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Model learning emerges as an effective  
method for black-box state machine models  
of hardware and software components.

BY FRITS VAANDRAGER

WE RO UT INE LY MANAGE  to learn the behavior of a 
device or computer program by just pressing buttons 
and observing the resulting behavior. Especially 
children are very good at this and know exactly how 
to use a smartphone or microwave oven without ever 
consulting a manual. In such situations, we construct 
a mental model or state diagram of the device: through 
experiments we determine in which global states the 
device can be and which state transitions and outputs 
occur in response to which inputs. This article is about 
the design and application of algorithms that perform 
this task automatically.

There are numerous approaches where models of 
software components are inferred through analysis of 
the code, mining of system logs, or by performing 

tests. Many different types of models 
are inferred, for example, hidden Mar-
kov models, relations between vari-
ables, and class diagrams. In this ar-
ticle, we focus on one specific type of 
models, namely state diagrams, which 
are crucial for understanding the be-
havior of many software systems, such 
as (security and network) protocols 
and embedded control software. Mod-
el inference techniques can be either 
white box or black box, depending on 
whether they need access to the code. 
In this article, we discuss black box 
techniques. Advantages of these tech-
niques are that they are relatively easy 
to use and can also be applied in situ-
ations where we do not have access to 
the code or to adequate white box tools. 
As a final restriction, we only consider 
techniques for active learning, that is, 
techniques that accomplish their task 
by actively doing experiments (tests) 
on the software. There is also an ex-
tensive body of work on passive learn-
ing, where models are constructed 
from (sets of) runs of the software. An 
advantage of active learning is that it 
provides models of the full behavior 
of a software component, and not just 
of the specific runs that have occurred 
during actual operation.

The fundamental problem of 
active, black-box learning of state dia-
grams (or automata) has been stud-
ied for decades. In 1956, Moore31 first 
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 key insights
 ! Model learning aims to construct black-

box state diagram models of software and 
hardware systems by providing inputs 
and observing outputs. The design of 
algorithms for model learning constitutes 
a fundamental research problem.

 ! Recently, much progress has been made 
in the design of new algorithms, both in 
a setting of finite state diagrams (Mealy 
machines) and in richer settings with data 
(register automata). Through the use of 
abstraction techniques, these algorithms 
can be applied to complex systems.

 ! Model learning is emerging as a highly 
effective bug-finding technique,  
with applications in areas such as 
banking cards, network protocols,  
and legacy software. I
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Peled et al.19,32 made the important 
observation that the MAT framework 
can be used to learn black box models 
of software and hardware components. 
Suppose we have a component, which 
we call the System Under Learning (SUL), 
whose behavior can be described by (an 
unknown) Mealy machine M. Suppose 
further that it is always possible to bring 
the SUL back to its initial state. A mem-
bership query can now be implemented 
by bringing the SUL to its initial state 
and then observing the outputs gener-
ated by the SUL in response to the given 
input sequence. Equivalence query can 
be approximated using a conformance 
testing (CT) tool29 via a finite number 
of test queries (TQs). A test query asks 
for the response of the SUL to an input 
sequence, similar to a membership 
query. If one of the test queries exhibits 
a counterexample then the answer to 
the equivalence query is no, otherwise 
the answer is yes. A schematic overview 
is shown in Figure 4. In this approach, 
the task of the learner is to construct 
hypotheses, whereas the task of the con-
formance testing tool is to test the valid-
ity of these hypotheses. As a testing tool 
can only pose a finite number of que-
ries, we can never be sure that a learned 
model is correct. However, a finite and 
complete conformance test suite does 
exists if we assume a bound on the num-
ber of states of machine M.29

The pioneering work of Peled et al.32  
and Steffen et al.8,20,23 established fas-
cinating connections between model 
learning and the area of formal meth-
ods, in particular model checking 
and model-based testing. Subsequent 
research has confirmed that, in the 
absence of a tractable white box model 
of a reactive system, a learned model is 
often an excellent alternative that may 
be obtained at relatively low cost.

In order to check properties of 
learned models, model checking15 can 
be used. In fact, Peled et al.32 showed 
how model learning and model check-
ing can be fully integrated in an 
approach called black box checking. The 
basic idea is to use a model checker 
as a “preprocessor” for the confor-
mance testing tool in Figure 4. When 
the teacher receives a hypothesis from 
the learner, it first runs a model checker 
to verify if the hypothesis model satis-
fies all the properties from the SUL’s 
specification. Only if this is true the 

proposed the problem of learning finite 
automata, provided an exponential 
algorithm and proved that the problem 
is inherently exponential. The prob-
lem has been studied under different 
names by different communities: con-
trol theorists refer to it as system iden-
tification, computation linguists speak 
about grammatical inference,22 some 
papers use the term regular inference,8 
regular extrapolation,20 or active autom-
ata learning,24 and security researchers 
coined the term protocol state fuzz-
ing.34 Here, we will use the term model 
learning in analogy with the commonly 
used term model checking.15 Whereas 
model checking is widely used for ana-
lyzing finite-state models, model learn-
ing is a complementary technique for 
building such models from observed 
input–output data.

In 1987, Angluin6 published a seminal 
paper in which she showed that finite 
automata can be learned using the so-called 
membership and equivalence queries. Even 
though faster algorithms have been 
proposed since then, the most efficient 
learning algorithms that are being used 
today all follow Angluin’s approach of a 
minimally adequate teacher (MAT). In the 
MAT framework, learning is viewed as a 
game in which a learner has to infer the 
behavior of an unknown state diagram  

by asking queries to a teacher. The teacher 
knows the state diagram, which in our 
setting is a Mealy machine M (see Mealy 
machines for the definition). Initially, the 
learner only knows the inputs I and 
outputs Ο of M. The task of the learner 
is to learn M through two types of queries:

· With a membership query (MQ), 
the learner asks what the output is 
in response to an input sequence 
σ ∈ I*. The teacher answers with 
output sequence AM(σ).

· With an equivalence query (EQ), 
the learner asks if a hypothesized 
Mealy machine H with inputs I 
and outputs Ο is correct, that is, 
whether H and M are equivalent. 
The teacher answers yes if this is the 
case. Otherwise she answers no and 
supplies a counterexample σ ∈ I* 
that distinguishes H and M.

The L* algorithm of Angluin6 is able 
to learn Mealy machine M by asking 
a polynomial number of membership 
and equivalence queries (polynomial in 
the size of the corresponding canonical 
Mealy machine). In the Angluin’s algo-
rithm, we give a simplified presentation 
of the L* algorithm. Actual implemen-
tations, for instance in LearnLib26 and 
libalf,9 contain many optimizations.

A (deterministic) Mealy machine is a tuple M = (I, Ο, Q, q0, δ, λ), where I is 
a finite set of inputs, Ο is a finite set of outputs, Q is a finite set of states,  
q0 ∈ Q is the initial state, δ : Q × I → Q is a transition function, and λ : Q × I → Ο is 
an output function.

Figure 1 gives a graphical representation of a simple Mealy machine 
with inputs {a, b}, outputs {A, B, C}, states {q0, q1, q2}, and initial state q0.

Figure 1. A simple Mealy machine.

q0start q1 q2

b/B

a/A

b/B

a/A a/C

b/B

Output function λ is extended to sequences of inputs by defining, for all q ∈ Q, 
i ∈ I, and σ ∈ I*, λ(q, ε) = ε, and λ(q, iσ) = λ(q, i)λ(δ(q, i), σ). The behavior of Mealy 
machine M is defined by function AM : I* → Ο* with AM(σ) = λ(q0, σ),  
for σ ∈ I*. Mealy machines M and N are equivalent, denoted M ≈ N, iff AM = AN. 
Sequence σ ∈ I* distinguishes M and N if and only if AM(σ) ≠ AN(σ).

Mealy Machines
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hypothesis is forwarded to the confor-
mance tester. If one of the properties 
does not hold then the model checker 
produces a counterexample. Now there 
are two cases. The first possibility is 
that the counterexample can be repro-
duced on the SUL. This means we have 
demonstrated a bug in the SUL (or in its 
specification) and we stop learning. The 
second possibility is that the counter-
example cannot be reproduced on the 
SUL. In this case the teacher returns  
the counterexample to the learner 
since it follows that the hypothesis is 
incorrect. In later work,16,19 the black 
box checking approach has been fur-
ther refined and it has been success-
fully applied to several industrial cases.

The required number of member-
ship queries of most learning algori-
thms grows linearly with the number  
of inputs and quadratically with the 
number of states.24 This means that 
learning algorithms scale rather well 
when the number of inputs grows; in 
other words, formulating a new hypoth-
esis is easy. However, checking that a 
hypothesis is correct (conformance test-
ing), quickly becomes a bottleneck for 
larger numbers of inputs. If the current 
hypothesis has n states, the SUL has n′ 
states, and there are k inputs, then in the 
worst case we need to run test sequences 
that contain all possible sequences of n′ 
– n inputs, that is, k(n′ – n) possibilities.29 
As a result, model learning currently can 
only be applied if there are less than, say, 
100 inputs. Thus, we seek methods that 
help us to reduce the number of inputs.

Abstraction is the key for scaling 
model learning methods to realistic 
applications. Cho et al.14 succeeded to 
infer models of realistic botnet com-
mand and control protocols by plac-
ing an emulator/mapper between 
botnet servers and the learning software, 
which concretizes the alphabet sym-
bols into valid network messages and 
sends them to botnet servers. When 
responses are received, the emula-
tor does the opposite—it abstracts 
the response messages into the output 
alphabet and passes them on to the 
learning software. A schematic over-
view of this learning setup is shown in 
Figure 5. The idea of an intermediate 
mapper component that takes care of 
abstraction is very natural and is used, 
implicitly or explicitly, in many case 
studies on automata learning. Aarts  

et al.2 developed a mathematical the-
ory of such intermediate abstractions, 
with links to predicate abstraction and 
abstract interpretation.

A complementary, simple but 

practical approach is to apply model 
learning for multiple smaller subsets 
of inputs. This will significantly reduce 
the learning complexity, also because 
the set of reachable states will typically 

The L* algorithm incrementally constructs an observation table with 
entries taken from the set Ο of outputs. The rows are labeled by words in 
S ∪ S ⋅ I, where S is a nonempty finite prefix-closed language, and the col-
umns by a nonempty finite suffix-closed language E. Formally, an obser-
vation table is a triple (S, E, row), where row: S ∪ (S ⋅ I) → (E → Ο). For a 
given prefix w and suffix e, row(w)(e) returns the last output produced by 
the SUL in response to the membership query we. Initially, S only contains 
the empty word ε, and E equals set of inputs I.

Two crucial properties of the observation table allow for the construc-
tion of a Mealy machine: closedness and consistency. Observation table  
(S, E, row) is closed if for all w ∈ S ⋅ I there is a w′ ∈ S with row(w) = row(w′). It is 
consistent if whenever row(w1) = row(w2) for some w1, w2 ∈ S, then row(w1a) 
= row(w2a) for all a ∈ I.

If a table is closed and consistent, the learner constructs a Mealy 
machine H = (I, Ο, Q, q0, δ, λ) with Q = {row(w) | w ∈ S}, q0 = row(ε), δ(row(w), a) =  
row(w ⋅ a), and λ(row(w), a) = row(w)(a).

Assume the teacher knows the Mealy machine M from Figure 1. The 
learner starts to ask queries to fill the initial table. The result is shown in 
Figure 2 (left). As this table is both closed and consistent, the learner con-
structs an initial hypothesis H, shown in Figure 2 (right).

Figure 2. First table and hypothesis H.

O1 a b
ε A B
a A B
b A B

q0start a/A

b/B

Hypothesis H is incorrect since, for instance, sequence bba distinguishes 
H from M. Assume that the teacher returns counterexample bba to the 
learner. To process this counterexample, the learner adds bba and all its 
prefixes to S and constructs the table shown in Figure 3 (left). Since row(ε) = 
row(b) but row(b)(a) ≠ row(bb)(a) this table is not consistent. Thus, we add ba 
to set E and obtain the table shown in Figure 3 (right). This table is closed 
and consistent, and the corresponding Mealy machine is equivalent to M.

Figure 3. Second and third table.

O2 a b
ε A B
b A B
bb C B
bba A B
a A B
ba A B
bbb C B
bbaa A B
bbab C B

O3 a b ba
ε A B A
b A B C
bb C B C
bba A B C
a A B A
ba A B A
bbb C B C
bbaa A B A
bbab C B C

Angluin’s Algorithm
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a small state machine trying to get out. 
By choosing a proper set of input actions 
and by defining an appropriate mapper/ 
abstraction, we can make this small 
state machine visible to the learner.

Examples of Applications
During recent years, model learning has 
been successfully applied to numerous 
practical cases in different domains. 
There have been industrial applica-
tions, for instance, on regression test-
ing of telecommunication systems at 
Siemens,20 on integration testing at 
France Telecom,36 on automatic test-
ing of an online conference service of 
Springer Verlag,39 and on testing require-
ments of a brake-by-wire system from 
Volvo Technology.16 Below, I review some 
representative case studies that have 
been carried out at Radboud University 
related to smart cards, network proto-
cols, and legacy software.

Smartcards. Chalupar et al.13 used 
model learning to reverse engineer the 
e.dentifier2, a smartcard reader for 
Internet banking. To be able to learn a 
model of the e.dentifier2, the authors 
constructed a Lego robot, controlled 
by a Raspberry Pi that can operate the 
keyboard of the reader (see Figure 6). 
Controlling all this from a laptop, they 
then could use LearnLib26 to learn mod-
els of the e.dentifier2. They learned a 
four-state Mealy machine of one version of 
the e.dentifier2 that revealed the presence 
of a security flaw, and showed that the 
flaw is no longer present in a three-state 
model for the new version of the device.

In another study, Aarts et al.3 learned 
models of implementations of the EMV 
protocol suite on bank cards issued 
by several Dutch and German banks, 
on MasterCard credit cards issued by 
Dutch and Swedish banks, and on one 
UK Visa debit card. To learn the models, 
LearnLib performed between 855 and 
1,696 membership and test queries for 
each card and produced models with 
four to eight states. (Figure 7 shows one 
of the learned models.) All cards resulted 
in different models, only the applica-
tions on the Dutch cards were identical. 
The models learned did not reveal any 
security issues, although some peculiar-
ities were noted. The authors argue that 
model learning would be useful as part 
of security evaluations.

Network protocols. Our society has 
become completely dependent on the 

be smaller for a restricted number of 
stimuli. Models learned for a subset of 
the inputs may then be used to gener-
ate counterexamples while learning 
models for larger subsets. Yet another 
approach, which, for instance, has 
been applied by Chalupar et al.,13 is to 
merge several input actions that usually 
occur in a specific order into a single 

high-level action, thus reducing the 
number of inputs. Again, models that 
have been learned with a small number 
of high level inputs may be used to gen-
erate counterexamples in subsequent 
experiments in which these inputs are 
broken up into their constituents.

Paraphrasing C.A.R. Hoare, one could 
say that in every large program there is  

Figure 4. Model learning within the MAT framework.

TQs

SUL

CT

MQs

EQ

Learner Teacher

Figure 5. Model learning with a mapper.

TQ

Mapper

SUL

CT

MQs

EQ

Learner Teacher

Figure 6. Lego robot used to reverse engineer the e.dentifier2 smartcard reader (picture 
courtesy of Chalupar13).
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correct functioning of network and 
security protocols. Bugs or vulner-
abilities in these protocols may lead 
to security breaches or even complete 
network failures. Model checking15 has 
proven to be an effective technique 
for finding such bugs and vulnerabili-
ties. However, since exhaustive model 
checking of protocol implementations 
is usually not feasible,27 model check-
ing is usually applied to models that 
have been handcrafted starting from 
protocol standards. This means that 
model checking is unable to catch 
bugs that arise because implementa-
tions do not conform to their specifi-
cation. Model learning turns out to be 
effective in finding exactly this type of 
bugs, which makes the technique com-
plementary to model checking.

De Ruiter and Poll,34 for instance, 
analyzed both server- and client-side 
implementations of the TLS proto-
col with a test harness that supported 
several key exchange algorithms and 
the option of client certificate authen-
tication. They showed that model 
learning (or protocol state fuzzing, as 
they call it) can catch an interesting 
class of implementation flaws that is 
apparently common in security pro-
tocol implementations: in three out 
of nine tested TLS implementations 
new security flaws were found. For 
the Java Secure Socket Extension, for 
instance, a model was learned for Java 
version 1.8.0.25. The authors observed 
that the model contained two paths 
leading to the exchange of application 
data: the regular TLS protocol run and 
another unexpected run. By exploiting 
this behavior, an attack was possible 
in which both the client and the server 
application would think they were talk-
ing on a secure connection, where in 
reality anyone on the line could read 
the client’s data and tamper with it. A 
fix was released as part of a critical secu-
rity update, and by learning a model 
of JSSE version 1.8.0.31, the authors 
were able to confirm that indeed the 
problem was solved. Due to a manually 
constructed abstraction/mapper, the 
learned Mealy machines were all quite 
small, with 6–16 states. As the analy-
sis of different TLS implementations 
resulted in different and unique Mealy 
machines for each one, model learning 
could also be used for fingerprinting 
TLS implementations.

Fiterău et al.17 combined model 
learning and model checking in a case 
study involving Linux, Windows, and 
FreeBSD implementations of TCP serv-
ers and clients. Model learning was used 
to infer models of different components 
and then model checking was applied 
to fully explore what may happen when 

these components (for example a Linux 
client and a Windows server) interact. 
The case study revealed several instances 
in which TCP implementations do not 
conform to their RFC specification, see 
Figure 8 for an example.

Legacy software. Legacy systems have 
been defined as “large software systems 

Figure 7. State machine of SecureCode Aut application on Dutch Rabo bank card (diagram 
courtesy of Aarts et al.3).

Initialisation Other

Other

Other

Other

Other

SELECT

Selected
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Figure 8. Learned state machine for Windows8 TCP Client (picture courtesy of Fiterau-
Brostean et al.17). Transitions that are reachable when the Windows8 client interacts with a 
Windows8 server in a setting with reliable communication are colored green (as computed 
by a model checker). The red transition marks a nonconformance to the RFC: a CLOSE can 
generate a RST instead of a FIN even in cases where there is no data to be received, namely, 
in states where a rcv call is pending.
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exhibited a difference between A and B, 
and we changed either A or B (or both), 
depending on which response to σ  
was considered unsatisfactory behav-
ior. The implementations were learned 
and checked iteratively with increas-
ing sets of stimuli to handle scalability. 
Issues were found in both the refac-
tored and the legacy implementation 
in an early stage, before the compo-
nent was integrated. In this way, costly 
rework in a later phase of the develop-
ment was avoided.

Recent Advances
During recent years significant prog-
ress has been made on algorithms for 
model learning, which is crucial for 
scaling the application of these tech-
niques to larger systems.

Basic algorithms. Since 1987, the L* 
algorithm of Angluin’s6 has been con-
siderably improved. The original L* 
 performs a membership query for each 
entry in the observation table. This is 
often redundant, given that the sole 
purpose of membership queries is the 
distinction of states (rows). Therefore, 
Kearns and Vazirani28 replaced the obser-
vation table of the L* algorithm by the 
so-called discrimination trees, which 
are basically decision trees for deter-
mining equivalence of states.

Another inefficiency of L* is that all 
prefixes of a counterexample are added 
as rows to the table. Counterexamples 
obtained through conformance test-
ing or runtime monitoring may be 
extremely long and are rarely minimal, 
which results in numerous redun-
dant membership queries. Rivest and 
Schapire33 observed that, instead of 
adding all prefixes of a counterexample 
as rows to the table, it suffices to add a 
single, well-chosen suffix as a column.

The new TTT algorithm of Isberner 
et al.24, 25 is currently the most efficient 
algorithm for active learning. The algo-
rithm builds on the ideas of Kearns and 
Vazirani28 and Rivest and Schapire33 but 
eliminates overly long discrimination 
trees, which may arise when processing 
long counterexamples, by cleaning up 
the internal data structures and reorga-
nizing the discrimination tree. Suppose 
that a Mealy machine M has n states and 
k inputs, and that the length of the longest 
counterexample returned by the teacher 
is m. Then in the worst-case TTT requires 
Ο(n) equivalence queries and Ο(kn2 + 

that we do not know how to cope with 
but that are vital to our organization.”7 
Typically, these systems are based on 
obsolete technologies, documentation 
is limited, and the original developers 
are no longer available. In addition, 
existing regression tests will be limited. 
Given these characteristics, innovations 
that require changes of legacy compo-
nents are risky. Several techniques have 
been developed to extract the crucial 
business information hidden in legacy 
components, and to support the con-
struction of refactored implementa-
tions. Margaria et al.30 were the first to 
point out that model learning may help 
to increase confidence that a legacy 
component and a refactored imple-
mentation have the same behavior.

Schuts et al.,35 for instance, used 
model learning to support the rejuve-
nation of legacy embedded software 
in a development project at Philips. 
The project concerned the introduc-
tion of a new hardware component, 
the Power Control Component (PCC), 
which is used to start-up and shut-
down an interventional radiology 
system. All computers in the system 

have a software component, the Power 
Control Service (PCS) which commu-
nicates with the PCC over an internal 
control network during the execution 
of start-up and shutdown scenarios. 
To deal with the new hardware of the 
PCC, which has a different interface, 
a new implementation of the PCS was 
needed. Since different configurations 
had to be supported, with old and new 
PCC hardware, the old and new PCS 
software needed to have exactly the 
same external behavior. Figure 9 illus-
trates the approach that was followed. 
From both the legacy implementation 
A and the refactored implementation 
B, Mealy machine models MA resp. 
MB were obtained using model learn-
ing. These models were then compared 
using an equivalence checker. When 
the equivalence checker found a coun-
terexample σ, then we checked whether 
A and MA behaved the same on input 
σ and whether B and MB behaved the 
same on input σ. If there was a discrep-
ancy between A and MA, or between B 
and MB, then we asked the learner to 
construct an improved model based 
on counterexample σ. Otherwise σ 

Figure 9. Approach to compare legacy component and refactored implementation (diagram 
courtesy of Schuts et al.35).

Implementation A Implementation B

model learner model learner

Model MA Model MB

models
correct
for σ? 
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checker
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N N

Y
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done

counter
example σ
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using σ 
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Figure 10. A register automaton.
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n log m) membership queries, each of 
length Ο(n + m). This worst-case query 
and symbol complexity coincides with 
the algorithm of Rivest and Schapire,33 
but TTT is faster in practice.

The TTT algorithm typically gener-
ates more intermediate hypotheses 
than the L* algorithm. This suggests 
that the number of input symbols used 
in membership queries alone may not 
be an appropriate metric for compar-
ing learning algorithms: we also need 
to take into account the number of test 
queries required to implement equiva-
lence queries. The total number of 
input symbols in membership and test 
queries appears to be a sensible met-
ric to compare learning approaches 
in practice. Two of my students, J. 
Moerman and A. Fedotov, compared 
different combinations of learning and 
testing algorithms on a large number 
of benchmarks (protocols, control soft-
ware, circuits, etc.) and found that TTT 
used on average 3.9 times fewer input 
symbols than L*.

Learning and testing can be easily 
parallelized when it is possible to run 
multiple instances of the SUL concur-
rently. Another technique that may 
speedup learning is to save and restore 
software states of the SUL (checkpoint-
ing). The benefit is that when the learner 
wants to explore different outgoing tran-
sitions from a saved state q it only needs 
to restore q, which usually is much 
faster than resetting the system and 
bringing it back to q via a sequence of 
inputs. Henrix21 reports on experiments 
in which checkpointing with DMTCP 
speeds up learning with a factor 1.7.

Register automata. Even though we 
have seen much progress on basic algo-
rithms for learning state machines, these 
algorithms only succeed to learn rela-
tively small state machines. In order to 
scale the application of these algorithms 
to realistic applications, users typically 
need to manually construct abstractions 
or mappers.2 This can be a time-consum-
ing activity that requires several itera-
tions and expert knowledge of the SUL. 
Therefore, much work has been carried 
out recently to generalize learning algo-
rithms to richer classes of models that 
have more structure, in particular EFSM 
models in which data values may be com-
municated, stored, and manipulated.

One particular extension for which 
model learning algorithms have been 

developed is that of register autom-
ata.11 These automata have a finite set 
of states but are extended with a set of 
registers that can be used to store data 
values. Input and output actions are 
parameterized by data values, which 
may be tested for equality in transition 
guards and stored in registers. Figure 10 
gives a simple example of a register 
automaton, a FIFO-set with capac-
ity two. A FIFO-set corresponds to a 
queue in which only different values 
can be stored. There is a Push(d) input 
symbol that tries to insert a value d in 
the queue, and a Pop input symbol 
that tries to retrieve a value from the 
queue. The output in response to a 
Push is OK if the input value can be 
added successfully, or KO if the input 
value is already in the queue or if the 
queue is full. The output in response 
to a Pop is Out, with as parameter the 
oldest value from the queue, or KO if 
the queue is empty.

In register automata all data values 
are fully symmetric, and this symmetry 
may be exploited during learning. Two 
dif ferent approaches have been explored 
in the literature. A first approach, fol-
lowed by Cassel et al.,12 has been imple-
mented in the software tools LearnLib26 
and RALib.10 Model learning algorithms 
usually rely on the Nerode relation for 
identifying the states and transitions of 
a learned automaton: two words lead to 
the same state if their residual languages 
coincide. The basic idea now is to for-
mulate a Nerode-like congruence for  
register automata, which determines 
the states, transitions, and registers 
of the inferred automaton. Technical 
basis of the implementation are the 
so-called symbolic decision trees, which 
can be used to summarize the results 
of many tests using a concise symbolic 
representation.

A second approach for learning 
register automata, followed by Aarts 
et al.1 has been implemented in the 
software tool Tomte. In this approach, 
counterexample-guided abstraction 
refinement is used to automatically 
construct an appropriate mapper. The 
idea is to start with a drastic abstrac-
tion that completely ignores the data 
values that occur in input and output 
actions. When this abstraction is too 
coarse, the learner will observe nonde-
terministic behavior. In the example 
of Figure 10, for instance, an input 

Abstraction is the 
key for scaling 
model learning 
methods to realistic 
applications.  
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operations is still limited, and there 
are many open questions.

Isberner24 developed a model learning 
algorithm for visibly pushdown autom-
ata (VPAs), a restricted class of push-
down automata proposed by Alur and 
Madhusudan.5 This result is in a sense 
orthogonal to the results on learning reg-
ister automata: using register automata 
learning, a stack with a finite capacity 
storing values from an infinite domain 
can be learned, whereas using VPA learn-
ing it is possible to learn a stack with 
unbounded capacity storing data values 
from a finite domain. From a practical 
perspective it would be useful to develop 
a learning algorithm for a class of models 
that generalizes both register automata 
and VPAs. There are many protocols in 
which messages may be buffered, and we 
therefore need algorithms that can learn 
queues with unbounded capacity.

Beyond Mealy machines. In a Mealy 
machine, a single input always triggers 
a single output. In practice, however, a 
system may respond to an input with 
zero or more outputs. Moreover, the 
behavior of systems is often timing 
dependent and a certain output may 
only occur if some input has not been 
offered for a certain amount of time. 
As a consequence, practical applica-
tion of model learning is often severely 
restricted by the lack of expressivity of 
Mealy machines. For instance, in order 
to squeeze TCP implementations into 
a Mealy machine, we had to elimi-
nate timing-based behavior as well 
as retransmissions.17 There has been 
some preliminary work on extending 
learning algorithms to I/O automata4 
and to event-recording automata,18 but 
a major effort is still required to turn 
these ideas into practical tools.

Systems are often nondeterministic, 
in the sense that a sequence of inputs 
may lead to different output events in 
different runs. Existing model learning 
tools, however, are only able to learn 
deterministic Mealy machines. In appli-
cations, we can sometimes eliminate 
nondeterminism by abstracting differ-
ent concrete output events into a single 
abstract output, but in many cases this 
is not possible. Volpato and Tretmans38 
present an adaptation of L* for active 
learning of nondeterministic I/O autom-
ata. Their algorithm enables learning of 
nondeterministic SULs, and it allows 
us to construct partial or approximate 

sequence Push Push Pop Pop will 
mostly trigger outputs OK OK Out 
KO, but sometimes OK OK Out Out. 
Analysis of this behavior will then lead 
to a refinement of the abstraction. In 
our example, for instance, we need at 
least two abstract versions of the sec-
ond Push, since apparently it matters 
whether or not the data value of this 
input is equal to the data value of the 
first Push. RALib and Tomte both out-
perform LearnLib. The performance 
of Tomte and RALib is roughly com-
parable. RALib outperforms Tomte on 
some benchmarks, but Tomte is able 
to learn some register automata that 
RALib cannot handle, such as a FIFO-
set with capacity 40.

Research Challenges
Even though model learning has been 
applied successfully in several domains, 
the field is still in its infancy. There is a 
huge potential for applications, espe-
cially in the area of legacy control soft-
ware, but more research on algorithms 
and tools is needed to bring model learn-
ing from the current level of academic 
prototypes to that of an off-the-shelf 
technology that can be easily applied to 
a large class of systems. Here, I discuss 
some of the major research challenges.

Predicates and operations on data. 
The recent extension of model learn-
ing algorithms to register automata 
is a breakthrough which, potentially, 
makes model learning applicable to 
a much larger class of systems. Due 
to the restriction that no operations 
on data are allowed, the class of sys-
tems that can be described as reg-
ister automata is small, and mainly 
consists of academic examples such 
as the bounded retransmission proto-
col and some simple data structures. 
However, as pointed out by Cassel et 
al.,12 using SMT solving the new learn-
ing algorithms for register automata 
can be extended to EFSM formalisms 
in which guards may contain predi-
cates such as the successor and less 
than relation. A prototype implemen-
tation RALib is available and we are 
close to the point where we can learn 
models of real-world protocols such as 
TCP, SIP, SSH, and TLS automatically, 
without the need to manually define 
abstractions. Nevertheless, our under-
standing of algorithms for learning 
EFSMs with different predicates and 

Even though  
model learning 
has been applied 
successfully in 
several domains, 
the field is still  
in its infancy. 
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models. Again, a major effort will be 
required to incorporate these ideas in 
state-of-the-art tools such as LearnLib, 
libalf, RALib, or Tomte.

Quality of models. Since the mod-
els produced by model learning algo-
rithms have been obtained through 
a finite number of tests, we can 
never be sure that they are correct. 
Nevertheless, from a practical per-
spective, we would like to be able to 
make quantitative statements about 
the quality of learned models and, 
for instance, assert that a hypothesis 
is approximately correct with high 
probability. Angluin6 proposed such 
a setting, along the lines of the PAC 
learning approach of Valiant.37 Her 
idea was to assume some (unknown) 
probability distribution on the set of 
words over the input alphabet I. In order 
to test a hypothesis, the conformance 
tester (see Figure 4) selects a speci-
fied number of input words (these 
are statistically independent events) 
and checks for each word whether the 
resulting output of SUL and hypothesis 
agrees. Only when there is full agree-
ment the conformance tester returns 
answer yes to the learner. An hypoth-
esis is said to be an ε-approximation of 
the SUL if the probability of selecting 
a string that exhibits a difference is 
at most ε. Given a bound on the num-
ber of states of the SUL, and two con-
stants ε and δ, Angluin’s polynomial 
algorithm produces a model such 
that the probability that this model 
is an ε-approximation of the SUL is at 
least 1 − δ. Angluin’s result is elegant 
but not realistic in a setting of reac-
tive systems, since there we typically 
do not have a fixed distribution over 
the input words. (Inputs are under the 
control of the environment of the SUL, 
and this environment may change.)

Using traditional conformance test-
ing,29 we can devise a test suite that 
can guarantee the correctness of a 
learned model, given an upper bound 
on the number of states of the SUL. 
But such an approach is also not sat-
isfactory, since the required number 
of test sequences grows exponentially 
with the number of states of the SUL. 
The challenge therefore is to establish 
a middle ground between Angluin’s 
approach and traditional conformance 
testing. Systems logs often provide a 
probability distribution on the set of 

input words that may be used as a start-
ing point for defining a metric.

Opening the box. There can be many 
reasons for using black box model 
learning techniques. For instance, we 
may want to understand the behavior 
of a component but do not have access 
to the code. Or we may have access to 
the code but not to adequate tools for 
analyzing it (for example, in the case 
of legacy software). Even in “white 
box” situations where we have access 
both to the code and to powerful code 
analysis tools, black box learning can 
make sense, for instance because a 
black box model can be used to gen-
erate regression tests, for checking 
conformance to a standard, or as part 
of model-based development of a 
larger system. An important research 
challenge is to combine black box 
and white box model extraction tech-
niques and, for instance, to use white 
box methods such as static analysis 
and concolic testing to help answering 
equivalence queries posed by a black 
box learner.
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