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An O(n2) Time Algorithm for Alternating B̈uchi Games

Krishnendu Chatterjee∗ Monika Henzinger†

Abstract

Computing the winning set for Büchi objectives in alternating games on graphs is a central problem in
computer aided verification with a large number of applications. The long standing best known upper bound
for solving the problem is̃O(n · m), wheren is the number of vertices andm is the number of edges in the
graph. We are the first to break thẽO(n ·m) boundary by presenting a new technique that reduces the running
time toO(n2). This bound also leads toO(n2) time algorithms for computing the set of almost-sure winning
vertices for Büchi objectives (1) in alternating games with probabilistic transitions (improving an earlier bound
of Õ(n ·m)), (2) in concurrent graph games with constant actions (improving an earlier bound ofO(n3)), and
(3) in Markov decision processes (improving form > n4/3 an earlier bound ofO(min(m1.5,m · n2/3)). We
also show that the same technique can be used to compute the maximal end-component decomposition of a
graph in timeO(n2), which is an improvement over earlier bounds form > n4/3. Finally, we show how to
maintain the winning set for Büchi objectives in alternating games under a sequence of edge insertions or a
sequence of edge deletions inO(n) amortized time per operation. This is the first dynamic algorithm for this
problem.

Keywords: (1) Graph games; (2) B̈uchi objectives; (3) Graph algorithms; (4) Dynamic graph algorithms; (5)
Computer-aided verification.

1 Introduction

Consider a directed graph(V,E) with a partition(V1, V2) of V and a setB ⊂ V of Büchi vertices. This graph is
called agame graph. Letn = |V | andm = |E|. Two players play the followingalternating gameon the graph
that forms an infinite path. They start by placing a token on aninitial vertex and then take turns indefinitely in
moving the token: At a vertexv ∈ V1 player 1 moves the token along one of the out-edges ofv, at a vertexu ∈ V2

player 2 moves the token along one of the out-edges ofu. A first question to ask is given a start vertexx ∈ V
can player 1 guarantee that the infinite path visits a vertex in B at least once, no matter what choices player 2
makes. If so player 1 canwin from x andx belongs to thewinning set of player 1. The question of computing the
set of vertices from which player 1 can win (called thewinning set) is called the(alternating) reachability game
problem. The problem is PTIME-complete and the winning set of player1 can be computed in time linear in the
size of the graph [2, 19]. A second, more central question is whether player 1 can guarantee that the infinite path
visits a vertex inB infinitely often, no matter what choices player 2 makes. Computing the winning set of player
1 for this setting is called the(alternating) B̈uchi game problem. The best known algorithms for this problem are
algorithms that repeatedly compute the alternating reachability game solution on the graph after the removal of
specific vertices. Their running time is̃O(n · m). We present in this paper a new algorithmic technique for the
alternating Büchi game problem which is inspired by dynamic graph algorithms and which reduces the running
time toO(n2).

Two-player games on graphs played by player 1 and the adversary player 2 are central in many problems
in computer science, specially in verification and synthesis of systems such as the synthesis of systems from
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specifications and synthesis of reactive systems [11, 26, 27], verification of open systems [1], checking interface
compatibility [14], well-formedness of specifications [15], and many others. Besides their application in
verification, they have also been studied in artifical intelligence as AND-OR graphs [24], and in the context
of alternating Turing machines [6].

The class of Büchi or repeated reachability objectives wasintroduced in the seminal works of Büchi [3, 4, 5]
in the context of automata over infinite words. The alternating Büchi game problem is one of the core problems in
verification and synthesis. For example, (a) the solution ofthe synthesis problem for deterministic Büchi automata
is achieved through solving the alternating Büchi game problem (see [23] for the importance of deterministic
Büchi automata); and (b) the verification of open systems with liveness and weak fairness conditions (two key
specifications used in verification) is again solved throughalternating Büchi game problem [1]. Vardi [30, 29]
discusses further applications of the alternating Büchi game problem and its importance. The classical algorithm
for alternating Büchi games follows from the results of [16, 25, 31], its complexity isO(n · m). The algorithm
was improved in the special case of game graphs withm = O(n) to O(n2/ log n) time in [9]. A generalization
of the algorithm from [9] was presented in [8], and the new algorithm requiresO((n · m · log∆)/ log n) time,
where∆ is the maximum out-degree. Thus the long standing best knownupper bound for solving the alternating
Büchi game problem is̃O(n ·m).

In the design and verification of open systems it is natural that the systems under verification are developed
incrementally by adding choices or removing choices for thesystem, which is represented by player 1. However
the adversary, modeled by player 2, is the environment, and the system design has no control over the environment
actions. Hence there is a clear motivation to obtain dynamicalgorithms for the alternating Büchi game problem,
when edges leaving player-1 vertices are inserted or deleted, while edges leaving player-2 vertices remain
unchanged.

Our contributions. In this work we present improved static and the first dynamic algorithms for the alternating
Büchi game problem using graph algorithmic techniques. Our main results are as follows.

1. We present anO(n2) time algorithm for the alternating Büchi game problem, andthus break the long
standing barrier of̃O(n·m) for the problem. It follows that in combination with theO(n2/ log n) algorithm
for m = O(n), we break theO(n ·m) barrier for all cases.

2. We present the first incremental and decremental algorithms for the alternating Büchi game problem for
insertion and deletion of player-1 edges. Our algorithm is based on the progress measure algorithm of [20]
and generalizes the Even-Shiloach algorithm for decremental reachability in undirected graphs [17]. The
total time for all operations isO(n ·m), i.e., the amortized time per operation isO(n).

3. Using our techniques to solve alternating Büchi games wealso show that the maximal end-component
decomposition problem (a core problem inprobabilistic verification) can also be solved inO(n2) time
(see [13] and other references of [7] for the importance of the problem). The best known bound for this
problem wasO(min(m1.5,m · n2/3)) [7]. Thus, our algorithm is faster form > n4/3 and we obtain an
improved bound ofO(min(m1.5, n2)) for the problem.

Decremental and incremenal algorithms for computing the maximal end-component decomposition was given
in [7]. However, our algorithms are the first dynamic algorithms for the alternating Büchi game problem and
completely different from [7]. Our result for alternating Büchi games improves the bounds for other problems as
well. We list them below.

1. The problem of computing the set of almost-sure (or probability 1) winning vertices in alternating games
with probabilistic transitions (aka simple stochastic games [12]) and Büchi objectives can be solved in
O(n2) time improving the previous knowñO(n ·m) bound: this follows from the linear reduction of [10]
from simple stochastic games to alternating Büchi games for almost-sure winning and our Büchi games
algorithm.

2. The problem of computing the set of almost-sure (probability 1) and limit-sure (probability arbitrarily
close to 1) winning vertices in concurrent graph games (aka games with simultaneous interaction) with



constant actions with Büchi objectives can be solved inO(n2) time: this follows from the linear reduction
from concurrent games to alternating Büchi games [21] and our Büchi algorithm. The best known bound
for concurrent graph games with constant actions with Büchi objectives wasO(n · |δ|), where|δ| is the
number of transitions which isO(n2) in the worst case. Thus, in the worst case the previous best known
bound wasO(n3).

3. As a consequence of ourO(n2) algorithm for Büchi games and the linear reduction of [10],we also obtain
anO(n2) algorithm for computing almost-sure winning states for Markov decision processes with Büchi
objectives. The best known bound for this problem wasO(min(m1.5,m · n2/3)) [7]. Thus, our algorithm
is faster form > n4/3 and we obtain an improved bound ofO(min(m1.5, n2)) for the problem.

Our main technical contribution is twofold: (1) The classical algorithm for alternating Büchi games
repeatedly removesnon-winningvertices from the game graph and then recomputes the player-1 winning set for
the alternating reachability game problem. Similar to the classical algorithm our algorithm repeatedly removes
non-winning vertices from the game graph. However, it finds these vertices more efficiently using a hierarchical
graph decomposition technique. This technique was used first by Henzinger et al. [18] for processing repeated
edge deletions in undirected graphs. We show how this technique can be extended to work for vertex deletions
in (directed) game graphs. As a result we achieve faster algorithms for the alternating Büchi game problem and
for computing the maximal end-component decomposition. Moreover, even in sparse graphs, our technique can
be useful. Ifm = c · n andc is a large constant, then our hiercharical decomposition can be used with a small
number of levels, such as2 or 3, to speed up the algorithm in practice.

(2) Even and Shiloach [17] gave a deletions-only algorithm for maintaining reachability in undirected graphs.
We show how to extend this algorithm to edge deletions in directed game graphs. A purely graph-theoretic proof
of the correctness of the new algorithm would be lengthy. However, by using an elegant argument based on
fix-points we give a simple proof of the correctness and an analysis of the running time of the new algorithm.
The new algorithm is simple and, like the algorithm in [17], does not need any sophisticated data structures. We
use a “dual” fix point argument to construct an incremental algorithm for alternating Büchi games.

The paper is organized as follows: We give all necessary definitions in Section 2. Section 3 and Section 4
contain the new static algorithms for the alternating Büchi game and the maximal end-component decomposition
problem. Section 5 finally contains the new dynamic algorithms.

2 Definitions

Alternating Game graphs. An (alternating) game graphG = ((V,E), (V1, V2)) consists of a directed graph
(V,E) with a setV of n vertices and a setE of m edges, and a partition(V1, V2) of V into two sets. The
vertices inV1 areplayer 1 verticesand the vertices inV2 areplayer 2 vertices. For a vertexu ∈ V , we write
Out(u) = {v ∈ V | (u, v) ∈ E} for the set of successor vertices ofu and In(u) = {v ∈ V | (v, u) ∈ E}
for the set of incoming edges ofu. We assume that every vertex has at least one out-going edge.i.e.,Out(u) is
non-empty for all verticesu ∈ V .
Plays. A game is played by two players: player 1 and player 2, who forman infinite path in the game graph
by moving a token along edges. They start by placing the tokenon an initial vertex, and then they take moves
indefinitely in the following way. If the token is on a vertex in V1, then player 1 moves the token along one of
the edges going out of the vertex. If the token is on a vertex inV2, then player 2 does likewise. The result is an
infinite path in the game graph, calledplays. We writeΩ for the set of all plays.
Strategies. A strategy for a player is a rule that specifies how to extend plays. Formally, astrategyσ for
player 1 is a functionσ: V1 → V such thatσ(v) ∈ Out(v) for all v ∈ V1, and analogously for player 2
strategies1. We writeΣ andΠ for the sets of all strategies for player 1 and player 2, respectively. Given a

1In general strategies are defined as functionsσ: V ∗ · V1 → V that, given a finite sequence of vertices (representing the history of the play so far)
which ends in a player 1 vertex, chooses the next vertex. The strategy must choose only available successors, i.e., for all w ∈ V ∗ andv ∈ V1 we
haveσ(w · v) ∈ Out(v). The strategies for player 2 are defined analogously. However for all objectives considered in the paper there exists a winning



starting vertexv ∈ V , a strategyσ ∈ Σ for player 1, and a strategyπ ∈ Π for player 2, there is a unique play,
denotedω(v, σ, π) = 〈v0, v1, v2, . . .〉, which is defined as follows:v0 = v and for allk ≥ 0, if vk ∈ V1, then
σ(vk) = vk+1, and ifvk ∈ V2, thenπ(vk) = vk+1.
Objectives. We consider game graphs with a Büchi objective for player 1 and the complementary coBüchi
objective for player 2. For a playω = 〈v0, v1, v2, . . .〉 ∈ Ω, we define Inf(ω) = {v ∈ V |
vk = v for infinitely manyk ≥ 0} to be the set of vertices that occur infinitely often inω. We also define reach-
ability and safety objectives as they will be useful in the analysis of the algorithms.

1. Reachability and safety objectives.Given a setT ⊆ V of vertices, the reachability objectiveReach(T )
requires that some vertex inT be visited, and dually, the safety objectiveSafe(F ) requires that only vertices
in F be visited. Formally, the sets of winning plays areReach(T ) = {〈v0, v1, v2, . . .〉 ∈ Ω | ∃k ≥ 0. vk ∈
T} andSafe(F ) = {〈v0, v1, v2, . . .〉 ∈ Ω | ∀k ≥ 0. vk ∈ F}. The reachability and safety objectives are
dual in the sense thatReach(T ) = Ω \ Safe(V \ T ).

2. Büchi and coB̈uchi objectives.Given a setB ⊆ V of vertices, the Büchi objectiveBuchi(B) requires that
some vertex inB be visited infinitely often, and dually, the coBüchi objective coBuchi(C) requires that
only vertices inC be visited infinitely often. Thus, the sets of winning plays areBuchi(B) = {ω ∈ Ω |
Inf(ω) ∩B 6= ∅} andcoBuchi(C) = {ω ∈ Ω | Inf(ω) ⊆ C}. The Büchi and coBüchi objectives are dual
in the sense thatBuchi(B) = Ω \ coBuchi(V \B). Observe that Büchi and coBüchi objectives aretail (or
prefix-independent)objectives, i.e., a play satisfies the objective if and only if the play obtained by adding
or deleting a finite prefix also satisfies the objective.

Winning strategies and sets.Given an objectiveΦ ⊆ Ω for player 1, a strategyσ ∈ Σ is a winning
strategyfor player 1 from a vertexv if for all player 2 strategiesπ ∈ Π the playω(v, σ, π) is winning, i.e.,
ω(v, σ, π) ∈ Φ. The winning strategies for player 2 are defined analogouslyby switching the role of player 1
and player 2 in the above definition. A vertexv ∈ V is winning for player 1 with respect to the objective
Φ if player 1 has a winning strategy fromv. Formally, the set ofwinning vertices for player 1with respect
to the objectiveΦ is W1(Φ) = {v ∈ V | ∃σ ∈ Σ. ∀π ∈ Π. ω(v, σ, π) ∈ Φ} the set of all winning
vertices. Analogously, the set of all winning vertices for player 2 with respect to an objectiveΨ ⊆ Ω is
W2(Ψ) = {v ∈ V | ∃π ∈ Π. ∀σ ∈ Σ. ω(v, σ, π) ∈ Ψ}.

THEOREM 2.1. (CLASSICAL MEMORYLESS DETERMINACY [16]) For all game graphs G =
((V,E), (V1, V2)), all Büchi objectivesΦ for player 1, and the complementary coBüchi objectiveΨ = Ω \ Φ for
player 2, we haveW1(Φ) = V \W2(Ψ).

Thus the theorem shows that every vertex ofV either belongs to the winning set of Büchi objectives of player 1
or to the winning set of coBüchi objectives for player 2. Since we only consider this setting we simply say in the
rest of the paper that every vertex either iswinning for player 1or winning for player 2.

The algorithmic question in alternating graph games with B¨uchi objectiveΦ is to compute the setW1(Φ).

3 Algorithms for B üchi Games

In this section we consider algorithms for Büchi games, andwhen we mention winning vertices or strategies we
mean winning for Büchi objectives, unless explicitly mentioned otherwise. In this section we present the classical
iterative algorithm for Büchi games to compute the winningsets. We then present our new algorithm. We start
with the notion ofclosed sets, attractors, andalternating reachabilitywhich are key notions for the analysis of
the algorithm. We present the graph theoretic definitions, and then present well-known facts that establish the
connection of the graph definitions and strategies in alternating game graphs.

memorylessstrategy for a player at a vertexv iff there exists a winning strategywith memoryfor the player atv. Thus for simplicity we only consider the
simpler class of memoryless strategies.



Closed sets.A setU ⊆ V of vertices is aclosed setfor player 1 if the following two conditions hold: (a) For
all verticesu ∈ (U ∩ V1), we haveOut(u) ⊆ U , i.e., all successors of player 1 vertices inU are again inU ;
and (b) for allu ∈ (U ∩ V2), we haveOut(u) ∩ U 6= ∅, i.e., every player 2 vertex inU has a successor inU .
The closed sets for player 2 are defined analogously as above by exchanging the roles of player 1 and player 2
(exchangingV1 andV2). Every closed setU for playerℓ ∈ {1, 2}, induces a sub-game graph, denotedG ↾ U .

Fact 1. Consider a game graphG, and a closed setU for player 1. Then the following assertions hold:
1. Player 2 has a winning strategy for the objectiveSafe(U) for all vertices inU , i.e., player 2 can ensure that

if the play starts inU , then the play never leaves setU .
2. For allT ⊆ V \ U , we haveW1(Reach(T )) ∩ U = ∅, i.e., for any setT of vertices outsideU , player 1

does not have a strategy from vertices inU to ensure to reachT .
3. If U ∩B = ∅ (i.e., there is no Büchi vertex inU ), then every vertex inU is winning for player 2.

Attractors. Given a game graphG, a setU ⊆ V of target vertices, and a playerℓ ∈ {1, 2}, the setAttr ℓ(U,G)
(called attractor) is the set of vertices from which playerℓ has a strategy to reach a vertex inU against all
strategies of the other player; that is,Attr ℓ(U,G) = Wℓ(Reach(U)). The setAttr1(U,G) can be defined
inductively as follows: letR0 = U ; let Ri+1 = Ri ∪ {v ∈ V1 | Out(v) ∩ Ri 6= ∅} ∪ {v ∈ V2 | Out(v) ⊆
Ri} for all i ≥ 0; thenAttr1(U,G) =

⋃
i≥0Ri. The inductive definition ofAttr2(U,G) is analogous with

V1 replaced byV2 and vice-versa. For all verticesv ∈ Attr1(U,G), definerank(v) = i if v ∈ Ri \Ri−1, that is,
rank (v) denotes the leasti ≥ 0 such thatv is included inRi. Define a memoryless strategyσ ∈ Σ for player 1 as
follows: for each vertexv ∈ (Attr 1(U,G) ∩ V1) with rank (v) = i, choose a successorσ(v) ∈ (Ri−1 ∩Out(v))
(such a successor exists by the inductive definition). It follows that for all vertexv ∈ Attr1(U,G) and all
strategiesπ ∈ Π for player 2, the playω(v, σ, π) reachesU in at most|Attr1(U,G)| transitions. Observe that for
ℓ ∈ {1, 2}, we haveU ⊆ Attr ℓ(U,G), i.e., the setU always belongs to the attractor.
Alternating reachability.For ℓ ∈ {1, 2}, for a vertexu ∈ Attr ℓ(U,G) we say thatu canaltℓ-reachthe setU . In
other words, altℓ-reach denotes that playerℓ has a strategy to reach the target set, irrespective of the strategy of
the other player.

Fact 2. For all game graphsG, all playersℓ ∈ {1, 2}, and all setsU ⊆ V of vertices, the following holds:
1. The setV \Attr ℓ(U,G) is a closed set for playerℓ, i.e., no playerℓ vertex inV \Attr ℓ(U,G) has an edge

to Attr ℓ(U,G) and every vertex of the other player inV \ Attr ℓ(U,G) has an edge inV \Attr ℓ(U,G).
2. The setAttr ℓ(U,G) can be computed in timeO(|

∑
v∈Attrℓ(U,G) In(v)|) [2, 19].

COROLLARY 3.1. Every vertex in the setV \Attr1(B,G) is winning for player 2 and is not winning for player 1.

3.1 Classical algorithm for Büchi games In this subsection we present the classical algorithm for B¨uchi
games. We start with an informal description of the algorithm.

Informal description of classical algorithm. The classical algorithm(Algorithm 1) works as follows. We
describe an iterationj of the algorithm: the set of vertices at iterationj is denoted byV j , the game graph byGj

and the set of Büchi verticesB ∩ V j by Bj. At iterationj, the algorithm first finds the set of verticesRj from
which player 1 can alt1-reach the setBj, i.e., computesAttr1(Bj, Gj). The rest of the verticesTr j = V j \ Rj

is a closed subset for player 1, andTr j ∩ Bj = ∅. Thus the setTr j is winning for player 2 (by Corollary 3.1).
Then the set of verticesWj+1, from which player 2 can alt2-reach the setTr j , i.e.,Attr2(Tr j, Gj) is computed.
The setWj+1 is winning for player 2, andnot for player 1 inGj and also inG. Thus, it is removed from the
vertex set to obtain game graphGj+1. The algorithm then iterates on the reduced game graph, i.e., proceeds to
iterationj+1 onGj+1. In every iteration a linear-time attractor computation isperformed with the current Büchi
vertices as target to find the set of vertices which can alt1-reach the Büchi set. Each iteration takesO(m) time
and the algorithm runs for at mostO(n) iterations, giving a total time ofO(n · m). The algorithm is formally
described as Algorithm 1. The correctness proof of the algorithm shows that when the algorithm terminates, all
the remaining vertices are winning for player 1 [25, 28].



Algorithm 1 Classical algorithm for B üchi Games

Input : A game graphG = ((V,E), (V1, V2) andB ⊆ V .
Output: W ⊆ V .
1. G0 := G; V 0 := V ; 2. W0 := ∅; 3. j := 0
4. repeat

4.1Wj+1 := AvoidSetClassical(Gj , B ∩ V j)
4.2V j+1 := V j \Wj+1; Gj+1 = G ↾ V j+1; j := j + 1;

until Wj = ∅

5. W :=
⋃j

k=1Wk;
6. return W .

ProcedureAvoidSetClassical
Input: Game graphGj andBj ⊆ V j.
Output: setWj+1 ⊆ V j .
1. Rj := Attr1(B

j, Gj); 2. Tr j := V j \Rj; 3. Wj+1 := Attr2(Tr
j , Gj)

THEOREM 3.1. (CORRECTNESS AND RUNNING TIME) Given a game graphG = ((V,E), (V1, V2)) andB ⊆
V the following assertions hold:

1. W = W2(coBuchi(V \B)) andV \W = W1(Buchi(B)), whereW is the output of Algorithm 1; and
2. the running time of Algorithm 1 isO(n ·m).

3.2 New Algorithm In this section we present our new algorithm for computing the winning set for game
graphs with Büchi objectives in timeO(n2).

Notations. Given an alternating game graphG = ((V,E), (V1, V2)) and a setB of Büchi vertices, we label the
Büchi vertices as priority 0 vertices, and the setV \ B as priority 1 vertices. For every vertexv the inedges
have afixedorder such that all edges from priority 1 player-2 vertices come before all other edges. We maintain
log n graphsGi such thatGi = (V,Ei). The setEi contains all edges(u, v) where (a)outdeg(u) ≤ 2i, where
outdeg(u) = |Out(u)| or (b) the edge(u, v) belongs to the first2i inedges of vertexv. Note thatEi−1 ⊆ Ei

since the order of the inedges is fixed. We color every player-1 vertexv in Gi blue if outdeg(v) > 2i. We color
every player-2 vertexv in Gi orangeif outdeg(v) > 2i. All other vertices have color white. For every vertex
v that is white inGi, all its outedgesOut(v) are contained inEi. These edges add up to2i · n edges toEi.
Additionally the first up to2i inedges of every vertex belong toEi, adding another up to2i · n edges toEi. Thus
|Ei| ≤ 2i+1 · n. We denote byG the full graph. Note thatG = Glog n and thus all vertices inGlogn are white.

The new algorithm NEWALGO. The new algorithm consists of two nested loops, an outer loopwith loop counter
j and an inner loop with loop counteri. The algorithm will iteratively delete vertices from the graph, and we
denote byDj the set of vertices deleted in iterationj, and byU the set of vertices deleted in all iterations upto
the current iteration (initiallyU is empty). Forj ≥ 1, we will denote byGj

i the sub-graph ofGi induced after
removal of the setU of vertices at the beginning of iterationj, andG0

i is Gi (the initial graphs). We denote
the vertex set in iterationj asV j and the Büchi set asBj (i.e., Bj := V j ∩ B). The intuitive description of
the algorithm is as follows: Starting fromi = 0 the algorithm searches in each iterationj in each graphGj

i

for a special player-1 closed setSj with no Büchi vertex and stop at the smallesti at which such a closed set
exists. SinceSj ∩ Bj = ∅, Fact 1 implies that all the vertices inSj are winning for player 2. Thus, by the same
arguments as for the classical algorithm the player-2 attractorAttr2(Sj , Gj

i ) are winning for player 2 inGj
i and,

as our correctness proof shows, also winning inG. Thus they are removed from the vertex set and the algorithm
iterates on the reduced game graph. ComputingSj takes timeO(2i · n) and, due to the fact that no such set was



found inGj
i−1 we can show thatSj it contains at least2i−1 vertices. Thus, using amortized analysis we charge

O(n) to each of the2i−1 vertices inSj that are removed, giving a total running time ofO(n2). The details of
NEWALGO follow.

1. For j = 0, let Y0 := Attr1(B,G0) (whereG0 is the initial game graph);X0 := V \ Y0 (i.e., X0 is
the set of vertices that cannot alt1-reach the Büchi vertices in the initial game graphG); and compute
D0 := Attr2(X,G) using attractor computation.

2. Remove the vertices ofDj from all log n graphsGj
i to create graphsGj+1

i ; j := j + 1; andU := U ∪Dj ;
3. i := 1;
4. repeat

(a) LetZj
i be the vertices ofV j that are (i) either orangewith no outedgesin Gj

i or (ii) blue inGj
i .

(b) Compute the setY j
i of vertices inGj

i that can alt1-reach the Büchi vertices orZi
j , i.e., compute

Y j
i := Attr1(B

j ∪ Zj
i , G

j
i ) using attractor computation.

(c) Sj := V j \ Y j
i (i.e.,V j \ Attr1(B

j ∪ Zj
i , G

j
i )); i := i+ 1

5. until Sj is non-empty ori = log n
6. if Sj 6= ∅, thenDj := Attr2(Sj , G

j) and go to Step 2, else the whole algorithm terminates and outputs
V \ U .

Let U∗ be the set of vertices removed from the graph over all iterations andY ∗ = V \ U∗ be the output of
the algorithm. We first show thatY ∗ ⊆ W1(Φ), whereΦ is the Büchi objective, i.e.,Y ∗ is winning for player 1.
Then we show thatU∗ ∩ W1(Φ) = ∅ (i.e., U∗ is not winning for player 1). Together with Theorem 2.1 this
shows thatY ∗ = W1(Φ) estabilishing the correctness of the algorithm. Finally weanalyze the running time of
the algorithm.

LEMMA 3.1. Let Y ∗ be the output ofNEWALGO, and letG∗ andB∗ be the game graph and the Büchi set on
termination, respectively (i.e.,G∗ is the graph induced byY ∗ andB∗ isB ∩ Y ∗). The following assertions hold:

1. Y ∗ = Attr1(B
∗, G∗), i.e., player 1 can alt1-reach the setB∗ in G∗ fromY ∗.

2. Y ∗ is a player-2 closed set in the original game graphG.
3. Y ∗ ⊆ W1(Φ), whereΦ is the B̈uchi objective.

Proof. We prove the three parts below.
1. Consider the last iterationj∗ of the outer loop of the algorithm. Since it is the last iteration, the setSj∗

must be empty. It follows thati must have beenlog n in the last iteration of the repeat loop, i.e., the last
iteration of the repeat loop consideredGj∗

log n = G∗. Let i = log n. Note that all vertices are white inG∗,

i.e.,Zj∗

i was empty. Hence we haveY j∗

i = Attr1(B
∗ ∪ Zj∗

i , G∗) = Attr1(B
∗, G∗). Hence the fact that

Sj∗ was empty at the end of the iteration implies thatV j∗ \ Y j∗

i was empty, i.e., that all vertices ofG∗

belong toAttr1(B∗, G∗). HenceY ∗ = Attr1(B
∗, G∗).

2. Whenever a set of vertices is deleted in any iteration, it is an player-2 attractor. Hence if a vertexu ∈ Y ∗∩V2

would have an edge to a vertexv ∈ U∗, thenu would have been included inU∗ (whereU∗ = V \ Y ∗).
Similarly for a player 1 vertexu ∈ Y ∗ ∩ V1 it must have an edge inY ∗, as we assume that it has at least
one out-edge and if all its out-edges pointed toU∗ it would have been included inU∗. It follows thatY ∗ is
a player-2 closed set inG.

3. The result is obtained from the previous two items. Consider a memoryless attractor strategyσ in G∗ for
player-1 that ensures that for all vertices inY ∗ the setB∗ is reached within|Y ∗| steps against all strategies
of player-2. Moreover the strategy only chooses successor in Y ∗. SinceY ∗ is a player-2 closed set, it
follows that against all strategies of player-2 the setY ∗ is never left, thus it is ensured thatB∗ is visited
infinitely often. Hence the strategyσ ensures that for all verticesv ∈ Y ∗ and all strategiesπ we have
ω(v, σ, π) ∈ Φ. It follows thatY ∗ ⊆ W1(Φ).

The desired result follows.



To complete the correctness proof we need to show that ifU∗ = V \ Y ∗, thenU∗ ∩W1(Φ) = ∅, whereΦ is
the Büchi objective. We will show the result by induction onthe number of iterations. Let us denote byUj the
set of vertices removed till iterationj. The base case is trivial as initiallyU is emptyset. By inductive hypothesis,
we assume forj ≥ 1 we haveUj−1∩W1(Φ) = ∅, and then show thatUj ∩W1(Φ) = ∅. LetGj be the alternating
game graph obtained after removal of the setUj−1 of vertices. We will show the following claim.

Claim 1. In Gj , letSj be the non-empty set identified in iterationj, thenAttr1(Bj , Gj) ∩ Sj = ∅.

In the following two lemmata we first show how with Claim 1 we establish the correctness of our algorithm and
finally prove Claim 1 to complete the correctness proof.

LEMMA 3.2. The inductive hypothesis thatUj−1 ∩W1(Φ) = ∅ and Claim 1 implies thatSj ∩W1(Φ) = ∅.

Proof. By Claim 1 we haveAttr1(Bj , Gj) ∩ Sj = ∅, and it follows that if player 1 follows a strategy from any
vertex inSj such that the setV j = V \ Uj−1 of vertices is never left, then no Büchi vertex is ever reached.
If the setV j is left after a finite number of steps, then the setUj−1 is reached, and by inductive hypothesis
Uj−1 ∩ W1(Φ) = ∅, i.e., player 2 can ensure fromUj−1 that the set of Büchi vertices is visited finitely often.
Since the Büchi objective is independent of finite prefixes,it follows that if V j is left andUj−1 is reached, then
player 2 ensures that the Büchi objective is not satisfied. It follows thatSj ∩W1(Φ) = ∅.

LEMMA 3.3. The inductive hypothesis thatUj−1 ∩W1(Φ) = ∅ and Claim 1 implies thatUj ∩W1(Φ) = ∅.

Proof. Observe thatUj \ Uj−1 is obtained as a player 2 attractor toSj , and hence player 2 can ensure from
Uj \ Uj−1 thatSj is reached in finite number of steps. Since Büchi objective is independent of finite prefixes,
by inductive hypothesisUj−1 ∩W1(Φ) = ∅, and by Lemma 3.2 we have thatSj ∩W1(Φ) = ∅, it follows that
Uj ∩W1(Φ) = ∅.

Hence to complete the proof we need to establish Claim 1 and this is achieved in the following two lemmata.
We start with the notion of a separating cut.

Separating cut. We say a setS of vertices induces aseparating cutin a graphGi or Gj
i if (a) the only edges

from S to V \ S come from player-2 vertices inS, (b) every player-2 vertex inS has an edge to another vertex
in S, (c) every player-1 vertex inS is white, and (d)B ∩ S = ∅. ThusS is a player-1 closed set where every
player-1 vertex is white and which does not contain a vertex inB.

LEMMA 3.4. Let G = ((V,E), (V1, V2)) be a game graph where every vertex has at least outdegree 1, and
G′ = ((V,E′), (V1, V2)) be a sub-graph ofG with E′ ⊆ E. LetZ be a set of blue player-1 and orange player-2
vertices ofG′ such that all orange vertices have outdegree 0 inG′. If S induces a separating cut inG′, then no
vertex ofS belongs toAttr1(B ∪ Z,G).

Proof. We first show that every vertex inS has an edge to another vertex inS in G′. For player-2 vertices this
follows from condition (b) of a separating cut. For player-1vertices this follows since they have outdegree 1 in
G, are white inG′, and cannot have an edge to a vertex inV \ S.

Note thatS ∩ (B ∪ Z) = ∅ sinceS contains no blue vertex ofGi, every orange vertex inS has outdegree
at least 1 andB ∩ S = ∅ by condition (d) of a separating cut. By condition (a) for allplayer-1 vertices inS all
out-going edges are inS. It follows thatS is a player-1 closed set, and sinceS ∩ (B ∪Z) = ∅, the result follows
from Fact 1.

LEMMA 3.5. We haveSj ∩ Attr1(B
j , Gj) = ∅.

Proof. Let v be a vertex inSj. By constructionv cannot alt1-reachBj ∪ Zj
i∗ in Gj

i∗ , wherei∗ was the last value
of i in the repeat loop of iterationj. We will show thatv cannot alt1-reachBj in Gj . If suffices to show thatSj

induces a separating cut inGj . Then we can simply apply Lemma 3.4 withG = Gj , G′ = Gj
i∗ , Z = ∅, and

S = Sj to prove the lemma.



1. Condition (a).By construction no player-1 vertex inSj has an edge toV j \ Sj, otherwise it would belong
to the player-1 attractor ofBj ∪ Zj

i∗ . Since all player-1 vertices inSj are white inGj
i∗ , the outedges of the

player-1 vertices inSj are the same inEj
i∗ and inEj . Thus condition (a) of a separating cut holds inGj .

2. Condition (b). Every player-2 vertex inSj must have an edge to another vertex inSj , otherwise all its
edges would go to vertices inV j \ Sj and thus it would belong toAttr1(Bj ∪ Zj

i∗ , G
j
i∗). SinceEj

i∗ ⊆ Ej ,
the same holds inGj . Hence condition (b) of a separating cut holds inGj .

3. Condition (c).All vertices are white inGj . Thus condition (c) holds trivially.
4. Condition (d).The condition (d),Sj ∩ Bj = ∅ holds, since otherwise a vertex ofSj would belong toBj

and, thus, toAttr1(Bj ∪ Zj
i∗ , G

j
i∗).

ThusSj induces a separating cut inGj . The desired result follows.

Lemma 3.5 proves Claim 1 and this completes the correctness proof, and gives the following lemma.

LEMMA 3.6. LetY ∗ be the output ofNEWALGO. Then we haveY ∗ = W1(Φ), whereΦ is the B̈uchi objective.

Running time analysis.We now analyze the running time of the algorithm.

LEMMA 3.7. LetGj
i be a game graph in iterationj and letZj

i be the set of blue and degree-0 orange vertices of
Gj

i as defined in iterationj of the outer loop andi of the inner loop of the algorithm. IfS induces a separating
cut inGj

i , thenS ⊆ Sj.

Proof. None of the vertices inS can alt1-reachB in Gj by Lemma 3.5. By Lemma 3.4 none of the vertices inS
can alt1-reachBj ∪ Zj

i . Hence we haveS ⊆ V j \ Attr1(B
j ∪ Zj

i , G
j
i ). ThusS ⊆ Sj.

SinceSj is a complement of a player-2 attractor it is a player-1 closed set, all vertices inSj are white, and
there is no Büchi vertex inSj. HenceSj is a separating cut. The previous lemma shows that every separating cut
S is a subset ofSj . It follows thatSj is the largest (under set inclusion) separating cut.

LEMMA 3.8. The total time spent byNEWALGO is O(n2).

Proof. We present theO(n2) running time analysis and we consider two cases.

All other than the last iteration of the outer loop.Assume in iterationj the algorithm stops the repeat until loop
at valuei and this is not the last iteration of the algorithm. ThenSj is not empty. Note that all player-1 vertices
in Sj are white, sinceZj

i contains all blue player-1 vertices ofV j andSj = V j \Attr1(B
j ∪ Zj

i , G
j
i ). Thus,Sj

induces a separating cut inGj
i . Consider the setSj in Gj

i−1. There are 2 cases to consider:

Case 1:Sj contains a player-1 vertexx that is blue inGj
i−1. Thusx has outdegree at least2i−1 in Gj

i and

none of these edges go to vertices inV j \ Sj in Gj
i . Thus,Sj contains at least2i−1 vertices.

Case 2:All player-1 vertices inSj are white inGj
i−1. Thus, their outedges inGj

i andGj
i−1 are identical.

Note that no priority-1 player-2 vertices inV j \ Sj point to vertices ofSj in Gj
i . SinceEj

i−1 ⊆ Ej
i it follows

that no priority-1 player-2 vertices inV j \ Sj point to vertices inSj in Gj
i−1. Consider a player-2 vertexu in Sj.

Thus there exists an edge(u, v) ∈ Ej
i with v ∈ Sj. There are two possibilities.

Case 2a:For all player-2 verticesu ∈ Sj there exists a vertexv ∈ Sj with (u, v) ∈ Ej
i−1. But thenSj would

be a separating cut inGj
i−1. By Lemma 3.7 it follows thatSj would be non-empty in iterationi− 1 and thus the

repeat loop would have stopped after iterationi − 1. This is not the case and thus the condition of Case 2a does
not hold.

Case 2b:There exists a player 2 vertexu ∈ Sj that has an edge(u, v) ∈ Ej
i to a vertexv ∈ Sj but this

edge is not contained inEj
i−1. This can only happen ifu is orange inGj

i−1 andv has2i−1 other inedges inEj
i−1.

Since the edge(u, v) whereu is a priority-1 player-2 vertex is not inGj
i−1, all inedges ofv that are inGj

i−1 are



from priority-1 player-2 vertices by the fixed order of inedges. It follows that none of the inedges ofv in Gj
i−1

are fromV j \ Sj and, thus,Sj must contain at least2i−1 player-2 vertices.
Thus in either caseSj contains at least2i−1 vertices and all these vertices are deleted. The time spent for all

the executions of the repeat loop in this iteration of the outer loop it the time spent in all graphsG1, G2, ...,Gi∗ ,
which sums toO(2i · n). We chargeO(n) work to each deleted vertex. This accounts for all but the last iteration
of the outer loop. As the algorithm deletes at mostn vertices the total time spent over the whole algorithm other
than the last iteration isO(n2).

The last iteration of the outer loop.In the last iteration of the outer loop, when no vertex is deleted, the algorithm
works on alllog n graphs, spending timeO(n · 2i) in graphGi. Since there arelog n graphs, the total time is
O(n · 2 · 2log n) = O(n2). An identical argument also shows that the time to built all the initial graphsGi is at
mostO(n2). Hence the desired result follows.

THEOREM 3.2. Given a game graphG with n vertices, and an B̈uchi objectiveΦ, algorithm NEWALGO

correctly computes the winning setW1(Φ) in timeO(n2).

4 Maximal End-component Decomposition Algorithm

In this section we present an algorithm for the maximal end-component decomposition problem that runs in
O(n2) time. The maximal end-component problem is the core algorithmic problem in verification of probabilistic
systems, and the graph theoretic description of the problemfor game graphs is defined below.

Maximal end-component decomposition. Given a game graphG = ((V,E), (V1, V2)), an end-component
U ⊆ V is a set of vertices such that (a) the graph(U,E∩U×U) is strongly connected; (b) for allu ∈ U ∩V2 and
all (u, v) ∈ E we havev ∈ U ; and (c) either|U | ≥ 2, orU = {v} and there is a self-loop atv (i.e., (v, v) ∈ E).
In other words, an end-component is a player-2 closed set that is strongly connected. Note that ifU1 andU2 are
end-components withU1 ∩ U2 6= ∅, thenU1 ∪ U2 is an end-component. Amaximal end-component (mec)is
an end-component that is maximal under set inclusion. Everyvertex ofV belongs toat mostone maximal end-
component. Themaximal end-component (mec) decompositionconsists of all the maximal end-components of
V and all vertices ofV that do not belong toanymaximal end-component. Maximal end-components generalize
strongly connected components (scc’s) for directed graphs(with V2 = ∅) and closed recurrent sets for Markov
chains (withV1 = ∅).

Notations. Given a game graphG = ((V,E), (V1, V2)), we will denote byReachable(X,G) the set of vertices
that can reach a vertex inX in the graph(V,E). Note thatX ⊆ Reachable(X,G). We maintainlog n graphsGi

such thatGi = (V,Ei) andEi contains all edges(u, v) whereoutdeg(u) ≤ 2i. We denote byG the full graph.
We color verticesv in Gi blue if outdeg(v) > 2i, i.e.,Bli = {v ∈ V | outdeg(v) > 2i} and all other vertices are
coloredwhite, i.e.,Whi = {v ∈ V | outdeg(v) ≤ 2i}. Note thatG = Glog n and thus all vertices inGlogn are
white. Thus, none of the outedges of the blue vertices ofGi belong toGi, i.e., all blue vertices have outdegree 0
in Gi. A bottomsccC of a graph is a scc that has no edge leaving out ofC. Every graph has a bottom scc and
every bottom scc is a mec.

Maximal end-component decomposition algorithm.The algorithm consists of two nested loops, an outer loop
with loop counterj and an inner loop with loop counteri. The algorithm will iteratively delete vertices from the
graph, and we denote byDj the set of vertices deleted in iterationj. We will denote byGj

i the sub-graph ofGi

at the beginning of iterationj (as for NEWALGO) and the vertex set in iterationj is denoted asV j . The setBlji
is the set of vertices inGj

i with outdegree greater than2i in Gj
i . Basically the algorithm is similar to NEWALGO,

and instead of searching for separating cuts, the algorithmfor mec decomposition searches for bottom scc’s. The
steps of the algorithm are as follows and we refer the algorithm as NEWMECALGO.

1. LetDj be the set of vertices deleted in iterationj. Forj := 0, letD0 := Attr2(X,G0), whereX is the set
of vertices that are in the bottom scc’s in the initial graphG. Every bottom scc is an mec and included in
the mec decomposition.



2. Remove the vertices ofDj from all log n graphsGj
i to create graphGj+1

i ; j := j + 1. If all vertices are
removed, then the whole algorithm terminates and outputs the mec decomposition.

3. i := 1;
4. repeat

(a) Compute all the vertices inGj
i that can reach the blue vertices using the standard linear-time algorithm

for reachability.
(b) LetSj = V j \Reachable(Blji , G

j
i ) be the set of vertices that cannot reach the setBl

j
i blue vertices in

Gj
i ; i := i+ 1

5. until Sj is non-empty
6. if Sj 6= ∅, then letDj := Attr2(X,Gj), whereX is the set of vertices that are in the bottom scc’s in the

sub-graph induced bySj in Gj
i . Every bottom scc is an mec and included in the mec decomposition. Go

to Step 2.

Basic correctness argument. Let us denoteGj to be the remaining game graph after iterationj. Let Sj

be the set identified at iterationj, and let the inner iteration stop ati∗. All vertices in Sj are white, since
Sj = V j \ Reachable(Blji∗ , G

j
i∗) andBlji∗ ⊆ Reachable(Blji∗ , G

j
i∗). For all v ∈ Sj, all outedges fromv end in

a vertex inSj: otherwise if there is an edge fromv to Reachable(Blji∗ , G
j
i∗), thenv would have been included

in Reachable(Blji∗ , G
j
i∗). Hence any bottom scc in the subgraph induced bySj in Gj

i∗ is also a bottom scc of
Gj . The correctness of the identification the bottom scc as an mec and removal of the attractor follows from
the following two lemmata established in [7] (see Lemma 2.1 and Lemma 2.2 of [7]). The first lemma below
establishes that the player-2 attractor of a mec and the player-2 attractor of certain vertices of an scc do not belong
to any mec and that it, thus, can be removed without affectingthe mec decomposition of the remaining graph.
Hence, the lemma is used to identify vertices that do not belong to any mec. The second lemma below shows
under which condition an scc is an mec. Thus, it can be used to identify vertices thatform a mec. It follows
trivially from the second lemma that every bottom scc is a mec.

LEMMA 4.1. ([7]) LetG = ((V,E), (V1, V2)) be a game graph, and let(V,E) be the graph.

1. LetC be a scc in(V,E). LetU = {v ∈ C ∩ V2 | Out(v) ∩ (V \ C) 6= ∅} be the player-2 vertices inC
with edges out ofC. LetZ = Attr2(U,G)∩C. Then for all non-trivial mec’sX in G we haveZ ∩X = ∅
and for any edge(u, v) with u ∈ X andv ∈ Z, u must belong toV1.

2. LetC be a mec inG. LetZ = Attr2(C,G) \ C. Then for all non-trivial mec’sX with X 6= C in G we
haveZ ∩X = ∅ and for any edge(u, v) with u ∈ X andv ∈ Z, u must belong toV1.

LEMMA 4.2. ([7]) LetG = ((V,E), (V1, V2)) be a game graph, and let(V,E) be the graph. LetC be a scc in
(V,E) such that for allv ∈ C ∩ V2 we haveOut(v) ⊆ C. ThenC is a mec.

The correctness of the algorithm follows.

LEMMA 4.3. AlgorithmNEWMECALGO correctly computes the mec decomposition of a game graph.

Running time analysis. The crucial result of the running time analysis depends on the following lemma. It
shows that in an outer iterationj, if the inner iteration stops at iterationi∗ andX is the set of vertices identified
as bottom scc, thenX ∩ Bl

j
i∗−1 is non-empty.

LEMMA 4.4. Consider an outer iterationj of the algorithm, and let the inner iteration stop at iteration i∗. Let
X be hte set of vertices identified as bottom scc of the graph induced byS in Gj

i∗ . ThenX ∩ Bl
j
i∗−1 6= ∅.

Proof. Assume towards contradiction that there is a bottom sccC in the induced subgraph ofS in Gj
i∗ such

that C ∩ Bl
j
i∗−1 = ∅. Now we consider the iterationi∗ − 1 and then for every vertex inC in Gj

i∗−1 all



outedges end in a vertex inC. SinceC does not contain a vertex fromBlji∗−1 andC has no outgoing edges,

it follows thatC ⊆ V j \ Reachable(Blji∗−1, G
j
i∗). Since all edges ofGj

i∗−1 are contained inGj
i∗ it follows that

C ⊆ V j \ Reachable(Blji∗−1, G
j
i∗−1). It follows that a non-emptysetSj would have been identified in iteration

i∗ − 1, and this contradicts that the algorithm stops at iterationi∗ and not ini∗ − 1.

LEMMA 4.5. The total time spent byNEWMECALGO isO(n2).

Proof. Assume that for an outer iterationj, the inner iteration stops the repeat until loop at valuei∗. By the
previous lemma, one of the verticesv in X must have belong toBlji∗−1 and thus it has outdegree at least2i

∗−1.
Since we identify the bottom scc that containv it must contain all the endpoints of the outedges fromv. Hence
X contains at least2i

∗−1 vertices. The time spent for all the executions of the repeatloop in this iteration of the
outer loop it the time spent in all graphsGj

1, G
j
2, ...,Gj

i∗ , which sums toO(2i
∗
· n). We chargeO(n) to each

deleted vertex. As the algorithm deletes at mostn vertices the total time spent over the whole algorithm isO(n2).
The removal of all the player-2 attractors overall iterations takesO(m) = O(n2) time. Similar to the proof of
Lemma 3.8, the time required to built all the initial graphsGi is at mostO(n2). The result follows.

THEOREM 4.1. Algorithm NEWMECALGO correctly computes the mec decomposition of a game graph in
O(n2) time.

5 Decremental and Incremental Algorithms

In this section we present the decremental and incremental algorithms for computing the winning set in game
graphs with Büchi objectives. We will show that theprogress measurealgorithm of [20] works in total time
O(n ·m) for a sequence of player-1 edge deletions (or insertions), and hence the amortized time per operation is
O(n). Since Büchi objectives generalize reachability objectives, and alternating game graphs generalize directed
graphs, our algorithm is a generalization of the Even-Shiloach algorithm [17] for decremental reachability in
graphs. However our proof is very different, based on a fix-point argument, and is much simpler. We first present
the algorithm for the decremental case.

5.1 Decremental algorithm for Büchi games In this section we present the decremental algorithm, and we
consider only deletion of player-1 edges. Our decremental algorithm is based on the notion of progress measure
and we start with the notion of a progress measure and valid progress measure.

Progress measure.Given a game graph withn vertices, a progress measure is a functionρ : V → [n]∪⊤, where
[n] = {0, 1, 2, . . . , n}, that assigns to every vertex either a number from0 to n, or the top element⊤. We will
follow the conventions that: (a) for allj ∈ [n] we havej < ⊤; (b) n + 1 = ⊤; (c) ⊤ + 1 = ⊤; (d) ⊤ ≥ ⊤.
Given a game graph with a setB of Büchi vertices, a progress measureρ is a valid progress measure if the
following conditions hold for allv ∈ V : (i) for v ∈ V1 ∩ B, we haveρ(v) = ⊤ if for all (v,w) ∈ E we have
ρ(w) = ⊤, and 0 otherwise; (ii) forv ∈ V2 ∩ B, we haveρ(v) = ⊤ if there exists(v,w) ∈ E with ρ(w) = ⊤,
and 0 otherwise; (iii) forv ∈ V1 \ B, we haveρ(v) = min(v,w)∈E ρ(w) + 1; and (iv) forv ∈ V2 \ B, we have
ρ(v) = max(v,w)∈E ρ(w)+1. We define the comparison operators≤,≥ on progress measures with thepointwise
comparison, i.e., for⊲⊳∈ {≤,≥} and progress measuresρ1 andρ2, we writeρ1 ⊲⊳ ρ2 iff for all v ∈ V we have
ρ1(v) ⊲⊳ ρ2(v).

Lift operation on progress measure.Given a game graphG, the functionLiftG takes as input a progress measure
and returns a progress measure. For all input progress measuresρ, the output progress measureρ′ = Lift

G(ρ)
is defined as follows: for allv ∈ V , (i) for v ∈ V1 ∩ B, we haveρ′(v) = ⊤ if for all (v,w) ∈ E we have
ρ(w) = ⊤, and 0 otherwise; (ii) forv ∈ V2 ∩ B, we haveρ′(v) = ⊤ if there exists(v,w) ∈ E with ρ(w) = ⊤,
and 0 otherwise, (iii) forv ∈ V1 \ B, we haveρ′(v) = min(v,w)∈E ρ(w) + 1; and (iv) forv ∈ V2 \ B, we have
ρ′(v) = max(v,w)∈E ρ(w) + 1.



LEMMA 5.1. For all game graphsG, the functionLiftG is monotonic (ifρ1 ≤ ρ2, thenLiftG(ρ1) ≤ Lift
G(ρ2)).

Proof. Consider progress measuresρ1, ρ2 such thatρ1 ≤ ρ2. For a non-Büchi vertexv ∈ (V \B) we have

Lift
G(ρ1)(v) =

{
min(v,w)∈E ρ1(w) + 1 ≤ min(v,w)∈E ρ2(w) + 1 = Lift

G(ρ2)(v) v ∈ V1 \B;

max(v,w)∈E ρ1(w) + 1 ≤ max(v,w)∈E ρ2(w) + 1 = Lift
G(ρ2)(v) v ∈ V2 \B;

whereE is the set of edges inG. It follows that for allv ∈ (V \ B) we haveLiftG(ρ1)(v) ≤ Lift
G(ρ2)(v).

Note that for vertices inB, progress measures are either 0 or⊤. For v ∈ B we have the following cases:
(i) v ∈ V1 ∩B: if LiftG(ρ1)(v) = ⊤, then for all(v,w) ∈ E we haveρ1(w) = ⊤, and hence for all(v,w) ∈ E
we haveρ2(w) = ⊤; thusLiftG(ρ2)(v) = ⊤; and (i) v ∈ V2 ∩ B: if Lift

G(ρ1)(v) = ⊤, then there exists
(v,w) ∈ E with ρ1(w) = ⊤, and hence we haveρ2(w) = ⊤; thusLiftG(ρ2)(v) = ⊤. It follows that we have
Lift

G(ρ1) ≤ Lift
G(ρ2). The desired result follows.

SinceLiftG is a monotonic function on a finite lattice, by the Tarski-Knaster Theorem [22] it has a least
fix-point. Given a player-1 attractorAttr1(U,G), theminimal alternating distanceof a vertexv ∈ Attr1(U,G)
is the rankrank (v) of the vertexv (in other words it is the alternating shortest distance toU where player-1
minimizes the distance and player-2 maximizes the distanceto U ). The result of [20] established that for all
game graphsG, (i) there is a unique least fix-point ofLiftG, (ii) the least fix-point is a valid progress measure,
(iii) in the winning set the progress measure equals the minimal alternating distance to the set of Büchi vertices
in the winning set and all Büchi vertices in the winning set have progress measure 0, and (iv) all vertices in the
complement of the winning set are assigned⊤. The result of [20] is for the more general case of parity objectives,
and the specialization to Büchi objectives yields the above properties.

THEOREM 5.1. ([20]) For all game graphsG, let ρ∗ be the least fix-point ofLiftG, and let||ρ∗|| = {v ∈ V |
ρ(v) ∈ [n]} denote the set of vertices that are not assigned the top element. Then||ρ∗|| = W1(Φ), whereΦ is the
Büchi objective.

Decremental algorithm. Our algorithm initially computes the least fix-point progress measureρ∗ of the graph
and then maintains it after each edge deletion by repeatedlyapplying the lift operator to the fix-pointρ∗ stored
beforethe edge deletion. To prove the correctness we will show thatthe fix-point obtained by repeatedly applying
the lift operator on the previous least fix-point converges to the least fix-point of the new game graph. The
algorithm maintains the following data structure: (i) For each vertexx ∈ V1 ∩B it keeps a list of verticesw such
that(x,w) ∈ E andρ∗(w) 6= ⊤ and (ii) for each vertexx ∈ V1 \B a list of verticesw such that(x,w) ∈ E and
ρ∗(x) = ρ∗(w) + 1. (iii) Every edge(x,w) has a pointer to its location in the list ofx if it is stored in such a list.
We next describe the algorithm in detail.
Computation of the initialρ∗. Use the static Büchi algorithm from the previous section tocompute the player-1
and player-2 winning sets and assign⊤ to all vertices in the player-2 winning set. Use the backwardsearch
algorithm [2, 19] to determine the rank of every vertex in theplayer-1 winning set and set its initial progress
measure equal to its rank. Then we compute for each vertex ofV1 its list.
Deletion of the edge(u, v). Maintain a queue of vertices to be processed to update the progress measure until
the least fix-point is reached such that a vertex ofV2 is only added to the queue when its progress measure has
increased. Initially, enqueueu. Then iteratively process and dequeue the vertices from thequeue.

Case 1: A vertexx of V1 is dequeued.Check whether given the current progress measure, the progress
measure ofx needs to be increased to satisfy the lift operation forx. To do this we first check whether the list of
x is empty. If it is not empty, nothing needs to be done. If it is empty, all remaining outedges ofx are checked to
compute the new progress measure value ofx and the new list ofx. Then all inedges(u, x) of x are processed
as follows: Ifu is a player-1 non-Büchi vertex (u ∈ V1 \B), then it is enqueued (if it is not already in the queue)
andx is removed from the list ofu if it was there. Ifu is a player-2 non-Büchi vertex (u ∈ V2 \ B), then check



whether the change in the progress measure value ofx also increases the progress measure value ofu. If it does,
thenu is enqueued (if it is not already in the queue), otherwiseu is not enqueued. Ifu is a player-1 Büchi vertex
(u ∈ V1 ∩B), then (i) if the progress measure ofx is not⊤, then do nothing; (ii) else removex from the list ofu,
and if the list ofu is empty, assign progress measure⊤ to u andu is enqueued (if it is not already in the queue).
If u is a player-2 Büchi vertex (u ∈ V2 ∩ B), then (i) if the progress measure ofx is not⊤, then do nothing;
(ii) else assign progress measure⊤ to u andu is enqueued (if it is not already in the queue).

Case 2: A vertexx of V2 is dequeued.In this case the progress measure ofx has increased and it has already
been updated. Thus all what remains is to process all inedges(u, x) of x as follows: Ifu is a player-1 non-Büchi
vertex, then it is enqueued (if it is not already in the queue)andx is removed from the list ofu if it was there. Ifu
is a player-2 non-Büchi vertex, then check whether the change in the progress measure value ofx also increases
the progress measure value ofu. If it does, thenu is enqueued (if it is not already in the queue), otherwiseu is not
enqueued. Ifu is a player-1 Büchi vertex, then (i) if the progress measureof x is not⊤, then do nothing; (ii) else
removex from the list ofu, and if the list ofu is empty, assign progress measure⊤ to u andu is enqueued (if it
is not already in the queue). Ifu is a player-2 Büchi vertex, then (i) if the progress measureof x is not⊤, then do
nothing; (ii) else assign progress measure⊤ to u andu is enqueued (if it is not already in the queue).

This algorithm is a generalization of the Even-Shiloach algorithm [17] for maintaining the connected
component (or more precisely the breadth-first-search tree) of a vertexb in an undirected graph. AssumeB = {b}
and thatV = V1. Then the progress measure value of a vertexv is exactlyv’s level in the breadth-first search
tree rooted atb (or equivalently its shortest path distance tob). Applying the lift operator to a vertexv is exactly
the same as checking whetherv has still an edge to an edge at levellevel(v) − 1 and if not, increasing the level
of v by 1.

Correctness. Let G be a game graph, and letρ∗ be the least fix-point ofLiftG. Let G = G \ {e}, where
e ∈ E ∩ V1 × V , be the game graph obtained by deleting a player-1 edgee. Let ρ∗ be the least fix-point ofG.
Let ρ∗new be the new fix-point obtained by iteratingLiftG onρ∗. We will show thatρ∗ = ρ∗new.

LEMMA 5.2. We haveρ∗ ≤ ρ∗new.

Proof. Let ρ0 be the progress measure that assings0 to all vertices, i.e., the least progress measure. Clearly,ρ0 ≤

ρ∗. Let us denote by(LiftG)i the result of applying the lift operatori-times onG, for somei ∈ N. From a simple

application of Lemma 5.1 it follows that(LiftG)i is monotonic. Hence we have(LiftG)i(ρ0) ≤ (LiftG)i(ρ∗).

Sinceρ∗ = (LiftG)j(ρ0) for somej, andρ∗new ≥ (LiftG)i(ρ∗) for all i (in particular for thej for which the least
fix-point is obtained fromρ0), it follows thatρ∗ ≤ ρ∗new.

LEMMA 5.3. We haveρ∗new ≤ ρ∗.

Proof. Observe that the graphG is obtained by deleting an edge for player-1, and hence the winning set for
player 1 can only decrease and the minimal alternating distance to the Büchi set in the winning set can only
increase. In other words, we haveρ∗ ≤ ρ∗, i.e., the least fix-point of the graphG is smaller than the least fix-
point ofG. Sinceρ∗new = (LiftG)i(ρ∗), for somei, we haveρ∗new = (LiftG)i(ρ∗) ≤ (LiftG)i(ρ∗) = ρ∗, where the

first inequality is a consequence of Lemma 5.1 that(LiftG)i is monotonic, and the last inequality is a consequence
of the fact thatρ∗ is a fix-point. Hence the desired result follows.

The correctness follows from Lemma 5.2 and Lemma 5.3 (thatρ∗new = ρ∗) and the fact that the algorithm
implements the iteration of the lift operator on vertices one by one to compute the fix-point that is obtained by
repeatedly applying the lift operator on the least fix-pointof the previous game graph.

Running time. The deletions of player-1 edges only decreases the winning set, and once a set is removed from
the winning set (i.e., assigned value⊤ in the progress measure algorithm), then they are never worked upon.
Upon termination, letW be the winning set, and letρ be the least fix-point in the end. The computation of the
initial least fix-point is done in timeO(n2).



In the decremental algorithm we check for each dequeued player-1 vertexu whether its progress measure
increases in constant time. If it does not increase no further work is done foru. The constant amount of work
is charged to the edge deletion if an outedge ofu was deleted. If no outedge ofu was deleted then the progress
measure of a vertexw with (u,w) ∈ E must have increased and we charge the work tow. If the progress measure
of u increases we spend timeO(|In(u)| + |Out(u)|) to determine the new progress measure ofu, compute its
new list, and process all its inedges, and the work is chargedto u. A player-2 vertexu is only enqueued when its
progress measure has increased. When it is dequeued we spendtimeO(|In(u)|) to process all its inedges, and
charge it tou. The number of times the progress measure can increase for a vertex is at mostn+ 1 (as once it is
n + 1 it is assigned⊤). For a vertexv, let Num(v) = ρ(v), if ρ(v) 6= ⊤, andn + 1 otherwise. Hence the total
work done by the algorithm is

O(
∑

v∈V

Num(v) · |In(v)|) +O(
∑

v∈V

Num(v) · |Out(v)|) = O(n ·m).

THEOREM 5.2. Given an initial game graph withn vertices andm edges, the winning set partitions can be
maintained under the deletion ofO(m) edges(u, v) with u ∈ V1 in total timeO(n ·m).

5.2 Incremental algorithm for Büchi gamesWe now present the details of the incremental algorithm for
Büchi games, where we consider insertion of player-1 edges. The algorithm is almost identical to the decremental
algorithm and based on the dual progress measure for player 2. We start with the definition of a valid progress
measure for player 2.

Valid progress measure for player 2.Given a game graph with a setB of Büchi vertices, letC = V \ B be the
set of coBüchi vertices. A progress measureρ is avalid progress measure for player 2 if the following conditions
hold for all v ∈ V :

ρ(v) ≥





min(v,w)∈E ρ(w) v ∈ V2 ∩ C;

min(v,w)∈E ρ(w) + 1 v ∈ V2 ∩B;

max(v,w)∈E ρ(w) v ∈ V1 ∩ C;

max(v,w)∈E ρ(w) + 1 v ∈ V1 ∩B.

We define the comparison operators≤,≥ on progress measures with thepointwisecomparison.

Lift operation on progress measure.Given a game graphG, the functioncoLiftG, like theLiftG function, takes as
input a progress measure and returns a progress measure. Forall input progress measuresρ, the output progress
measureρ′ = coLift

G(ρ) is defined as follows: for allv ∈ V ,

ρ′(v) =





min(v,w)∈E ρ(w) v ∈ V2 ∩ C;

min(v,w)∈E ρ(w) + 1 v ∈ V2 ∩B;

max(v,w)∈E ρ(w) v ∈ V1 ∩ C;

max(v,w)∈E ρ(w) + 1 v ∈ V1 ∩B.

LEMMA 5.4. For all game graphsG, the functioncoLiftG is monotonic.

Proof. Consider progress measuresρ1, ρ2 such thatρ1 ≤ ρ2. For a vertexv we have

coLift
G(ρ1)(v) =





min(v,w)∈E ρ1(w) ≤ min(v,w)∈E ρ2(w) = coLift
G(ρ2)(v) v ∈ V2 ∩ C;

min(v,w)∈E ρ1(w) + 1 ≤ min(v,w)∈E ρ2(w) + 1 = coLift
G(ρ2)(v) v ∈ V2 ∩B;

max(v,w)∈E ρ1(w) ≤ max(v,w)∈E ρ2(w) = coLift
G(ρ2)(v) v ∈ V1 ∩ C;

max(v,w)∈E ρ1(w) + 1 ≤ max(v,w)∈E ρ2(w) + 1 = coLift
G(ρ2)(v) v ∈ V1 ∩B;

whereE is the set of edges inG. It follows thatcoLiftG(ρ1) ≤ coLift
G(ρ2). The desired result follows.



SincecoLiftG is a monotonic function on a finite lattice, by Tarski-Knaster Theorem [22] it has a least fix-
point. Before we proceed to the characterization, we present a definition: for a vertexv ∈ W2(Ψ), whereΨ is the
coBüchi objectivecoBuchi(C), letmaxvisit(v) = minπ∈Πmaxσ∈Σ |{i | ω(v, σ, π) = 〈v0, v1, v2, . . .〉, vi ∈ B}|
denote the maximum number of visits to Büchi vertices. Since v ∈ W2(Ψ), once a winning strategy for player-2
is fixed, there cannot be a cycle with a Büchi vertex, and hencemaxvisit(v) ≤ n. The result of [20] established
that for all game graphsG, (i) there is a unique least fix-point ofcoLiftG, (ii) the least fix-point is a valid progress
measure, (iii) for verticesv in the winning set for player 2 the progress measure equalsmaxvisit(v), and (iv) all
vertices in the winning set for player 1 are assigned the top element⊤. The result of [20] is for the more general
case of parity objectives, and the specialization to coBüchi objectives yields the above properties.

THEOREM 5.3. ([20]) For all game graphsG, let ρ∗ be the least fix-point ofcoLiftG, and let||ρ∗|| = {v ∈ V |
ρ(v) ∈ [n]} denote the set of vertices that are not assigned the top element. Then||ρ∗|| = W2(Ψ), whereΨ is
the coB̈uchi objective.

Incremental algorithm. Our algorithm initially computes the least fix-point progress measureρ∗ of coLift of the
graph and then maintains it after each edge insertion by repeatedly applying the lift operatorcoLift to the fix-point
ρ∗ stored frombeforethe edge insertion. To prove the correctness we will show that the fix-point obtained by
repeatedly applying the lift operator on the previous leastfix-point converges to the least fix-point of the new
game graph. The algorithm maintains the following data structure: (i) For each vertexx ∈ V2 ∩ C it keeps a list
of verticesw such that(x,w) ∈ E andρ∗(x) = ρ∗(w) and (ii) for each vertexx ∈ V2 ∩ B a list of verticesw
such that(x,w) ∈ E andρ∗(x) = ρ∗(w) + 1. (iii) Every edge(x,w) has a pointer to its location in the list ofx
if it is stored in such a list. We next describe the algorithm in detail. We first describe the insertion of an edge as
the initial fix-point computation is similar.

Insertion of the edge(u, v). Maintain a queue of vertices to be processed to update the progress measure until
the least fix-point is reached such that a vertex ofV1 is only added to the queue when its progress measure has
increased. Initially, enqueueu. Then iteratively process and dequeue the vertices from thequeue.

Case 1: A vertexx of V2 is dequeued.Check whether given the current progress measure, the progress
measure ofx needs to be increased to satisfy the lift operation forx. To do this we first check whether the list of
x is empty. If it is not empty, nothing needs to be done. If it is empty, all remaining outedges ofx are checked to
compute the new progress measure value ofx and the new list ofx. Then all inedges(u, x) of x are processed
as follows: Ifu is a player-2 vertex it is enqueued (if it is not already in thequeue) andx is removed from the
list of u if it was there. Ifu is a player-1 vertex then check whether the change in the progress measure value of
x also increases the progress measure value ofu. If it does, thenu is enqueued (if it is not already in the queue),
otherwiseu is not enqueued.

Case 2: A vertexx of V1 is dequeued.In this case the progress measure ofx has increased and it has already
been updated. Thus all what remains is to process all inedges(u, x) of x as follows: Ifu is a player-2 vertex it is
enqueued (if it is not already in the queue) andx is removed from the list ofu if it was there. Ifu is a player-1
vertex then check whether the change in the progress measurevalue ofx also increases the progress measure
value ofu. If it does, thenu is enqueued (if it is not already in the queue), otherwiseu is not enqueued.

Computation of the initialρ∗. The computation of the initialρ∗ is similar to the incremental algorithm. We
initialize the initial progress measure as0 for all vertices, then enqueue the set of Büchi vertices, and proceed as
the incremental algorithm until a fix-point is reached. As westart with the all0 progress measure and repeatedly
apply the lift operator we are guaranteed to reach the least fix-point. Then we compute for each vertexv ∈ V2 its
list.

Correctness.Let G be a game graph, and letρ∗ be the least fix-point ofcoLiftG. Let G = G ∪ {e}, where
e ∈ E ∩ V1 × V , be the game graph obtained by inserting a player-1 edgee. Let ρ∗ be the least fix-point ofG.
Let ρ∗new be the new fix-point obtained by iteratingcoLiftG onρ∗. We will show thatρ∗ = ρ∗new.



LEMMA 5.5. We haveρ∗ ≤ ρ∗new.

Proof. Let ρ0 be the progress measure that assings0 to all vertices, i.e., the least progress measure. Clearly,
ρ0 ≤ ρ∗. Let us denote by(coLiftG)i the result of applying the lift operatori-times onG, for some

i ∈ N. From a simple application of Lemma 5.4 it follows that(coLiftG)i is monotonic. Hence we have

(coLiftG)i(ρ0) ≤ (coLiftG)i(ρ∗). Sinceρ∗ = (coLiftG)j(ρ0) for somej, andρ∗new ≥ (coLiftG)i(ρ∗) for all i (in
particular for thej for which the least fix-point is obtained fromρ0), it follows thatρ∗ ≤ ρ∗new.

LEMMA 5.6. We haveρ∗new ≤ ρ∗.

Proof. Observe that the graphG is obtained by inserting an edge for player-1, and hence the winning set for
player 2 can only decrease andmaxvisit(v) can only increase for vertices in the winning set for player 2. In other
words, we haveρ∗ ≤ ρ∗, i.e., the least fix-point of the graphG is smaller than the least fix-point ofG. Since
ρ∗new = (coLiftG)i(ρ∗), for somei, we have

ρ∗new = (coLiftG)i(ρ∗) ≤ (coLiftG)i(ρ∗) = ρ∗,

where the first inequality is a consequence of Lemma 5.4 that(coLiftG)i is monotonic, and the last inequality is
a consequence of the fact thatρ∗ is a fix-point. Hence the desired result follows.

LEMMA 5.7. We haveρ∗new = ρ∗.

Correctness.The correctness follows from Lemma 5.7 and the fact that the algorithm implements the iteration
of the lift operator on vertices one by one to compute the fix-point that is obtained by repeatedly applying the lift
operator on the least fix-point of the previous game graph.

Running time. The insertions of player-1 edges only decreases the winningset for player 2, and once a set is
removed from the winning set (i.e., assigned value⊤ in the progress measure algorithm), then they are never
worked upon. Upon termination, letW be the winning set, and letρ be the least fix-point in the end. In the
incremental algorithm we check for each dequeued player-2 vertexu whether its progress measure increases in
constant time. If it does not increase no further work is donefor u. Sinceu is processed, the progress measure
of a vertexw with (u,w) ∈ E must have increased and we charge the work tow. If the progress measure ofu
increases, then we spend timeO(|In(u)| + |Out(u)|) to determine the new progress measure ofu, compute its
new list, and process all its inedges, and charge the work tou. A player-1 vertexu is only enqueued when its
progress measure has increased, or an edge is inserted atu. If an edge was inserted, the work is charged to the
inserted edge. When it is dequeued we spend timeO(|In(u)|) to process all its inedges, and charge it tou. The
number of times the progress measure can increase for a vertex is at mostn+ 1 (as once it isn+1 it is assigned
⊤). For a vertexv, let Num(v) = ρ(v), if ρ(v) 6= ⊤, andn + 1 otherwise. Hence the total work done by the
algorithm is

O(
∑

v∈V

Num(v) · |In(v)|) +O(
∑

v∈V

Num(v) · |Out(v)|) = O(n ·m).

An argument similar to the above also establishes that the initial least fix-point is computed in timeO(n ·m).

THEOREM 5.4. Given an initial game graph withn vertices andm edges, the winning set partitions can be
maintained under the insertion ofO(m) edges(u, v) with u ∈ V1 in total timeO(n ·m).
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