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Abstract. As an alternative to the two classical proofs for complemen-
tation of Biichi automata, due to Biichi himself and to McNaughton, we
outline a third approach, based on stratified alternating automata with
a “weak” acceptance condition. Building on work by Muller, Saoudi,
Schupp (1986) and Kupferman and Vardi (1997), we present a stream-
lined version of this complementation proof. An essential point is a de-
terminacy result on infinite games with a weak winning condition. In a
unifying logical setting, the three approaches are shown to correspond to
three different types of second-order definitions of w-languages.

1 Introduction

In his seminal paper [Bii62], Biichi introduced a framework for defining sets
of sequences, today called the framework of Biichi automata, and showed that
the class of properties definable therein is closed under complementation. This
result was the key to establish a bridge between w-automata theory and monadic
second-order logic over infinite strings, which in turn opened a new chapter of
automata theory with interesting applications in logic and computer science.
Even after forty years this chapter is far from being closed, and it is worthwhile
to reconsider the beginnings.

There are two “classical” approaches to the complementation of Biichi au-
tomata. The first, as found by Biichi himself, stays in the framework of Biichi
automata and provides a transformation of a nondeterministic Biichi automaton
into such an automaton for the complement language. The second proof, due
to McNaughton [McN66] and later sharpened by Safra [Sa88], involves a trans-
formation to deterministic automata with a more general acceptance condition,
the Muller condition [Mu63], and uses the fact that for deterministic Muller au-
tomata the complementation step is obvious. Both approaches involve nontrivial
arguments: In the first case, a combinatorial result is applied (Ramsey’s The-
orem B [Ra29]), and in the second a very intricate automaton construction is
required.

In the present paper, we expose a third proof strategy which so far did not
attract much attention in the literature but has some advantages. Instead of
reducing the nondeterminism of Biichi automata to determinism with a more
complex acceptance condition, this third approach is based on a more general
transition mode than nondeterminism, namely alternation, but at the same time
the acceptance condition is made simpler: Instead of Biichi acceptance the so-
called “weak acceptance” condition is used. As in the deterministic case, the



weak acceptance condition is closed under negation, whence complementation
is relatively easy. Moreover, the task of connecting Biichi automata to weak
alternating automata is not as complex as to show that Biichi automata and
deterministic automata are equivalent.

The idea of weak alternating automata is due to Muller, Saoudi, and Schupp
([MSS86], [MS87], [MSS88]). However, in their work they emphasize complex-
ity issues (especially regarding program logics and temporal logics) and not so
much a reconsideration of the complementation problem. Recently, Vardi and
Kupferman [KV97] have taken up the approach and supplied a self-contained
complementation proof for Biichi automata. Their proof strategy does not make
use, however, of the duality phenomenon which is characteristic for alternating
automata. In the subsequent sections we outline such a more symmetric proof.
The key ingredient is a result on determinacy of infinite games with a weak win-
ning condition. An advantage of this proof architecture is its composition from
rather elementary, easily verified “modules”. Moreover, some conceptual points
are clarified. For example, one sees that for defining regular w-languages by au-
tomata, the use of liveness conditions (such as the Biichi acceptance condition)
can be avoided, if one works with alternating automata. The complementation
proof via infinite games also sheds some light on the relation between automata
on infinite words and automata on infinite trees. In the game-theoretic frame-
work, the proofs of complementation for w-automata and for tree automata
can be compared via the respective determinacy results. For Biichi automata
complementation we shall need only a very simple determinacy proof based on a
reachability analysis, whereas tree automata complementation requires the more
complicated determinacy proof for parity games (cf. [Th97]). This pinpoints a
characteristic difference between w-automata theory and tree automata theory.

This paper provides an introduction to results obtained in collaboration with
C. Loding (see his diploma thesis [L398]) on alternating w-automata. We con-
fine ourselves to the use of weak alternating automata in the complementation
proof, mentioning only briefly how the transformation of Biichi automata into
this model and conversely works, and leaving aside complexity issues and fur-
ther applications of alternating automata. A joint paper with a more detailed
exposition and further results is in preparation.

2 Review of the classical proofs

A Biichi automaton over the alphabet A is a finite automaton of the form A =
(@, A, qo, A, F) with finite set @ of states, initial state go, transition relation
ACQxAXxQ, and a set F C @Q of final states. It accepts an w-word a =
a(0)a(l)... from A¥ if there is a run p = p(0)p(1)... from Q¥ with p(0) = ¢
and (p(7), a(i), p( + 1)) € A for ¢ > 0, which is Biichi accepting, i.e. such that
p(i) € F for infinitely many i. Formally, we write

(+)  3p (p(0) = qo A Vi((p(i),a(i),a(i+1)) € A A Vidj > i p(j) € F)

The w-language L(A) recognized by A consists of all w-words a for which (x)
holds.



In the logical classification of quantifier alternation hierarchies, one calls (%) a
Y1 formula, referring to the existential sequence quantifier in front (which in an
arithmetical setting is captured by a tuple of existential second-order quantifiers
ranging over sets of natural numbers). We shall also take into account the logical
status of the acceptance condition, which in the case above is called a IT9-
condition, referring to its two first-order quantifiers, with a universal quantifier
coming first. Taking both aspects together, we speak of a X1[I19]-definition.

Biichi’s complementation theorem says that the negation of the formula (x)
may again be written in this form, with different Q, A, F'. Biichi stated the result
in this “logical” form (see [Bii62, Lemma 9]). Let us sketch his proof. Given a
Biichi automaton A as above, define a congruence ~_4 over AT by declaring two
finite words u,v as equivalent iff the following holds: for any p,q € @, A can
reach g from p via the input u iff this is possible via the input v, and furthermore
A can reach ¢ from p via the input u by passing through a state of F' iff this is
possible via the input v. It is easy to verify that ~ 4 is a congruence with finitely
many (regular) equivalence classes. Denoting the ~ 4-class of the word u by [u],
one observes that an w-language [u] - [v]“ is either contained in L(.A) or disjoint
from L(A). Invoking Ramsey’s Theorem B ([Ra29]), one shows that any w-word
can be cut into a sequence ugu; ... of finite words where all u; for i > 1 belong
to a fixed ~ 4-class. Applying this decomposition to the w-words outside L(.A),
one sees that A%\ L(A) is representable as a union of sets [u] - [v]*, taking those
pairs u,v where u - v¥ is not in L(.A). The union is of course a finite one since
there are only finitely many equivalence classes. This representation of A“\ L(.A)
is easily converted into a Biichi automaton.

The complementation theorem can also be shown via a transformation of
Biichi automata into deterministic Muller automata. This is the content of Mc-
Naughton’s Theorem ([McN66]). A Muller automaton is specified in the form
A=1(Q,A,q,6,F) where § : Q@ x A — @ is the transition function and F is
a subset of the powerset of (). Acceptance of an w-word a means that in the
unique run p of A on a, the set In(p) of states visited infinitely often belongs to
F. Formally, we express this as follows:

() 3p ((p(0) = qo A Vi p(i +1) = d(p(i), a(i))) A In(p) € F).

We have In(p) € F iff for some F' € F, precisely the states in F' are infinitely
often visited in p. A formalization of this condition reads as follows:

V (AYidiipG)=an N ~Vi3ji>ip()=aq)

FeF qeF qEQ\F

Taking the set 29 \ F instead of F, one obtains an automaton recognizing the
complement language.

Let us analyze the logical status of deterministic Muller automata. The ac-
ceptance condition is a Boolean combination of IT3-formulas, and thus we shall
call the formula (xx) a X} [Bool(/19)]-formula. Since the run required in (xx) is
unique, one can also use a universal condition instead:

() Vp(p(0) =0 A Vip(i+1) = 8(p(i),ali)) — In(p) € F)



This condition (**') is a IT} [Bool(II3)]-formula, equivalent to the X1-definition
(xx) above. Properties which are definable in Yi-form and also in II}-form
are said to have a Aj-representation. (Note that this involves two separate
definitions.) So a deterministic Muller automaton provides a A}[Bool(I19)]-
representation of the recognized w-language.

In this logical setting, McNaughton’s Theorem says that the X} [IT9]-defini-
tions as provided by Biichi automata can be brought into A}[Bool(II9)]-form,
which means a “decrease” of the second-order quantifier complexity at the cost
of a more complicated first-order kernel.

3 Alternating automata

The concept of alternating automaton combines the idea of existential branching,
as found in nondeterministic automata, with its dual, universal branching. The
two branching modes are specified by Boolean expressions over the state set Q.
For example, g1 V (g2 A g3) denotes the nondeterministic choice of going either
to g1 or to g¢2,q3 simultaneously. The set of such positive (i.e., negation-free)
Boolean expressions is denoted by B, (Q). We introduce alternating automata
here with the so-called weak acceptance condition. It refers to a ranking r of the
states by natural numbers.

So an alternating automaton is presented in the form A = (@, 4, qo, 6, r) with
entries @, A, go as before for Biichi automata and functions § : @ x A — B, (Q)
and 7 : @ — {0,...,m} for some m. Moreover, the ranking function r defines a
stratification of @ in the sense that for any ¢ occurring in an expression §(p, a)
we have r(p) > r(q). This means that by applying transitions we can only keep
or decrease the ranks of states.

The definition of acceptance by alternating automata is somewhat involved.
Usually, it refers to the notion of run tree (or computation tree). We use here
a different terminology which allows a more elegant logical comparison with the
previous modes of acceptance (nondeterministic and deterministic).

A run of an alternating automaton is a dag (directed acyclic graph) whose
elements are labelled with states from (). The dag can be presented as a sequence
of “slices” Sp,S1,..., where the states occurring in S; are the simultaneously
“active” ones at the i-th letter of the input word. Acceptance will mean that
a run dag exists (which represents the existential branching in the automaton)
such that for all paths through the dag (representing its universal branching) a
condition regarding the ranks of the states occurring on this path is satisfied.

In the definition of run dags we refer to the models of Boolean expressions in
B+ (Q). We shall identify such a Boolean model with a subset S of @, given by
the assignment of states to truth values which sends the states in S to value 1
and the states in @ \ S to value 0. Since our expressions are positive, a superset
S’ of a model S of an expression (3 is again a model of 3. By a minimal model
of 3 we mean a model S of which no proper subset is again a model. If the
expression 3 from B4 (Q) is presented in disjunctive normal form, the minimal



models of § are given by the sets S which constitute the individual conjuncts of
the disjunctive form.

Let us make precise how a run dag is built up. It is started with the slice Sq
consisting solely of the initial state go (more precisely: of a node labelled with

Go)- From a given S; one obtains a slice S; ;1 as follows, assuming that the input
letter a(1) is the letter a: For each p from S; one chooses a minimal model of the
expression §(p,a); the union of all these minimal models for p € S; is taken to
be Si+1. One inserts an edge from p € S; to ¢ € S;+1 (more precisely: from the
node labelled p in S; to the node labelled ¢ in S;;1) if ¢ belongs to the minimal
model chosen for §(p, a).

If the expressions §(p, a) are given in disjunctive normal form, the formation
of a run dag can be described more easily. Again Sy consists of g only. Starting
from a slice S; and assuming again «a(i) = a, pick one disjunction member from
d(p,a) for each p in S;. Collect all states arising by these choices to form the
slice S;y1, and introduce an edge from p in S; to g in S;;1 if ¢ occurs in the
chosen disjunction member of §(p, a).

Ezample 1. Given Q = {qo,q1, q2, g3}, we may have, for a certain letter a € A:

6(g0,a) = 1 N2

0(q1,a) = (q1 Ag3) V (g2 A g3)
(Q27 )*fh

8(g3,a) = (@1 A g2) V g3

With this function §, a run dag on the input word aaa ... may start with the
following slices:

Q1
o] =——[2] == 2] == |w

a2 as

as
Now we introduce the weak acceptance condition. This condition refers to the
infinite paths through a run dag. By the stratification property of the rank func-
tion on states, the ranks on such a path will stay constant from some point
onwards. The path is accepting if this ultimately assumed rank is even. Equiva-
lently, the set Occ(r(n)) of r-ranks occurring in the path 7 under consideration

has an even minimum. So the acceptance condition reads as follows:

3 run dag p V paths 7 through p : min(Occ(r(r)) is even

A weak alternating automaton is an alternating automaton used with this “weak”
acceptance condition.

In order to fix the quantifier complexity of weak acceptance, we rewrite the
minimum condition in a more formal way. Denoting by (i) the i-th state of the
path m, we can express it as follows:

\V Gir(r@) =k A N\ =3ir(z(i) =1)

k even I<k



So weak acceptance for a given path 7 is a Bool(XY)-condition. In the quantifier
prefix “J run dag p V paths " of the acceptance clause, the existential quan-
tifier on run dags and the universal quantifier on paths can both be coded as
ranging over infinite sequences over appropriate finite alphabets: A run dag can
be represented by a sequence of slices and pointers between adjacent slices, so
the possible entries of the sequence are representable by the letters of a finite
alphabet. Similarly, a path through a run dag is codable in this way. (At this
point one sees an advantage of the notion of run dag over the standard ap-
proach involving computation trees. Their existence is not directly formalizable
by sequence quantifiers.)

In summary, the definition of an w-language by a weak alternating automaton
is a X1[Bool(X?)]-representation. In comparison to the X1 [II{]-definition given
by Biichi automata, the second-order quantifier complexity is increased, while
the acceptance condition is simpler: Instead of a requirement that certain states
are visited infinitely often, we only ask for the visit of certain states and the
avoidance of others.

In the next section we show that the class of w-languages accepted by weak
alternating automata is closed under complementation. As a consequence we can
improve the ¥ [Bool(XY)]-form of the definition to obtain even a A}[Bool(X?)]-
representation.

4 Duality and weak determinacy

The purpose of this section is to show closure under complement for weak al-
ternating automata. In this analysis, game-theoretic notions are useful. With
each (weak) alternating automaton A = (@, 4, qo, 6, ) and each w-word a € A¥
we associate an infinite game G(A, a), played by two persons called Automaton
and Pathfinder. The idea is that in the process of scanning the input word «,
Automaton picks sets of simultaneously active states according to the transition
function of A, whereas Pathfinder picks, at each point, one of these momentary
active states. Making such choices in alternation they build up a path through
a run dag of A on a, and Automaton is declared the winner of the play if the
acceptance condition of A is satisfied on this path.

Formally, a game position refers to the number i supplying the momentary
input letter «(i). If Automaton has the next move, the game position is of
the form (i,p) with p € @, and if Pathfinder has to make the next move, the
game position has the form (,.5) with S C @. The initial position is (0, go);
so Automaton starts. A move of Automaton from position (z,p) consists in the
choice of a minimal model of d(p, (7)), i.e. a set S C @, yielding the game
position (i 4+ 1,.5). Pathfinder reacts by picking a state s from S, producing the
game position (i + 1,s). The play determines a sequence of states (extracted
from the positions of Automaton), and Automaton wins the play if the minimal
rank occurring in this sequence of states is even.

A local strategy (also called memoryless strategy) for a player P is a function
which associates with any game position of P a move which can be performed



in this position. Such a function is called a winning strategy for player P from
game position pos if its application will produce, when starting from pos, for any
moves of the opponent, a play won by P.

Proposition 2. The weak alternating automaton A accepts o iff in the game
G(A, ), Automaton has a local winning strategy from the initial position.

Proof. First assume that there is an accepting run dag of A on «, say with slices
So, 51, .... Define a strategy for Automaton by choosing, given game position
(¢,p), the set S of states from S;,1 which are reachable from p by an edge of the
run dag. In this way, starting from position (0, o), Automaton ensures that the
play proceeds along a path through the run dag. Since the run dag is accepting,
Automaton wins by this local strategy.

Conversely, a local strategy for Automaton defines an accepting run dag: For
i =0,1,... the slices S; are built up inductively, beginning with the singleton
So = {qo}: For any game position (¢, p) as picked by Pathfinder, Automaton’s
local strategy prescribes a set of states as next move; the union of these is taken
to form S;;1, and edges are inserted which allow to trace the connections to the
different choices of p. It is clear that the constructed run dag is accepting. O

The complementation proof for weak alternating automata will be given in
this game-theoretic setting. It has two steps: the dualization of alternating au-
tomata and a determinacy result for infinite games. _

For the first step, we introduce the dual automaton A of a given weak al-
ternating automaton A = (Q, 4, qo, 6, 7). The definition uses the dualization of
Boolean expressions: Given an expression 8 € B4 (Q), let its dual f arise from
B by exchanging V and A. Now the dualized transition function 5 is defined
by g(p, a) = §(p,a). The dual automaton A is obtained as (Q,A,qg,g,r) with
the convention that in an accepting run dag, on each path the minimal rank of
visited states should be odd.

We need a remark on models of the dual of an expression in B4 (Q). Recall
that a model of an expression 3 is considered as a subset S of Q.

Remark 3. A set S is a model of E iff every minimal model R of 8 contains a
state from S.

Proof. Let MM (B3) be the set of minimal models of 3. We have the logical

equivalence
VAY:

REMM () g€R

B AN

REMM () g€R

&

By duality, we have

This shows the claim. O



Now we are able to connect local winning strategies in the two games G(A, a)
and G(A, a):

) from the
) from the

Proposition 4. Automaton has a local winning strategy in G(A, a
initial position iff Pathfinder has a local winning strategy in G(A, a
initial position.

Proof. We show how to transform a local winning strategy of Automaton in
G(A, ) into a local Pathfinder strategy for the dual game. The desired strategy
in G(.Zlv, a) has to tell Pathfinder which state to take for any game position
(i +1,5) (where ¢ > 0). Note that in fixing the strategy it suffices to consider
only game positions (z + 1,.5) which are reachable, i.e. for which a sequence
of moves in G(A, o) exists starting in the initial position (0, go) and ending in
(i+1,.5). The set S of the game position (i+1, .5) is produced by Automaton from
a game position (7, s), such that S is a minimal model of §(s, a(¢)). Pathfinder
chooses such a state s which could produce S via a(i). Now in the game G(A, a)
at position (i, ), the given local winning strategy of Automaton picks a minimal
model R of §(s,(i)). By the remark above, there is a state in RN S. For his
move from the game position (i + 1, S), Pathfinder chooses such a state. Then
in G(.Z, a) a state sequence is built up which is compatible with Automaton’s
winning strategy in G(A, @) and hence is won in that game by Automaton. In
the game G(.Z, a), where the roles of even and odd ranks are exchanged, this
state sequence gives a play won by Pathfinder. So the described strategy is a
winning strategy for Pathfinder in G(A, a), and its specification shows that it is
local.

_ The other direction is shown analogously, by exchanging the roles of A and

A. O

Proposition 5. Let A be a weak alternating automaton. From any game posi-
tion in G(A, ), either Automaton or Pathfinder has a local winning strategy.

Proof. Let A= (Q, A4, qo,d,7) be a weak alternating automaton, where r : Q —
{0,...,m}and Q; := {q € Q | r(q) =1i}. Let Posg be the set of game positions of
the game G(A, a). It is divided into the sets Pos4 and Posp where Automaton,
respectively Pathfinder has the next move.

As a preparation we need the definition of “attractor set of a set T' of game
positions”. This attractor set (for player Automaton, say) is denoted Attr4(7');
it contains all game positions from which Automaton can force in finitely many
moves a visit in the target set T'. The set is constructed inductively by collecting,
for i > 0, the positions from where a visit to 7' can be forced within 7 moves:
Let Attr := T and set

Attri N (T) := Attr'y (T) '
U {p € Pos 4 | there is a move from p to Attr’y(T)}
U {p € Posp | all moves from p lead to Attr’y (T)}



Now let Attra(T) = U~ Attr’s(T). From the positions in this set player Au-
tomaton can force a decrease of distance to T in each step (which defines a local
strategy). Also note that for the game positions pos outside Attr 4 (7'), Pathfinder
will be able to avoid entering this set. (If at pos it is Pathfinder’s turn, one move
to the complement of Attra(T) is possible, and if it is Automaton’s turn, all
moves lead to the complement of Attr4(T"); otherwise pos would be already in
Attr4(T) itself.) So from outside Attra(T), Pathfinder can avoid, by a local
strategy, to enter this set and hence can avoid the visit of 7.

The set Attrp(T) for player Pathfinder is constructed analogously.

Using the notion of attractor set and corresponding local strategies we deter-
mine inductively the game positions in G(A, @) from where player Automaton,
respectively Pathfinder, wins.

Clearly, from the positions in Ag := Attra(Qo), Automaton can force, by
a local strategy, to reach states of rank 0 and thus win. Consider the subgame
whose set of positions is Pos; := Posg \ Ag (all of which have rank > 1). From
the positions in A; := Attrp(Pos; N Q1), Pathfinder can force, again by a local
strategy, to reach (and stay in) states of rank 1 and hence win. (Note that
Pathfinder can avoid to enter Ag, as explained above.) In this way we continue:
In the game with position set Poss := Pos; \ A; (containing only states of rank
> 2) we form the attractor set As := Attra(Pos2 N Q2), etc. Then the positions
from which Automaton wins (by the local attractor strategies) are those in the
sets A; with even i < m. Similarly, Pathfinder wins from the positions in the
sets A; with odd i < m (again by his local attractor strategies). O

Now we have all prerequisites for the complementation of weak alternating
automata:

Theorem 6. For any weak alternating automaton A over the alphabet A, we

have A¥ \ L(A) = L(A).

Proof. By Proposition 2, the automaton A does not accept the input word « iff
Automaton does not have a local winning strategy in G(A, a) from the initial
position. By Proposition 4, this means that Pathfinder does not have a local
winning strategy in G(A, «) from the initial position. By the determinacy result
(Proposition 5), this holds iff Automaton has a local winning strategy in G (A, a)
from the initial position, which in turn means that A accepts a. O

The present game-theoretic complementation proof for Biichi automata has the
same general structure as the complementation of nondeterministic tree au-
tomata in the framework of parity games (or “Rabin chain games”; see for
example [Th97]). So it is possible to compare the two proofs. (Note that the
two classical proofs of Biichi automata complementation, via deterministic au-
tomata or via a finite congruence saturating the given w-language, do not extend
— as far as we know — to tree automata, which makes a direct comparison diffi-
cult.) The parity games associated with tree automata have a winning condition
defined by a Boolean combination of X9-formulas, and the corresponding de-
terminacy proof, also by induction on the ranks of game positions, involves a



nontrivial combination of attractor strategies with strategies given by the in-
ductive hypothesis. In the “weak” games considered in the present paper, where
Boolean combinations of X?-conditions serve as winning conditions, a straight-
forward reachability analysis, yielding the attractor sets Ag,..., 4,,, suffices for
the determinacy proof. This direct comparison in the game-theoretical setting
shows in which sense complementation is easier for w-automata than for tree au-
tomata and thus reveals a characteristic difference between w-automata theory
and tree automata theory.

5 Equivalence of Biichi automata and weak alternating
automata

In order to complete the complementation proof for Biichi automata, we have
to supply transformations from Biichi automata to weak alternating automata
and conversely. These transformations, as developed by C. Léding in [L698], are
described here very briefly.

Proposition 7. For any Biichi automaton A there is a weak alternating au-
tomaton A’ with L(A) = L(A").

Proof. Let A = (Q, A, qo, 4, F) be a Biichi automaton with n states. The desired
weak alternating automaton is constructed over the state set @ x {0,...,2n},
taking (go,2n) as initial state, and defining the rank function r by r((g,1)) = i.
The transition function § associates to a state (p, 0) of rank 0 and letter a simply
the disjunction over all (g,0) with (p,a,q) € A. For even ranks i > 0, however,
we take the disjunction over all expressions (g,i) A (q,7 — 1) with (p,a,q) € A.
This will open a track of states of odd rank until some final state of the Biichi
automaton is reached: Namely, as long as p ¢ F' we set, for odd i, 6((p,?),a) to
be the disjunction over all (g,i), again of rank i, with (p,a,q) € A, while for
p € F' we take the disjunction over all (¢,: — 1) with (p, a,q) € A.

From an accepting run p of .4 one obtains an accepting run dag p’ of A" and
conversely. The construction of p’ from p is straightforward: With the states of
even rank, one simulates the given run p, and by the definition of the transition
function § of A no path eventually stays on an odd level. The converse direction
requires to compose an accepting Biichi run p from an accepting run dag p'.
This composition is achieved by concatenating run segments leading from a
state (p, 27) to a state (g,27) with ¢ > 7, for in this case an intermediate visit in
F' is ensured by the construction of é. In order to be able to do this infinitely
often, one has to reset the (even) rank to a higher level infinitely often. This in
turn is made possible by the presence of n + 1 even ranks (from 0 to 2n), which
means that once rank 0 is present, some state occurs on two ranks. O

Proposition 8. For any weak alternating automaton A, there is a Biichi au-

tomaton A’ with L(A) = L(A").



Proof. Apply a subset construction as given by Miyano and Hayashi [MH84]:
The desired Biichi automaton A" has states (S, R) where S, R are subsets of the
state set @ of the given weak alternating automaton A. In the first component
S, A’ guesses the slices of a run dag of A and thus a run dag, while in the second
component R keeps track of those states from S which are of odd rank. If they
eventually vanish, R is reset to the whole set S again. Then infinitely many such
reset operations (captured by the Biichi acceptance condition) signal that no
path in the run dag finally stays in states of odd rank. O

6 Discussion

We have outlined a complementation proof for Biichi automata by invoking a
determinacy theorem on weak infinite games. Referring to the logical classifica-
tion of automata theoretic definability explained in Section 2, we passed from
Y1[I19)-representations of w-languages, as given by Biichi automata, to the level
of A}[Bool(XY)]-representations, as given by weak alternating automata. This is
an alternative to the option to pass to A} [Bool(X3)]-representations, as provided
by deterministic automata.

None of the steps as described in the propositions above is very difficult; so the
complementation proof via weak alternation is composed of simple “modules”, in
some contrast to the two classical proofs (which rely on a nontrivial combinatorial
result or a complicated automaton construction). Of course, there is a price to be
paid in using the more involved definition of acceptance of alternating automata.

Another conceptual advantage of weak alternating automata may be the fact
that acceptance is defined without resorting to liveness conditions; in the kernel
of the second-order definition of acceptance one finds here only conditions on
mere reachability or non-reachability of states. This phenomenon may be helpful
in the investigation of still unsolved problems of w-automata theory, for instance
in the question of finding a good framework for the minimization of w-automata.
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