Angluin-Style Learning of NFA

Benedikt Bollig, Peter Habermehl,
Carsten Kern, and Martin Leucker

Research Report LSV-08-28

October 2008

écification
e
erification

Ecole Normale Supérieure de Cachan
61, avenue du Président Wilson
SCIENTIFIQUE 94235 Cachan Cedex France







Angluin-Style Learning of NFA*

Benedikt Bollig!, Peter Habermehl', Carsten Kern?, and Martin Leucker?

1 LSV, CNRS UMR 8643 & ENS de Cachan, France
2 Software Modeling and Verification Group, RWTH Aachen University, Germany
3 Institut fiir Informatik, TU Miinchen, Germany

Abstract. This paper introduces NL*, a learning algorithm for inferring non-deterministic
finite-state automata using membership and equivalence queries. More specifically, resid-
ual finite-state automata (RFSA) are learned similar as in Angluin’s popular L* algorithm,
which however learns deterministic finite-state automata (DFA). As RFSA can be exponen-
tially more succinct than DFA, RFSA are the preferable choice for many learning appli-
cations. The implementation of our algorithms is applied to a collection of examples and
confirms the expected advantage of NL* over L*.

1 Introduction

In recent years, learning techniques have become popular especially in the area of automatic ver-
ification. They have been used for minimizing (partially) specified systems [17] and for model
checking black-box systems [19,10]. They proved extremely helpful in deriving assumptions in
compositional model checking [5,2], have been employed in learning interfaces [1], and for confor-
mance testing of boolean programs [12]. Learning algorithms are at the heart of several practical
approaches to regular model checking [11,21,22] and to the automatic verification of networks of
processes [9]. To put it bluntly, automata learning is en vogue [14].

The general goal of learning algorithms employed in verification is to identify a machine, usually
of minimal size, that conforms with an a priori fized set of strings or a given machine. Nearly
all algorithms learn deterministic finite automata (DFA) or deterministic finite-state machines
(Mealy-/Moore machines), as the class of DFA has preferable properties in the setting of learning.
For every regular language, there is a unique minimal DFA accepting it, which moreover can be
characterized thanks to Nerode’s right congruence. It is this characterization which builds the
foundations of most learning algorithms.

In general, two types of learning algorithms for DFA can be distinguished, so-called online and
offline algorithms. Offline algorithms get a fixed set of positive and negative examples, comprising
strings that should be accepted and, respectively, strings that should be rejected by the automaton
in question. The learning algorithm now has to provide a (minimal) automaton that accepts the
positive examples and rejects the negative ones. For deriving minimal automata, major achieve-
ments are due to Biermann [4], Trakhtenbrot and Barzdin [20]. Efficient algorithms inferring a not
necessarily minimal DFA are presented in [13] or in [18] under the name RPNIL

Online algorithms have the possibility to ask further queries, whether some string is in the
language of the automaton to learn or not. In this way, an online algorithm can enlarge the set of
examples as needed.

A popular setup for an online approach is that of Angluin’s L* algorithm [3]: a minimal DFA
is learned based on membership and equivalence queries. Using a pictorial language, we have a
learner whose job is to come up with the automaton to learn, a teacher who may answer whether
a given string is in the language as well as an oracle answering whether the automaton hypothesis
currently proposed by the learner is correct or not.

Nevertheless, DFA have a serious drawback, especially for applications in verification. In gen-
eral, a DFA might be exponentially bigger than a non-deterministic finite-state automaton (NFA).
For many applications, it would be a tremendous improvement to work with an exponentially more

* Work partially supported by DAAD/EGIDE (Procope 2008) within the project Synthesis of Design
Models from Scenarios by Learning



succinct NFA rather than the corresponding DFA. As such, learning algorithms for NFA are of
need. However, the class of NFA lacks important properties that are essential for current learning
algorithms: There is no unique minimal NFA for a given regular language, say it is not clear which
automaton to learn, and, there is no characterization of NFA in terms of right-congruence classes.

In a seminal paper, Denis et al. [6] introduce the class of residual finite-state automata (RFSA).
It is a sub-class of NFA, which shares important properties with the class of DFA: For every regular
language, there is a unique minimal canonical RFSA accepting it. The states of this automaton
correspond to right-congruence classes, or, equivalently, to residuals of the accepted language. At
the same time, the RFSA can be exponentially more succinct than the corresponding DFA. As
such, RFSA are the preferable class for learning regular languages. Denis et al. provided in [7] an
offline algorithm, called Del.eTe2, which works in the spirit of RPNI. Alternatives and extensions
to this algorithms have then been presented, most recently in [8], which also gives a nice overview
on offline algorithms for learning NFA.

In this paper, we introduce NL* as the first online learning algorithm for RFSA, patterned after
Angluin’s L* algorithm. Thus, using membership and equivalence queries, our algorithm infers a
(minimal) canonical RFSA for the language in question, which is always smaller than or equal to
the corresponding DFA.

Moreover, we show that we need at most O(n?) equivalence queries and roughly mn?® mem-
bership queries (more than L*) if the number of states of the minimal deterministic automaton
for the language to be learned is n and the size of the biggest counterexample given by the equiv-
alence oracle is m. We have implemented our algorithm and studied its efficiency on a collection
of regular languages described by regular expressions. It turns out that for most examples, the
resulting RFSA is much smaller than the corresponding DFA. Perhaps even more important, the
resulting RFSA is typically obtained after far less membership and equivalence queries than L*
in contrast to our theoretical bound. Especially equivalence queries are often quite expensive in
practice, especially in the context of conformance testing. Altogether, this paper provides a new
learning algorithm for regular languages which is expected to enhance associated verification tasks
considerably.

2 Preliminaries

For the rest of the paper, we fix a finite set X' of letters, called alphabet. Finite sequences of letters
are elements of X* and are called words. Sets of words are termed languages and are thus subsets
of X*. For a word w € X* we denote by Pref(w) (resp. Suff (w)) the set of all its prefixes (resp.
suffixes) including w itself and the empty word e. We denote the powerset of set X by 2%.

In the following subsections we introduce the basic automata models and the learning algorithm
we are going to employ and extend, respectively.

2.1 Finite-State Automata

A prominent concept for representing regular languages are finite-state automata. Typically, one
distinguishes deterministic and non-deterministic versions thereof.

Definition 1 (Finite-State Automaton). 4 non-deterministic finite-state automaton (NFA)
A= (Q,Qo, F,0) consists of a finite set of states @, a set of initial states Qo C Q, a set of final
states F C @, and a transition function 6 : Q x X — 29,

We call A a deterministic finite-state automaton (DFA) if |Qo| =1 and |§(q,a)] =1 for all ¢ € Q
and a € X. The transition function § of an NFA is extended as usual to 6 : Q x X* — 29 by
5(q,€) = {q} and d(q,aw) = Uq’ezS(q,a) 5(¢’,w), and subsequently to sets of states Q' C Q by
5(Q' w) = Ugeor 5(g,w). To simplify notation, we use § to denote both & and 4.

Given A, the language of a state ¢ € @, denoted by Lg, is the set of words w € X* such that
5(q,w) N F # 0. The language L(A) accepted by A is the union of languages of its initial states:
L(A)=U 1€Qo L4. Two automata are called equivalent if they accept the same language.



It is folklore that the languages of finite-state automata are the regular ones.

An NFA is called minimal if there is no equivalent NFA with strictly less states. Likewise, we
call a DFA minimal if there is no equivalent DFA with strictly less states. In contrast to NFA, a
DFA has always a unique minimal representative:

Theorem 1 (Myhill-Nerode). For each regular language L, there exists a unique (up to iso-
morphism) minimal DFA A with L(A) = L.

2.2 Residual Finite-State Automata

Here we recall the notion of residual finite-state automata (RFSA) introduced and studied in the
seminal work [6]. RFSA are a subclass of NFA inheriting some desirable features of DFA. Most
important for learning, every regular language is accepted by a unique (canonical) RFSA with a
minimal number of states. As this property does not hold for arbitrary NFA, it seems difficult to
come up with learning algorithms for the whole class of NFA. At the same time, like for NFA,
RFSA can be exponentially more succinct than DFA, making it the preferable automaton model
to work with in practical learning applications.

Technically, RFSA and DFA have the property that the states of the automata correspond to
so-called residual languages defined below. This is not true for all NFA.

Definition 2 (Residual Language). For a language L C X* and u € X*, we denote by u='L
the set {v € X* | uwv € L}. A language L’ C X* is a residual language of L if there is a u € X*
with L' = u=*L. We denote by Res(L) the set of residual languages of L.

For simplicity, we also talk of a residual rather than of a residual language. The Myhill-Nerode
theorem states that the number of residual languages of a language is finite iff this language is
regular [16]. Moreover, for a minimal DFA A, there is a natural bijection between its states and
the residual languages of L(.A).

We are now prepared to introduce residual automata:

Definition 3 (Residual Finite-State Automaton). A residual finite-state automaton (RFSA)
over X is an NFA R = (Q, Qo, F,d) such that for each ¢ € Q, Ly € Res(L(R)).

In other words, each state accepts a residual language of L(R), but not every residual language
must be accepted by a single state. Intuitively, the states of an RFSA are a subset of the states of
the corresponding minimal DFA. Yet, using non-determinism, certain states of a minimal DFA are
not needed as they correspond to the union of languages of other states. To this end, we distinguish
prime and composed residuals: A residual is called composed, if it is the non-trivial union of other
residuals. Otherwise, it is called prime.

Definition 4 (Prime and Composed Residuals). Let L C X* be a language. A residual
L’ € Res(L) is called composed if there are Ly, ..., L, € Res(L)\{L'} such that L' = L U...UL,.
Otherwise, it is called prime. The set of prime residuals of L is denoted by Primes(L).

We can now define the canonical RFSA of a regular language. The idea is that its set of states
corresponds exactly to its prime residuals. Moreover, the transition function should be saturated
in the sense that a transition to a state should exist if it does not change the accepted language.
Formally, we define:

Definition 5 (Canonical RFSA). Let L be a regular language. The canonical RFSA of L,
denoted by R(L), is the tuple (Q,Qo, F,d) where Q = Primes(L), Qo = {L' € Q | L' C L},
F={L'eQlee L}, and 6(L1,a) ={L2 € Q| Ly Ca'L;}.

Note that the canonical RFSA of a regular language is well-defined as the set of prime residuals
for a regular language is finite and, for each a € X and L' € Res(L), we have a 'L’ € Res(L).
Moreover, we actually have L(R(L)) = L. By definition, there is a single and thus unique RFSA
for every regular language. We say that an RFSA R is canonical if it is the canonical RFSA of
L(R).



2.3 Angluin’s Learning Algorithm L*

Angluin’s algorithm L* [3] learns or infers a minimal DFA for a given regular language. In the
algorithm, a so-called Learner, who initially knows nothing about the given language L, is trying
to learn a DFA A such that L(A) = L. To this end, it asks repeatedly queries to a Teacher and
an Oracle, who both know L. There are two kinds of queries (cf. Figure 1):

— A membership query consists in asking the Teacher if a string w € X* is in L.

— An equivalence query consists in asking the Oracle whether a hypothesized DFA 'H is correct,
i.e., whether L(H) = L. The Oracle answers yes if H is correct, or supplies a counterexample
w, drawn from the symmetric difference of L and L(H).

yes/no answer

m%mbership query:
weL

Learner

yes or
counterexample

if closed and consistent:
equivalence query
L(H)=L

Fig. 1. Components of L™ and their interaction

The Learner maintains a prefix-closed set U C X* of words that are candidates for identifying
states, and a suffix-closed set V' C X* of words that are used to distinguish such states. Words
from U are usually called access strings and words from V' experiments. The sets U and V are
increased when needed. The Learner makes membership queries for all words in (U U UX)V, and
organizes the results into a table 7 = (T,U,V) where function T maps each w € (UUUX)V
to an element from {4, —} where parity + represents accepted and — not accepted. To a string
u e U UUXY, we assign a function row(u) : V. — {4, —} given by row(u)(v) = T(uv). Any such
function is called a row of 7 and the set of all rows of a table is denoted by Rows(7). We let
Rowsypp(T) = {row(u) | v € U} denote the set of rows that represent the “upper” part of the
table. Likewise, the rows from Rows)ow(7) = {row(u) | u € UX} occur in its “lower” part. Table
T is

— closed, if for all uw € U and a € X there is v’ € U such that row(ua) = row(u’), and
— consistent, if for all u,u’ €U and a€ X, row(u) = row(v’) implies row(ua) = row(v'a).

If 7 is not closed, we find «’ € UX such that row(u) # row(u’) for all uw € U. We move ' to U and
ask membership queries for every u'av where a € X and v € V. Likewise, if 7 is not consistent,
we find u,v’ € U, a € X, and v € V such that row(u) = row(v’) and row(ua)(v) # row(uw'a)(v).
Then we add av to V' and ask membership queries for every «”av where v’ € U UUJX. When
7 is closed and consistent the Learner constructs a hypothesized DFA 'H = (Q, qo, d, F), where
Q = {row(u) | u € U} = Rowsypp(7T), qo is the row row(e), d is defined by d(row(u), a) = row(ua),
and F = {r € Q | () = +}. Then, the Learner submits H to an equivalence query (asking
whether L(H) = L). If the answer is yes, the learning procedure is completed. Otherwise the
returned counterexample u is processed by adding every prefix of u (including u) to U, extending



UJX accordingly, and subsequent membership queries are performed in order to make the table
closed and consistent, after which a new hypothesized DFA is constructed, etc. (cf. Figure 1).

Remark 1. L* can be modified by changing the treatment of counterexamples. Instead of adding
the counterexample and its prefixes to U one can add the counterexample and all its suffixes to
V. This ensures that the table is always consistent [15].

3 Learning of Residual Finite-State Automata

Here we explain how to modify Angluin’s learning algorithm L*, which infers DFA, towards learning
of non-deterministic finite-state automata in terms of RFSA.

3.1 From Tables to RFSA

To simplify our presentation, we closely follow Angluin’s notions and notation. We also use tables
T = (T,U,V) with a prefix-closed set of words U, a suffix-closed set V, and a mapping T :
(UUuUX)V — {+,—}. As above, we associate with any word u € U UUX a mapping row(u) :
V — {+,—}. Again, members of U are used to reach states and members of V' to distinguish
states. We adopt notations introduced before such as Rows(7"), Rowsupp(7), and Rowsiow (7).
The main difference in the new approach is that not all rows of the table will correspond to
states of the hypothesized RFSA, but only so-called prime rows. Essentially, we have to define for
rows what corresponds to union, composed, prime, and subset previously introduced for languages.

Definition 6 (Join Operator). Let T = (T, U, V) be a table. The join (r; U ry) : V — {+,—} of
two rows 11,12 € Rows(T) is defined component-wise for each v € V: (ry U ra)(v) = r1(v) U r2(v)
where — U —=—and+ U +=+ U —=— U + =+.

Note that the join operator is associative, commutative, and idempotent, yet that the join of two
rows is mot necessarily a row of table 7.

Definition 7 (Composed and Prime Rows). Let T = (T, U, V) be a table. A rowr € Rows(T)
is called composed if there are rows ri,...,m, € Rows(T)\ {r} such thatr =7 U ... U r,.
Otherwise, r is called prime. The set of prime rows in T is denoted by Primes(T ). Moreover, we
let Primes,pp(7) = Primes(T) N Rowsypp (7).

Definition 8 (Covering Relation). Let 7 = (T, U, V) be a table. A rowr € Rows(T) is covered
by row " € Rows(T), denoted by r T r', if for allv € V, r(v) = + implies r'(v) = +. If moreover
r’ %1, then r is strictly covered by r’, denoted by r C r'.

Note that » may be covered by r’ and both r and r’ are prime. A composed row covers all the
primes it is composed of.

As in Angluin’s learning algorithm, we now introduce concepts comparable to closedness and
consistency and call them RFSA-closedness and RFSA-consistency.

For DFA, closedness ensures that every row in the lower part also occurs in the upper part.
For RFSA, this translates to the idea that each row of the lower part of the table is composed of
(prime) rows from the upper part. Formally:

Definition 9 (RFSA-Closedness). A table T = (T,U,V) is called RFSA-closed if, for each
r € Rowsiow(T), r = | {r’ € Primesup,(T) | 7' T r}.

Note that a table is RFSA-closed iff any prime row of the lower part is a prime row of the upper
part of the table.

The idea of consistency in case of DFA is as follows: Assume that two words u and u’ of the
table have the same row. This suggests that both words lead to the same state of the automaton
to learn as they cannot be distinguished by words v € V. Hence, they induce the same residuals.
Then, however, ua and «’a have to induce equal residuals as well, for any a € Y. In other words,



if there is some a € X and v € V such that T'(uav) # T(u'av), then the residuals induced by u
and 1/ cannot be the same and must be distinguishable by the suffix av to be added to V.

For RFSA, if there are v and u' with row(u) C row(u'), then this suggests that the residual
induced by u is a subset of the residual induced by u'. If indeed so, then the same relation must
hold for the successors ua and w’a. This is formally expressed as:

Definition 10 (RFSA-Consistency). A table T = (T,U,V) is called RFSA-consistent if, for
all u,u' € U and a € X, row(u') C row(u) implies row(u'a) C row(ua).

With a table that is RFSA-closed and RFSA-consistent, we can associate an NFA. Later we
will show that this NFA corresponds to a canonical RFSA after our learning algorithm terminates.

Definition 11 (NFA of a Table). For a table T = (T,U, V) that is RFSA-closed and RFSA-
consistent, we define an NFA Ry = (Q,Qo, F, ) by

— @ = Primesy,p(7T),

— Qo={reQ|rCrow(e},

- F={reqQ|r(e=+}, and

— 0(row(u),a) ={r € Q| rC row(ua)} for u € U with row(u) € Q and a € X.

Note that Primes,pp(7) = Primes(T), as T is closed. Furthermore, row(e) is not in Qq iff it is
composed. Moreover, § is well-defined: Take u, v’ with row(u) = row(u"). Then, row(u) C row(u’)
and row(u’) C row(u). Consistency implies that row(ua) C row(u’a) and row(vw'a) C row(ua) so
that both resulting rows are the same.

For the rest of this subsection, we fix a table 7 = (T,U, V) that is RFSA-closed and RFSA-
consistent. We prove some important properties of the automaton R+ constructed from the table.

Lemma 1. Let Ry = (Q,Qo, F.,9). For allu € U and r € §(Qo,u), we have r C row(u).

Proof: We prove this lemma by induction on the length of u. If u = ¢, then we have §(Qo,€) = Qo
and by definition of Ry we have Vr € Qo.r C row(e). If u = u/a, then §(Qo,v'a) = 6(6(Qo,u'),a).
Take an r € §(6(Qo,u’),a). Because of the definition of § we have that there exist v’ € U

and " € 0(Qo,u') with ' = row(u”) and r C row(u”a). By induction hypothesis we have
r" € row(u'). Therefore row(u”) C row(u') and, by RFSA-consistency, row(u”a) C row(u'a). This
implies 7 C row(u'a). O

The next lemma says that each state of R correctly classifies strings of V.
Lemma 2. Let R = (Q, Qo, F,0). For each r € Q and v € V, the following hold:

1. rv)=— 4ff v L, and
2. row(e)(v) = — iff v L(RT).
Proof: 1. We prove Yv € V.(r(v) = — iff v ¢ L,) by induction on the length of v.

Suppose v = €. Then, r(¢) = — iff » € F by definition of R+ and therefore r(e) = — iff e ¢ L,.
Suppose now v = av’. Let r = row(u) for some r € Q and u € U.

“only if”: As V is suffix-closed, r(av’) = row(u)(av’) = — implies row(ua)(v') = —. Since the
table is RFSA-closed, we have row(ua) = | [{r’ € Q | 7’ C row(ua)}. Thus by the definition of C,
we have that for all ' € Q with 7' C row(ua), ’(v') = — as well. Due to the induction hypothesis,

this implies v' & L, for all v’ € Q with ' C row(ua). Thus, av’ & L,, as the states reached from
r by a are exactly the v’ € Q with ' C row(ua) by definition.

“if”: Now let r(av’) = row(u)(av’) = 4. This implies that row(ua)(v') = + as V is suffix-
closed. Since the table is RFSA-closed there exists v’ € @ with ' C row(ua) and r'(v) = +.
Then, by induction hypothesis, v' € L,,. Therefore, av’ € L,., since by definition of the transition
relation, ' can be reached from r by a.

2. Now, Yv € V.(row(e)(v) = — iff v € L(R7)) follows easily if row(e) € Q. If not, then we
have row(e) = | [{r' € Q | ¥’ C row(e)} = Qo, and the “only if”-direction follows from the first
part of the lemma applied on the 7’. The if-direction follows from the fact that v ¢ L(R ) implies
that for all 7 € Q with ' C row(e) we have v ¢ L, and applying the first part of the lemma. O



The following lemma states an essential property for states in the covering relation and the
languages accepted by these states:

Lemma 3. Let Rt = (Q,Qo, F,0). For every r1,r2 € Q, 71 T 1o iff Ly, C Ly, .

Proof: Let r1,72 € Q and assume uy,us € U with row(uy) = r1 and row(ug) = 7.

“only if”: Suppose that r1 C ry and w € L,,. We distinguish two cases.

Assume first w = e. Then, row(u1)(e) = + and, due to 1 T 73, row(usz)(e) = +. Thus,
ro € F so that € € L,,. Now let w = aw’ with a € X. We have §(r1,aw’) N F # (). Thus,
there is 7 € §(r1,a) such that §(r,w’) N F # (. From r; C ro, we obtain, by RFSA-consistency,
row(uya) E row(uga). By the definition of §, r T row(uja), which implies r C row(uga). Thus,
r € 0(r2,a) and we have aw’ € L.

“if”: Assume 71 [Z ro. We will show that L,, Z L,,. By definition of the C-relation, there has
to be v € V such that row(uy)(v) = + but row(us)(v) = —. By Lemma 2, v € L, and v € L,,.
Therefore, L,,  Ly,. O

The automaton R7 constructed from the RFSA-closed and RFSA-consistent table 7 is not
necessarily an RFSA (see Appendix E). But we can show that Ry is a canonical RFSA if it is
consistent wrt. the table, i.e., the automaton correctly classifies all words of 7.

Definition 12. We say that Rt is consistent with the table 7 if, for all w € (U U UX)V, we
have T(w) =+ iff w € L(R71).

The next lemma is a stronger version of Lemma 1, if we have additionally that Ry is consistent
with 7.

Lemma 4. Suppose Rt = (Q, Qo, F, ) is consistent with T. Then, for all u € U with row(u) €
Q, we have row(u) € 6(Qo,u).

Proof: If row(u)(v) = — for all v € V| this is easy to see, by the definition of J. If not, we suppose
that row(u) & §(Qo, u) and get a contradiction. With Lemma 1, we have Vr € 6(Qo, u).r C row(u).
Then, Lemma 3 implies Vr € 6(Qo, u).Lr € Lyou(w)- As row(u) € Q and row(u) ¢ 6(Qo,u) there

exists v € V such that row(u)(v) = + and for all » € §(Qo,u), r(v) = —. This with Lemma 2
implies that for all € §(Qo,w).v ¢ L,. But then uv ¢ L(R7) which is a contradiction to the fact
that R is consistent with 7. O

Theorem 2. Let T be a table that is RESA-closed and RFSA-consistent and let Rt be consistent
with T. Then, Rt is a canonical RFSA.

Proof: Let 7 = (T,U,V) and assume Ry = (Q, qo, F,d). Let L denote L(R7). We first show
that Rz is an RFSA (i.e., all states accept residuals). Let u € U with row(u) € Q. We show
that L,y ) = v~ ' L. Due to Lemma 4 we have row(u) € 6(Qo, u). This implies Ly (y) C ulL.
We have furthermore with Lemma 1 that Vr € §(Qo,w).r C row(u). This implies with Lemma 3
Vr € 8(Qo,u).Ly C Lygy(u)- This gives u™ 'L C Ly (y). Together with L,y € u™'L we have
Lrow(u) =u'L.

It remains to show that Loy, is prime. But this is due to Lemma 3, which states that
the relation C over rows corresponds exactly to the subset relation over languages. This precise
correspondence is also the reason why the transition function ¢ is saturated, as required in the
definition of a canonical RFSA. O

3.2 The Algorithm

We now describe NL*. Its pseudo code is given in Table 3.2. After initializing the table 7, the
current table is repeatedly checked for RFSA-closedness and RFSA-consistency. If the algorithm
detects a the violation of the RFSA-closedness condition (cf. Definition 9), i.e., some row(ua) with
u € U and a € X' is prime and is not contained in Primes,p,(7), then ua is added to U. This
involves additional membership queries. On the other hand, whenever the algorithm perceives



NL* (X, DFA: A):
1 initialize 7 = (T, U,V) by U =V = {¢} and T'(w) for all w € (UUUX)V

2 repeat
3 while 7 is not (RFSA-closed and RFSA-consistent)
4 do
5 if 7 is not RFSA-closed then
6 find v € U and a € X such that row(ua) € Primes(7T) \ Primesupp(7)
7 extend table to 7 := (T',U U {ua}, V) by membership queries
8 if 7 is not RFSA-consistent then
9 find w € U,a € X, and v € V such that the following holds:
10 T(uav) = — and
11 T(u' av) = + for some u’ € U such that row(u’) C row(u),
12 extend table to 7 := (T",U,V U {av})
13 /* T is both RFSA-closed and RFSA-consistent */
14 from 7, construct the hypothesized NFA Rz (cf. Definition 11)
15 /* perform equivalence test */
16 if (L(A) = L(R7))
17 then equivalence test succeeds
18 else get counterexample w € (L(A)\ L(R7))U (L(R7) \ L(A))
19 extend table to 7 := (T',U,V U Suff (w)) by membership queries

20 until equivalence test succeeds
21 return Rt

Table 1. NL*: the NFA version of Angluin’s algorithm L*

an RFSA-consistency violation (cf. Definition 10) a suffix av can be determined which makes two
existing rows distinct or incomparable. In this case, a column is added to V invoking supplemental
queries. This procedure is repeated until 7 is RFSA-closed and RFSA-consistent. If both properties
are fulfilled a conjecture R can be derived from 7 (cf. Definition 11) and either a counterexample
u from the symmetric difference of L(.A) and L(R 1) is provided and Suff (u) added to V reinvoking
NL* or the learning procedure terminates successfully. Notice that the algorithm makes sure that
V' is always suffix-closed and U prefix-closed.

Remark 2. We chose to treat the counterexamples as in the variant of L* described in Remark 1.
Indeed, treating the counterexamples as in the original LL* does not lead to a terminating algorithm
(see Appendix F). The treatment of the counterexample ensures that each row can appear at most
once in the upper part of the table, because we only add rows when the table is not RFSA-closed.

Proving the termination of Angluin’s learning algorithm L* is quite straightforward. In our
setting this is not so easy anymore since, as we show in Appendix D, after an equivalence query
or a violation of RFSA-consistency the number of states of the hypothesized automaton does not
necessarily increase (as it is the case for L*). To show termination of NL*, we need first a simple
lemma.

Lemma 5. If the minimal DFA A* for a given regular language L has n states, then the tables
constructed in the runs of NL* with input A* cannot have more than n different rows.

Proof: Having more than n different rows in a table implies that L has more than n different
residuals which is impossible, as the minimal DFA A* for L has n states. O

Now we are prepared to give the main contribution of the paper. For any given regular language
L, the algorithm NL* infers the canonical REFSA R accepting L.

Theorem 3. Let n be the number of states of the minimal DFA A* for a given reqular language
L C X*. Let m be the length of the biggest counterexample returned by the equivalence test (or 1 if
the equivalence test always succeeds). Then, NL* returns after at most O(n?) equivalence queries
and O(m|X|n®) membership queries the canonical RFSA R(L).



Proof: First of all, if the algorithm terminates, then it outputs the canonical RFSA for L due to
Theorem 2, because passing the equivalence test implies that the constructed automaton must be
consistent with the table.

We show in the following that the algorithm terminates after at most O(n?) equivalence queries.
We define first a measure M associating a tuple of positive natural numbers to tables. For a given
table 7, let M(7T) = (lup,!,p,1), where l,,, = |Rowsypp(7)| is the number of rows in the upper
part of the table, I = |Rows(7)| the number of different rows in the whole table, p = | Primes(T )]
the number of prime rows in the table, and ¢ the number of strict coverings of pairs of different
rows of the table, i.e., i = [{(r,7’) | r,7’ € Rows(T) and r C 7'}|. It is crucial to consider rows and
not members of U. Initially, l,, =1land =1or!=2)and (p=1orp=2)and (i =0ori=1).

Let us examine how the measure (I, 1, p,?) evolves during a run of NL*. An example of this
evolution is given in Appendix G, where Table 13 depicts an NL* run and the measure associated
with any of its tables. It is clear that [,, and [ can never decrease since two different rows stay
different by extending the table.

If the table is not RFSA-closed, then, after extending the table, I,, increases by 1. Simulta-
neously, [ might increase by k > 0 (the number of new rows added). At the same time, i might
increase by at most k times the old value of [ (the largest possible number of strict covering
relations between new rows and old rows) plus k(k — 1)/2 (the largest possible number of strict
covering relations between new rows).

If the table is not RFSA-consistent, then, after extending the table, [,, stays unchanged.
However, [ might increase by k& > 0. At the same time, as before, ¢ might increase by at most
k times the old value of [ plus k(k — 1)/2. If | does not increase, then this means that, for two
strings u,u’ € U UUX with row(u) = row(u’) in the table before the extension, we have again
row(u) = row(u') after the extension. Therefore, no strict covering relation can be added in the
extended table. But since we add a word to V' making two rows r and 7’ in the original table with
r C v’ uncomparable, ¢ is decreased by at least 1.

If the table is RFSA-closed and RFSA-consistent, then an equivalence query is performed. Let
us fix an RFSA-closed and RFSA-consistent table 7 = (T,U, V) before the equivalence test. If
the test fails, we obtain a counterexample w and a new table 7/ = (T", U,V U Suff (w)). Notice
that 7 must be extended (otherwise, we have w € V', which implies with Lemma 2 that w is
correctly classified by Rz ). Either [ increases or not. If I increases by k > 0, then, as before, ¢
might increase by at most k times the old value of I plus k(k — 1)/2. If [ does not increase, then
i cannot increase (see explanation for the case that the table is not RFSA-consistent). We will
furthermore show that p increases or ¢ decreases. Suppose that this is not the case, i.e., p and i
remain unchanged. Then, the automata Rz and R/ constructed from 7 and, respectively, 7’
must be the same: all primes of 7 must still be primes in 7’ (as p stays the same, no primes are
added), the initial and final states stay the same, and the transition relation is defined using the
covering relation which does not change. This is because | does not change and therefore no new
strict covering relation can be added like for the corresponding case above, where the table is not
RFSA-consistent. Furthermore, since ¢ does not change, no strict covering relation is removed. But
the two automata being the same is a contradiction since Ry classifies w correctly according to
Lemma 2 (w is in V'), whereas Rz does not. Therefore, p increases or i decreases (notice that p
might be decreased by other steps). Consider Table 13 in Appendix G. We have M (7g) = (7,7,6,9)
and M(7y) = (7,7,7,9). Le., after adding the counterexample, both [ and 4 remain unchanged.
However, p is indeed increased.

Putting the different cases together, we notice that after each extension of the table either
(1) l,p is increased or (2) I is increased by k > 0 and simultaneously ¢ is increased by at most
kl + k(k — 1)/2 or (3) I stays the same and we have that ¢ decreases or p increases. Due to
Lemma 5, lyp, [, and p cannot increase beyond n. Hence, the algorithm must (1) always reach
an equivalence query and (2) terminate after at most O(n?) equivalence queries. Concerning the
number of membership queries, we notice that their maximal number corresponds to the size of
the table which has at most n 4+ n|X| (n rows in the upper part + their successors) rows and
O(mn?) columns since at each extension at most m suffixes are added to V. g



===
Ts|| € |a|ba all—|—=|+

ell—|—|— aa||—|+|+

Tl e Tl e|a Tl €| aba all—|—|+ aaal|+|+|+

ell— ell—|— ell—|—|— aal|—|+|+ ab||—|+|—

a all—|— all—|—|+ aaal|+|+|+ aab||+|+|—

Thje aal|— aal|—|+ aal|—|+|+ ab||—|+|— aaba||+|—|+
€|= L _aaa|+ 2 aaa|+|+ 3) aca||+|+|+ 4 aab—l——i——i; aabb||+|—|—
al|— b||— bl|—|— bl|—|— bl|—|—|— bl|—|—|—
b||— ab||— ab||—|+ abl|—|+|— aaaal|+|+|+ aaaal|+|+|+
aab||+ aab||+|+ aab||+|+|— aaab||+|+|— aaab||+|+|—

aaaa||+ aaaa||+|+ aaaa||+|+|+ aba||+|—|+ aba||+|—|+

aaab||+ aaab||+|+ aaab||+|+|— abb||+|—| — abb||+|—| —
aaba||+|—|+ aabaa||—|+|+

aabb||+|—|— aabab||—|+|—

aabba||—|—|+

aabbb||—|—|—

Table 2. Learning Lo with L~

The theoretical complexity we obtain for NL* in terms of equivalence queries is higher compared
to L™ where at most n equivalence queries are needed. The complexity in terms of membership
queries is higher for NL* as well (L* needs roughly |X|mn? queries). But, we observe that in
practice less equivalence and membership queries are needed (cf. Section 5).

4 NL* by means of an Example

Suppose X' = {a, b} and let L,, C X* be the language of words over X' containing an a at the (n+1)-
last position according to the regular expression X* a X™. Then, L, is accepted by a minimal DFA
A with 27+! states. Nevertheless, there are NFA (cf. Figure 2) with only n + 2 states accepting
L,,. It is easy to see that there is even a canonical RFSA R, of size n + 2 accepting L,,. In other
words, R, is exponentially more succinct than A .

Fig. 2. An NFA over ¥ = {a, b} accepting the regular language L,, with n + 2 states

Now we show how Ly (whose minimal DFA A} is given in Figure 3) is learned by Angluin’s L*
algorithm and by our algorithm NL*. We start with a run of L*, which is illustrated in Table 2.
Table 77 is closed and consistent but does not represent the intended automaton because the
word aaa is not accepted. Hence, we add Pref(aaa) to U and Pref(aaa)X to UX. The result
(after performing the necessary membership queries) is 75. This table is closed but not consistent
(row(a) = row(aa) but not row(aa) = row(aaa)). Thus, we add the column a and obtain 7j,
which is still not consistent leading to 7. After making the table closed, we obtain 7g, which is
consistent as well and whose corresponding automaton (Figure 3) accepts Ls.

Now we show a run of NL* on L. It is depicted in Table 3. The rows with a preceding * are the
prime rows. The table 77 is RFSA-closed and RFSA-consistent but does not represent the intended

10



T4 || € |aaa|aa| a

* +
T3 || € |aaalaala * € F—1= * a + |+
Tl L|| ¢ Jaaalaaa e ||=|+ |—|— * a + - * ab + |-
>|<e||f:>ié*e||fl+lf|f:>ibl*a 7++f:>%d*ab + 7+:>?{Cl*abb + | —
* b ||— * b ||—| + | —|— b (=] + |—|— * b + | == b + | =
* a ||— * Q —‘4—‘4—‘— * ab||—| + |— |+ aa + |+ [+ aa + |+
aal|l—| + |+ [+ * abb + |=[- aba + |+
aba + |+ |- * abbb + | =
* abba + |+

Table 3. Learning Lo with NL*

Fig. 3. Minimal DFA A} accepting language Ly with 8 (= 2**!) states

automaton because the word aaa is not accepted. We add aaa and all its suffixes to V', perform
membership queries, and then obtain table 75, which is not closed. We add a to U and continue.
After solving two more closedness violations, we obtain finally table 75 which is RFSA-closed and
RFSA-consistent, and its corresponding automaton given in Figure 4 is the canonical RFSA for
L4. Notice that table 75 is not closed in the Angluin sense and L* would continue adding strings

to the upper part of the table.

Fig. 4. Canonical RFSA R2 accepting Lo with 4 = 2 4 2 states

11




5 Experiments

To evaluate the practical performance of NL*, we compare our learning algorithm NL* with An-
gluin’s L* algorithm and its modification according to Remark 1, called L} ;. As NL* is arguably
similar in spirit to L}, a comparison with this algorithm seems more fair. To this end, all algo-
rithms have been implemented in Java. We have tested the algorithms on a wide range of examples.
Following [7], we randomly generate large sets of regular expressions over different sizes of alpha-
bets. A detailed description of this as well as a full description of the outcome can be found in
Appendix A. Here, we only present a characteristic selection of the results for an alphabet of size
three.

Results For the diagrams in this section, we generated a set of 3180 regular expressions, resulting
in minimal DFA with sizes ranging between 1 and 200 states. These DFA were given to the
learning algorithms, i.e. membership and equivalence queries were answered according to these
automata. To evaluate the algorithms’ performances, we measured, for each algorithm and input
regular expression, the number of states of the final automaton (RSFA or DFA) and the number
of membership (resp. equivalence) queries to infer it. As Figure 5 shows, the number of states
of the automata learned by NL* is considerably smaller than that of L* and L7, confirming the
results of [7]. More importantly, in practice, the actual sizes of RFSA compared to DFA seem to
follow an exponential gap.

200

180

160

140

120

100

80

# states (learned automaton)

60

40

20

20 40 60 80 100 120 140 160 180 200
# states (minimal DFA)

Fig. 5. Number of states

20000

18000 - NL* =r===e-

16000

14000

12000

10000

8000

# membership queries

6000

2000 /,,:/‘ / s

20 40 60 80 100 120 140 160 180 200
# states (minimal DFA)

4000

Fig. 6. Number of membership queries

12



16

14

12

10

# equivalence queries

4 Lyl il
//,n‘
o L

20 40 60 80 100 120 140 160 180 200
# states (minimal DFA)

Fig. 7. Number of equivalence queries

In Figure 6, the number of membership queries is depicted. As in the first case, NL* behaves
much better than the other learning algorithms. While the difference between the curves is rather
small for automata with less than 40 states, it increases significantly for larger automata. The same
is the case for the number of equivalence queries depicted in Figure 7. This is in contrast with the
theoretical result we obtained in Theorem 3. The experiments we performed point out the clear
predominance of NL* over L* and L, as long as the user is not dependent on a deterministic
model.

6 Conclusion

We presented NL*, an algorithm for learning the canonical RFSA of a regular language, using
membership and equivalence queries. Theoretically, an RFSA can be at most as big as a DFA
accepting the same language, but it might be exponentially more succinct. Our experiments car-
ried out with our implementation shows that this theoretical benefit is indeed the standard case
in practice. Moreover, NL* typically needs less membership and equivalence queries, especially
for large automata, than the corresponding algorithm L* for learning DFA. Thus, NL* clearly
outperforms L*. There is room for further improvement by adapting the various variants of L*
developed recently.

Our motivation for studying learning techniques is their application in the area of verification.
Most often, non-deterministic automata rather than deterministic automata are sufficient for ver-
ification tasks and thus the preferable class of automata to work with. In the future, we plan to
show that using our NL* algorithm, the limits of learning-based verification techniques can be
pushed ahead considerably.

References

1. R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of interface specifications for java classes.
In J. Palsberg and M. Abadi, editors, POPL, pages 98-109. ACM, 2005.

2. R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification by learning assumptions.
In 17th International Conference on Computer Aided Verification, volume 3576 of Lecture Notes in
Computer Science, pages 548-562. Springer-Verlag, 2005.

3. D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput., 75(2):87-106,
1987.

4. A. W. Biermann and J. A. Feldman. On the synthesis of finite-state machines from samples of their
behaviour. IEEE Transactions on Computers, 21:592-597, 1972.

5. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions for compositional
verification. In H. Garavel and J. Hatcliff, editors, TACAS, volume 2619 of Lecture Notes in Computer
Science, pages 331-346. Springer, 2003.

13



6. F. Denis, A. Lemay, and A. Terlutte. Residual finite state automata. Fundamenta Informaticae,
51(4):339-368, 2002.

7. F. Denis, A. Lemay, and A. Terlutte. Learning regular languages using RFSAs. Theoretical Comput.
Sci., 313(2):267-294, 2004.

8. P. Garcia, M. V. de Parga, G. Alvarez, and J. Ruiz. Learning regular languages using nondeterministic
finite automata. In CIAA, volume 5148 of LNCS, pages 92-101. Springer, 2008.

9. O. Grinchtein, M. Leucker, and N. Piterman. Inferring network invariants automatically. In Proceed-
ings of the 8rd International Joint Conference on Automated Reasoning (IJCAR’06), volume 4130 of
Lecture Notes in Artificial Itelligence, Sept. 2006.

10. A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’02), volume 2280 of LNCS, 2002.

11. P. Habermehl and T. Vojnar. Regular model checking using inference of regular languages. FElectr.
Notes Theor. Comput. Sci., 138(3):21-36, 2005.

12. V. Kumar, P. Madhusudan, and M. Viswanathan. Minimization, learning, and conformance testing
of boolean programs. In C. Baier and H. Hermanns, editors, CONCUR, volume 4137 of Lecture Notes
in Computer Science, pages 203—217. Springer, 2006.

13. K. J. Lang. Random dfa’s can be approximately learned from sparse uniform examples. In COLT,
pages 45-52, 1992.

14. M. Leucker. Learning meets verification. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W. P.
de Roever, editors, FMCO, volume 4709 of LNCS, pages 127-151. Springer, 2006.

15. O. Maler and A. Pnueli. On the learnability of infinitary regular sets. Inf. Comput., 118(2):316-326,
1995.

16. A. Nerode. Linear Automata Transformation. American Math. Society, 9:541-544, 1958.

17. A. L. Oliveira and J. P. M. Silva. Efficient algorithms for the inference of minimum size dfas. Machine
Learning, 44(1/2):93-119, 2001.

18. J. Oncina and P. Garcia. Inferring regular languages in polynomial update time. In Pattern Recognition
and Image Analysis, volume 1 of Series in Machine Perception and Artificial Intelligence, pages 49-61.
World Scientific, Singapore, 1992.

19. D. Peled, M. Vardi, and M. Yannakakis. Black box checking. In Proc. FORTE/PSTV, pages 225-240.
Kluwer, 1999.

20. B. Trakhtenbrot and J. Barzdin. Finite aut.: behaviour and synthesis. North-Holland, 1973.

21. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Learning to verify safety properties. In ICFEM,
volume 3308 of LNCS, pages 274-289. Springer, 2004.

22. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Using language inference to verify omega-regular
properties. In TACAS, volume 3440 of LNCS, pages 45-60. Springer, 2005.

A Additional Experiments

In this section we detail the experiments we performed. We compare our learning algorithm NL*
with two other learning algorithms, namely Angluin’s L* algorithm and its modification L} . In
L7, counterexamples are treated as in NL*, i.e., instead of adding the counterexample and all its
prefixes to the set of rows U, the counterexample w and all its suffixes are added to the set of
columns V. Due to this modification NL* and L}, become easier to compare.

To obtain maximally significant statistical data, we implemented all three learning algorithms
and let them execute the same set of samples. The derivation of the sample sets used in our

experiments is described in the following paragraph.

Derivation of Sample Sets As proposed in [7], we randomly generate large sets of regular expres-
sions over different sizes of alphabets. By means of a context-free grammar for inducing regular
expressions, we iteratively construct derivations of randomly drawn length by choosing produc-
tion rules according to fixed probabilities for the three operators concatenation (-,0.556), choice
(4,0.278) and Kleene star (*,0.166). As result, we get an object consisting only of non-terminals
and linked by regular expression operators. To obtain the final regular expression, all non-terminals
symbols of the derivation are assigned a letter from the corresponding alphabet according to a
uniform distribution.

14



For the statistics enclosed in this paper, we generated several sets of regular expressions for
different alphabet sizes (|X| € {2,3}). All regular expressions had equivalent minimal DFA be-
tween 1 and 200 states. These sets were fed to the three learning algorithms and the results stored.
To evaluate the algorithms’ performances, we recorded the following characteristics for each algo-
rithm and each input regular expression: the number of states of final automaton, the number of
membership queries and the number of equivalence queries to infer the final automaton model.

In the next paragraph, we summarize the results obtained from our experiments on 2- and
3-letter alphabets. The results are based on approximately 3200 sample regular expressions, each.

N — o N —
o — [Et g

# states (learned automaton)
.
5
8

# states (leaned automaton)
5
S

20 40 60 80 100 120 140 160 180 200 20 a0 60 80 100 120 140 160 180 200
# states (minimal DFA) # states (minimal DFA)

Fig. 8. Number of states of minimal DFA and canonical RFSA (2- and 3-letter alphabet)

20000 20000

Po— e
18000 - NL* -===--- + 18000 - NL* -===---

16000 et 16000

14000

14000

12000

12000

10000 10000

8000

8000

#membership queries
#membership queries

6000 6000

4000
2000 e WY 2000

20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
# states (minimal DFA) +# states (minimal DFA)

4000

i

Fig. 9. Number of membership queries (2- and 3-letter alphabet)

Results Figure 8 compares the number of states of the automata learned by L* (or equivalently,
L?,) (i.e., minimal DFA) and NL* (i.e., canonical RFSA) for 2- and 3-letter alphabets. The
exponential gap between the models learned by L* and inferred by NL* is obvious. Figure 9
juxtaposes the number of membership queries of the three algorithms. Note, that for automata
of size larger than 40 states, NL* seems to need increasingly less membership queries than the
other two algorithms for inferring deterministic automata. Moreover, we see that in the case of
membership queries the basic version of Angluin performs much better than its extended version.
This, however, is not the case if one considers the number of equivalence queries necessary to infer
the automata. Though NL* still performs far better than both, L* and L} |, the extended version
of Angluin now behaves nicer. In almost all cases it needs less equivalence queries than L*. In
many application areas equivalence queries are extremely costly. Hence, for inferring deterministic

15



16 16

14

12

10

# equivalence queries
# equivalence queries

) ﬁ«

20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
# states (minimal DFA) # states (minimal DFA)

Fig. 10. Number of equivalence queries (2- and 3-letter alphabet)

automata, L’ ; might in many cases be of high interest and even preferable to the basic version
L*.

To get a numerical impression of “which algorithm is superior to which”, consider the Tables 4
and 5. They emphasize the results mentioned above but also show that, in all cases, there is a
significant number of wins of NL* over the other two algorithms.

| NL and L* [ Won [ Lost [ Tie |[ NL*and L, | Won | Lost | Tie |
States 95.78%| 0.0%|4.22%)| |States 95.78%| 0.0%| 4.22%

Membership queries |77.04%|22.01%|0.95%| |Membership queries |88.85%| 7.87%| 3.28%
Equivalence queries |89.64%| 2.24%|8.12%| |Equivalence queries |65.10%|13.32%|21.58%

Table 4. Comparing NL* to L* and LZ,, (2-letter alphabet)

| NL* and L* | Won | Lost | Tie || NL* and L% | Won | Lost | Tie |
States 95.91%| 0.0%4.09%| |States 95.91%| 0.0%| 4.09%
Membership queries |81.92%16.95%|1.13%| |Membership queries |89.71%| 7.08%| 3.21%

Equivalence queries [90.16%| 2.20%|7.64%| |Equivalence queries |64.34%/14.06%(21.60%

Table 5. Comparing NL* to L* and L[, (3-letter alphabet)

The tables’ entries have to be understood as follows: the column “Won” describes the number
of times in our experiments where NL* was superior to L* or L |, respectively, i.e., whenever the
difference between number of states of the automaton derived by L* and by NL* was positive.
Similarly, column “Lost” describes when this number is negative. In case the difference is equal to
0 we have a “Tie”. The same numbers were calculated for the membership and equivalence queries

and depicted in lines 2 and 3 of the corresponding tables.

B An example where NL* needs more membership queries than L*
In this section, we see an example where NL* needs more membership queries than its deterministic
version L*. Moreover, the resulting automata have got the same number of states.

Let a parameterized minimal DFA over X' = {a, b} be A% = (Q, qo, F, 6) (for n > 2), let R,, be
the corresponding canonical RFSA, and let L,, = L(AY) = L(R,,). Hereby, A? is given by:

- Q={¢]|0<i<n—-1}

- F=Q\{gn1}

= 0(gi,a) = 0(qi,b) = qiy1 for 0 < i < n—3, 0(gn-2,a) = gn-1, (¢n—2,b) = qo, 6(qn-1,a) =
5(qn71,b) = dqn—1-

Figure 11 shows the minimal DFA A} and Figure 12 the corresponding canonical RFSA Rs5.

16



Lemma 6 (Learning RFSA might need more membership queries than learning DFA).
In comparison to learning the minimal DFA A% using L*, learning the canonical RFSA R, requires
n — 2 additional resolutions of inconsistencies (but no additional equivalence queries).

Proof: The proof can be done via induction on the number of states and is easily traceable
following the example below. Note that NL* needs indeed (2n + 1) - (n — 2) more membership
queries than L*. 0

Learning the DFA from Figure 11 and its canonical RFSA (Figure 12) is depicted in Tables 6
and 7, respectively.

Fig. 11. The minimal DFA A3 over X' = {a, b} for which NL* needs more membership queries than L*

T|c _ Tlclo _ Tlclojaa __ Tc|afac]aa
ell+ ell+|+ ell+|+|+ ell+|+|+]| +
all+ al|+|+ +|+|+ al|+|+|+]| —
aal|+ aa||+|+ aal|+|+| — aall[+|+|—| —

Tij|e aaa||+ aaa||+|— aaa||+|—|— aaa||+|—|—| —

5—}—% aaaa—g aaaa——gg aaaa———g aaaa||—|—|—1| —
al|l+ b||+ b+ |+ bl||+|+|+ bl|[+|+|+| —
b||+ ab||+ ab||+|+ ab||+|+ ab||+|+|—| —
aab||+ aab||+|— aab||+|—| — aab||+|—|—| —

aaabl||+ aaabl||+|+ aaabl||+|+|+ aaab||+|+|+| +
aaaaa||— aaaaal|—|— aaaaal|—|—|— aaaaal|—|—|—| —
aaaab||— aaaab||—|— aaaab||—|— aaaab||—|—|—| —

—_
~—

7 is closed and consistent but a counterexample can be obtained because aaaa € L( Az, ) and aaaa ¢
L. Hence, add Pref(aaaa) to U.

T, is not consistent: T'(aa) = T'(aaa) but T'(aaa) # T'(aaaa). Hence, add a to V.

73 is not consistent: T'(a) = T'(aa) but T'(aa) # T'(aaa). Hence, add aa to V.

74 is not consistent: T'(¢) = T'(a) but T'(a) # T(aa). Hence, add aaa to V.

75 is then closed and consistent and the minimal DFA Af from Figure 11 can be derived.

-

U W N
NN AN AN

Table 6. Learning A3 with L*

Fig. 12. RFSA Rs5 recognizing the language of the minimal DFA Aj from Figure 11

17



T3 ||E |aaaa|aaa|aa|a

Tg“& |aaaa|aaa|aa|a e |+]— ¥ I+ ¥
Tolle 7|z |aaaa|aaalaala x e |[H- |+ [+ [+ b [+ |- |+
sel+ ooxeflH= [+ [+ o xb|H- |- 1+ s x4 |- |-+
b+ “xb |- |- Fl+r xalH- |- R+ xa [H- |-
* a ||+ * a +’f ‘f }+’+ * bb||l+— |- |- |+ * ba ||+|— |— |— |+
* ba|l+|— |- |- |+ * bbb||+|— = |— |-
* bba||+|— — = |-
Ts ||5 |aaaa|aaa|aa|a Ts ||5 |aaaa|aaa|aa|a |baaa
71_||e |agaalaaalaala e |- |+ ||+ xe |- |+ [F -
x e |+|— |+ |+ |F * b += |- |+ |+ * b += = |+ |+
* b +|— - |+ |+ * bb +|— - |= |+ * bb +|— - |= |+|-
* bb ||+ | = |+ * bbb ||+|—  |— |- |— * bbb ||+|—  |— |— ||+
N * bbb ||+|— il il LY * bbba ||—|— il bl * bbba ||—|— — |=|—|-
*a  ||+= = |+ * 2 I e e * = = Tt
* ba |[+|— |— |— |+ * ba +- = ||+ * ba += = |-
* bba ||4|— o * bba ||+|— e * bba ||+]|— — = |-+
* bbb |[+|— |+ |+ |+ * bbb || +|— |+ [+ |+ * bbb ||+|— [+ |+ ||
* bbba|—|— |— |—|— * bbbab||—|— |— |- |— * bbbab||—|— |— |- |—|—
* bbbaa||—|— - - * bbbaa||—|— — = |—|-
e ||5 |aaaa|aaa|aa|a |baaa|bbaaa 7z ||E |aaaa|aaa|aa|a |baaa|bbaaa|bbbaaa
* € += |+ |- |- * € S i i ol e e e —
x b + - |+ +- |- * b += = |+ |+ |- +
x bb += = =+ |F * bb += = == |F -
* bbb ||+—  |— = |-+ |- * bbb ||+|—  |— |- |-+ |- -
7. % bbba ||— - |=1-1- |- g, *x bbba ||—|— |— |—|—-|— |- -
:>'VLCS :>7LCS
* Q += = |+ |- * q += = |+ |- +
* ba +|— - |=|+- |+ x ba +|— - =+ |+ -
* bba ||+ - =1+ |- * bba ||[+|— |— |- |-+ |- -
* bbbb || +|— [+ |+ = |- * bbbb ||+|— |+ |+ [+ |- -
* bbbab||—|— o el e i x bbbab || —|— o el e e -
* bbbaa||— - |=1-1- |- * bbbaa||—|— |- |- - |- -

1) Table 7y is closed and consistent but a counterexample can be found: aaaa is accepted by the hypoth-
esis but is not in the language we want to infer.
2) Table 7y violates the closedness property. Hence, we try to make 7; closed by moving row b to U.

3) —5) We get three more closedness violations and resolve them by moving rows bb, bbb and bbbb to the

upper part of the table.
6) Table 75 violates the consistency property because bbb C bb but bbbb [Z bbb. We try to obtain consis-
tency by adding suffix baaa to V.

7) — 8) But still, two more inconsistencies occur. Hence we add suffix bbaaa and bbbaaa to V.

9) Table 7g is closed and consistent and the final model can be calculated (cf. Figure 12).

Table 7. Learning R5 with NL*

18



C An example where NL* needs more equivalence queries than L*

Fig. 13. Minimal DFA to infer (left) and its canonical RFSA (right)

T |l |a |ba T |l |a [balaa Ts |l |a [balaalb
e [[HHF e [H+H+[+ e [H[H[+[+ [+
b |+ b |+ |- A
e % |ea L |elalba o0 |4|4+]- H |- |+ = [+ |+
€ + € +|+ € +[+|+ aba ||[—|—|— aba ||—|—|—|— aba ||—|—|—|— |—
a + a +|+ a +|+|— ab ||+|—|— ab ||+|—|—|— ab ||+|=|— |- |+
To|le aba ||— aba ||—|— aba ||—|—|— baa ||—|—|— baa ||—|—|—|— baa ||—|—|—|—|—
a_H::%é ab ||+ =2 ab ||+|— . ab |[+|—|— N ba ||+|—|— =5 ba ||+|—|—|— N ba ||+|—|— |- |=
b ||+ b + b +|+ b +|+|+ aa ||+|+|— aa ||+|+|— aa ||+|+|— |+ |+
(lH+ aa ||+ aa ||+|+ aa ||+|+|— abab ||—|—|— abab || —|—|—|— abab||—|—|—|— |-
abab || — abab || —|— abab||—|—|— abaa||—|—|— abaa||—|—|— |- abaal|—|—|—|— |-
abaa||— abaa||—|— abaa||—|—|— abb |[+|—|— abb ||+|—|—|— abb ||+|—|—|— |+
abb ||+ abb ||+|- abb ||+|-|— b ||+ ++ b ||+ 4+ |- b ||+ +H+ [~ [+
baab||—|—|— baab||—|—|—|— baab ||—|—|—|— |-
baaa||—|—|— baaal|—|—|— |- baaal|—|—|—|— |-
bab ||—|—|- bab ||—|—|- |- bab ||—|—|-|- |-
1) found counterexample: aba for current model Ay (based on 7o)
2) consistency violation: Trying to obtain consistency (1) for 7; by adding suffix: a
3) consistency violation: Trying to obtain consistency (1) for 73 by adding suffix: ba
4) found counterexample: baa for current model A3 (based on 73)
5) consistency violation: Trying to obtain consistency (1) for 74 by adding suffix: aa
6) consistency violation: Trying to obtain consistency (1) for 75 by adding suffix: b
7) Table 7 is closed and consistent. Final model calculated (cf. Figure 13).

Table 8. An example of an L™ run that needs less equivalence queries than NL*

19




~N 3 U W N~

©
NN AN AN AN AN AN NI

* € ||+|— |+|+

Tols 7i|e |abalbala P | Iy xa |- ||+

r el o e M Bl Lo o= =1+ s x ab 4= |- |-

* b ||+ * b ||[+|— |+ |+ * b ||+|— [+ * b || +|— |+ |+

*a‘+ * a +’f ’f‘Jr * ab||+|— |—|— * aa ||[+|— |[—|+

* aal|+|— |— |+ * abb||+|— |—|—

* abal|—|— |—|—
Te Hs |aba‘ba|a‘baa|aa
T4 ||€|aba|ba|a Ts ||8 |aba|ba|a|baa|aa c = +[+= [+
* € += |+ |+ € += |+ |+ |F * b += |+ |+ |-
* Q += =t * = =+ |t * a += =+ |t
* ab ||[+]— |—|— * ab ||[+|— |[—|—|— |- * ab ||+|— |—|—|— |-
4. % aba ||—|— |—|— .5 * aba ||—|— |—|—|— |- 6. * aba ||—|— |—|—|— |—

= nel =ce = nel

* b +|= |+ * b += |+ |- * aa ||+|— |—|+|— |+
* aa ||+|— |- |+ * aa |[+|— |—|+]— |+ * abb ||+|— |—|—|— |-

* abb ||[+|— |—|— * abb ||[+|— |—|—|— |- x abab||—|— |—|—|—
* abab||—|— |—|— * abab||—|— |—|—|— |- * abaal|—|— |—|—|— |-
* abaa||—|— |—|— * abaal|—|— |—|—|— |- * bb ||+ |+ |+ |-
* ba ||+|— |—|—-|— |-

7z ||E |aba|ba|a ‘baa|aa|bab|ab|b

Tz ||8 |aba|ba|a |baa|aa|bab|ab|b - = T+1+= 1+=1= =1+

e +[- [+[+- [+ [+]+ N R L e e e e A

I e e e . el S N B B * i el b i e e a aa

x += |-+ |+ |- [ |F x ab |+l- |=|-|- |- |- |- |+

* ab ||+ — == == |-+ * aba —|—=1- |-1- |- |-

:Zé*aba — — == |- |- ——:%CZ*ba += === == |= |

x aa |[+H[— [-|+H- [+ |- [F[F x aa |[+[—= [-|+H- [+ |- [F[F

* abb ||+ — == == |-+ * abb ||+ — == == |-+

* abab||— —|== |=1- |—-|- * abab||—|— |—=|—|— |—|— |- |-

* abaal|— — == == |- x abaal|—|— |[—|—|— |—|— |—|—

* bb ||+ +1+= == =t * bb ||+ +1+= == =t

* ba ||+ == |=1- |- |- * bab ||—=|— |=|—=|— |- |- |- |-

x baa i e il i el i

found counterexample: aba for current model Ay (based on 7o)

TzHa ‘aba|ba|a

T3 ||E |aba|ba|a

closedness violation: Trying to make 77 closed with row a
closedness violation: Trying to make 73 closed with row ab

closedness violation: Trying to make 73 closed with row aba

found counterexample: baa for current model A4 (based on 71)
closedness violation: Trying to make 75 closed with row b
found counterexample: bab for current model Ag (based on 7g)
closedness violation: Trying to make 77 closed with row ba
Table 7s is closed and consistent. Final model calculated (cf. Figure 13).

Table 9. An example of an NL* run that needs more equivalence queries than L*

20



D An example where the number of states does not increase after
inserting a counterexample

In contrast to Angluin’s learning algorithm L*, in NL* it might be the case that the resolution of
a consistency violation does not introduce a new state. As shown in Theorem 3, the termination
of the algorithm can still be assured.

Let X = {a,b, c}. We want to learn the RFSA R, from Figure 14. The minimal DFA is depicted
in Figure 15.

Fig. 15. The minimal DFA corresponding to RFSA R, from Figure 14

21



AN

S Ot

e |b Talle |b |e e [+
* b= ++
T Ts [b e [+ P ol MM
# 0 - £ b |- |+ +
T * € ||+ x g |[+]|— e NN
—Ol'li x b ||— x b ||—|+ * C ||—|— x ¢ ||—|—|+
Z[E 1. % ¢ ||— 2 % ¢ l—[—= 3 a ||[+|+ , * a [|+]+]— . lb)lc)iii
% b ||— ~na s =30 ol =he w1l =0
* a ||+ a ||+|+ *ba+__
* ¢ ||— vl s oI
* a ||+ * bb ||+ bb ||+ |+ * bal|+|— % ba|l+|—|— x cb||—|—|+
*bC+ be +I+ e
* cbil—|— x cb||—|—|+
* bal|+ x ba||+|— i M
* cc||+|— % coll+|—|—
* ca||+|— % call+|—|— ab||+|+|+
*ac||—|+|+
* aal|+|+|—
Ts ||€ |b |c|baa|aa‘a
Tz |l b |c |baalaala *Z— = x
=+ |— |
T A A o i
ce ol I * C :J—riJ—r :I a |+|FH-+
o FERE R a |+H+H-|+ |+ |+ N et b Bl el
* ¢ ||—|—|+]— |- |+ v baa ||I-|+|—|+ |- [+
* ba ||[+|—|—|— |+ |—
* a ||[+|+|—|+ |+ |+ e e
bb ||+ [++|+ |+ [+ be |[+H|F|H+ |+ |+
be || +|+|+|+ |+ |+
I NN =8 x cb == |+|— +
e nel % cb + 4 el
* bal|+|——|— |+ |— i AR
* cc ||[+|—|—|— |+ |-
e o x ca ||+|—|—|— |+ |- * ca  |+|—=|—=|— |+ |—
B b
x cc||+ + Ll . o
* call+|—|—|— |+ |— o MM T
ab||+|+|+|+ |+ [+ o MM
aa || +|+=|+ |+ |+
i N * bab||—|—|+|— |- |+ * bab ||—|—|+|— +
v * bac ||—|—|+|— |- |+
* bacl|—|—|+|— |- [+
* baa||—|+|—|+ + baab |||+ |=|+ |+ [+
baac||—|+|+|+ |- |+
* baaal|+|—|—|— |+ |—

7o is not closed. Hence, we try to make it closed by moving row b to the upper table.

7, violates the consistency property, as b T ¢ but bb [Z b. We try to obtain consistency by adding
suffix b to V.

After resolving the inconsistency the table is not closed. Thus, we add row ¢ to U.

Table 73 is inconsistent again (¢ C € but cc [£ ¢) and we insert suffix ¢ to V.

A closedness violationforces us to move row a to U.

As table 75 is closed and consistent, a hypothesis can be derived (cf. Figure 14 (a)) and a counterex-
ample is found. The word baa is accepted by our hypothesis but not contained in the language to
learn. Hence, we add Suff (baa) to V.

Resolving two more closedness violations by moving rows ba and baa to the upper table, table 7g is
closed and consistent, again. The final model is calculated and depicted in Figure 14 (b).

Table 10. An example of an NL* run where the number of states does not increase

22



E An example where an intermediate hypothesis is not an RFSA

74 ||e |ablb
T3||e |ablb x ¢ —|—]+
Tie To|e |ablb x e |[-]- ]+ bo|[+- |+
Tolle * e ||— * e ||l—|— [+ b ||+|— |+ * a ||=|—|=
KRN A 0 B S il B o P8 i
* b ||+ * a ||— * a ||[—|—|— bb ||+|— |+ bb ||4|— |+
* a ||l— * bb ||+ bb || +|— [+ * bal||+|—|— * ab ||—|—|—
ba ||+ * bal|l4+|—|— * abl|—|—|— * aa — =
* aal|—|— |- x bab||—|— |+
* baal|—|—|—
Te ||5|ab|b|ba|a
7 ||e |ab]b |bala e ||| [H+]-
* € ||=|=|+|+]|— b +|— ||+ |+
b [+ |+|+ [+ * a == 1-1—|-
* a ||—=|—|—|—|— * ba |[4+|—|—|+|—
:>§;5* ba +__+_:>?{cl*bab —|=|+|= |+
bb ||| — ||+ |+ bb ||| ||+ |+
* ab ||—|—|—|— * ab ||—|—|—|—|—
* aa ||—|—|[—|—|— * aa |[—|—|—|—|—
* bab||—|— |+|— |+ * baa ||—|—|—|—|—
* baal|—|— |—|—|— * babb ||+|—|—|+ |—
* baba||+|— |—|+ |—

1) closedness violation: Trying to make 7y closed with row: b ( [+] )

2) found counterexample: ab for current model A; (based on 71) (cf. Figure 17).
3) closedness violation: Trying to make 75 closed with row: a ( [—,—,—] )

4) closedness violation: Trying to make 73 closed with row: ba ( [+, —,—] )

5) found counterexample: ba for current model A4 (based on 74) (cf. Figure 17).
6) closedness violation: Trying to make 75 closed with row: bab ( [—,—, 4+, —,+] )
7)

Table 7¢ is closed and consistent. Final model calculated (cf. Figure 17).

Table 11. An example of an NL* run where an intermediate hypothesis is not an RFSA

23



Fig. 17. Intermediate hypothesis automata 4, and A4 (for tables 77 and 74, respectively), and final
hypothesis Ag. Note that A4 in the upper right corner is not an RFSA | because the state at the bottom
accepts bbb*, which is not a residual of L(A4) = bb™.

F An example demonstrating that the RFSA algorithm would not
terminate if we added counterexamples to U instead of V

T3 |le |b

7 e 7z e b e [[+[+

* e ||+ e |||+ +|=

Tolle * a + ¥ a +|— * aa ||[—|—
* € —i-:%e*aa —:ibs*aa ——:%‘d*ab —|+
* b |+ * b ||+ b ||+|+ b ||++
* a ||+ * ab ||— * ab ||—|+ * aabl||—|—
* aabl||— * aabl|—|— * aaal|—|—

* aaal|— * aaal|—|— abb ||+|+

* aba||—|—

1) found counterexample aa for current model based on 7p.

2) consistency (1) violation: Trying to obtain consistency (1) for 7; by adding suffix b.

3) closedness violation: Trying to make 7 closed with row ab ( [—, +] ).

4) trying to add counterexample a € L(A) \ L(Ry,) fails, because a is already present in 73 (cf.
Figures 18 and 19).

Table 12. The non-termination problem with the algorithm that adds counterexamples to U

24



i) Jaala
Loxe [+
)
x a

n HE |aa|a ‘ab|b

Tslle |aala

*

+

* X ¥
|+ +[+ +

7T ||5 ‘aa|a |ab|b

*

* %

+
_|_

g
b
a

ba

|+ + +

+
+

Fig. 19. Automaton R, for table 73

We now present a successful run of the correct algorithm NL* on the input language given by
the DFA in Fugure 18. Several intermediate automata are depicted in the subsequent figures.

* X X

* % ¥ %

Ts

(=

* ab

S I S

+

* X ¥ %

bb
bab
baa
ab
aa

|+

+

+ |

bb

* bab
* baa
* aa

abb
aba




|l¢ Jaala |ab|b |abbbb|bbbb|bbb|bb
+

Ty ||e |aala |ab]b [abbbb|bbbb|bbb|bb
S E
+

€
b
a
ba
Cxoab ||—|— |—|—
b [+ -]
bab||—|— |—|—
baal|—|— |—|—
aa |[—|— [-|—|—|— - |- |-
abb
abal|—|— |—|—

QQ‘WO‘O\]

T+t
|
|
|
+
|
+
T+ + T

\
\
|
[+ + |
\
|
\

ba
ab
abb
bb
bab
baa ||—|—|—|—
aa ||—|— |—|—|—|— - |-
aba ||—|— |—|—
abbb||+|— |—|—|—|— - |-
abbal|—|— |—|—|—|— e

I+ + +
|
[
[

¥ OX X X ¥
\
|
|

T+ 1+ +

nel

B

\

\

\
T+ 1+ ++
][+ 1
i
+
+
T+

+
|
|
|
+
|
|
|
|

EE R

* oKk XK %X X X x|lx x ox x x x

abbbb|bbbb|bbb

=

IS3
=
=)

abbbb|bbbb|bbb|bb|aaabbb|aabbb|abbb

[
+
|
I+ |
|
+
[
+
|
T+ |
|
+

<o
L+ + +|°

[

i

|

|

+
T+ + T

<o
I+ + +|°

[

[

|

T+ 1 +++
|

+
T+ + T

I+ 1 +++
\
+
\

R R R
<o
S]

* ¥ K X K X *
<>
S]

|

|

|
I+ + 1

|

|

|

|

|

|
I+ + 1

|

|

|

) abbb
nel o

bab
baa ||—|— |—|—
aa —|-|-|-

- abbb

G
bab
baa ||—|— |—|—
aa ||—|—|—|—

R e
BN
(]
[l
r

|

+

+
[+
i
BN
[
o+

|

+

+

+

|

|

|

|

|

|

|

|
+

|
+

abba ||—|—|—=|—|-|—- |- |- |-|— — —
abbbb||—|— |—=|-|—-|—- |- |- |-|- - |-
abbba|—|— |-|—|-|— |- |- |-|— — -

abba ||—|— |—|—-|-|— |- |- |-
abbbb||—|— |=|—-|—-|—- |- |- |-
abbba|—|— |-|—|-|— |- |- |-

* K K K X X X ¥
=]
>
IS]
|
|
|
|
|
|
|
|
|

* K K K X K X ¥
2
S
2
|
|
|
|
|
|
|
|
|
|
|
|

abbbb|bbbb|bbb|bb|aaabbb|aabbb|abbb

abbbb|bbbb|bbb|bb|aaabbb|aabbb|abbb ¥ e

\
+
|
I+ +|>
I
+

<o
C++ |
o
r+
o
+ +|>
o
T
T+ ++
+
i
+
*
o
L+ + |
\
i
|
\
+
T+ + T
T+ 1+t
[
+
[

I+ 1 +++
|
+
|

2
<
|
|
|
|
I+ 1 + 1
|
|
|

abbb
aaa

2
<
I
[
I
I
L4+ 41
[
[
[
2
S8
L+ + 1
[
\
[

abbb

11 512

nel nel

bb
bab
baa

bb
bab
baa

|+ + |
\
\
\

|
|
|
|+
|
T
T
+
|
|
|
|+
|
|
|
+
|
+
I ++
T
|
|
|

aba ||—|—=|—=|-|-|—- |- |- |-|—- — - aba ||—|—|—-|-|-|—- |- |- |-|— — -
abba ||—|— |—|—|—|— - = |-]- — — abba ||—|— |—|—|—|— e e — —

abbbb||—|— |—|—|—|—- |- |- |—-|- - |-
abbba|—|— |—|—|—|— |- |- |-|— — —
aab ||—|—|—=|—-|]-|—- |- |- |-|—- — —

abbbb||—|— |—|—|—|—- |- |- |-|- - |-
abbba|—|— |—|—|—|— |- |- |-|— — —
aab ||—|—|—-|—-|-|—- |- |- |-|—- — —
aaab ||—|—|—|—|-|— |- |- |[*+|— - -
aaaa ||—|— |=|=|=|— - = |=* - +

* oK K K X %X % % *|* x x x x ¥ ¥ ¥

|
|
|
|
|
|
|
* ok % %X % % % % % ¥ % % % % x %

abbbb|bbbb|bbb|bb|aaabbb|aabbb

abbbb|bbbb|bbb|bb|aaabbb|aabbb|abbb P

*
o
C++ |
o
|
[
L+t~
o
T+
T+ + T
T+ 1 T+
[
+
[
*
o
S
\
+
|
I+ +| >
o
T+
T+ + T
TF i T+ T
i
+

|

|

|
I+ 1+ 1

|

|

|

abb
abbb

abbb
aaa
aaab ||—|—|—|—
aaabb ||—|— |—|—

|

|

|
I+ 1+ 1

|

|

|

|

|

|

|

|

|
+

|
T

I+ + |
|
|
|

|

|

|

+ |

|

|

* % *
=]
2
2
|
|
|
|
|
|
T
* % % %

13 aaab ||—|—|—|—|-|— |- |-

’!'LC.l bb +___
bab —|=|-|-
baa —|—=|—]-
aba et il e
abba ||—|— |—|—
abbbb || —|—|—=|—|-|- |- |- |-|- -
abbba ||—|—|—=|—|—|— |- |- |-|— —
aab == 1=1=1-1- |- |- |-|- —
aaaa ||—|— |—|—|—|— - = |-t -
aaaba ||—|— |=|—|—|— |- |- |—|— —
aaabbb ||+|— |=|—|—|— - = == -
aaabbal|—|— |—|—|—|— - |- |—|- —

nel o
bab
baa ||—|— |—|—|—|— —
aba ||—|— |—|—|—|— e el - -
abba ||—|— |—|—|—|— -
abbbb ||—|— |—|=|-|- |- |- |-|— — -
abbba ||—|— == |-|— |- |- |-|— — —
aab ||—|—|—=|—|-1— |- |- |-|— — —
aaaa ||—|— [=|—|—|— - = =t - +
aaabb||—|— |=|=|+|= |- |- |-|— - -
aaabal|—|— |—|—|—|— e e — —

+
|
|
|
T
|
T
I+
I+ |
|
|

| |
| |
| |
|
|
[
(. |
[ +
(. +
I+
| |
| |

¥ K K K X X X X X ¥ ¥

¥ K K X X X X X X ¥ ¥ ¥

26



found counterexample: aa for current model A (based on 7p).

closedness violation: Trying to make 77 closed with row: b ( [+, —, —] )

closedness violation: Trying to make 75 closed with row: ba ( [—,—, —] )

found counterexample: ab for current model A3 (based on 73) (cf. Figure 20).

closedness violation: Trying to make 73 closed with row: a ( [+,—,—,—,—] )

closedness violation: Trying to make 75 closed with row: ab ( [—, —, —, —, +] )

found counterexample: abbbb for current model Ag (based on 7g) (cf. Figure 21).

closedness violation: Trying to make 77 closed with row: abb ( [+,—,—, —,+,—, —, —,—] )
closedness violation: Trying to make 7g closed with row: abbb ( [+,—,—, —, — —, —,—, =] )
found counterexample: aaabbb for current model Ag (based on 7g) (cf. Figure 22).

closedness violation: Trying to make 77 closed with row: aa ([—, —, —, —, —, —, —, —, —, +, —, +])
closedness violation: Trying to make 735 closed with row: aaa ([—, —, —, —, —, —, —, +, —, —, +, —])
closedness violation: Trying to make 775 closed with row: aaab ([—, —, —, —, —, —, —, —, +,—, —, —])
closedness violation: Trying to make 775 closed with row: aaabb ([—, —, —, —, +,—, —, —, —, —, —, —])

Table T34 is closed and consistent. Final model calculated (cf. Figure 23).

Fig. 20. Automaten As for table 73 (correct algorithm)

Fig. 21. Automaton Ag for table 7 (correct algorithm)

27



Fig. 22. Automaton Ay for table 7y (correct algorithm)

Fig. 23. Automaton A4 for table 774 (correct algorithm)

28




G Evolution of the measure of a table during an NL* run

In this section, an example run of the NL* algorithm will exemplify the evolution of the measure
M (T) that we associated with a table 7 in the proof of Theorem 3. Table 13 depicts the tables
that we construct during an NL* run, as well as their associated measure. The input automaton is
taken from Figure 24. An intermediate NFA and the final canonical RFSA are given by Figures 25
and 26, respectively.

Fig. 24. Minimal DFA for the language to learn

Fig. 25. Automaton Ag for table 7g

Fig. 26. Automaton Ag for table 79

29



T3||e |baalaala

T2 lle |baalaala % e =+ |—]—
p R P = oy = = AN
* € H— Y * € H—‘—&- [— |— 22 * b ||—|— |+ o3 ¥ a ||—|— |—
* b ||— * b ||—|— [+ |- * a |[—|— |—|— * bb|—|— |- |-
* a ||— aHf‘f ‘f‘f * bb||—|— — * bal—|— |+ |+
* ba|—|— |+ [+ * ab||—|— |—|—
* aal|l—|— |- |-
e ||8 |baa|aa|a
T “e |baa|aa|a % & T+ =1=
L L e = o e PR B A
T4 ||e |baa|aala ¥ & T+ =1= % b = |+ |- * = ==
* ¢ |[—|+ |— |- * b —|— |+ |- * a o i el ba |- |+ |+
* b |—|— |+ |- * a e e ba |- |+ |+ baa ||+|— |- |+
* a ||=|= |=|— ba ||—|— |+ |+ baa ||+|— |— |+ * baab ||—|— |— |+
N * ba ||—|— |+ [+ =5 baa ||+|— |- |+ =6 * baab ||—|— |— |+ N * baaa ||[+|— |- |—
« 0 - |- |- w0 - |- |- PR R * bb S -
* ab ||—|— |- |— * ab ||—|— * ab - == * ab —|-= -
* aa ||—|— |- |— * aa ||—|— |—|— % aa —|= |- |- * aa o i el
* babl|—|— |— |— * bab ||—|— |—|— * bab ||[—|— |- |— * bab ||—|— |—|—
* baal|+|— |— |+ * baab||—|— |— |+ * baaa ||[+|— |— |- * baabb ||—|— |- |—
* baaa||+|— |— |- * baabb||—|— |—|— * baaba||+|— |— |—
* baabal|+|— |- |— * baaab||—|— |- |—
* baaaal|—|— |- |—
T3 ||€ |baa|aa|a ‘aaa To ||£ |baa|aa‘a |aaa|baaba|aaba|aba|ba
xe -]+ |- |- xe -+ |-1-- *+ |- -
* b -= |+ |-+ * b ol S el e S s N el b llw| U] p ]
* o I i *oa B T 1]L1[1]o0
N o e el e 3 ERESETE
=ne 2| 2 |4 4] 4
* baab ||—|— |— [+|— * baab ||—|— |= |+|= |— - = |-
s, * baaa ||+|— —|- 0. * baaa ||+|— -1- |- - = |- Zna T )| 3 | 4] 4|4
= nes =ce = nel 7:1 4 5 5 5
SOt il bl o * b T TPl S B[ 5] 7] 5 |10
S At ) = Y G AR
« bab ||—=|— |- |=|- sbab ||~ |~~~ = |- |- |- ZmeET|7T]5]10
« baabb |-|- |- |=|~ % baabb ||—|— |=|=|- |- |- |- |- S BYTITI6]9
* baaba ||+|— |- |—|— * baaba||+|— |- |—|— |— - = |- e T|| 717|719
* baaab||—|— |- |—|— * baaab||—|— |—|—|— |- - |- |-
* baaaa||—|— |—|—|— * baaaal|—|— |=|=|— |- i i
1) found counterexample: baa for current model Ay (based on 7).
2) closedness violation: Trying to make 77 closed with row: b ( [—, —, 4+, —] )
3) closedness violation: Trying to make 73 closed with row: a ( [—, —, —, —] )
4) closedness violation: Trying to make 73 closed with row: ba ( [—, —, +,+] )
5) closedness violation: Trying to make 74 closed with row: baa ( [+, —, —, +] )
6) closedness violation: Trying to make 75 closed with row: baab ( [—, —, —, +] )
7) closedness violation: Trying to make 7g closed with row: baaa ( [+,—,—,—] )
8) consistency (1) violation: Trying to obtain consistency (1) for 77 by adding suffix: aaa
9) found counterexample: baaba for current model As (based on 7g) (cf. Figure 25).
0) Table 7y is closed and consistent. Final model Ay can be calculated (cf. Figure 26).

Table 13. An NL* run exemplifying the termination proof

30



