
On the size of good-for-games Rabin automata
and its link with the memory in Muller games
Antonio Casares !

LaBRI, Université de Bordeaux, France

Thomas Colcombet !

CNRS, IRIF, Université Paris Cité, France

Karoliina Lehtinen !

CNRS, Aix-Marseille Université, Université de Toulon, LIS, France

Abstract
In this paper, we look at good-for-games Rabin automata that recognise a Muller language (a
language that is entirely characterised by the set of letters that appear infinitely often in each word).
We establish that minimal such automata are exactly of the same size as the minimal memory
required for winning Muller games that have this language as their winning condition. We show
how to effectively construct such minimal automata. Finally, we establish that these automata can
be exponentially more succinct than equivalent deterministic ones, thus proving as a consequence
that chromatic memory for winning a Muller game can be exponentially larger than unconstrained
memory.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases Infinite duration games, Muller games, Rabin conditions, omega-regular
languages, memory in games, good-for-games automata

Funding Thomas Colcombet: ANR Delta and Duall

Acknowledgements We would like to thank Marthe Bonamy and Pierre Charbit for their help with
graph theory.

1 Introduction

Games. Games, as considered in this work, are played by two antagonistic players, called
the existential and universal players, who move a token around finite edge-coloured directed
graphs. When the token lands on a position belonging to one of the players, this player
moves it along an outgoing edge onto a new position. At the end of the day, the players
have constructed an infinite path, called a play, and the winner is determined based on some
language W of winning infinite sequences of colours, called the winning condition (we call W-
games the games which use the winning condition W). Solving such games consists of deciding
whether the existential player has a winning strategy, i.e. a way to guarantee, whatever
the moves of the opponent are, that the play will end up in the winning condition. Solving
infinite duration games is at the crux of many algorithms used in verification, synthesis,
and automata theory [9, 19, 38, 30]. Difficulties in solving them are both theoretical and
practical, and many questions pertaining to game resolution still remain unanswered.

Memory. Several parameters are relevant for solving a game: its size, of course, but also
its winning condition and the complexity of winning strategies. A measure of this complexity
is the memory used by a strategy. The simplest strategies are those that use no memory
(positional strategies): decisions depend exclusively on the current position, and not on the
past of the game. A strategy uses a finite amount of memory if the information that we
need to retain from the past can be summarized by a finite state machine that processes

ar
X

iv
:2

20
4.

11
33

3v
2 

 [
cs

.F
L

] 
 2

9 
A

pr
 2

02
2

mailto:antonio.casares-santos@labri.fr
https://orcid.org/0000-0002-6539-2020
mailto:thomas.colcombet@irif.fr
https://orcid.org/0000-0001-6529-6963
mailto:lehtinen@lis-lab.fr
https://orcid.org/0000-0003-1171-8790


2 On the size of good-for-games Rabin automata and the memory in Muller games

the sequence of moves played in the game. In this case, the amount of memory used by the
strategy is the number of states of this machine. Given a winning condition W, a fundamental
question is what is the minimal quantity m such that if the existential player wins a W-game,
there is a winning strategy using a memory of size m (we call m the memory requirements of
W). In addition to its size, a memory also has structure, which further elucidates the game
dynamics. Understanding both the size and the structure of memories for W is a crucial step
to design algorithms for solving W-games.

Question A: Give a structural description of the optimal memory in W-games.

Muller conditions. While there is a large zoo of winning conditions in the literature,
here we are interested in ω-regular ones (described by finite state automata over infinite
words), and, in particular, so called Muller conditions, for which the winner depends only
on the colours that are seen infinitely often in the play. Memory requirements for Muller
conditions have been studied in depth by Dziembowski, Jurdziński and Walukiewicz [15].
They provide a “formula” for computing the size of the minimal memory sufficient for winning
in all games with a given Muller winning condition, based on the Zielonka tree [43], which
describes the structure of a Muller condition. The Zielonka tree has also been used to
characterise the memory requirements of Muller conditions when randomised strategies are
allowed [21] and to provide minimal parity automata recognising a Muller condition [11].
This fundamental structure is also at the heart of our contribution.

Game reductions and good-for-gameness. When confronted with a W-game, a
standard solution is to reduce it to a game with a larger underlying graph, but a simpler
winning condition. The typical way to do this (but not the only one) is to perform the
composition of the game with a suitable automaton with another acceptance condition W′
that accepts the language W. The result is an W′-game which has as size the product of
the size of the original game and the size of the automaton. There is a subtlety here: not
all automata can be used for this operation. For a non-deterministic automaton, this is in
general incorrect, while using a deterministic automaton is always correct. So here, finding
a minimal deterministic automaton for a given language improves the complexity of game
resolution, and there is a large body of research in this direction (see [11, 26, 31] for Muller
conditions, [1, 10, 41, 42] for minimisation of automata, and [32, 39, 36, 37, 40, 34, 31, 14, 29]
for determinisation). However, some non-deterministic automata can also be used to perform
this reduction. These are called good-for-games automata (GFG) [20, 12].

Some languages are known to be recognised by good-for-games automata that are
exponentially more succinct than any equivalent deterministic automaton [27], and several
lines of research concerning good-for-games automata are under study (how to decide ‘good-for-
gameness’ [3, 27, 4, 6], how expressive is ‘good-for-gameness’ for pushdown automata [28, 18]
what are good-for-games quantitative automata [5], etc). However, one key question that has
not yet been addressed concerning good-for-games automata is how to design techniques as
general as possible for building them. To the best of our knowledge, the only existing result
in this direction is a polynomial-time algorithm to minimise co-Büchi GFG automata [1].

Question B: Provide general tools for constructing good-for-games automata.

In this paper, in the context of Muller conditions, we relate these two lines of study, and
in particular give partial answers to the general questions A and B. Indeed, we show that
the memory needed to win in L-games for a Muller language L coincides with the size of
minimal GFG Rabin automata for L, and, in this sense, we give a structural description
of the memory for Muller games, thus giving a refined answer to question A in this case.



A. Casares, T. Colcombet and K. Lehtinen 3

We also provide an optimal way to construct these minimal good-for-games automata, thus
answering question B in the context of Muller conditions.

Contributions.

1. We show that for all ω-regular languages L, the size (number of states) of a good-for-games
Rabin-automaton for L is an upper bound on the memory that the existential player
needs to implement winning strategies for L-games. This inequality is straightforward,
but had not been stated explicitly prior to this work.

2. We establish that when L is a Muller language, the following two quantities are equal:
the least size of a good-for-games Rabin-automaton for L and the least memory required
for the existential player in all L-games in which she wins. Furthermore, we provide
an efficient way to construct such a minimal automaton from the Zielonka tree of the
condition [43]. This automaton can be seen, in a certain way, as a quotient of the minimal
deterministic parity automaton for this language, as described in [11].
Let us note that the least amount of memory needed to win a Muller game was described
precisely by Dziembowski, Jurdziński and Walukiewicz [15]. We show here that the optimal
strategy described in [15] can be implemented in a good-for-games Rabin-automaton. In
combination with Item 1, this provides another proof of the upper bound in [15].

3. Finally, we provide a family of Muller languages such that the smallest GFG Rabin
automata recognising it are of linear size in the number of letters, while equivalent de-
terministic Rabin automata grow exponentially. Note that the least size of a deterministic
Rabin automaton for a Muller language L is known to coincide with the chromatic
memory needed for winning L-games [10] (i.e. a memory that is updated based only on
the letters seen, independently of the position in the game). The question of equivalence
between chromatic memory and memory was asked by Kopcyński [23, 24], and an ar-
bitrary difference between these two notions was established only recently by Casares
[10]. Our new result, which is incomparable, shows that the chromatic memory can grow
exponentially in the size of the alphabet, even when the general memory remains linear.

Together these three points develop techniques to solve Muller games in an optimal way by
means of good-for-games Rabin automata reductions. The last point shows that an exponen-
tial gain can be achieved compared to using classical deterministic Rabin automata. Overall,
our contribution supplements our understanding of Muller languages and highlights the—so
far unexplored—fundamental role of GFG automata in the equation. Indeed, up to now
GFG automata had mainly been studied for their succinctness, expressivity or algorithmic
properties. Here, we shed light on a novel dimension of this automata class.

Related work. There is vast amount of literature on the memory requirements of
different games. The first results in this direction where the proofs of the positionality of
parity conditions and half-positionality of Rabin conditions [16, 22] and the finite-memory
determinacy of Muller games [19]. The exact memory requirements of Muller conditions
where characterised in [15]. In his PhD Thesis [23, 24], Kopczyński characterises several
classes of conditions that are half-positional, introduces the concept of chromatic memories
(memories that are updated based only on colours seen) and provides an algorithm to decide
the chromatic memory requirements of a winning condition. Conditions that are positional
for both players over all graphs where characterised in [13] and those that are positional over
finite graphs in [17]. More recently, these two results have been generalized to finite-memory
conditions [8, 7]. The memory requirements have been proved to be different to the chromatic



4 On the size of good-for-games Rabin automata and the memory in Muller games

memory requirements in general [10], but conditions that are finite-memory determined are
also chromatic-finite-memory determined [25].

Structure of this document. In Section 2, we describe the classical definitions related
to our work such as games, automata and good-for-gamesness. In Section 3, we show why
good-for-games Rabin automaton can be used as a memory structure for the existential
player, the optimality of the construction for Muller conditions, and how to construct the
least such automaton. In Section 4, we establish that this construction can be exponentially
more succinct than deterministic Rabin automata. Section 5 concludes the paper.

2 Definitions

Notations. |A| denotes the cardinality of a set A, P(A) its power set and P+(A) = P(A)\{∅}.
For a finite non-empty alphabet Σ, we write Σ∗ and Σω for the sets of finite and infinite
words over Σ, respectively. The empty word is denoted by ε. Given w = w0w1w2 · · · ∈ Σω,
we denote Inf (w) ⊆ Σ the set of letters that appear infinitely often in w. We let w[i..j] be
the finite word wiwi+1...wj if i ≤ j, and ε if j < i.

We extend maps σ : A→ B to A∗ and Aω component-wise and we denote these extensions
by σ whenever no confusion arises. For a positive rational number q ∈ Q we denote by bqc
the greatest integer n ∈ N such that n ≤ q.

2.1 Games and their memory

Games. We consider turn-based infinite duration games played between the existential
and the universal player (referred to as Exist and Univ) over a directed graph. Formally, a
Γ-coloured game is a tuple G = (V = VE ] VA, E, x0,W), which consists of a set of vertices
V partitioned into Exist’s positions VE and Univ’s ones, VA; a set of transitions (also called
edges or moves) E ⊆ V × (Γ ∪ {ε})× V ; an initial vertex x0 ∈ V and a subset W ⊆ Γω of
winning sequences. We make the assumptions that there is at least one move from every
position and that no cycle is labelled exclusively by ε. We will denote by γ : E → Γ ∪ {ε}
the function that assigns to each edge its colour. We write Out(x) for the set of outgoing
moves from x, that is, Out(x) = {e ∈ E : e = (x, c, x′) for some x′ ∈ V, c ∈ Γ ∪ {ε}}. If Γ is
a game using the winning condition W we call it a W-game.

Each player moves a pebble along an outgoing edge whenever it lands on a position
belonging to that player, forming an infinite path π ∈ Eω starting in x0 called a play.

We denote γ(π) sequence of colours labelling π omitting the ε labels (we remark that
γ(π) ∈ Γω, since there are no cycles entirely labelled by ε). The play is winning for the
existential player if γ(π) ∈ W. A partial play is a finite path π ∈ E∗ in G starting in x0.
A strategy for the existential player is a function σ : E∗ → E such that if a partial play π
ends in a position x ∈ VE , then σ(π) ∈ Out(x). We say that a play π is consistent with the
strategy σ if for every partial play π′ that is a prefix of π ending in a position controlled by
Exist, the next edge in π is σ(π′). The strategy σ is winning if every play consistent with σ
is winning for the existential player. We say that the game G is won by the existential player
if that player has a winning strategy in G. A strategy is positional if it can be represented by
a function σ : VE → E (that is, the choice of the next transition only depends on the current
position, and not on the history of the path).

Winning conditions. We fix an alphabet Γ.



A. Casares, T. Colcombet and K. Lehtinen 5

Muller. A Muller condition over the alphabet Γ is given by a family F ⊆ P+(Γ). A word
w ∈ Γω satisfies the Muller condition F if Inf (w) ∈ F . The language of the Muller
condition LF ⊆ Γω contains the ω-words that satisfy F .

Rabin. A Rabin condition over the alphabet Γ is represented by a family of Rabin pairs R =
{(G1, R1), . . . , (Gr, Rr)}, where Gi, Ri ⊆ Γ and Gi ∩ Ri = ∅. The Rabin pair j is said
to be green in c if c ∈ Gj , to be red in c if c ∈ Rj , or to be orange in c if none of the
previous occur. A word w ∈ Γω satisfies the Rabin condition R if Inf (w) ∩Gj 6= ∅ and
Inf (w) ∩Rj = ∅ for some index j ∈ {1, . . . , r}. Said differently, there is a Rabin pair j
which is red in finitely many letters from w, and green for infinitely many letters of w.
The language of the Rabin condition LR ⊆ Γω contains the ω-words that satisfy R.

Parity. To define a parity condition we suppose that Γ ⊆ N. A word w ∈ Γω satisfies the
parity condition if the maximum in Inf (w) is even. The language of the parity condition
contains the ω-words that satisfy it.

We say that a language L ⊆ Γω is a Muller language if it is the language of some Muller
condition F . Equivalently, L is a Muller language if it can be described as a boolean combin-
ation of atomic propositions of the form “the letter ‘a’ appears infinitely often” and their
negations. Note that languages of Rabin conditions are languages of Muller conditions, and
that languages of parity conditions are languages of Rabin conditions, but the converses do
not hold. Given a Muller condition F ⊆ P+(Γ) and a subset C ⊆ Γ, we define the restriction
of F to C as the Muller condition over C given by F|C = {A ⊆ C : A ∈ F}.

Memory structures. A memory structure for the game G of moves E is a tuple M =
(M,m0, µ, σ) where M is a set of memory states, m0 ∈ M is an initial memory state,
µ : M × E →M is an update function, and σ : M × VE → E maps each position x owned
by the existential player to a move from x. The size ofM is the cardinal of M . We extend
the function µ to paths by induction: µ(m, ε) = m, and µ(m,πe) = µ(µ(m,π), e) for a
path π · e ∈ E∗. The memory structure M induces a strategy σM : E∗ → VE given by
σM(π) = σ(µ(m0, π),Last(π)), where Last(π) is the last position of the partial play π.

We say thatM is a chromatic memory structure if there is a function µc : M×(Γ∪{ε})→
M such that µc(m, ε) = m for every m ∈M and µ(m, e) = µc(m, γ(e)) for all edges e ∈ E.

The memory requirements of a winning condition W are defined as the least integer n
such that if G is an W-game won by the existential player, then she has a winning strategy
given by a memory of size at most n. We denote this quantity by mem(W).

We say that a winning condition W is exist-positional (also called half-positional) if
mem(W) = 1. Equivalently, W is exist-positional if Exist has a winning positional strategy
whenever Exist has a winning strategy at all.

2.2 Automata and good-for-gameness
Automata. A non-deterministic automaton (or simply an automaton)A = (Q,Σ, Q0,∆,Γ,W)
consists of a finite set of states Q, an input alphabet Σ, a non-empty set of initial states
Q0 ⊆ Q, a transition relation ∆ ⊆ Q×Σ×Γ×Q and an acceptance conditionW ⊆ Γω. We will
write δ : Q× Σ→ P(Q) for the function δ(q, a) = {q′ ∈ Q : (q, a, c, q′) ∈ ∆ for some c ∈ Γ}.
The size of the automaton, |A|, is the number of its states. A run of the automaton over a
word a0a1a2 · · · ∈ Σω is a sequence of transitions of the form:

ρ = (q0, a0, c0, q1)(q1, a1, c1, q2) · · · ∈ ∆ω, such that q0 ∈ Q0 is an initial state.

A run is accepting if c0c1c2 · · · ∈W. If an accepting run over a word w ∈ Σω exists, the
automaton accepts w. The set of accepted words is the language accepted by the automaton,



6 On the size of good-for-games Rabin automata and the memory in Muller games

written L(A). The automaton is deterministic if Q0 is a singleton and ∆ is such that for all
states q and letter a ∈ Σ, there exists exactly one transition of the form (q, a, c, q′). In this
case, for all words w ∈ Σω there exists one and exactly one run of the automaton over w.

An automaton using an acceptance condition W (resp. an acceptance condition of type
X ∈ {Muller, Rabin, parity}) is called an W-automaton (resp. X-automaton).

Good-for-gameness. The automaton A is good-for-games (GFG) if there is a resolver for
it, consisting of a choice of an initial state r0 ∈ Q0 and a function r : Σ∗ × Σ→ ∆ such that
for all words w ∈ L(A), the run t0t1... ∈ ∆ω, called the run induced by r and defined by
ti = r(w[0..i− 1], w[i]), starts in r0 and is an accepting run over w. In other words, r should
be able to construct an accepting run in A letter-by-letter with only the knowledge of the
word so far, for all words in L(A).

2.3 The Zielonka tree of a Muller condition
A tree T = (N,v) is a nonempty finite set of nodes N equipped with an order relation v
called the ancestor relation (x is an ancestor of y if xv y), such that (1) there is a minimal
node for v, called the root, and (2) the ancestors of an element are totally ordered by v. The
converse relation is the descendant relation. Maximal nodes are called leaves, and the set
of leaves of T is denoted by Leaves(T ). Given a node n of a tree T , the subtree of T rooted
at n is the tree T restricted to the nodes that have n as ancestor. A node n′ is a child of n if
it is a minimal strict descendant of it. The set of children of n is written ChildrenT (n). The
height of a tree T is the maximal length of a chain for the ancestor relation. An A-labelled
tree is a tree T together with a labelling function ν : N → A.

I Definition 1 ([43]). Let F ⊆ P+(Γ) be a Muller condition. A Zielonka tree for F , denoted
ZF = (N,v, ν : N → P+(Γ)) is a P+(Γ)-labelled tree with nodes partitioned into round
nodes and square nodes, N = N© ]N� such that:

The root is labelled Γ.
If a node is labelled X ⊆ Γ, with X ∈ F , then it is a round node, and its children are
labelled exactly with the maximal subsets Y ⊆ X such that Y 6∈ F .
If a node is labelled X ⊆ Γ, with X 6∈ F , then it is a square node, and its children are
labelled exactly with the maximal subsets Y ⊆ X such that Y ∈ F .

We remark that if n is a node of ZF , then the subtree of ZF rooted at n is a Zielonka
tree for F|ν(n), (the restriction of F to the label of n).

We equip trees with an order in order to navigate in them. An ordered Zielonka tree is a
Zielonka tree for which the set of children of each node is equipped with a total order(“from
left to right”). The function Nextn maps each child of n to its successor for this order, in a
cyclic way. For each node n ∈ N and each leaf l below n we define the set Jumpn(l) containing
a leaf l′ if there are two children n1, n2 of n such that n1 v l, n2 v l′ and n2 = Nextn(n1)
(we remark that n1 = n2 if n has only one child). For n = l we define Jumpn(l) = {l}. That
is, l′ ∈ Jumpn(l) if we can reach l′ by the following procedure: we start at l, we go up the
tree until finding the node n, we change to the next branch below n (in a cyclic way) and we
re-descend to l′. From now on, we will suppose that all Zielonka trees are ordered, without
explicitly mentionning it.

I Example 2. We will use the following Muller condition as a running example throughout
the paper. Let Γ = {a, b, c} and let F be the Muller condition defined by:

F = {{a, b}, {a, c}, {b}}.



A. Casares, T. Colcombet and K. Lehtinen 7

In Figure 1 we show the Zielonka tree for F . We use Greek letters to name the nodes of
the tree, N . We have that Jumpα(δ) = {ε, ζ} and Jumpγ(ζ) = {ε}. The numbering of the
branches will be used in Section 3.2.

a, b, c

a, b a, c

a a c

α

β γ

δ ε ζ

1 1 2

Figure 1 Zielonka tree ZF for F = {{a, b}, {a, c}, {b}}.

I Definition 3 ([15]). Let T be a tree with nodes partitioned into round and square nodes,
its memory for the existential player (memory for short), denoted mem-tree(T ), is defined
inductively as:

1 if T has exactly one node.
The sum of the memories of the subtrees of T rooted at the children of the root, if the
root is round.
The maximum of the memories of the subtrees of T rooted at the children of the root, if
the root is square.

For instance, for the Zielonka tree from Example 2, mem-tree(ZF ) = 2.

The key result justifying the introduction of this notion is that it characterises precisely
the quantity of memory required for winning an F-game, as shown by the next proposition.

I Proposition 4 ([15]). For all Muller conditions F , mem(F) = mem-tree(ZF ).

3 GFG Rabin automata correspond to memory structures for Muller
games

In this section, we prove the following result:

I Theorem 5. Let L be a Muller language. The memory requirements for L coincide with
the size of a minimal GFG Rabin automaton recognising L.

In Section 3.1 we show the first direction: the size of a GFG Rabin automaton for a
Muller language L is always an upper bound on the memory required by the existential
player on L-games. In Section 3.2, we show how to construct a GFG Rabin automaton from
the Zielonka tree of a Muller condition of size mem-tree(ZL) = mem(L), completing the
equivalence. Moreover, we can build this minimal GFG Rabin automaton in polynomial time
given the Zielonka tree of the Muller condition.

3.1 A GFG Rabin automaton induces a memory structure for any game
In this section, we establish Corollary 10 which states that the size of a GFG Rabin
automaton A accepting a Muller language L is an upper bound on the memory required



8 On the size of good-for-games Rabin automata and the memory in Muller games

for winning all L-games. Concretely, given an L-game won by the existential player, we
are able to construct a memory structure inducing a winning strategy based on A. The
argument is standard: we construct the product game of A and the L-game, which is a Rabin
game in which the existential player enjoys a positional winning strategy; then we use the
A-component of this product as a memory structure for a strategy in the original L-game.

I Lemma 6. Let A = (Q,Σ, Q0,∆,Γ,W) be a GFG W-automaton recognising a language
L ⊆ Σω, with W exist-positional. Then if G is an L-game won by Exist, she can win it using
a strategy given by a memory structureM = (Q, r0, µ, σ).

Proof. Let G = (V = VE ] VA, E, x0, L) and A = (Q,Σ, r0,∆,Γ,W), where r0 ∈ Q0 is the
initial state chosen by some resolver. We consider the product W-game G′ in which:

Positions are elements in V ′ = (V ×Q) ∪ (V × Γ×P(Q)). The initial position is (x0, r0).
Exist’s positions are V ′E = (VE ×Q) ∪ (V × Γ× P(Q)).
There is an ε-coloured edge from (x, q) to (x′, c, δ(q, c)) if (x, c, x′) ∈ E, c 6= ε, and to
(x′, q) if (x, ε, x′) ∈ E.
There is a c-labelled edge from (x, c, S) to (x, q′) for all q′ ∈ S ⊆ Q.
The winning condition is W.

In short, in this game the players still negotiate a play in G, but in addition, the existential
player must simultaneously build an accepting run on the labelling of this play in A.

If A is GFG then whenever the existential player wins in G, she also wins in G′ [20,
Theorem 3] by playing a winning strategy on the G component of G′ and using the resolver
for A to choose the successor state in the A component.

This strategy is not necessarily positional. However, since W is exist-positional, the
existential player also has a positional strategy s : V ′E → E′. We can now build a memory
structureMs = (Q, r0, µ, σ) that projects the strategy s onto G (and updates itself with the
projection of s onto A):

µ(q, e) = q if e is an ε-coloured move of G and
µ(q, (x, c, x′)) = q′ where q′ = s(x′, c, δ(q, c)) otherwise;
σ(q, x) = s(x, q).

Since s is a winning strategy in G′, its projection onto G is a strategy that only agrees
with plays with labels in L(A), that is, winning plays. J

I Remark 7. Note that there is a slight subtlety here: the resolver, which induces a winning
strategy in the product game, does not need to be positional. In fact, it might require
exponential memory [27, Theorem 1]. Yet, for each L-game, a memory based on A suffices.

I Lemma 8 ([22, 43]). Rabin conditions are exist-positional.

As a direct consequence we obtain the following Proposition.

I Proposition 9. Let L be a Muller language accepted by a GFG Rabin automaton A. Then,
in every L-game G won by the existential player, she can win using a strategy given by a
memory structure of size |A|.

I Corollary 10. If A is a GFG Rabin automaton accepting a Muller language L, then
mem(L) 6 |A|.



A. Casares, T. Colcombet and K. Lehtinen 9

3.2 An optimal construction of a GFG Rabin automaton
So far, we have seen that given a GFG Rabin automaton, it can serve as a memory structure
for the games of which it accepts the winning condition. In this section we do the converse:
we build a minimal GFG Rabin automaton for a Muller language L of the same size as the
minimal memory required to win in L-games.

3.2.1 The construction
I Proposition 11. Let F ⊆ P+(Γ) be a Muller condition. There exists a GFG Rabin
automaton recognising LF of size mem(F).

To prove Propositon 11, we build a GFG Rabin automaton RF = (Q,Γ, q0,∆,Γ′, R) for
LF based on the Zielonka tree ZF , as illustrated in Figure 2. We use a mapping from the
leaves of ZF to the states of the automaton that guarantees that two leaves of which the
last common ancestor is a round node cannot map to the same state. The number of states
required to satisfy this condition (? below) coincides with mem-tree(ZF ). Then, for each
leaf of ZF and letter c ∈ Γ, we identify its last ancestor n in ZF containing c, and, using
the Jumpn function (defined in Section 2.3), pick a leaf below the next child of n. We add a
c-transition with label n between the states mapped to from these leaves. This way, we can
identify a run in the automaton with a promenade through the nodes of the Zielonka tree.
If during this promenade a unique minimal node (for v) is visited infinitely often, it is not
difficult to see that the sequence of input colours belongs to F if and only if the label of this
minimal node is an accepting set (it is a round node). We devise a Rabin condition over the
set of nodes of the Zielonka tree accepting exactly these sequences of nodes.

We now describe the construction of the automaton RF = (Q,Γ, q0,∆, N,R) formally,
starting from the Zielonka tree ZF = (N,v, ν : N → P+(Γ)), and then proceed to prove its
correctness.

States. First, we set Q = {1, 2, . . . ,mem-tree(ZF )} and we label the leaves of ZF by a
mapping η : Leaves(ZF )→ {1, 2, . . . ,mem-tree(ZF )} verifying the property:

If n ∈ ZF is a round node with children n1 6= n2, for any pair
of leaves l1 and l2 below n1 and n2, respectively, η(l1) 6= η(l2). (?)

I Lemma 12. For every Zielonka tree ZF there is a mapping verifying Property ? of the
form η : Leaves(ZF )→ {1, 2, . . . ,mem-tree(ZF )} .

Proof. We prove it by induction in the height of ZF . Let n1, . . . , nk be the children of
the root of ZF . We write Fi to denote the Muller condition restricted to ν(ni) and ηi :
Leaves(ZFi)→ {1, 2, . . . ,mem-tree(ZFi)} be a labelling verifying Property ?, for 1 ≤ i ≤ k.
We distinguish two cases according to the shape of the root.

If the root of ZF is a square node (Γ /∈ F), then the mapping η(l) = ηi(l) if the leaf l
belongs to the subtree ZFi

verifies Property ?.
If the root of ZF is a round node (Γ ∈ F), then mem-tree(ZF ) =

∑k
i=1 mem-tree(ZFi

),
and we can partition {1, 2, . . . ,mem-tree(ZF )} into disjoint sets C1, . . . , Ck of size |Ci| =
mem-tree(ZFi

). We write σi for a bijection from {1, . . . ,mem-tree(ZFi
)} to Ci. Then, the

mapping η(l) = σi(ηi(l)), if the leaf l belongs to the subtree ZFi verifies Property ?. J

We suppose that the image of the leftmost leaf under η is 1 and choose the initial state
q0 to be 1. In Example 2, the labelling η(δ) = η(ε) = 1, η(ζ) = 2 verifies Property ?.



10 On the size of good-for-games Rabin automata and the memory in Muller games

Transitions. For each leaf l ∈ Leaves(ZF ) and each letter c ∈ Γ, we define a c-transition
from η(l), with an output label from Γ′ = N , as follows: let n be the maximal ancestor of
l that contains the letter c in its label and let l′ be the leftmost leaf in Jumpn(l)1. Then,
(η(l), c, n, η(l′)) ∈ ∆. That is, if we are in a state η(l), when we read the letter c ∈ Γ we can
choose to go up in the Zielonka tree from l until visiting a node n with c in its label. We
produce the letter n as output, then we change to the next child of n (in a cyclic way) and
we descend to the leftmost leaf below it. The destination is the η-label of this leaf2.

Following the above definition, we obtain a mapping from transitions in the automaton
to Leaves(ZF )× Γ×N × Leaves(ZF ). We say that l and l′ are the leaves corresponding to
the transition (q, a, n, q′) if this transition is sent to (l, a, n, l′) by this mapping. The node n
produced as output is the last common ancestor of l and l′. The automaton obtained in this
way might present multiple transitions labelled by the same input letter between two states.
We will show in Proposition 18 that duplicated transitions can be removed.

Acceptance condition. We define a Rabin condition over the alphabet Γ′ = N , that is the
set of nodes of the Zielonka tree. We define a Rabin pair for each round node of ZF (that is,
nodes whose label is an accepting set of letters for F): R = {(Gn, Rn)}n∈N© . Let n be a
round node and n′ be a general node of ZF :{

n′ ∈ Gn if n′ = n,

n′ ∈ Rn if n′ 6= n and n is not an ancestor of n′.

That is, for the letter n′, the Rabin pairs corresponding to round ancestors of n′ are not
affected by it (they are “orange in n′”). If this node n′ is round, then it belongs to Gn′ (this
pair is “green in n′”). For any other node n ∈ N©, we have n′ ∈ Rn (the pair is “red in n′”).
I Remark 13. The construction presented depends on the order of the nodes of the Zielonka
tree. However, the size of the resulting automaton is independent of this order.

I Example 14. Let F = {{a, b}, {a, c}, {b}} be the Muller condition from Example 2. The
labelling of the leaves of the Zielonka tree given by η(δ) = η(ε) = 1, η(ζ) = 2 verifies
Property ?. Figure 2 shows the GFG Rabin automaton obtained by following this procedure.

1 2a : δ

b : β c : α

a : ε
b : α

c : γ

a : γ
b : α

c : ζ

Figure 2 The GFG Rabin automaton obtained from the Zielonka tree ZF .

The Rabin condition of this automaton is given by two Rabin pairs (corresponding to the
round nodes of the Zielonka tree in Figure 1):

Gβ = {β}, Rβ = {α, γ, ε, ζ},
Gγ = {γ}, Rγ = {α, β, δ}.

1 We could add all transitions {(η(l), n, η(l′)) : l′ ∈ Jumpn(l)} to ∆. However, a resolver for the GFG
automaton just needs to make use of one of these transitions, so in order to simplify the automaton we
make an arbitrary choice (the leftmost leaf).

2 We remark that l′ is the target of the transition of the Zielonka tree parity automaton from l reading
letter ‘c’ [11]. See also Section 3.2.3.



A. Casares, T. Colcombet and K. Lehtinen 11

3.2.2 Proof of correctness
I Lemma 15. Let w = n0n1n2 · · · ∈ Nω be an infinite sequence of nodes of the Zielonka
tree. The word w satisfies the Rabin condition defined above if and only if there is a unique
minimal node for the ancestor relation in Inf (w) and this minimal node is round (recall that
the root is the minimal element in ZF).

Proof. Suppose that there is a unique minimal node in Inf (w), called n, and that n is round.
We claim that w is accepted by the Rabin pair (Gn, Rn). It is clear that Inf (w) ∩Gn 6= ∅,
because n ∈ Gn. It suffices to show that Inf (w) ∩Rn = ∅: By minimality, any other node
n′ ∈ Inf (w) is a descendant of n (equivalently, n is an ancestor of n′), so n′ /∈ Rn.

Conversely, suppose that w ∈ Nω satisfies the Rabin condition. Then, there is some
round node n ∈ N© such that Inf (w) ∩Gn 6= ∅ and Inf (w) ∩Rn = ∅. Since Gn = {n}, we
deduce that n ∈ Inf (w). Moreover, as Inf (w) ∩Rn = ∅, all nodes in Inf (w) are descendants
of n. We conclude that n is the unique minimal node in Inf (w), and it is round. J

I Lemma 16. The automaton RF recognises the language LF and is good-for-games.

Proof. L(RF ) ⊆ LF : Let u ∈ L(RF ) and let w ∈ Nω be the sequence of nodes produced
as output of an accepting run over u in RF . By Lemma 15, there is a unique minimal
node n for v appearing infinitely often in w and moreover n is round. Let n1, . . . , nk be
an enumeration of the children of n (from left to right), with labels ν(ni) ⊆ Γ (we remark
that ν(ni) /∈ F , for 1 ≤ i ≤ k). We will prove that Inf (u) ⊆ ν(n) and Inf (u) * ν(ni) for
1 ≤ i ≤ k. By definition of the Zielonka tree, as n is round, this implies that Inf (u) ∈ F .

Since eventually all nodes produced as output are descendants of n (by minimality),
Inf (u) must be contained in ν(n) (by definition of the transitions of RF ).

We suppose, towards a contradiction, that Inf (u) ⊆ ν(nj) for some 1 ≤ j ≤ k. Let
Qi = {η(l) : l is a leaf below ni} be the set of states corresponding to leaves under ni, for
1 ≤ i ≤ k. We can suppose that the leaves corresponding to transitions of an accepting run
over u are all below n, and therefore, transitions of such a run only visit states in

⋃k
i=1Qi.

Indeed, eventually this is going to be the case, because if some of the leaves l, l′ corresponding
to a transition (q, a, n′, q′) are not below n, then n′ would not be a descendant of n (since
n′ is the least common ancestor of l and l′). Also, by Property ?, we have Qi ∩ Qj = ∅,
for all i 6= j. By definition of the transitions of RF , if c ∈ Γ is a colour in ν(n) but not in
ν(ni), all transitions from some state in Qi reading the colour c go to Qi+1, for 1 ≤ i ≤ k− 1
(and to Q1 if i = k). Also, if c ∈ ν(ni), transitions from states in Qi reading c stay in Qi.
We deduce that a run over u will eventually only visit states in Qj , for some j such that
Inf (u) ⊆ ν(nj). However, the only transitions from Qj that would produce n as output are
those corresponding to a colour c /∈ ν(nj), so the node n is not produced infinitely often, a
contradiction.
LF ⊆ L(RF ) and good-for-gameness: We will describe a strategy for a resolver in RF

using as memory the set of leaves of the Zielonka tree3. It will verify at every step that if the
memory is on the leaf l, then RF is on the state η(l). The initial state of the memory is the
leftmost leaf of ZF . If we are on the memory state l and the letter c ∈ Γ is read, we take the
transition (η(l), c, n, η(l′)) ∈ ∆, where n is the maximal ancestor of l such that c ∈ ν(n) and
l′ is the leftmost leaf in Jumpn(l); the memory state is updated to l′. Let us suppose that
a word u ∈ LF is given as input to the automaton. We will see that the run produced by

3 This strategy is given by the (deterministic) Zielonka tree parity automaton PF . It suffices to note that
there is a morphism from PF to RF preserving all edges and the acceptance of loops.



12 On the size of good-for-games Rabin automata and the memory in Muller games

this strategy is accepting. We can suppose that the only colours appearing in u are those of
Inf (u). Let n be the leftmost v-maximal node such that Inf (u) ⊆ ν(n). Since Inf (u) ∈ F ,
n is a round node. We will prove that the run produced by the resolver above only produces
nodes that are descendants of n (including n) infinitely often and that it produces n infinitely
often and is therefore accepting. Let n1, . . . , nk be the children of n from left to right, and
let L1, . . . , Lk be the (disjoint) sets of leaves below them, respectively. By the definition of
the transitions and the strategy, the memory will eventually only consider leaves in

⋃k
i=1 Li,

and will produced as output nodes that are descendants of n (including n itself). Also, each
time that the memory is in some state in Li and a colour not in ν(ni) is given, a transition
leading to some state in η(Li+1) (η(L1) if i = k) producing the node n as output is taken.
Since Inf (u) is not contained in ν(ni) for 1 ≤ i ≤ k (by the maximality assumption), this
occurs infinitely often. J

I Remark 17. We have shown that given as input the Zielonka tree of a Muller condition F
we can build in polynomial time a minimal GFG Rabin automaton for LF . On the other
hand, with the same input, it is NP-complete to decide whether there is a deterministic Rabin
automaton of size k recognising LF [10, Theorem 31]. Therefore, unless P = NP, there are
Muller languages for which minimal deterministic Rabin automata are strictly greater than
minimal GFG Rabin automata. We will explicitly show some of these languages in Section 4.

3.2.3 Relation with the Zielonka-tree parity automaton

The Zielonka tree has been previously used to provide a minimal deterministic parity
automaton for a Muller condition [11, 33]. The automata states are the leaves of the Zielonka
tree, and the transition from a leaf l reading colour c goes to the leftmost leave in Jumpn(l),
where n is the last ancestor of l containing colour c. For example, Figure 3 shows a parity
automaton recognising the Muller condition F = {{a, b}, {a, c}, {b}} from Example 2.

δ, 1 ε, 1 ζ, 2
a : 0

b : 1

c : 2
a : 0

b : 2

c : 1

a : 1

b : 2

c : 0

Figure 3 Parity automaton PF obtained from the Zielonka tree from Figure 1.

This minimal parity automaton PF is closely related to the GFG Rabin automaton RF
presented in Section 3.2. More precisely, the automaton RF can be regarded as a quotient of
PF given by the numbering η : Leaves(ZF )→ {1, . . . ,mem-tree(ZF )}. That is, to obtain RF
we merge the states η−1(i) for 1 ≤ i ≤ mem-tree(ZF ) and we keep all transitions. Moreover,
the strategy for a resolver for RF as presented in the proof of Lemma 16 is exactly given by
the deterministic automaton PF . However, we note that in general a parity condition is not
sufficient in RF to accept LF and we need to replace it by a Rabin one.

We observe that the GFG Rabin automaton from Figure 2 is obtained as a quotient of
the deterministic parity automaton in Figure 3.



A. Casares, T. Colcombet and K. Lehtinen 13

3.2.4 Simplifications and optimisations
Given an automaton A = (Q,Σ, Q0,∆,Γ,W) we say that it has duplicated edges if there are
some pair of states q, q′ ∈ Q and two different transitions between them labelled with the
same input letter: (q, a, α, q′), (q, a, β, q′) ∈ ∆.

As remarked previously, the construction we have presented provides an automaton
potentially having duplicated edges, which can be seen as an undesirable property (even if
some automata models such as the HOA format [2] allow them). We show next that we can
always derive an equivalent automaton without duplicated edges. Intuitively, in the Rabin
case, if we want to merge two transitions having as output letters α and β, we add a fresh
letter (αβ) to label the new transition. For each Rabin pair, this new letter will simulate the
best of either α or β depending upon the situation.

I Proposition 18 (Simplification of automata). Let A be a Muller (resp. Rabin) automaton
presenting duplicated edges. There exists an equivalent Muller (resp. Rabin) automaton A′
on the same set of states without duplicated edges. Moreover, if A is GFG, A′ can be chosen
GFG. In the Rabin case, the number of Rabin pairs is also preserved.

Proof. For the Rabin case, let A′ be an automaton that is otherwise as A except that instead
of the transitions ∆ of A it only has one a-transition q a:x−−→ q′ ∈ ∆′ (with a fresh colour x per
transition) per state-pair q, q′ and letter a ∈ Σ. That is, ∆′ = {(q, a, xj , q′) : (q, a, y, q′) ∈
∆ for some y}. The new Rabin condition {(G′1, R′1), . . . , (G′r, R′r)} is defined as follows. For
each transition q a:x−−→ q′:

x ∈ G′i if q
a:y−−→ q′ ∈ ∆ for some y ∈ Gi (there is a green transition for the ith pair)

x ∈ R′i if for all q
a:y−−→ q′ ∈ ∆, y ∈ Ri (there is no green or orange transition for the ith

pair).

We claim that L(A′) = L(A). Indeed, if u ∈ L(A), as witnessed by some run ρ and a
Rabin pair (Gi, Ri), then the corresponding run ρ′ in A′ over u is also accepting with Rabin
pair (G′i, R′i): the transitions of Inf (ρ) ∩Gi induce transitions of Inf (ρ′) ∩G′i and the fact
that Inf (ρ) ∩Ri = ∅ guarantees that Inf (ρ′) ∩R′i = ∅.

Conversely, if u ∈ L(A′) as witnessed by a run ρ′ and Rabin pair (G′i, R′i), then there is
an accepting run ρ over u in A: such a run can be obtained by choosing for each transition
q

a:x−−→ q′ of ρ′ where x ∈ G′i a transition q
a:y−−→ q′ ∈ ∆ such that y ∈ Gi, which exists by

definition of A′, for each transition q a:x−−→ q′ where x /∈ Gi ∪ Ri a transition q q,y−−→ q′ ∈ ∆
such that y /∈ Ri, which also exists by definition of A′, and for other transitions q a:x−−→ q′

(that is, those for which x ∈ R′i) an arbitrary transition q a:y−−→ q′ ∈ ∆. Since ρ′ is accepting,
we have Inf (ρ′) ∩Gi 6= ∅ and Inf (ρ) ∩Ri = ∅, that is, ρ is also accepting.

For the Muller case, the argument is even simpler. As above, we consider A′ that is
otherwise like A except that instead of the transitions ∆ of A, it only has one a-transition
q

a:x−−→ q′ ∈ ∆′ (with a fresh colour per transition) per state-pair q, q′ and the accepting
condition is defined as follows. A set of transitions T is accepting if and only if for each
t = q

a:x−−→ q′ ∈ T there is a non-empty set St ⊆ {q
a:y−−→ q′ ∈ ∆} such that

⋃
t∈T St is

accepting in A. In other words, a set of transitions in A′ is accepting if for each transition
we can choose a non-empty subset of the original transitions in A that form an accepting
run in A.

We claim that L(A′) = L(A). Indeed if u ∈ L(A), as witnessed by some run ρ, the run
ρ′ that visits the same sequence of states in A′ is accepting as witnessed by the transitions
that occur infinitely often in ρ.



14 On the size of good-for-games Rabin automata and the memory in Muller games

Conversely, assume u ∈ L(A′), as witnessed by a run ρ′ and a non-empty subset St for
each transitions t that occurs infinitely often in ρ′ such that

⋃
t∈Inf (ρ) St is accepting in A.

Then there is an accepting run ρ over u in A that visits the same sequence of states as
ρ′ and chooses instead of a transition t ∈ Inf (ρ) each transition in St infinitely often, and
otherwise takes an arbitrary transition. The set of transitions ρ visits infinitely often is
exactly

⋃
t∈Inf (ρ) St, and is therefore accepting.

Finally, observe that in both cases, if A if GFG, then the automaton A′ without duplicate
edges is also GFG since A′ is obtained from A by merging transitions. Indeed, the resolver r
of A induces a resolver r′ for A′ by outputting the unique transition with the same letter
and state-pair as r. By the same argument as above, the run induced by r′ is accepting if
and only if the run induced by r is. J

I Example 19. The GFG Rabin automaton from Figure 2 has duplicated transitions. In
Figure 4 we present an equivalent GFG Rabin automaton without duplicates. For this, we
have merged the self-loops in state 1 labelled with a and b respectively. We have added the
output letters (αβ) and (δε). The new Rabin pairs are given by:

G′
β = {β, (αβ)}, R′

β = {α, γ, ε, ζ},
G′
γ = {γ}, R′

γ = {α, β, (αβ), δ}.

1 2

a : (δε)

b : (αβ)

c : α

c : γ

a : γ
b : α

c : ζ

Figure 4 The simplified GFG Rabin automaton.

I Remark 20 (Optimisation on the number of Rabin pairs). An important parameter in the
study of Rabin automata is the number of Rabin pairs used. The automaton presented in
this Section uses a number of Rabin pairs that equals the number of round nodes in the
Zielonka tree. This can be improved by using only the round nodes in the Zielonka directed
acyclic graph (obtained from the tree by merging nodes with the same labels). However,
even this latter option is not always optimal and we conjecture that minimising the number
of Rabin pairs without increasing the size of the automaton is NP-complete.

4 GFG Rabin automata recognising Muller conditions can be
exponentially more succinct than deterministic ones in number of
states

On his PhD Thesis [23, 24], Kopczyński raised the question of whether the general and the
chromatic memory requirements of winning conditions always coincide. By Theorem 5 and
[10, Theorem 28], in the case of Muller conditions, this question is equivalent to the following:

Is there a Muller language L such that minimal GFG Rabin automata recognising L
are strictly smaller than deterministic Rabin automata for L?

In [10] this question is answered positively. It is shown that for every n ∈ N there is a Muller
language Ln over an alphabet Γn such that a minimal GFG Rabin automaton for it has



A. Casares, T. Colcombet and K. Lehtinen 15

size 2, but a minimal deterministic Rabin automaton for it has size n. However, the size
of the alphabet Γn in that example also has size n. A natural question is whether GFG
Rabin automata recognising Muller conditions can be exponentially more succinct than
deterministic ones, when also taking into account the alphabet size. This is indeed the case:

I Theorem 21. There exists a constant α > 1, a sequence of natural numbers n1 < n2 <

n3 . . . and a sequence of Muller conditions Fni
over Γni

= {1, . . . , ni} such that

a minimal GFG Rabin automaton for LFni
has size bni/2c,

a minimal deterministic Rabin automaton for LFni
has size at least αni .

A lower bound for such a constant is α = 1.116.

We devote the rest of this Section to proving Theorem 21. In brief, the Muller conditions
in question require half the colours to be seen infinitely often. The construction of the small
GFG Rabin automaton follows from constructing the Zielonka tree of the condition. For
the lower bound on the deterministic Rabin automaton, we reduce the problem to finding
a lower bound on the chromatic number of a certain graph, which we finally show to be
sufficiently large for a family of our Muller conditions.

Let n ∈ N. We define the following Muller condition over Γn = {1, . . . , n}:

Fn = {C ⊆ Γn : |C| = bn/2c}.

The Zielonka tree of Fn is depicted in Figure 5 (for n even).

1, 2, . . . , n

1, 2, . . . , n2 1, 3, . . . , , n2 + 1 . . . n
2 , . . . , n

1, . . . , n2 − 1 . . . 2, . . . , n2 1, 3, . . . , n2 . . . 3, . . . , n2 + 1 n
2 , . . . , n− 1 . . . n

2 + 1, . . . , n

Figure 5 Zielonka tree ZFn for Fn = {C ⊆ Γn : |C| = bn/2c}.

Each round node in ZFn
has exactly bn/2c children, and therefore mem-tree(ZFni

) =
bn/2c. Thus, a minimal GFG Rabin automaton recognising LFn has size bn/2c (by Proposi-
tion 4 and Theorem 5).

We now give a lower bound for deterministic Rabin automata recognising LFn . Our main
tool will be Lemma 22, which uses the notion of cycles. A cycle of an automaton A is a set of
transitions forming a closed path (not necessarily simple). The set of states of a cycle consists
of those states that are the source of some transition in it. If A is a Rabin automaton, we say
that a cycle is accepting (resp. rejecting) if the colours c1, . . . , ck appearing in its transitions
form a word (c1c2 . . . ck)ω that satisfies (resp. does not satisfy) the Rabin condition.

I Lemma 22 ([11]). Let A be a deterministic Rabin automaton. If `1 and `2 are two rejecting
cycles in A with some state in common, then the union of `1 and `2 is also a rejecting cycle.

For the following, let A be a deterministic Rabin automaton recognising LFn . For each
subset of letters C ⊆ Γn, we define a final C-Strongly Connected Component (C-FSCC for
short) as a set of states P of A such that:

For every pair of states p, q ∈ P , there is a word w ∈ C∗ labelling a path from p to q.



16 On the size of good-for-games Rabin automata and the memory in Muller games

For every p ∈ P and w ∈ C∗, the run over w starting in p remains in P .

It is easy to see that for every C ⊆ Γn there exists some C-FSCC in A.

I Lemma 23. Let C1, C2 ⊆ Γn such that |Ci| < bn/2c, for i = 1, 2 and such that |C1∪C2| =
bn/2c. If P1 and P2 are two C1 and C2-FSCC, respectively, then P1 ∩ P2 = ∅.

Proof. For i = 1, 2, let `i be a cycle visiting all states of Pi and reading exactly the set
of letters Ci. By definition of LFn , `i is a rejecting cycle. If P1 and P2 had some state in
common, we could take the union of the cycles `1 and `2, producing an accepting cycle,
which is impossible by Lemma 22. J

We associate the following (undirected) graph GFn = (VFn , EFn) to the Muller condition Fn:

VFn
= P(Γn).

There is an edge between two subsets C1, C2 ⊆ Γn if and only if |Ci| < bn/2c, for i = 1, 2,
and |C1 ∪ C2| = bn/2c.

That is, we connect two vertices if they correspond to rejecting sets but taking their
union we obtain an accepting set.

We reduce finding lower bounds in the size of deterministic Rabin automata to giving
lower bounds for the chromatic number of GFn

. A colouring of an undirected graph G =
(V,E ⊆ V × V ) is a mapping c : V → Λ such that c(v) = c(v′)⇒ (v, v′) /∈ E for every pair
of nodes v, v′ ∈ V . We say that such a colouring has size |Λ|. The chromatic number of G is
the minimal number k such that G has a colouring of size k. We denote it χ(G).

I Lemma 24. A lower bound for the size of a minimal deterministic Rabin automaton
recognising LFn

is given by χ(GFn
).

Proof. Let A be a deterministic Rabin automaton recognising LFn
with states Q. We define

a colouring c of GFn
using Q as colours. For each C ⊆ Γn, we let PC be a C-FSCC and we pick

a state qC ∈ PC . We define c(C) = qC . We prove that this is a correct colouring. Suppose
that C1 and C2 are two vertices in GFn connected by some edge, that is, |Ci| < bn/2c and
|C1 ∪ C2| = bn/2c. If qC1 = qC2 , it means that PC1 ∩ PC2 6= ∅, contradicting Lemma 23. J

I Remark 25. The definition of GFn
is not specific to this Muller condition. It can be defined

analogously for any other Muller condition and Lemma 24 holds by the same argument.

I Proposition 26. There exists a constant α > 1 and a sequence of natural numbers
n1 < n2 < n3 . . . such that αni ≤ χ(GFni

).

In order to prove Proposition 26 we introduce some further graph-theoretic notions. Let
G = (V,E) be an undirected graph. An independent set of G is a set S ⊆ V such that
(v, v′) /∈ E for every pair of vertices v, v′ ∈ S.

I Lemma 27. Let R ⊆ V , and let GR = (R,E|R×R) be the subgraph of G induced by R.
Then, χ(G) ≥ χ(GR).

I Lemma 28. Let m be an upper bound on the size of the independent sets in G. Then

χ(G) ≥ |V |
m
.



A. Casares, T. Colcombet and K. Lehtinen 17

Proof. Let c : V → Λ be a colouring of G with |Λ| = χ(G). Then, by definition of a colouring,
for each x ∈ Λ, c−1(x) is an independent set in G, so |c−1(x)| ≤ m. Also, V =

⋃
x∈Λ c

−1(x),
so

|V | =
∑
x∈Λ

|c−1(x)| ≤ χ(G) ·m. J

We will find a subgraph of GFn
for which we can provide an upper bound on the size of

its independent sets. The upper bound is provided by the following theorem (adapted from
[35, Theorem 15]).

I Theorem 29 ([35], Theorem 15). Let n > k > 2t such that k − t is a prime number.
Suppose that B is a family of subsets of size k of Γn such that |A ∩B| 6= t for any pair of
subsets A,B ∈ B. Then,

|B| ≤
(

n

k − t− 1

)
.

We conclude this section with the proof of Proposition 26.

Proof of Proposition 26. Let p be a prime number and let n = 5p. We will study the
subgraph of GFn formed by the subsets of size exactly k = b3n/10c. We denote this subgraph
by Hn,k. Two subsets A,B ⊆ Γn of size k verify that |A ∪ B| = bn/2c if and only if
|A ∩ B| = bn/10c. We set t = bn/10c. We get k − t = p so we can apply Theorem 29
and we obtain that any independent set in Hn,k has size at most

(
n

1
5n−1

)
. By Lemma 28,

χ(Hn,k) ≥
(

n
b 3

10nc
)
/
(

n
1
5n−1

)
. By Lemma 27 we know that this lower bound also holds for GFn .

Using Stirling’s approximation we obtain that

χ(GFn
) ≥

(
n

b 3
10nc

)
/

(
n

1
5n− 1

)
= Ω

((
(1/5)1/5(4/5)4/5

(3/10)3/10(7/10)7/10

)n)
= Ω(1.116n).

To conclude, we take an enumeration of prime numbers, p1 < p2 < . . . and we set
ni = 5pi. J

I Remark 30 (Choices of k and t). The choice of k = b3n/10c and t = bn/10c in the previous
proof might appear quite enigmatic. We try to explain them now.

We want to find a number k such that there is not a big family of sets {Ai ⊆ Γn} of
size |Ai| = k such that |Ai ∪ Aj | 6= n/2, and express this fact in terms of |Ai ∩ Aj |. Since
|A ∪ B| = 2k − |A ∩ B|, if we define t = 2k − n/2, then |A ∪ B| 6= n/2 if and only if
|A∩B| 6= t, so the value of t will be completely determined by the choice of k. Our objective
is to minimise the upper bound given in Theorem 29 (what we do by minimising k − t)
while making sure that the hypothesis k > 2t is verified. In the boundary of this condition
(k = 2t) we obtain k = n/3, so we express our choices as k = (1/3− ε)n and t = (1/6− 2ε)n.
Moreover, k − t = (1/6 + ε)n has to be a prime number (for infinite n). If 1/6 + ε = 1/q for
some q ∈ N, we would succeed by considering n of the form q · p, for p a prime number. We
will therefore take ε = 6−q

6q , for some q, 1 ≤ q ≤ 5. With the optimal choice, q = 5, we obtain
k = 3n/10, t = n/10 and k − t = n/5. Since k and t will not be integers for n of the form 5p
(p a prime number) we are forced to take the integer part in the proof of Proposition 26.



18 On the size of good-for-games Rabin automata and the memory in Muller games

5 Conclusion

We believe that our work is a significative advance in the understanding of the memory
needed for winning ω-regular games. In combination with the literature, we can describe the
current understanding of Muller languages as follows:

The least memory necessary for winning all won L-games equals the least number of
states of a GFG Rabin automaton for L.
Computing this quantity can be done in polynomial time for L given by its Zielonka tree.
The least chromatic memory necessary for winning all won L-games equals the least
number of states of a deterministic Rabin automaton for L.
Computing this quantity is NP-complete for L given by its Zielonka tree.
The chromatic memory can be arbitrarily larger than the memory. It can be exponential
in the size the alphabet, even while the memory remains linear.

This description shows that GFG automata play a key, and, up till now, unexplored role in
understanding the complexity of Muller languages and that this role is —in some respect—
even more important than that of the more classical deterministic automata.

References
1 Bader Abu Radi and Orna Kupferman. Minimizing GFG transition-based automata. In

ICALP, volume 132, pages 100:1–100:16, 2019. doi:10.4230/LIPIcs.ICALP.2019.100.
2 Tomáš Babiak, František Blahoudek, Alexandre Duret-Lutz, Joachim Klein, Jan Křetínský,

David Müller, David Parker, and Jan Strejček. The Hanoi omega-automata format. In CAV,
pages 479–486, 2015.

3 Marc Bagnol and Denis Kuperberg. Büchi good-for-games automata are efficiently recognizable.
In FSTTCS, page 16, 2018.

4 Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and Michal Skrzypczak. On succinctness
and recognisability of alternating good-for-games automata. CoRR, abs/2002.07278, 2020.
arXiv:2002.07278.

5 Udi Boker and Karoliina Lehtinen. History determinism vs. good for gameness in quantitative
automata, 2021. arXiv:2110.14238.

6 Udi Boker and Karoliina Lehtinen. Token games and history-deterministic quantitative-
automata, 2022. To appear in proceedings of FoSSaCS’22. arXiv:2110.14308.

7 Patricia Bouyer, Mickael Randour, and Pierre Vandenhove. Characterizing omega-regularity
through finite-memory determinacy of games on infinite graphs. CoRR, abs/2110.01276, 2021.
arXiv:2110.01276.

8 Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, Mickael Randour, and Pierre Vand-
enhove. Games where you can play optimally with arena-independent finite memory. In
CONCUR, volume 171, pages 24:1–24:22, 2020. doi:10.4230/LIPIcs.CONCUR.2020.24.

9 J. Richard Büchi. Using determinancy of games to eliminate quantifiers. In FCT,
volume 56 of Lecture Notes in Computer Science, pages 367–378. Springer, 1977. doi:
10.1007/3-540-08442-8\_104.

10 Antonio Casares. On the minimisation of transition-based Rabin automata and the chromatic
memory requirements of Muller conditions. In CSL, volume 216, pages 12:1–12:17, 2022.
doi:10.4230/LIPIcs.CSL.2022.12.

11 Antonio Casares, Thomas Colcombet, and Nathanaël Fijalkow. Optimal transformations of
games and automata using Muller conditions. In ICALP, volume 198, pages 123:1–123:14,
2021. doi:10.4230/LIPIcs.ICALP.2021.123.

12 Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In ICALP,
pages 139–150, 2009. doi:10.1007/978-3-642-02930-1\_12.

https://doi.org/10.4230/LIPIcs.ICALP.2019.100
http://arxiv.org/abs/2002.07278
http://arxiv.org/abs/2110.14238
http://arxiv.org/abs/2110.14308
http://arxiv.org/abs/2110.01276
https://doi.org/10.4230/LIPIcs.CONCUR.2020.24
https://doi.org/10.1007/3-540-08442-8_104
https://doi.org/10.1007/3-540-08442-8_104
https://doi.org/10.4230/LIPIcs.CSL.2022.12
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.1007/978-3-642-02930-1_12


A. Casares, T. Colcombet and K. Lehtinen 19

13 Thomas Colcombet and Damian Niwiński. On the positional determinacy of edge-labeled
games. Theoretical Computer Science, 352(1):190–196, 2006. doi:https://doi.org/10.1016/
j.tcs.2005.10.046.

14 Thomas Colcombet and Konrad Zdanowski. A tight lower bound for determinization
of transition labeled Büchi automata. In ICALP, pages 151–162, 2009. doi:10.1007/
978-3-642-02930-1\_13.

15 Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz. How much memory is needed
to win infinite games? In LICS, pages 99–110, 1997. doi:10.1109/LICS.1997.614939.

16 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In FOCS, pages 368–377, 1991. doi:10.1109/SFCS.1991.185392.

17 Hugo Gimbert and Wieslaw Zielonka. Games where you can play optimally without any
memory. In CONCUR, volume 3653, pages 428–442, 2005. doi:10.1007/11539452\_33.

18 Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. A Bit of
Nondeterminism Makes Pushdown Automata Expressive and Succinct. In MFCS, volume 202,
pages 53:1–53:20, 2021. doi:10.4230/LIPIcs.MFCS.2021.53.

19 Yuri Gurevich and Leo Harrington. Trees, automata, and games. In STOC, pages 60–65, 1982.
doi:10.1145/800070.802177.

20 Thomas A. Henzinger and Nir Piterman. Solving games without determinization. In Computer
Science Logic, pages 395–410, 2006.

21 Florian Horn. Random fruits on the zielonka tree. In STACS, volume 3, pages 541–552, 2009.
doi:10.4230/LIPIcs.STACS.2009.1848.

22 Nils Klarlund. Progress measures, immediate determinacy, and a subset construction for tree
automata. Annals of Pure and Applied Logic, 69(2):243–268, 1994. doi:https://doi.org/10.
1016/0168-0072(94)90086-8.

23 Eryk Kopczyński. Half-positional determinacy of infinite games. In ICALP, pages 336–347,
2006. doi:10.1007/11787006\_29.

24 Eryk Kopczyński. Half-positional determinacy of infite games. PhD Thesis. 2008.
25 Alexander Kozachinskiy. State complexity of chromatic memory in infinite-duration games.

CoRR, abs/2201.09297, 2022. arXiv:2201.09297.
26 Jan Křetínský, Tobias Meggendorfer, Clara Waldmann, and Maximilian Weininger. Index

appearance record for transforming Rabin automata into parity automata. In TACAS, pages
443–460, 2017. doi:10.1007/978-3-662-54577-5\_26.

27 Denis Kuperberg and Michał Skrzypczak. On determinisation of good-for-games automata.
In ICALP, pages 299–310, 2015. doi:10.1007/978-3-662-47666-6_24.

28 Karoliina Lehtinen and Martin Zimmermann. Good-for-games ω-pushdown automata. In
LICS, page 689–702, 2020. doi:10.1145/3373718.3394737.

29 Christof Löding and Anton Pirogov. Determinization of Büchi automata: Unifying the
approaches of Safra and Muller-Schupp. In ICALP, pages 120:1–120:13, 2019. doi:10.4230/
LIPIcs.ICALP.2019.120.

30 Michael Luttenberger, Philipp J. Meyer, and Salomon Sickert. Practical synthesis of reactive
systems from LTL specifications via parity games. Acta Informatica, pages 3–36, 2020.
doi:10.1007/s00236-019-00349-3.

31 Christof Löding. Optimal bounds for transformations of ω-automata. In FSTTCS, page
97–109, 1999. doi:10.1007/3-540-46691-6\_8.

32 Robert McNaughton. Testing and generating infinite sequences by a finite automaton. In-
formation and control, 9:521–530, 1966.

33 Philipp Meyer and Salomon Sickert. On the optimal and practical conversion of Emerson-Lei
automata into parity automata. Personal Communication, 2021.

34 Max Michel. Complementation is more difficult with automata on infinite words. CNET,
Paris, 15, 1988.

35 Dhruv Mubayi and Vojtech Rödl. Specified intersections. Transactions of the American
Mathematical Society, 366(1):491–504, 2014. URL: http://www.jstor.org/stable/23813142.

https://doi.org/https://doi.org/10.1016/j.tcs.2005.10.046
https://doi.org/https://doi.org/10.1016/j.tcs.2005.10.046
https://doi.org/10.1007/978-3-642-02930-1_13
https://doi.org/10.1007/978-3-642-02930-1_13
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1007/11539452_33
https://doi.org/10.4230/LIPIcs.MFCS.2021.53
https://doi.org/10.1145/800070.802177
https://doi.org/10.4230/LIPIcs.STACS.2009.1848
https://doi.org/https://doi.org/10.1016/0168-0072(94)90086-8
https://doi.org/https://doi.org/10.1016/0168-0072(94)90086-8
https://doi.org/10.1007/11787006_29
http://arxiv.org/abs/2201.09297
https://doi.org/10.1007/978-3-662-54577-5_26
https://doi.org/10.1007/978-3-662-47666-6_24
https://doi.org/10.1145/3373718.3394737
https://doi.org/10.4230/LIPIcs.ICALP.2019.120
https://doi.org/10.4230/LIPIcs.ICALP.2019.120
https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1007/3-540-46691-6_8
http://www.jstor.org/stable/23813142


20 On the size of good-for-games Rabin automata and the memory in Muller games

36 David E. Muller and Paul E. Schupp. Simulating alternating tree automata by nondeterministic
automata: New results and new proofs of the theorems of Rabin, McNaughton and Safra.
Theor. Comput. Sci., 141(1–2):69–107, 1995. doi:10.1016/0304-3975(94)00214-4.

37 Nir Piterman. From nondeterministic Büchi and Streett automata to deterministic parity
automata. In LICS, pages 255–264, 2006. doi:10.1109/LICS.2006.28.

38 Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In POPL, page 179–190,
1989. doi:10.1145/75277.75293.

39 Schmuel Safra. On the complexity of ω-automata. In FOCS, page 319–327, 1988. doi:
10.1109/SFCS.1988.21948.

40 Sven Schewe. Tighter bounds for the determinisation of Büchi automata. In FoSSaCS, pages
167–181, 2009. doi:10.1007/978-3-642-00596-1\_13.

41 Sven Schewe. Beyond hyper-minimisation—minimising DBAs and DPAs is NP-complete. In
FSTTCS, volume 8, pages 400–411, 2010. doi:10.4230/LIPIcs.FSTTCS.2010.400.

42 Sven Schewe. Minimising Good-For-Games automata is NP-complete. In FSTTCS, volume
182, pages 56:1–56:13, 2020. doi:10.4230/LIPIcs.FSTTCS.2020.56.

43 Wiesław Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998. doi:10.1016/
S0304-3975(98)00009-7.

https://doi.org/10.1016/0304-3975(94)00214-4
https://doi.org/10.1109/LICS.2006.28
https://doi.org/10.1145/75277.75293
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.56
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

	1 Introduction
	2 Definitions
	2.1 Games and their memory
	2.2 Automata and good-for-gameness
	2.3 The Zielonka tree of a Muller condition

	3 GFG Rabin automata correspond to memory structures for Muller games
	3.1 A GFG Rabin automaton induces a memory structure for any game
	3.2 An optimal construction of a GFG Rabin automaton
	3.2.1 The construction
	3.2.2 Proof of correctness
	3.2.3 Relation with the Zielonka-tree parity automaton
	3.2.4 Simplifications and optimisations


	4 GFG Rabin automata recognising Muller conditions can be exponentially more succinct than deterministic ones in number of states
	5 Conclusion

