and should be relaxed to cover discounted and simple stochastic games.
The interest in parity games and mean payo& games is to a large extent motivated

by their complexity-theoretic importance. For both games, the corresponding decision
problems belong to the complexity class NP∩ coNP, but their PTIME membership
status remains open. Much of the research in the complexity of solving these games
relies on memoryless determinacy, e.g., [1,7,9,13,16]. Some papers rely essentially on
memoryless determinacy, as [1,16], while others prove it independently, explicitly or
implicitly [7].

1.1. Outline of the paper

Section 2 gives basic de8nitions concerning parity games. Theorem 3.1 of Section 3
shows determinacy of 8nite duration parity games, with strategies requiring memory.
The proof is by elementary induction on the number of vertices in a 8nite tree. Sec-
tion 4 provides intermediate results about the properties of positional strategies in
8nite duration games, needed in later sections. In Section 5 we prove by induction
on the number of edges in the games, that 8nite duration parity games are solv-
able in positional strategies. This is the main theorem in the paper. We extend the
proof to in8nite duration parity games in Section 6. In Section 7 we show how the
proof for parity games generalizes to yield memoryless determinacy of mean payo&
games.
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2. Parity games

We assume the standard de8nition of parity games (PGs). These are in&nite duration
adversary full information games played by Players 0 and 1 on &nite directed leaPess
graphs G=(V; E) with vertices colored by natural numbers. The vertices of the graph
are partitioned into sets V0 and V1, and every vertex has at least one outgoing edge
(i.e., there are no leaves or sinks). The game starts in some vertex, and Player i
chooses a successor when a play comes to a vertex in Vi. In this way, the players
construct an in8nite sequence of vertices, called a play. The parity of the largest color
occurring in8nitely often in this play determines the winner: even/odd is winning for
Player 0/Player 1, respectively.
A (general) strategy of Player i is a function that for every 8nite pre8x of a play,

ending in a vertex v∈Vi, selects a successor of v (move of the player). A positional
strategy for Player i is a mapping selecting a unique successor of every vertex v∈Vi.
When a play comes to v∈Vi, Player i unconditionally selects the unique successor
determined by the positional strategy, independently of the history of the play. Thus
positional strategies are memoryless.
When considering a positional strategy 	 of Player i, it is often useful to restrict

to the graph G	 obtained from G by removing all outgoing edges from vertices in Vi,
except those used by 	.

3. Finite duration parity games

Together with the in8nite duration parity games de8ned above, we also consider
their &nite duration counterparts, fundamental to our proofs. Such games are played
on the same graphs as PGs, but only until the 8rst loop is constructed. We 8rst establish
memoryless determinacy for 8nite duration games and then extend it to in8nite duration
ones.
A &nite duration parity game (FPG) Ga starts in vertex a, and players alternate

moves until some vertex vl is visited for the second time. At this point the loop
from vl to vl constructed during the play is analyzed, and the maximal vertex color
c occurring on this loop determines the winner. If c is even, then Player 0 wins;
otherwise, Player 1 wins.
FPGs are 8nite perfect information zero-sum games (the loser pays $1 to the winner).

By the general theorem of game theory (proved nonconstructively using Brouwer’s or
Kakutani’s 8xpoint theorems), every such game has a value. However, for the special
case of FPGs, the proof of this fact is very simple and constructive. The argument
is quite well known and can be attributed to Zermelo [14]. Nevertheless, to make the
paper self-contained and to stress that probabilistic strategies 2 are not needed to decide
a winner in a 8nite duration parity game, we give a direct proof here.

2 Necessary, for example, in the “stone-paper-scissors” game.
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Proposition 3.1. The vertices of any FPG G can be partitioned into sets W0(G) and
W1(G) such that Player i can win Gv when v∈Wi(G).

De�nition 3.2. The set Wi(G) in Proposition 3.1 is called the winning set for Player i.

Proof. Starting from every vertex v construct an AND-OR tree of all possible develop-
ments of an FPG starting at v. This tree is 8nite, with leaves corresponding to the 8rst
vertex repetitions on paths from the root. Mark those leaves with 0 or 1 corresponding
to which player wins in the leaf (on the corresponding loop). Evaluate the root of
the tree bottom-up by repeatedly using the rules: (1) if a vertex u of Player i has a
successor marked i, then mark u with i; (2) if all successors of a vertex u of Player i
are marked 1− i, then mark u with 1− i. This evaluation uniquely determines the mark
of the root, 0 or 1.

Note that although implementing a winning strategy according to the construction
in the above proof does not need randomness, it requires memory to keep the history
of the play in order to decide where to move at each step. In the following sections,
based on Proposition 3.1, we show how to construct positional strategies.

4. Positional strategies in �nite duration (parity) games

Finite duration parity games are slightly less intuitive and require di&erent arguments
compared to their in8nite counterparts. For example, any 8nite pre8x of an in8nite play
does not matter when determining the winner in an in8nite game. In contrast, this pre8x
is essential in deciding the winner in a 8nite duration game, because its every vertex is
a potential termination point of the game. Some other common in8nite-case intuitions
fail for 8nite games, and need some extra care.
This section con8rms two basic intuitions about positional strategies in FPGs. The

8rst one is an apparently obvious fact that you can win from a vertex provided you win
from some of its successors. It is used to prove the second, demonstrating that when
a player uses an optimal positional strategy, the play never leaves her winning set. In
in8nite games, both lemmas are one-line consequences of memoryless determinacy, but
we stress that we need to prove these properties for 8nite games and without relying
on determinacy.

Lemma 4.1. In any FPG, if Player i has a positional strategy winning from some
successor u of v∈Vi, then Player i has a positional strategy winning from v.

(The straightforward construction “play from v to u and then follow the positional
winning strategy from u” is not completely obvious. Assume a positional winning
strategy from u uses in v an edge di&erent from (v; u). The previous construction
simply does not yield a positional strategy.)



370 H. Bj,orklund et al. / Theoretical Computer Science 310 (2004) 365–378

Proof. Let us briePy discuss the recurring idea of the arguments we rely upon. Suppose
Player i 8xes a positional strategy 	, and consider the graph G	, where all other choices
for Player i are removed. Then Player i wins from a vertex x i& Player 1 − i cannot
force a play in G	 from x into a simple loop losing for Player i.
Let 	 be a positional strategy winning for Player i from some successor u of v∈Vi.

If 	 is winning also from v (which can be checked by inspecting the loops reachable
from v in G	 as explained above), the claim follows. Otherwise, there is a loop �,
losing for Player i, reachable by a path � from v in G	. We claim that Player 1 − i
cannot force a play in G	 from u to any vertex on � and �, including v. Indeed, the
opposite would imply that Player i loses from u. Change 	 only at v, obtaining 	′

with 	′(v)= u. Player i still wins from u with 	′, since the set of plays in G′
	 from

u remains the same as in G	, and exactly the same loops can be forced from v by
Player 1− i.

Important observation: We pause here to make an important observation. The argu-
ment in the proof of Lemma 4.1 actually applies to the whole class of 8nite duration
games that, like FPGs: (1) stop as soon as some vertex is 8rst revisited, (2) for which
the winner is determined by the sequence of vertices on the resulting simple loop,
and (3) independently of the initial vertex the loop is traversed from. Condition 3
is not satis8ed, e.g., for 8nite versions of discounted mean payo& games or simple
stochastic games [16].
This class includes, in particular, the 8nite decision version of mean payo& games,

considered in Section 7. We encourage the reader to verify that all subsequent proofs
in this section and Section 5 apply for this general class of games. Actually, our proof
of memoryless determinacy of 8nite mean payo& games in Section 7.2 relies on this
observation and thus recycles the work done for parity games.
The next lemma puts the (yet unproved) assumption “if both players win by posi-

tional strategies from every vertex in their respective winning 3 sets” in the premise.
Under this assumption it shows that no play consistent with such a winning positional
strategy leaves the player’s winning set.

Lemma 4.2. In any FPG, suppose 	0 and 	1 are positional strategies for Player 0
and 1 such that Player i by using 	i wins every game that starts in Wi(G), for
i∈{0; 1}. Then all plays starting in Wi(G) and played according to 	i stay in Wi(G).

Proof. Consider a game on the graph G	i starting in some vertex from Wi(G). In this
game, we can assume that all vertices belong to Player 1 − i because there are no
choices in Player i’s vertices. By Lemma 4.1, any edge (u; v) with v∈W1−i(G) must
also have u∈W1−i(G), so there are no edges from Wi(G) to W1−i(G) in G	i .

This lemma will be extensively used in the inductive proof of the main theorem in
the next section, where its premise will be guaranteed to hold by inductive assumption.

3 Winning by some, maybe nonpositional strategy.
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5. Memoryless determinacy of �nite duration parity games

In this section we prove the main theorem of the paper, which implies memoryless
determinacy of the in8nite duration parity games (Section 6). The proof itself does not
use any reference to the in8nite games. In Section 7 we extend this theorem to 8nite
and in8nite duration mean payo& games. Actually, the proof of Theorem 5.1 is not
modi8ed, we just show how to adjust winning conditions so as to reuse the theorem
and its proof as they are.

Theorem 5.1. In every FPG G, there are positional strategies 	0 of Player 0 and 	1
of Player 1 such that Player i wins by using 	i whenever a play starts in Wi(G), no
matter which strategy Player 1− i applies.

Proof. The proof is by induction on the number |E|−|V | of choices of both players. We
stress once again that the proof applies to a more general class of games, as observed
in Section 4, and therefore will be reused to demonstrate memoryless determinacy of
the decision version of 8nite mean payo& games in Section 7.2.
The base case is immediate: if |E|= |V | then there are no vertices with a choice,

and all strategies are positional.
For the inductive step we split into three cases, depending on whether there are

vertices x from which the player who owns x can win. Let V ∗
i ⊆Vi (for i=0; 1) be

the sets of vertices of Player i with outdegree more than 1. Assume the theorem holds
whenever |E| − |V |¡n, and consider |E| − |V |= n.
Case 1: V ∗

0 ∩W0(G) �= ∅. Take x∈V ∗
0 ∩W0(G) and let e be an edge leaving x such

that Player 0 can win Gx after selecting e in the 8rst move. (The rest of the Player 0
strategy does not need to be positional.) Consider the game G′ in which we remove all
edges leaving x, except e. By inductive assumption, there are positional strategies 	i
such that Player i applying 	i wins any play in G′ that starts in Wi(G′). These strategies
are also positional strategies in G. We will prove that 	i is winning for Player i in G
if the play starts in a vertex from Wi(G′).
Suppose v∈W0(G′) and Player 0 uses 	0 in Gv. Any play in Gv following 	0 was

also possible in G′
v. Since all such plays are winning for Player 0 in G′

v, all of them
are also winning for Player 0 in Gv. Therefore, W0(G′)⊆W0(G).
Now assume v∈W1(G′) and Player 1 uses 	1 in Gv. Notice that x∈W0(G′), since

there is a winning strategy that uses e and the game terminates as soon as x is revisited.
By Lemma 4.2, whenever Player 1 uses 	1, no play in G′

v, hence in Gv, can ever reach x,
because G′

v and Gv di&er only in edges leaving x. But any play in Gv according to 	1
not reaching x was possible also in G′

v, so Player 1 wins any such play in Gv. Hence,
W1(G′)⊆W1(G).
Since Wi(G′)⊆Wi(G), and W0(G′), W1(G′) form a partition, we thus showed that

Wi(G)=Wi(G′) and Player i wins Gv using 	i, for any v∈Wi(G).
Case 2: V ∗

1 ∩W1(G) �= ∅ and Case 1 does not apply. The proof is symmetrical to
Case 1.
Case 3: V ∗

0 ∩W0(G)=V ∗
1 ∩W1(G)= ∅. Since only Player i may have choices in

W1−i(G), we will assume that all vertices in Wi(G) belong to V1−i, that is, Wi(G)=V1−i
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Fig. 1. If we remove e from G, then u changes from losing to winning for Player 0.

for i∈{0; 1}. We may also assume that one of the players has choices; otherwise the
base case applies.
We 8rst prove that there are no edges between the winning sets. Suppose, towards

a contradiction, that there is an edge e from v∈W1(G) to u∈W0(G). Fig. 1 depicts
this situation, where round and square vertices belong to Player 0 and 1, respectively
(the case of an edge back is symmetric).
Although u is losing for Player 1, there must be a way for Player 1 to win a play

that starts in v even if Player 0 moves by e to u. This can only be done if Player 1
can force the play back to v, because any other winning play for Player 1 from v via
u would be a winning play from u as well. However, Player 1 cannot win if a play
starts in u. Therefore, if the game starts in u, and is forced by Player 1 to v, Player 0
must be able to do something else in order to win, rather than selecting e. Thus there
must be another edge d leaving v.
Now create the game G′ by removing the edge e. Since Player 0 has less choices,

we must have W0(G′)⊆W0(G). By inductive assumption, there are positional strategies
	0 and 	1, winning from W0(G′) and W1(G′), respectively. Since all vertices in W0(G′)
can be assumed to belong to V1, Lemma 4.2 implies that there are no edges leaving
W0(G′). This in turn means that u belongs to W1(G′). Otherwise, Player 0 could have
won from v in G by following e, because the play would have never left W0(G′), and
any loop formed would have been winning for Player 0.
When e was removed, vertex u turned from losing to winning for Player 1. This

implies that in G′, Player 1 must force the play from u to v in order to win, since all
other plays would have been possible in G as well, and all were losing for Player 1.
In G, however, no matter how Player 1 forced the play from u to v, Player 0 could
win by using d and some strategy for the remaining play. All these plays are possible
in G′ as well, so Player 1 cannot win from u in G′. This contradiction shows that
there can be no edge e from W1(G) to W0(G). By symmetric reasoning, there are no
edges from W0(G) to W1(G).
Now, since there are no edges between the winning sets, and both players lack

choices within their own winning sets, any positional strategy is optimal, i.e., winning
from all vertices in the player’s winning set.
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6. Extension to in�nite duration parity games

We now show that a positional strategy that wins an FPG starting in vertex v also
wins, for the same player, the in8nite duration parity game starting in v on the same
game graph.
Let 	 be a winning strategy (positional or not) of Player i (for i∈{0; 1}) in the

FPG starting from v. No matter what the opponent does, the 8rst revisit to a previously
visited vertex vl guarantees that the maximal color on the loop from vl to vl is winning
for Player i. Now forget what happened on the path from vl to vl, assume vl is visited
for the 8rst time, and let the FPG develop further. The next time some vertex v′l
(not necessarily equal to vl) is revisited, we also know that the maximal color on the
loop from v′l to v

′
l is winning for Player i. Again, forget what happened on the path

from v′l to v
′
l, assume v′l is visited for the 8rst time, and let the FPG develop further.

In this way, using the winning strategy for Player i, we construct an in8nite sequence
of loops and the corresponding in8nite sequence of maximal colors S = {ci}∞i=1 winning
for Player i. It follows that the maximal color hit in the in8nite game in8nitely often
is the maximum appearing in S in8nitely often. This also means that the winning sets
of the players in the in8nite and 8nite games coincide.
The following theorem makes the above argument formal. It also establishes the

converse, that positional winning strategies in in8nite parity games are winning in
8nite ones.

Theorem 6.1. A positional strategy 	 of Player i wins in an in&nite duration PG Gv
if and only if it wins in the corresponding FPG.

Proof. We will show that 	 wins the in8nite game if and only if the highest color
on every simple loop reachable from v in G	 is winning for Player i. The latter is
equivalent to 	 winning the 8nite game.
If G	 contains a loop reachable from v with a highest color losing for Player i, then

	 is losing: Player 1− i can go to this loop and stay in it forever.
Conversely, suppose G	 does not contain any loops with losing highest color reach-

able from v. We will prove that there is no in8nite path starting from v in G	 on which
the highest color appearing in8nitely often is losing for Player i. Assume, towards a
contradiction, that there is such a path p on which the highest color occurring in8nitely
often is c. There must be some vertex u of color c that appears in8nitely often on p.
But between any two such appearances of u on the path, all other vertices on some
simple loop containing u must appear. Among these vertices, at least one should have
a winning color higher than c, by assumption. This means that some winning color
higher than c appears in8nitely often on p, contradicting the assumption.

As a direct consequence, the memoryless determinacy of Theorem 5.1 holds also for
in8nite duration parity games.

Corollary 6.2. In every PG G, there are positional strategies 	0 of Player 0 and 	1
of Player 1 such that Player i wins by using 	i whenever a play starts in Wi(G), no
matter which strategy Player 1− i applies.
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7. Extension to mean payo* games

This section shows how the memoryless determinacy proof for parity games extends
to mean payo& games.

7.1. Finite and in&nite duration mean payo8 games

Mean payo8 games [3,7,16] are similar to parity games. Let V =V0 ∪V1, V0 ∩V1 = ∅,
E⊆V ×V (where, for each u∈V , there is some v with (u; v)∈E), and c :E→R.
De8ne the game graph �=�(V0; V1; E; c). Starting in some prede8ned vertex v0, the
two players move by selecting edges from their respective vertex sets in the same way
as in parity games. This yields an in8nite play (sequence of vertices) p= v0v1v2 : : :
Player 0 wants to maximize

�0(p) = lim inf
n→∞

1
n

n−1∑

i=0
c(vi; vi+1)

and Player 1 wants to minimize

�1(p) = lim sup
n→∞

1
n

n−1∑

i=0
c(vi; vi+1):

Analogously to the 8nite version of parity games, we de8ne &nite duration mean payo8
games (FMPGs). Like in FPGs, a play starts in the initial vertex v0 and ends as soon
as a loop is formed. The value �(p) of the play p= v0v1 · · · vm · · · vn, where vm= vn,
is the mean value of the edges on this loop:

�(p) =
1

n− m
n−1∑

i=m
c(vi; vi+1):

Player 0 wants to maximize this value and Player 1 wants to minimize it.
FMPGs are, like FPGs, 8nite, zero-sum, perfect information games, and are therefore

determined. Also like FPGs, FMPGs are a special case of such games, for which this
fact can be proved in an elementary way.

Proposition 7.1. For every FMPG starting in any vertex u, there is a value �(u) such
that Player 0 can ensure a gain of at least �(u), and Player 1 can ensure a loss of
at most �(u), independently of the opponent’s strategy.

Proof. Similar to the proof of Proposition 3.1, consider the 8nite tree of all possible
plays from u. Assign to each leaf the value of the play it represents. Let all internal
vertices corresponding to choices of Player 0 be MAX-vertices, and let the choices of
Player 1 be MIN-vertices. The root of the resulting MIN-MAX-tree can be straight-
forwardly evaluated in a bottom-up fashion, and its value is the value �(u) of the
game starting from u.

The following lemma, proved in [3], using only elementary means, shows that a
strategy in an FMPG G yields a strategy in the corresponding MPG �, guaranteeing
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the same value. Thus it is enough to show that there are optimal positional strategies
in FMPGs.

Lemma 7.2 (Ehrenfeucht-Mycielski [3]). A strategy 	 of Player i in an FMPG G
can be modi&ed to a strategy 	̃ in the corresponding MPG � such that the following
properties hold.
(1) If 	 secures the value � in G, then 	̃ secures � in �.
(2) If 	 is positional, then 	̃= 	 so 	̃ is also positional.

7.2. Main theorem for the decision version of &nite mean payo8 games

Consider the decision version of 8nite duration mean payo& games, denoted
FMPG(D), in which we are only interested in whether the value of a play is greater
than some threshold t, not in the actual value. The winning condition for Player 0
is either �(p)¿t or �(p)¿t. This allows us to de8ne winning sets similarly to the
case of 8nite duration parity games. Say that u∈W0(G) if Player 0 has a strategy that
ensures a value �(u)¿t, and u∈W1(G) otherwise.

As was observed in Sections 4 and 5, the proofs of Lemmas 4.1, 4.2, and of
Theorem 5.1 work without any modi8cations for a broader class of games satisfy-
ing the following.

Assumptions. (1) A play on a game graph starts in a vertex and stops as soon as a
loop is formed, and
(2) The winner is determined by the sequence of vertices on the loop, modulo cyclic

permutations.

These assumptions on the winning condition are suNcient to prove Theorem 5.1, and
Lemmas 4.1 and 4.2 upon which it depends, as can be readily veri8ed by inspecting
their proofs. It clearly holds for FMPG(D)s, where a sequence of vertices uniquely
determines a sequence of edges, because there are no multiple edges, and their average
cost determines the winner. Therefore, we obtain the following memoryless determinacy
result for the decision version of 8nite mean payo& games.

Theorem 7.3. In every FMPG(D), each player has a positional strategy that wins
from all vertices in the player’s winning set.

By Lemma 7.2, this result extends to the in8nite duration mean payo& games.

7.3. Ergodic partition theorem for mean payo8 games

In this section we reinforce Theorem 7.3 by proving that each vertex v in an FMPG
has a value, which both players can secure by means of positional strategies whenever
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Fig. 2. The ergodic partitions of G.

a play starts in v. Moreover, the same pair of strategies can be used independently of
the starting vertex. More formally:

Theorem 7.4 (Memoryless determinacy and ergodic partition). Let G be an FMPG
and {Ci}mi=1 be a partition (called ergodic) of its vertices into classes with the same
value xi, as given by Proposition 7.1. There are positional strategies 	0 and 	1 for
Player 0 and 1 with the following properties:

if the game starts from a vertex in Ci, then 	0 secures a gain ¿xi for Player 0,
and 	1 secures a loss 6xi for Player 1.

Moreover, Player 0 has no vertices with outgoing edges leading from Ci to Cj with
xi¡xj, and Player 1 has no vertices with outgoing edges leading from Ci to Cj with
xi¿xj.

Proof. By Proposition 7.1, there exist values x1¡x2¡ · · ·¡xm and a partition C1;
C2; : : : ; Cm such that for every starting vertex u∈Ci of an FMPG G both players ensure
for themselves (possibly by nonpositional strategies) the value xi. Now, for every value
xi solve two FMPG(D) problems (using Theorem 7.3), as shown in Fig. 2:
(1) 8nd the winning set W0 and corresponding strategy 	0 of Player 0 securing a gain

¿xi when a play starts in W0.
(2) 8nd the winning set W1 and corresponding strategy 	1 of Player 1 securing a loss

6xi when a play starts in W1.
Consider W0 ∩W1. In this (nonempty) set both Player 0 can secure a gain ¿xi by
means of 	0, and Player 1 can secure a loss 6xi by means of 	1. In other words,
W0 ∩W1 =Ci.
By Lemma 4.2, any play starting from W0 always stays in this set, when Player 0

uses 	0 (Player 1 has no edges out of it), and symmetrically for W1.
We repeat the argument above for all values x1; : : : ; xm getting winning positional

strategies 	i0; 	
i
1. Using the property from the preceding paragraph we merge all these

strategies into positional strategies 	0 and 	1 for Player 0 and Player 1 as stated in
the theorem. Simply de8ne 	0 as coinciding with 	i0 on the set of vertices V0 ∩Ci, and
similarly for 	1.

By Lemma 7.2, the same results on memoryless determinacy and ergodic partition
from Theorem 7.4, hold also for (in8nite duration) mean payo& games. Moreover, it is
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easy to see that these results hold (with the same proof) in the version of parity games
where Player 0 and 1 not only want to win with some even/odd color, but want to win
with highest possible even/odd color. This version of parity games is especially suitable
for solving by means of a randomized subexponential algorithm described in [1], as
well as by an iterative strategy improvement algorithm from [13].

8. Conclusions

We have presented a new uni8ed proof of the well-known memoryless determinacy
results for parity and mean payo& games on 8nite graphs. There are several previous
proofs, but we nonetheless think our proof is useful since it combines several nice
properties. It is simple and constructive, providing an easy introduction to the 8eld.
Relying only on elementary methods, it illustrates that proving the basic properties of
in8nite games does not need to attract external notions of limits and approximation.
The distinctive feature of our proof is that we 8rst establish memoryless determinacy
for the 8nite duration versions of the games and then extend it to in8nite duration. As
a consequence, we avoid cyclic, roundabout proofs, as in Ehrenfeucht–Mycielski [3],
thus answering positively their question whether one could avoid circularity proving
determinacy of in8nite and 8nite duration mean payo& games. Our proof indicates that
in this respect 8nite duration parity and mean payo& games are “more fundamental”,
directly implying memoryless determinacy for their in8nite duration counterparts. Fur-
thermore, by applying to both parity and mean payo& games, the proof stresses the
structural similarities between both games.
Can our proof be extended for more general classes of games including discounted

payo8 games and simple stochastic games [16]? Our current assumptions on the win-
ning condition (see Section 7.2) do not apply to these games. Discounted payo& games
can be formulated in a 8nite-duration version, but Lemmas 4.1 and 4.2 do not hold for
them. We do not know whether there is a 8nite-duration version of simple stochastic
games, and although some version of the lemmas hold in the in8nite version, it is
unclear whether this suNces for the proof. Nevertheless, we feel that the structures of
these games have relevant features in common with parity and mean payo& games.
It would be interesting to know whether memoryless determinacy can be proved uni-
formly for all four games, with our proof technique or another.
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