
Parity Games: Zielonka’s Algorithm in
Quasi-Polynomial Time
Paweł Parys
Institute of Informatics, University of Warsaw, Poland
parys@mimuw.edu.pl

Abstract
Calude, Jain, Khoussainov, Li, and Stephan (2017) proposed a quasi-polynomial-time algorithm
solving parity games. After this breakthrough result, a few other quasi-polynomial-time algorithms
were introduced; none of them is easy to understand. Moreover, it turns out that in practice they
operate very slowly. On the other side there is the Zielonka’s recursive algorithm, which is very
simple, exponential in the worst case, and the fastest in practice. We combine these two approaches:
we propose a small modification of the Zielonka’s algorithm, which ensures that the running time
is at most quasi-polynomial. In effect, we obtain a simple algorithm that solves parity games in
quasi-polynomial time. We also hope that our algorithm, after further optimizations, can lead to an
algorithm that shares the good performance of the Zielonka’s algorithm on typical inputs, while
reducing the worst-case complexity on difficult inputs.
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1 Introduction

The fundamental role of parity games in automata theory, logic, and their applications to
verification and synthesis is doubtless, hence it is pointless to elaborate on their importance.
Let us only mention that the algorithmic problem of finding the winner in parity games
is polynomial-time equivalent to the emptiness problem for nondeterministic automata on
infinite trees with parity acceptance conditions, and to the model-checking problem for modal
µ-calculus [10]. It also lies at the heart of algorithmic solutions to the Church’s synthesis
problem [28]. The impact of parity games reaches relatively far areas of computer science,
like Markov decision processes [11] and linear programming [15].

It is a long-standing open question whether parity games can be solved in polynomial-
time. Several results show that they belong to some classes “slightly above” polynomial
time. Namely, deciding the winner of parity games was shown to be in NP ∩ coNP [10],
and in UP ∩ coUP [18], while computing winning strategies is in PLS, PPAD, and even in
their subclass CLS [9]. The same holds for other kinds of games: mean-payoff games [35],
discounted games, and simple stochastic games [7]; parity games, however, are the easiest
among them, in the sense that there are polynomial-time reductions from parity games to
the other kinds of games [18, 35], but no reductions in the opposite direction are known.

Describing the algorithmic side of solving parity games, one has to start with the Zielonka’s
algorithm [34], being an adaptation of an approach proposed by McNaughton to solve Muller
games [27]. This algorithm consists of a single recursive procedure, being simple and very
natural; one may say that it computes who wins the game “directly from the definition”.
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Its running time is exponential in the worst case [14, 1, 16], but on many typical inputs it
works much faster. For over two decades researchers were trying to cutback the complexity
of solving parity games, which resulted in a series of algorithms, all of which were either
exponential [5, 30, 19, 33, 29, 2], or mildly subexponential [3, 21]. The next era came
unexpectedly in 2017 with a breakthrough result of Calude, Jain, Khoussainov, Li, and
Stephan [6] (see also [17, 23]), who designed an algorithm working in quasi-polynomial
time. This invoked a series of quasi-polynomial-time algorithms, which appeared soon
after [20, 13, 24]. These algorithms are quite involved (at least compared to the simple
recursive algorithm of Zielonka), and it is not so trivial to understand them.

The four quasi-polynomial-time algorithms [6, 20, 13, 24], at first glance being quite
different, actually proceed along a similar line (as observed by Bojańczyk and Czerwiński [4]
and Czerwiński et al. [8]). Namely, out of all the four algorithms one can extract a construction
of a safety automaton (nondeterministic in the case of Lehtinen [24], and deterministic in
the other algorithms), which accepts all words encoding plays that are decisively won by
one of the players (more precisely: plays consistent with some positional winning strategy),
and rejects all words encoding plays in which the player loses (for plays that are won by the
player, but not decisively, the automaton can behave arbitrarily). This automaton does not
depend at all on the game graph; it depends only on its size. Having an automaton with
the above properties, it is not difficult to convert the original parity game into an equivalent
safety game (by taking a “product” of the parity game and the automaton), which can be
solved easily—and all the four algorithms actually proceed this way, even if it is not stated
explicitly than such an automaton is constructed. As shown in Czerwiński et al. [8], all
automata having the aforementioned properties have to look very similar: their states have to
be leaves of some so-called universal tree; particular papers propose different constructions of
these trees, and of the resulting automata (of quasi-polynomial size). Moreover, Czerwiński
et al. [8] show a quasi-polynomial lower bound for the size of such an automaton.

In this paper we propose a novel quasi-polynomial-time algorithm solving parity games.
It is obtained by applying a small modification to the Zielonka’s recursive algorithm; this
modification guarantees that the worst-case running time of this algorithm, being originally
exponential, becomes quasi-polynomial. The simplicity of the Zielonka’s algorithm remains in
place; we avoid complicated considerations accompanying all the previous quasi-polynomial-
time algorithms. Another point is that our algorithm exploits the structure of parity games
in a rather different way from the four previous quasi-polynomial-time algorithms. Indeed,
the other algorithms construct automata that are completely independent from a particular
game graph given on input—they work in exactly the same way for every game graph of a
considered size. The behaviour of our algorithm, in contrast, is highly driven by an analysis
of the game graph given on input. In particular, although our algorithm is not faster than
quasi-polynomial, it does not fit to the “separator approach” in which a quasi-polynomial
lower bound of Czerwiński et al. [8] exists.

The running time of our algorithm is quasi-polynomial, and the space complexity is
quadratic (more precisely, O(n · h), where n is the number of nodes in the game graph, and
h is the maximal priority appearing there).

Let us also mention the practical side of the world. It turns out that parity games
are one of the areas where theory does not need to meet practice: the quasi-polynomial-
time algorithms, although fastest in theory, are actually the slowest. The most exhaustive
comparison of existing algorithms was performed by Tom van Dijk [31]. In his Oink tool he
has implemented several algorithms, with different optimizations. Then, he has evaluated
them on a benchmark of Keiren [22], containing multiple parity games obtained from model
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checking and equivalence checking tasks, as well as on different classes of random games.
It turns out that the classic recursive algorithm of Zielonka [34] performs the best, ex
aequo with the recent priority promotion algorithm [2]. After that, we have the strategy
improvement algorithm [33, 12], being a few times slower. Far later, we have the small
progress measure algorithm [19]. At the very end, with a lot of timeouts, we have the
quasi-polynomial-time algorithm of Fearnley, Jain, Schewe, Stephan, and Wojtczak [13]. The
other quasi-polynomial-time algorithms were not implemented due to excessive memory
usage.

While developing the current algorithm, we hoped that it will share the good performance
with the Zielonka’s algorithm, on which it is based. Unfortunately, preliminary experiments
have shown that this is not necessarily the case. It turns out that

on random games our algorithm performs similarly to the slowest algorithms implemented
in Oink;
on crafted game families that are difficult for the Zielonka’s algorithm, our algorithm is
indeed faster from it, but not dramatically faster;
the only think that is optimistic is that on games with a very low number of priorities
our algorithm performs similarly to the fastest algorithms.

Because the empirical results of a direct implementation of the algorithm are completely
unsatisfactory, we do not include a full description of our experiments. Instead, we leave an
efficient implementation for a future work. Beside of the discouraging outcomes, we believe
that our idea, via further optimizations, can lead to an algorithm that is both fast in practice
and has a good worst-case complexity (see the concluding section for more comments).

2 Preliminaries

A parity game is played on a game graph between two players, called Even or Odd (shortened
sometimes to E and O). A game graph consists of

a directed graph G, where we require that every node has at least one successor, and
where there are no self-loops (i.e., edges from a node to itself);
a labeling of every node v of G by a positive natural number π(v), called its priority;
a partition of nodes of G between nodes owned by Even and nodes owned by Odd.

An infinite path in G is called a play, while a finite path in G is called a partial play. The
game starts in a designated starting node. Then, the player to which the current node
belongs, selects a successor of this node, and the game continues there. In effect, after a
finite time a partial play is obtained, and at the end, after infinite time, this results in a
play. We say that a play v1, v2, . . . is winning for Even if lim supi→∞ π(vi) is even (i.e., if
the maximal priority seen infinitely often is even). Conversely, the play is winning for Odd if
lim supi→∞ π(vi) is odd.

A strategy of player P ∈ {Even,Odd} is a function that maps every partial play that
ends in a node of P to some its successor. Such a function says how P will play in every
situation of the game (depending on the history of that game). When a (partial) play π
follows a strategy σ in every step in which player P is deciding, we say that π agrees with σ.
A strategy σ is winning for P from a node v if every play that starts in v and agrees with σ
is winning for P . While saying “player P wins from a node v” we usually mean that P has a
winning strategy from v. Let WinP (G) be the set of nodes of G from which P wins; it is
called the winning region of P . By the Martin’s theorem [26] we know that parity games are
determined: in every game graph G, and for every node v of G either Even wins from v, or
Odd wins from v. In effect, WinE(G) and WinO(G) form a partition of the node set of G.
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During the analysis, we also consider games with other winning conditions. A winning
condition is a set of plays. The winning conditions of Even and Odd considered in parity
games are denoted LimsupEven and LimsupOdd, respectively. Beside of that, for every set
S of nodes, let Safety(S) be the set of plays that use only nodes from S.

A dominion for Even is a set S of nodes such that from every v ∈ S Even wins the game
with the condition LimsupEven ∩ Safety(S); in other words, from every node of S he can
win the parity game without leaving S. Likewise, a dominion for Odd is a set S of nodes
such that from every v ∈ S Odd wins the game with the condition LimsupOdd ∩ Safety(S).
Notice that the whole WinP (G) is a dominion for P (where P ∈ {Even,Odd}). Indeed, if
Even is going to win from some v ∈WinE(G), the play cannot leave WinE(G) and enter a
node v′ ∈WinO(G), as then Odd could use his winning strategy from v′ and win the whole
game; here we use the fact that all suffixes of a play in LimsupEven are also in LimsupEven.
For P = Odd the situation is symmetric.

3 Standard Zielonka’s Algorithm

Before presenting our algorithm, we recall the standard Zielonka’s algorithm, as a reference.
For a set of nodes N in a game graph G, and for a player P ∈ {Even,Odd}, we define

the attractor of N , denoted AtrP (G,N), to be the set of nodes of G from which P can force
to reach a node from N . In other words, AtrP (G,N) is the smallest set such that

N ⊆ AtrP (G,N),
if v is a node of P and some its successor is in AtrP (G,N), then v ∈ AtrP (G,N), and
if v is a node of the opponent of P and all its successors are in AtrP (G,N), then
v ∈ AtrP (G,N).

Clearly AtrP (G,N) can be computed in time proportional to the size of G.

Algorithm 1 Standard Zielonka’s Algorithm
1: procedure SolveE(G, h) . h is an even upper bound for priorities in G
2: begin
3: do begin
4: Nh = {v ∈ nodes(G) | π(v) = h}; . nodes with the highest priority
5: H = G \AtrE(G,Nh); . new game: reaching priority h → win
6: WO = SolveO(H,h− 1); . in WO we lose before reaching priority h
7: G = G \AtrO(G,WO); . possibly Nh ∩AtrO(G,WO) 6= ∅
8: end while WO 6= ∅
9: end

Algorithm 1 is the standard Zielonka’s algorithm. The procedure SolveE(G, h) returns
WinE(G), the winning region of Even, if h is an even number that is greater or equal than
all priorities appearing in G. A procedure SolveO(G, h) is also needed; it is identical to
SolveE(G, h) except that the roles of E and O are swapped; it returns WinO(G), the
winning region of Odd. While writing G \ S, we mean the game obtained by removing from
G all nodes in S, and all edges leading to nodes in S or starting from nodes in S. We use
this construct only when S is an attractor; in such a case, if all successors of a node v are
removed, then v is also removed (i.e., if all successors of v belong to an attractor, then v
belongs to the attractor as well). In effect G \ S is a valid game graph (every its node has at
least one successor).

We remark that the algorithm is presented in a slightly different way than usually.
Namely, we use here a loop, while the usual presentation does not use a loop but rather
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Figure 1 The structure of winning regions in a parity game

calls recursively SolveE(G \AtrO(G,WO), h) at the end of the procedure. This is only a
superficial difference in the presentation, but is useful while modifying the algorithm in the
next section.

The algorithm can be understood while looking at Figure 1. Let h be the highest priority
used in G; assume that it is even. The game graph G can be divided into two parts: WinE(G)
and WinO(G). In WinE(G) we can distinguish the attractor of nodes with priority h (denoted
AE). Odd either loses inside WinE(G) \AE , or enters AE , which causes that a node with
priority h is seen, and then the game continues in some node of WinE(G). The winning
region of Odd, WinO(G), can be divided into multiple parts. We have a part W 0

O, where
Odd can win without seeing a node of priority h. Then, we have nodes of priority h from
which Even is forced to enter W 0

O, and their attractor, denoted A1. Then, we have a part
W 1

O, where Odd can ensure that the play is either winning for him inside W 1
O or enters A1;

in other words, from nodes of W 1
O Odd can win while seeing h at most once. We also have

parts W i
O for larger i, and corresponding attractors Ai.

While running the algorithm, this partition of G is not known, and has to be discovered.
To this end, the algorithm assumes first (in the game H) that all nodes of priority h are
winning for Even. The first call to SolveO(H,h − 1) returns the set W 0

O of nodes where
Odd wins without seeing a node of priority h. We then remove them from the game, together
with the attractor A1. In the next step, SolveO(H,h− 1) returns the set W 1

O, and so on.
At the end the whole WinO(G) becomes removed, and the procedure returns WinE(G).

4 Quasi-Polynomial-Time Algorithm

We now present a modification to Algorithm 1 that results in obtaining quasi-polynomial
running time, in the worst case.

The modification can be understood while looking again at Figure 1. The key observation
is that, while WinO(G) is of size at most n (where n is the number of nodes in G), then
most of its parts W i

O are smaller. Namely, most of them have to be of size at most n
2 , and

only one of them can be larger than n
2 . We use this observation, and while looking for W i

O,
we search for a winning region (for a dominion) of size at most n

2 . Usually this is enough;
only once it is not enough: one W i

O can be larger than n
2 and it will not be found if we only

look for a set of size at most n
2 . But when the algorithm finds no set of size at most n

2 , we
can once search for W i

O of an arbitrary size. After that, we know that all following sets W i
O

are again of size at most n
2 . While going recursively, we notice that every W i

O can be further
subdivided in a similar way, while splitting on the priority h− 2. If |W i

O| ≤ n
2 , we again have

the property that most of the parts of W i
O are of size at most n

4 , and only one of them can
be larger than n

4 .
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To exploit this observation, in the recursive calls we pass two precision parameters, pE

and pO (one for every of the players), saying that we search for winning sets of size at most
pE for Even, and at most pO for Odd. The modified procedure is presented as Algorithm 2.
Again, one also needs a procedure SolveO, which is obtained from SolveE by literally
changing every E to O and vice versa.

Algorithm 2 Quasi-Polynomial-Time Algorithm
1: procedure SolveE(G, h, pE , pO) . pE , pO are new “precision” parameters
2: begin
3: if G = ∅ ∨ pE ≤ 1 then
4: return ∅; . we assume that there are no self-loops in G
5: do begin
6: Nh = {v ∈ nodes(G) | π(v) = h};
7: H = G \AtrE(G,Nh);
8: WO = SolveO(H,h− 1, bpO/2c, pE); . precision decreased
9: G = G \AtrO(G,WO);
10: end while WO 6= ∅
11: Nh = {v ∈ nodes(G) | π(v) = h};
12: H = G \AtrE(G,Nh);
13: WO = SolveO(H,h− 1, pO, pE); . we try once with the full precision
14: G = G \AtrO(G,WO);
15: while WO 6= ∅ do begin
16: Nh = {v ∈ nodes(G) | π(v) = h};
17: H = G \AtrE(G,Nh);
18: WO = SolveO(H,h− 1, bpO/2c, pE); . again, precision decreased
19: G = G \AtrO(G,WO);
20: end
21: return nodes(G);
22: end

We start the algorithm with pE = pO = n, where n is the number of nodes in G. In the
procedure we have now, in a sense, three copies of the previous procedure, corresponding to
three stages. In the first stage, in lines 5-10, we look for sets W i

O of size at most bpO

2 c. If the
returned set is empty, this may mean that the next W i

O either is empty, or is of size greater
than bpO

2 c. Then, in lines 11-14, we once search for a set W i
O of size at most pO (knowing

that if it is nonempty, then its size is greater than bpO

2 c). Finally, in the loop in lines 15-20,
we again look for sets W i

O of size at most bpO

2 c (because we have already found a set of size
greater than bpO

2 c, all the remaining sets have size at most bpO

2 c).

5 Complexity Analysis

Let us analyze the complexity of our algorithm.
First, we observe that the space complexity is O(n · h), where n is the number of nodes,

and h is the maximal priority. Indeed, the depth of the recursion is at most h, and on every
step we only need to remember some sets of nodes.

We now come to the running time. As it is anyway worse than the running time of the
other quasi-polynomial-time algorithms, we do not aim in proving a very tight upper bound;
we only prove that the running time is quasi-polynomial.
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LetR(h, l) be the number of (nontrivial) executions of the SolveE and SolveO procedures
performed during one call to SolveE(G, h, pE , pO) with blog pEc+ blog pOc = l, and with G
having at most n nodes (where n is fixed). We only count here nontrivial executions, that is,
such that do not leave the procedure in line 4. Clearly R(0, l) = R(h, 0) = 0. For h, l ≥ 1 it
holds that

R(h, l) ≤ 1 + n ·R(h− 1, l − 1) +R(h− 1, l) . (1)

Indeed, in SolveE after every call to SolveO we remove at least one node from G, with the
exception of two such calls: the last call in line 8, and the last call ever. In effect, in lines 8
and 18 we have at most n calls to SolveO with decreased precision (plus, potentially, the
(n+ 1)-th call with empty G, which is not included in R(h, l)), and in line 13 we have one
call to SolveO with full precision. Notice that blog pOc (hence also l) decreases by 1 in the
decreased-precision call.

Using Inequality (1) we now prove by induction that R(h, l) ≤ nl ·
(

h+l
l

)
− 1. For h = 0

and for l = 0 the inequality holds. For h, l ≥ 1 we have that

R(h, l) ≤ 1 + n ·R(h− 1, l − 1) +R(h− 1, l)

≤ 1 + n ·
(
nl−1 ·

(
h− 1 + l − 1

l − 1

)
− 1

)
+ nl ·

(
h− 1 + l

l

)
− 1

≤ nl ·
((

h− 1 + l

l − 1

)
+

(
h− 1 + l

l

))
− 1

= nl ·
(
h+ l

l

)
− 1 .

In effect, R(h, l) ≤ nl · (h+ l)l. Recalling that we start with l = 2 · blognc, we see that this
number is quasi-polynomial in n and h. This concludes the proof, since obviously a single
execution of the SolveE procedure (not counting the running time of recursive calls) costs
polynomial time.

6 Correctness

We now justify correctness of the algorithm. This amounts to proving the following lemma.

I Lemma 6.1. Procedure SolveE(G, h, pE , pO) returns a set WE such that for every S ⊆
nodes(G),

if S is a dominion for Even, and |S| ≤ pE, then S ⊆WE, and
if S is a dominion for Odd, and |S| ≤ pO, then S ∩WE = ∅.

Notice that in G there may be nodes that do not belong to any dominion smaller than
pE or pO; for such nodes we do not specify whether or not they are contained in WE .

Recall that WinE(G) is a dominion for Even, and WinO(G) is a dominion for Odd. Thus,
using Lemma 6.1 we can conclude that for pE = pO = n the procedure returns WinE(G),
the winning region of Even.

One may wonder why we use dominions in the statement of the lemma, instead of simply
saying that if |WinE(G)| ≤ pE , then WinE(G) ⊆WE . Such a simplified statement, however,
is not suitable for induction. Indeed, while switching from the game G to the game H
(created in lines 7, 12, 17) the winning regions of Even may increase dramatically, because in
H Odd is not allowed to visit any node with priority h. Nevertheless, the winning region of
Even in G, and any dominion of Even in G, remains a dominion in H (when restricted to
nodes of H).



8 Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time

Before proving Lemma 6.1, let us observe two facts about dominions. In their statements
P ∈ {Even,Odd} is one of the players, and P is his opponent.

I Fact 6.2. If S is a dominion for P in a game G, and X is a set of nodes of G, then
S \AtrP (G,X) is a dominion for P in G \AtrP (G,X).

Proof. Denote S′ = S \ AtrP (G,X) and G′ = G \ AtrP (G,X). By definition, from
every node v ∈ S player P wins with the condition LimsupP ∩ Safety(S) in G, using
some winning strategy. Observe that using the same strategy he wins with the condition
LimsupP ∩ Safety(S′) in G′ (assuming that the starting node v is in S′). The strategy
remains valid in G′, because every node u of player P that remains in G′ has the same
successors in G′ as in G (conversely: if some of successors of u belongs to AtrP (G,X), then
u also belongs to AtrP (G,X)). J

I Fact 6.3. If S is a dominion for P in a game G, and X is a set of nodes of G such
that S ∩ X = ∅, then S is a dominion for P in G \ AtrP (G,X) (in particular S ⊆
nodes(G \AtrP (G,X))).

Proof. Denote G′ = G \ AtrP (G,X). Suppose that there is some v ∈ S ∩ AtrP (G,X).
On the one hand, P can guarantee that, while starting from v, the play stays in S (by the
definition of a dominion); on the other hand, P can force to reach the set X (by the definition
of an attractor), which is disjoint from S. Thus such a node v could not exist, we have
S ⊆ nodes(G′).

It remains to observe that from every node v ∈ S player P wins with the condition
LimsupP ∩Safety(S) also in the restricted game G′, using the same strategy as in G. Indeed,
a play in G following this strategy never leaves S, and the whole S remains unchanged in
G′. J

We are now ready to prove Lemma 6.1.

Proof of Lemma 6.1. We prove the lemma by induction on h. Consider some execution
of the procedure. By Gi, N i

h, H
i,W i

O we denote values of the variables G,Nh, H,WO just
after the i-th call to SolveO in one of the lines 8, 13, 18; in lines 9, 14, 19 we create Gi+1

out of Gi and W i
O. In particular G1 equals the original game G, and at the end we return

nodes(Gm+1), where m is the number of calls to SolveO.
Concentrate on the first item of the lemma: fix an Even’s dominion S in G (i.e., in G1)

such that |S| ≤ pE . Assume that S 6= ∅ (for S = ∅ there is nothing to prove). Notice first
that a nonempty dominion has at least two nodes (by assumption there are no self-loops
in G, hence every play has to visit at least two nodes), thus, because S ⊆ nodes(G) and
|S| ≤ pE , we have that G 6= ∅ and pE > 1. It means that the procedure does not return in
line 4. We thus need to prove that S ⊆ nodes(Gm+1).

We actually prove that S is a dominion for Even in Gi for every i ∈ {1, . . . ,m + 1},
meaning in particular that S ⊆ nodes(Gi). This is shown by an internal induction on i. The
base case (i = 1) holds by assumption. For the induction step, consider some i ∈ {1, . . . ,m}.
By the induction assumption S is a dominion for Even in Gi, and we need to prove that it is
a dominion for Even in Gi+1.

Consider Si = S ∩ nodes(Hi). Because Si = S \AtrE(Gi, N i
h), by Fact 6.2 the set Si

is a dominion for Even in Hi = Gi \AtrE(Gi, N i
h), and obviously |Si| ≤ |S| ≤ pE . By the

assumption of the external induction (which can be applied to SolveO, by symmetry) it
follows that Si ∩W i

O = ∅, so also S ∩W i
O = ∅ (because W i

O contains only nodes of Gi, while
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S \ Si contains no nodes of Gi). Thus, by Fact 6.3 the set S is a dominion for Even in
Gi+1 = Gi \AtrO(Gi,W i

O). This finishes the proof of the first item.

Now we prove the second item of the lemma. To this end, fix some Odd’s dominion S
in G such that |S| ≤ pO. If pE ≤ 1, we return WE = ∅ (line 4), so clearly S ∩WE = ∅.
The interesting case is when pE ≥ 2. Denote Si = S ∩ nodes(Gi) for all i ∈ {1, . . . ,m+ 1};
we first prove that Si is a dominion for Odd in Gi. This is shown by induction on i. The
base case of i = 1 holds by assumption, because G1 = G and S1 = S. For the induction
step, assume that Si is a dominion for Odd in Gi, for some i ∈ {1, . . . ,m}. By definition
Gi+1 = Gi \AtrO(Gi,W i

O) and Si+1 = Si \AtrO(Gi,W i
O), so Si+1 is a dominion for Odd

in Gi+1 by Fact 6.2, which finishes the inductive proof.

For i ∈ {1, . . . ,m}, let Zi be the set of nodes (in Si \N i
h) from which Odd wins with the

condition LimsupOdd ∩ Safety(Si \N i
h) in Gi (that is, where Odd can win without seeing

priority h—the highest even priority). Let us observe that if Si 6= ∅ then Zi 6= ∅ (♣). Indeed,
suppose to the contrary that Zi = ∅, and consider an Odd’s strategy that allows him to
win with the condition LimsupOdd ∩ Safety(Si) in Gi, from some node v0 ∈ Si. Because
v0 6∈ Zi, this strategy in not winning for the condition LimsupOdd ∩ Safety(Si \ N i

h), so
Even, while playing against this strategy, can reach a node v1 in N i

h (as he cannot violate
the parity condition nor leave Si). For the same reason, because v1 6∈ Zi, Even can continue
and reach a node v2 in N i

h. Repeating this forever, Even gets priority h (which is even and
is the highest priority) infinitely many times, contradicting the fact that the strategy was
winning for Odd.

Observe also that from nodes of Zi Odd can actually win with the condition LimsupOdd∩
Safety(Zi) in Gi, using the strategy that allows him to win with the condition LimsupOdd∩
Safety(Si \N i

h). Indeed, if a play following this strategy enters some node v, then from this
node v Odd can still win with the condition LimsupOdd∩Safety(Si \N i

h), which means that
these nodes belongs to Zi. It follows that Zi is a dominion for Odd in Gi. Moreover, because
Zi∩N i

h = ∅, from Fact 6.3 we have that Zi is a dominion for Odd in Hi = Gi\AtrE(Gi, N i
h).

Let k be the number of the call to SolveO that is performed in line 13 (calls number
1, . . . , k − 1 are performed in line 8, and calls number k + 1, . . . ,m are performed in line 18).
Recall that W i

O is the set returned by a call to SolveO(Hi, h− 1, pi
O, pE), where pk

O = pO,
and pi

O = bpO

2 c if i 6= k. From the assumption of the external induction, if |Zi| ≤ bpO

2 c or if
i = k (since Zi ⊆ Si ⊆ S and |S| ≤ pO, clearly |Zi| ≤ pO), we obtain that Zi ⊆W i

O (♠).

We now prove that |Sk+1| ≤ bpO

2 c. This clearly holds if Sk−1 = ∅, because Sk+1 ⊆
Sk ⊆ Sk−1. Suppose thus that Sk−1 6= ∅. Then Zk−1 6= ∅, by (♣). On the other
hand, W k−1

O = ∅, because we are just about to leave the loop in lines 5-10 (the k-th
call to SolveO is in line 13). By (♠), if |Zk−1| ≤ bpO

2 c, then Zk−1 ⊆ W k−1
O , which

does not hold in our case. Thus |Zk−1| > bpO

2 c. Because W k−1
O = ∅, we simply have

Gk = Gk−1, and Sk = Sk−1, and Zk = Zk−1. Using (♠) for i = k, we obtain that
Zk ⊆ W k

O, and because Sk+1 = Sk \AtrO(Gk,W k
O) ⊆ Sk \W k

O ⊆ Sk \ Zk we obtain that
|Sk+1| ≤ |Sk| − |Zk| ≤ pO − (bpO

2 c+ 1) ≤ bpO

2 c, as initially claimed.

If k = m, we have Zm ⊆Wm
O by (♠). If k + 1 ≤ m, we have Sm ⊆ Sk+1 (our procedure

only removes nodes from the game) and Zm ⊆ Sm, so |Zm| ≤ bpO

2 c by the above paragraph,
and also Zm ⊆ Wm

O by (♠). Because after the m-th call to SolveO the procedure ends,
we have Wm

O = ∅, so also Zm = ∅, and thus Sm = ∅ by (♣). We have Sm+1 ⊆ Sm, so
Sm+1 = S ∩ nodes(Gm+1) = ∅. This is exactly the conclusion of the lemma, since the set
returned by the procedure is nodes(Gm+1). J
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7 Conclusions

To the list of the four existing quasi-polynomial-time algorithms solving parity games, we
have added a new one. It uses a rather different approach: it analyses recursively the game
graph, like the Zielonka’s algorithm.

Notice that the number of recursive calls in our algorithm may be smaller than in the
original Zielonka’s algorithm, because of the precision parameters, but it may also be larger.
Indeed, while SolveE in the original Zielonka’s algorithm stops after the first time when a
recursive call returns ∅, in our algorithm the procedure stops after the second time when a
recursive call returns ∅.

The algorithm, as is, turns out not to be very efficient in practice. Beside of that, we
believe that it can serve as a good starting point for a more optimized algorithm. Over
the years, some optimizations to the Zielonka’s algorithm were proposed. For example, Liu,
Duan, and Tian [25] replace the loop guard WO = ∅ by WO = AtrO(G,WO) (which ensures
that WO will be empty in the next iteration of the loop). Verver [32] proposes to check
whether AtrE(G,Nh) contains all nodes of priority h− 1, and if so, to extend Nh by nodes
of the next highest Even priority (i.e., h − 2). It seems that these optimizations can be
applied to our algorithm as well.

A straightforward optimization is to decrease pO and pE to |G| at the beginning of every
recursive call.

Another idea is to extend the recursive procedure so that it will return also a Boolean
value saying whether the returned set surely equals the whole winning region (i.e., whether
the precision parameters have not restricted anything). If while making the recursive call
with smaller precision (line 8) the answer is positive, but the returned set WO is empty, we
can immediately stop the procedure, without making the recursive call with the full precision
(line 13).

One can also observe that the call to SolveO in line 13 (with the full precision) gets the
same subgame H as the last call to SolveO in line 8 (with decreased precision). A very
rough idea is to make some use of the computations performed by the decreased-precision
call during the full-precision call.

We leave implementation and evaluation of the above (and potentially some other)
optimizations for a future work.
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