
86 COMMUNICATIONS OF THE ACM | FEBRUARY 2017 | VOL. 60 | NO. 2

review articles
DOI:10.1145/2967606

Model learning emerges as an effective
method for black-box state machine models
of hardware and software components.

BY FRITS VAANDRAGER

WE RO UT INE LY MANAGE to learn the behavior of a
device or computer program by just pressing buttons
and observing the resulting behavior. Especially
children are very good at this and know exactly how
to use a smartphone or microwave oven without ever
consulting a manual. In such situations, we construct
a mental model or state diagram of the device: through
experiments we determine in which global states the
device can be and which state transitions and outputs
occur in response to which inputs. This article is about
the design and application of algorithms that perform
this task automatically.

There are numerous approaches where models of
software components are inferred through analysis of
the code, mining of system logs, or by performing

tests. Many different types of models
are inferred, for example, hidden Mar-
kov models, relations between vari-
ables, and class diagrams. In this ar-
ticle, we focus on one specific type of
models, namely state diagrams, which
are crucial for understanding the be-
havior of many software systems, such
as (security and network) protocols
and embedded control software. Mod-
el inference techniques can be either
white box or black box, depending on
whether they need access to the code.
In this article, we discuss black box
techniques. Advantages of these tech-
niques are that they are relatively easy
to use and can also be applied in situ-
ations where we do not have access to
the code or to adequate white box tools.
As a final restriction, we only consider
techniques for active learning, that is,
techniques that accomplish their task
by actively doing experiments (tests)
on the software. There is also an ex-
tensive body of work on passive learn-
ing, where models are constructed
from (sets of) runs of the software. An
advantage of active learning is that it
provides models of the full behavior
of a software component, and not just
of the specific runs that have occurred
during actual operation.

The fundamental problem of
active, black-box learning of state dia-
grams (or automata) has been stud-
ied for decades. In 1956, Moore31 first

Model
Learning

 key insights
 ! Model learning aims to construct black-

box state diagram models of software and
hardware systems by providing inputs
and observing outputs. The design of
algorithms for model learning constitutes
a fundamental research problem.

 ! Recently, much progress has been made
in the design of new algorithms, both in
a setting of finite state diagrams (Mealy
machines) and in richer settings with data
(register automata). Through the use of
abstraction techniques, these algorithms
can be applied to complex systems.

 ! Model learning is emerging as a highly
effective bug-finding technique,
with applications in areas such as
banking cards, network protocols,
and legacy software. I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 M

A
R

I
E

 D
O

M
M

E
N

G
E

T

FEBRUARY 2017 | VOL. 60 | NO. 2 | COMMUNICATIONS OF THE ACM 87

88 COMMUNICATIONS OF THE ACM | FEBRUARY 2017 | VOL. 60 | NO. 2

review articles

Peled et al.19,32 made the important
observation that the MAT framework
can be used to learn black box models
of software and hardware components.
Suppose we have a component, which
we call the System Under Learning (SUL),
whose behavior can be described by (an
unknown) Mealy machine M. Suppose
further that it is always possible to bring
the SUL back to its initial state. A mem-
bership query can now be implemented
by bringing the SUL to its initial state
and then observing the outputs gener-
ated by the SUL in response to the given
input sequence. Equivalence query can
be approximated using a conformance
testing (CT) tool29 via a finite number
of test queries (TQs). A test query asks
for the response of the SUL to an input
sequence, similar to a membership
query. If one of the test queries exhibits
a counterexample then the answer to
the equivalence query is no, otherwise
the answer is yes. A schematic overview
is shown in Figure 4. In this approach,
the task of the learner is to construct
hypotheses, whereas the task of the con-
formance testing tool is to test the valid-
ity of these hypotheses. As a testing tool
can only pose a finite number of que-
ries, we can never be sure that a learned
model is correct. However, a finite and
complete conformance test suite does
exists if we assume a bound on the num-
ber of states of machine M.29

The pioneering work of Peled et al.32
and Steffen et al.8,20,23 established fas-
cinating connections between model
learning and the area of formal meth-
ods, in particular model checking
and model-based testing. Subsequent
research has confirmed that, in the
absence of a tractable white box model
of a reactive system, a learned model is
often an excellent alternative that may
be obtained at relatively low cost.

In order to check properties of
learned models, model checking15 can
be used. In fact, Peled et al.32 showed
how model learning and model check-
ing can be fully integrated in an
approach called black box checking. The
basic idea is to use a model checker
as a “preprocessor” for the confor-
mance testing tool in Figure 4. When
the teacher receives a hypothesis from
the learner, it first runs a model checker
to verify if the hypothesis model satis-
fies all the properties from the SUL’s
specification. Only if this is true the

proposed the problem of learning finite
automata, provided an exponential
algorithm and proved that the problem
is inherently exponential. The prob-
lem has been studied under different
names by different communities: con-
trol theorists refer to it as system iden-
tification, computation linguists speak
about grammatical inference,22 some
papers use the term regular inference,8
regular extrapolation,20 or active autom-
ata learning,24 and security researchers
coined the term protocol state fuzz-
ing.34 Here, we will use the term model
learning in analogy with the commonly
used term model checking.15 Whereas
model checking is widely used for ana-
lyzing finite-state models, model learn-
ing is a complementary technique for
building such models from observed
input–output data.

In 1987, Angluin6 published a seminal
paper in which she showed that finite
automata can be learned using the so-called
membership and equivalence queries. Even
though faster algorithms have been
proposed since then, the most efficient
learning algorithms that are being used
today all follow Angluin’s approach of a
minimally adequate teacher (MAT). In the
MAT framework, learning is viewed as a
game in which a learner has to infer the
behavior of an unknown state diagram

by asking queries to a teacher. The teacher
knows the state diagram, which in our
setting is a Mealy machine M (see Mealy
machines for the definition). Initially, the
learner only knows the inputs I and
outputs Ο of M. The task of the learner
is to learn M through two types of queries:

· With a membership query (MQ),
the learner asks what the output is
in response to an input sequence
σ ∈ I*. The teacher answers with
output sequence AM(σ).

· With an equivalence query (EQ),
the learner asks if a hypothesized
Mealy machine H with inputs I
and outputs Ο is correct, that is,
whether H and M are equivalent.
The teacher answers yes if this is the
case. Otherwise she answers no and
supplies a counterexample σ ∈ I*
that distinguishes H and M.

The L* algorithm of Angluin6 is able
to learn Mealy machine M by asking
a polynomial number of membership
and equivalence queries (polynomial in
the size of the corresponding canonical
Mealy machine). In the Angluin’s algo-
rithm, we give a simplified presentation
of the L* algorithm. Actual implemen-
tations, for instance in LearnLib26 and
libalf,9 contain many optimizations.

A (deterministic) Mealy machine is a tuple M = (I, Ο, Q, q0, δ, λ), where I is
a finite set of inputs, Ο is a finite set of outputs, Q is a finite set of states,
q0 ∈ Q is the initial state, δ : Q × I → Q is a transition function, and λ : Q × I → Ο is
an output function.

Figure 1 gives a graphical representation of a simple Mealy machine
with inputs {a, b}, outputs {A, B, C}, states {q0, q1, q2}, and initial state q0.

Figure 1. A simple Mealy machine.

q0start q1 q2

b/B

a/A

b/B

a/A a/C

b/B

Output function λ is extended to sequences of inputs by defining, for all q ∈ Q,
i ∈ I, and σ ∈ I*, λ(q, ε) = ε, and λ(q, iσ) = λ(q, i)λ(δ(q, i), σ). The behavior of Mealy
machine M is defined by function AM : I* → Ο* with AM(σ) = λ(q0, σ),
for σ ∈ I*. Mealy machines M and N are equivalent, denoted M ≈ N, iff AM = AN.
Sequence σ ∈ I* distinguishes M and N if and only if AM(σ) ≠ AN(σ).

Mealy Machines

FEBRUARY 2017 | VOL. 60 | NO. 2 | COMMUNICATIONS OF THE ACM 89

review articles

hypothesis is forwarded to the confor-
mance tester. If one of the properties
does not hold then the model checker
produces a counterexample. Now there
are two cases. The first possibility is
that the counterexample can be repro-
duced on the SUL. This means we have
demonstrated a bug in the SUL (or in its
specification) and we stop learning. The
second possibility is that the counter-
example cannot be reproduced on the
SUL. In this case the teacher returns
the counterexample to the learner
since it follows that the hypothesis is
incorrect. In later work,16,19 the black
box checking approach has been fur-
ther refined and it has been success-
fully applied to several industrial cases.

The required number of member-
ship queries of most learning algori-
thms grows linearly with the number
of inputs and quadratically with the
number of states.24 This means that
learning algorithms scale rather well
when the number of inputs grows; in
other words, formulating a new hypoth-
esis is easy. However, checking that a
hypothesis is correct (conformance test-
ing), quickly becomes a bottleneck for
larger numbers of inputs. If the current
hypothesis has n states, the SUL has n′
states, and there are k inputs, then in the
worst case we need to run test sequences
that contain all possible sequences of n′
– n inputs, that is, k(n′ – n) possibilities.29
As a result, model learning currently can
only be applied if there are less than, say,
100 inputs. Thus, we seek methods that
help us to reduce the number of inputs.

Abstraction is the key for scaling
model learning methods to realistic
applications. Cho et al.14 succeeded to
infer models of realistic botnet com-
mand and control protocols by plac-
ing an emulator/mapper between
botnet servers and the learning software,
which concretizes the alphabet sym-
bols into valid network messages and
sends them to botnet servers. When
responses are received, the emula-
tor does the opposite—it abstracts
the response messages into the output
alphabet and passes them on to the
learning software. A schematic over-
view of this learning setup is shown in
Figure 5. The idea of an intermediate
mapper component that takes care of
abstraction is very natural and is used,
implicitly or explicitly, in many case
studies on automata learning. Aarts

et al.2 developed a mathematical the-
ory of such intermediate abstractions,
with links to predicate abstraction and
abstract interpretation.

A complementary, simple but

practical approach is to apply model
learning for multiple smaller subsets
of inputs. This will significantly reduce
the learning complexity, also because
the set of reachable states will typically

The L* algorithm incrementally constructs an observation table with
entries taken from the set Ο of outputs. The rows are labeled by words in
S ∪ S ⋅ I, where S is a nonempty finite prefix-closed language, and the col-
umns by a nonempty finite suffix-closed language E. Formally, an obser-
vation table is a triple (S, E, row), where row: S ∪ (S ⋅ I) → (E → Ο). For a
given prefix w and suffix e, row(w)(e) returns the last output produced by
the SUL in response to the membership query we. Initially, S only contains
the empty word ε, and E equals set of inputs I.

Two crucial properties of the observation table allow for the construc-
tion of a Mealy machine: closedness and consistency. Observation table
(S, E, row) is closed if for all w ∈ S ⋅ I there is a w′ ∈ S with row(w) = row(w′). It is
consistent if whenever row(w1) = row(w2) for some w1, w2 ∈ S, then row(w1a)
= row(w2a) for all a ∈ I.

If a table is closed and consistent, the learner constructs a Mealy
machine H = (I, Ο, Q, q0, δ, λ) with Q = {row(w) | w ∈ S}, q0 = row(ε), δ(row(w), a) =
row(w ⋅ a), and λ(row(w), a) = row(w)(a).

Assume the teacher knows the Mealy machine M from Figure 1. The
learner starts to ask queries to fill the initial table. The result is shown in
Figure 2 (left). As this table is both closed and consistent, the learner con-
structs an initial hypothesis H, shown in Figure 2 (right).

Figure 2. First table and hypothesis H.

O1 a b
ε A B
a A B
b A B

q0start a/A

b/B

Hypothesis H is incorrect since, for instance, sequence bba distinguishes
H from M. Assume that the teacher returns counterexample bba to the
learner. To process this counterexample, the learner adds bba and all its
prefixes to S and constructs the table shown in Figure 3 (left). Since row(ε) =
row(b) but row(b)(a) ≠ row(bb)(a) this table is not consistent. Thus, we add ba
to set E and obtain the table shown in Figure 3 (right). This table is closed
and consistent, and the corresponding Mealy machine is equivalent to M.

Figure 3. Second and third table.

O2 a b
ε A B
b A B
bb C B
bba A B
a A B
ba A B
bbb C B
bbaa A B
bbab C B

O3 a b ba
ε A B A
b A B C
bb C B C
bba A B C
a A B A
ba A B A
bbb C B C
bbaa A B A
bbab C B C

Angluin’s Algorithm

90 COMMUNICATIONS OF THE ACM | FEBRUARY 2017 | VOL. 60 | NO. 2

review articles

a small state machine trying to get out.
By choosing a proper set of input actions
and by defining an appropriate mapper/
abstraction, we can make this small
state machine visible to the learner.

Examples of Applications
During recent years, model learning has
been successfully applied to numerous
practical cases in different domains.
There have been industrial applica-
tions, for instance, on regression test-
ing of telecommunication systems at
Siemens,20 on integration testing at
France Telecom,36 on automatic test-
ing of an online conference service of
Springer Verlag,39 and on testing require-
ments of a brake-by-wire system from
Volvo Technology.16 Below, I review some
representative case studies that have
been carried out at Radboud University
related to smart cards, network proto-
cols, and legacy software.

Smartcards. Chalupar et al.13 used
model learning to reverse engineer the
e.dentifier2, a smartcard reader for
Internet banking. To be able to learn a
model of the e.dentifier2, the authors
constructed a Lego robot, controlled
by a Raspberry Pi that can operate the
keyboard of the reader (see Figure 6).
Controlling all this from a laptop, they
then could use LearnLib26 to learn mod-
els of the e.dentifier2. They learned a
four-state Mealy machine of one version of
the e.dentifier2 that revealed the presence
of a security flaw, and showed that the
flaw is no longer present in a three-state
model for the new version of the device.

In another study, Aarts et al.3 learned
models of implementations of the EMV
protocol suite on bank cards issued
by several Dutch and German banks,
on MasterCard credit cards issued by
Dutch and Swedish banks, and on one
UK Visa debit card. To learn the models,
LearnLib performed between 855 and
1,696 membership and test queries for
each card and produced models with
four to eight states. (Figure 7 shows one
of the learned models.) All cards resulted
in different models, only the applica-
tions on the Dutch cards were identical.
The models learned did not reveal any
security issues, although some peculiar-
ities were noted. The authors argue that
model learning would be useful as part
of security evaluations.

Network protocols. Our society has
become completely dependent on the

be smaller for a restricted number of
stimuli. Models learned for a subset of
the inputs may then be used to gener-
ate counterexamples while learning
models for larger subsets. Yet another
approach, which, for instance, has
been applied by Chalupar et al.,13 is to
merge several input actions that usually
occur in a specific order into a single

high-level action, thus reducing the
number of inputs. Again, models that
have been learned with a small number
of high level inputs may be used to gen-
erate counterexamples in subsequent
experiments in which these inputs are
broken up into their constituents.

Paraphrasing C.A.R. Hoare, one could
say that in every large program there is

Figure 4. Model learning within the MAT framework.

TQs

SUL

CT

MQs

EQ

Learner Teacher

Figure 5. Model learning with a mapper.

TQ

Mapper

SUL

CT

MQs

EQ

Learner Teacher

Figure 6. Lego robot used to reverse engineer the e.dentifier2 smartcard reader (picture
courtesy of Chalupar13).

FEBRUARY 2017 | VOL. 60 | NO. 2 | COMMUNICATIONS OF THE ACM 91

review articles

correct functioning of network and
security protocols. Bugs or vulner-
abilities in these protocols may lead
to security breaches or even complete
network failures. Model checking15 has
proven to be an effective technique
for finding such bugs and vulnerabili-
ties. However, since exhaustive model
checking of protocol implementations
is usually not feasible,27 model check-
ing is usually applied to models that
have been handcrafted starting from
protocol standards. This means that
model checking is unable to catch
bugs that arise because implementa-
tions do not conform to their specifi-
cation. Model learning turns out to be
effective in finding exactly this type of
bugs, which makes the technique com-
plementary to model checking.

De Ruiter and Poll,34 for instance,
analyzed both server- and client-side
implementations of the TLS proto-
col with a test harness that supported
several key exchange algorithms and
the option of client certificate authen-
tication. They showed that model
learning (or protocol state fuzzing, as
they call it) can catch an interesting
class of implementation flaws that is
apparently common in security pro-
tocol implementations: in three out
of nine tested TLS implementations
new security flaws were found. For
the Java Secure Socket Extension, for
instance, a model was learned for Java
version 1.8.0.25. The authors observed
that the model contained two paths
leading to the exchange of application
data: the regular TLS protocol run and
another unexpected run. By exploiting
this behavior, an attack was possible
in which both the client and the server
application would think they were talk-
ing on a secure connection, where in
reality anyone on the line could read
the client’s data and tamper with it. A
fix was released as part of a critical secu-
rity update, and by learning a model
of JSSE version 1.8.0.31, the authors
were able to confirm that indeed the
problem was solved. Due to a manually
constructed abstraction/mapper, the
learned Mealy machines were all quite
small, with 6–16 states. As the analy-
sis of different TLS implementations
resulted in different and unique Mealy
machines for each one, model learning
could also be used for fingerprinting
TLS implementations.

Fiterău et al.17 combined model
learning and model checking in a case
study involving Linux, Windows, and
FreeBSD implementations of TCP serv-
ers and clients. Model learning was used
to infer models of different components
and then model checking was applied
to fully explore what may happen when

these components (for example a Linux
client and a Windows server) interact.
The case study revealed several instances
in which TCP implementations do not
conform to their RFC specification, see
Figure 8 for an example.

Legacy software. Legacy systems have
been defined as “large software systems

Figure 7. State machine of SecureCode Aut application on Dutch Rabo bank card (diagram
courtesy of Aarts et al.3).

Initialisation Other

Other

Other

Other

Other

SELECT

Selected

GET PROCESSING OPTIONS (valid)

GET DATA (valid) / READ RECORD (valid)

GET DATA (valid) / READ RECORD (valid) / VERIFY

GENERATE AC 1st ARQC
ARQC

ARQC requested

GENERATE AC 2nd TC / AAC
AAC

Transaction finished

GENERATE AC 1st TC
TC

GENERATE AC 1st AAC
AAC

GENERATE AC 1st
AAC

Verify performed

VERIFY

GPO performed

Figure 8. Learned state machine for Windows8 TCP Client (picture courtesy of Fiterau-
Brostean et al.17). Transitions that are reachable when the Windows8 client interacts with a
Windows8 server in a setting with reliable communication are colored green (as computed
by a model checker). The red transition marks a nonconformance to the RFC: a CLOSE can
generate a RST instead of a FIN even in cases where there is no data to be received, namely,
in states where a rcv call is pending.

initial

SA/R(N,F)
S/RA(Z,N)

{S, R}/-

SA/R(N,F)
S/RA(Z,N)

R/-

SA/R(N,F)
S/RA(Z,N)

R/-

SA/R(N,F)
S/RA(Z,N)

R/-

SA/R(N,F)
S/RA(Z,N)

R/-
SA/R(N,F)
S/RA(Z,N)

R/-

{RA, R}/-

conncet/S(F,Z)

syn_sent

S/SA(C,N)

S/SA(F,N)
SA/A(N,N)

close/FA(N,C)
fin_wait1/fin_wait2

close/-

close/-

PA+data/RA(N,N)
RA/-

PA+data/A(N,N)

send/PA(N,C)+data
PA+data/A(N,N)

established (after data)

close/RA(N,C)
RA/-

FA/A(N,N)

FA/A(N,N)

rcv/-

rcv/-

RA/-

R/-
R/-A/-

FA/A(N,N)

FA/A(N,N)

send/PA(N,C)+data

A/-

close-

close-

{SA, FA, PA, A}/R(Z,Z}

PA+data/A(N,N)

established

rcv/-

RA/-

RA/-

PA+data/A(N,N)

FA/A(N,N)

send/PA(N,C)+data

close_wait

close/FA(N,C)send/PA/N,C)+data

close/RA(N,C)

SA/R(N,F)

time_wait

last_ack

established (during rcv)

SA/R(N,F)
{RA,FA,R,PA+data}/-

S/RA(Z,N)

close/RA(N,C)
RA/-

send/PA(N,C)+data

close_wait(after data)

syn_rcvd

closed

92 COMMUNICATIONS OF THE ACM | FEBRUARY 2017 | VOL. 60 | NO. 2

review articles

exhibited a difference between A and B,
and we changed either A or B (or both),
depending on which response to σ
was considered unsatisfactory behav-
ior. The implementations were learned
and checked iteratively with increas-
ing sets of stimuli to handle scalability.
Issues were found in both the refac-
tored and the legacy implementation
in an early stage, before the compo-
nent was integrated. In this way, costly
rework in a later phase of the develop-
ment was avoided.

Recent Advances
During recent years significant prog-
ress has been made on algorithms for
model learning, which is crucial for
scaling the application of these tech-
niques to larger systems.

Basic algorithms. Since 1987, the L*
algorithm of Angluin’s6 has been con-
siderably improved. The original L*
 performs a membership query for each
entry in the observation table. This is
often redundant, given that the sole
purpose of membership queries is the
distinction of states (rows). Therefore,
Kearns and Vazirani28 replaced the obser-
vation table of the L* algorithm by the
so-called discrimination trees, which
are basically decision trees for deter-
mining equivalence of states.

Another inefficiency of L* is that all
prefixes of a counterexample are added
as rows to the table. Counterexamples
obtained through conformance test-
ing or runtime monitoring may be
extremely long and are rarely minimal,
which results in numerous redun-
dant membership queries. Rivest and
Schapire33 observed that, instead of
adding all prefixes of a counterexample
as rows to the table, it suffices to add a
single, well-chosen suffix as a column.

The new TTT algorithm of Isberner
et al.24, 25 is currently the most efficient
algorithm for active learning. The algo-
rithm builds on the ideas of Kearns and
Vazirani28 and Rivest and Schapire33 but
eliminates overly long discrimination
trees, which may arise when processing
long counterexamples, by cleaning up
the internal data structures and reorga-
nizing the discrimination tree. Suppose
that a Mealy machine M has n states and
k inputs, and that the length of the longest
counterexample returned by the teacher
is m. Then in the worst-case TTT requires
Ο(n) equivalence queries and Ο(kn2 +

that we do not know how to cope with
but that are vital to our organization.”7
Typically, these systems are based on
obsolete technologies, documentation
is limited, and the original developers
are no longer available. In addition,
existing regression tests will be limited.
Given these characteristics, innovations
that require changes of legacy compo-
nents are risky. Several techniques have
been developed to extract the crucial
business information hidden in legacy
components, and to support the con-
struction of refactored implementa-
tions. Margaria et al.30 were the first to
point out that model learning may help
to increase confidence that a legacy
component and a refactored imple-
mentation have the same behavior.

Schuts et al.,35 for instance, used
model learning to support the rejuve-
nation of legacy embedded software
in a development project at Philips.
The project concerned the introduc-
tion of a new hardware component,
the Power Control Component (PCC),
which is used to start-up and shut-
down an interventional radiology
system. All computers in the system

have a software component, the Power
Control Service (PCS) which commu-
nicates with the PCC over an internal
control network during the execution
of start-up and shutdown scenarios.
To deal with the new hardware of the
PCC, which has a different interface,
a new implementation of the PCS was
needed. Since different configurations
had to be supported, with old and new
PCC hardware, the old and new PCS
software needed to have exactly the
same external behavior. Figure 9 illus-
trates the approach that was followed.
From both the legacy implementation
A and the refactored implementation
B, Mealy machine models MA resp.
MB were obtained using model learn-
ing. These models were then compared
using an equivalence checker. When
the equivalence checker found a coun-
terexample σ, then we checked whether
A and MA behaved the same on input
σ and whether B and MB behaved the
same on input σ. If there was a discrep-
ancy between A and MA, or between B
and MB, then we asked the learner to
construct an improved model based
on counterexample σ. Otherwise σ

Figure 9. Approach to compare legacy component and refactored implementation (diagram
courtesy of Schuts et al.35).

Implementation A Implementation B

model learner model learner

Model MA Model MB

models
correct
for σ?

equivalence
checker

equiv?
N N

Y
Y

done

counter
example σ

refine
model(s)
using σ

adapt
implementation(s)

Figure 10. A register automaton.

l0start l1 l2

Push(in)/OK
υ:=in

Pop/KO
in ¹ υ
Push(in)/OK
w:=in

in = υ
Push(in)/KO

out = υ
Pop/Out(out)

out = υ
Pop/Out(out)
υ:=w

Push(in)/KO

FEBRUARY 2017 | VOL. 60 | NO. 2 | COMMUNICATIONS OF THE ACM 93

review articles

n log m) membership queries, each of
length Ο(n + m). This worst-case query
and symbol complexity coincides with
the algorithm of Rivest and Schapire,33
but TTT is faster in practice.

The TTT algorithm typically gener-
ates more intermediate hypotheses
than the L* algorithm. This suggests
that the number of input symbols used
in membership queries alone may not
be an appropriate metric for compar-
ing learning algorithms: we also need
to take into account the number of test
queries required to implement equiva-
lence queries. The total number of
input symbols in membership and test
queries appears to be a sensible met-
ric to compare learning approaches
in practice. Two of my students, J.
Moerman and A. Fedotov, compared
different combinations of learning and
testing algorithms on a large number
of benchmarks (protocols, control soft-
ware, circuits, etc.) and found that TTT
used on average 3.9 times fewer input
symbols than L*.

Learning and testing can be easily
parallelized when it is possible to run
multiple instances of the SUL concur-
rently. Another technique that may
speedup learning is to save and restore
software states of the SUL (checkpoint-
ing). The benefit is that when the learner
wants to explore different outgoing tran-
sitions from a saved state q it only needs
to restore q, which usually is much
faster than resetting the system and
bringing it back to q via a sequence of
inputs. Henrix21 reports on experiments
in which checkpointing with DMTCP
speeds up learning with a factor 1.7.

Register automata. Even though we
have seen much progress on basic algo-
rithms for learning state machines, these
algorithms only succeed to learn rela-
tively small state machines. In order to
scale the application of these algorithms
to realistic applications, users typically
need to manually construct abstractions
or mappers.2 This can be a time-consum-
ing activity that requires several itera-
tions and expert knowledge of the SUL.
Therefore, much work has been carried
out recently to generalize learning algo-
rithms to richer classes of models that
have more structure, in particular EFSM
models in which data values may be com-
municated, stored, and manipulated.

One particular extension for which
model learning algorithms have been

developed is that of register autom-
ata.11 These automata have a finite set
of states but are extended with a set of
registers that can be used to store data
values. Input and output actions are
parameterized by data values, which
may be tested for equality in transition
guards and stored in registers. Figure 10
gives a simple example of a register
automaton, a FIFO-set with capac-
ity two. A FIFO-set corresponds to a
queue in which only different values
can be stored. There is a Push(d) input
symbol that tries to insert a value d in
the queue, and a Pop input symbol
that tries to retrieve a value from the
queue. The output in response to a
Push is OK if the input value can be
added successfully, or KO if the input
value is already in the queue or if the
queue is full. The output in response
to a Pop is Out, with as parameter the
oldest value from the queue, or KO if
the queue is empty.

In register automata all data values
are fully symmetric, and this symmetry
may be exploited during learning. Two
dif ferent approaches have been explored
in the literature. A first approach, fol-
lowed by Cassel et al.,12 has been imple-
mented in the software tools LearnLib26
and RALib.10 Model learning algorithms
usually rely on the Nerode relation for
identifying the states and transitions of
a learned automaton: two words lead to
the same state if their residual languages
coincide. The basic idea now is to for-
mulate a Nerode-like congruence for
register automata, which determines
the states, transitions, and registers
of the inferred automaton. Technical
basis of the implementation are the
so-called symbolic decision trees, which
can be used to summarize the results
of many tests using a concise symbolic
representation.

A second approach for learning
register automata, followed by Aarts
et al.1 has been implemented in the
software tool Tomte. In this approach,
counterexample-guided abstraction
refinement is used to automatically
construct an appropriate mapper. The
idea is to start with a drastic abstrac-
tion that completely ignores the data
values that occur in input and output
actions. When this abstraction is too
coarse, the learner will observe nonde-
terministic behavior. In the example
of Figure 10, for instance, an input

Abstraction is the
key for scaling
model learning
methods to realistic
applications.

94 COMMUNICATIONS OF THE ACM | FEBRUARY 2017 | VOL. 60 | NO. 2

review articles

operations is still limited, and there
are many open questions.

Isberner24 developed a model learning
algorithm for visibly pushdown autom-
ata (VPAs), a restricted class of push-
down automata proposed by Alur and
Madhusudan.5 This result is in a sense
orthogonal to the results on learning reg-
ister automata: using register automata
learning, a stack with a finite capacity
storing values from an infinite domain
can be learned, whereas using VPA learn-
ing it is possible to learn a stack with
unbounded capacity storing data values
from a finite domain. From a practical
perspective it would be useful to develop
a learning algorithm for a class of models
that generalizes both register automata
and VPAs. There are many protocols in
which messages may be buffered, and we
therefore need algorithms that can learn
queues with unbounded capacity.

Beyond Mealy machines. In a Mealy
machine, a single input always triggers
a single output. In practice, however, a
system may respond to an input with
zero or more outputs. Moreover, the
behavior of systems is often timing
dependent and a certain output may
only occur if some input has not been
offered for a certain amount of time.
As a consequence, practical applica-
tion of model learning is often severely
restricted by the lack of expressivity of
Mealy machines. For instance, in order
to squeeze TCP implementations into
a Mealy machine, we had to elimi-
nate timing-based behavior as well
as retransmissions.17 There has been
some preliminary work on extending
learning algorithms to I/O automata4
and to event-recording automata,18 but
a major effort is still required to turn
these ideas into practical tools.

Systems are often nondeterministic,
in the sense that a sequence of inputs
may lead to different output events in
different runs. Existing model learning
tools, however, are only able to learn
deterministic Mealy machines. In appli-
cations, we can sometimes eliminate
nondeterminism by abstracting differ-
ent concrete output events into a single
abstract output, but in many cases this
is not possible. Volpato and Tretmans38
present an adaptation of L* for active
learning of nondeterministic I/O autom-
ata. Their algorithm enables learning of
nondeterministic SULs, and it allows
us to construct partial or approximate

sequence Push Push Pop Pop will
mostly trigger outputs OK OK Out
KO, but sometimes OK OK Out Out.
Analysis of this behavior will then lead
to a refinement of the abstraction. In
our example, for instance, we need at
least two abstract versions of the sec-
ond Push, since apparently it matters
whether or not the data value of this
input is equal to the data value of the
first Push. RALib and Tomte both out-
perform LearnLib. The performance
of Tomte and RALib is roughly com-
parable. RALib outperforms Tomte on
some benchmarks, but Tomte is able
to learn some register automata that
RALib cannot handle, such as a FIFO-
set with capacity 40.

Research Challenges
Even though model learning has been
applied successfully in several domains,
the field is still in its infancy. There is a
huge potential for applications, espe-
cially in the area of legacy control soft-
ware, but more research on algorithms
and tools is needed to bring model learn-
ing from the current level of academic
prototypes to that of an off-the-shelf
technology that can be easily applied to
a large class of systems. Here, I discuss
some of the major research challenges.

Predicates and operations on data.
The recent extension of model learn-
ing algorithms to register automata
is a breakthrough which, potentially,
makes model learning applicable to
a much larger class of systems. Due
to the restriction that no operations
on data are allowed, the class of sys-
tems that can be described as reg-
ister automata is small, and mainly
consists of academic examples such
as the bounded retransmission proto-
col and some simple data structures.
However, as pointed out by Cassel et
al.,12 using SMT solving the new learn-
ing algorithms for register automata
can be extended to EFSM formalisms
in which guards may contain predi-
cates such as the successor and less
than relation. A prototype implemen-
tation RALib is available and we are
close to the point where we can learn
models of real-world protocols such as
TCP, SIP, SSH, and TLS automatically,
without the need to manually define
abstractions. Nevertheless, our under-
standing of algorithms for learning
EFSMs with different predicates and

Even though
model learning
has been applied
successfully in
several domains,
the field is still
in its infancy.

FEBRUARY 2017 | VOL. 60 | NO. 2 | COMMUNICATIONS OF THE ACM 95

review articles

models. Again, a major effort will be
required to incorporate these ideas in
state-of-the-art tools such as LearnLib,
libalf, RALib, or Tomte.

Quality of models. Since the mod-
els produced by model learning algo-
rithms have been obtained through
a finite number of tests, we can
never be sure that they are correct.
Nevertheless, from a practical per-
spective, we would like to be able to
make quantitative statements about
the quality of learned models and,
for instance, assert that a hypothesis
is approximately correct with high
probability. Angluin6 proposed such
a setting, along the lines of the PAC
learning approach of Valiant.37 Her
idea was to assume some (unknown)
probability distribution on the set of
words over the input alphabet I. In order
to test a hypothesis, the conformance
tester (see Figure 4) selects a speci-
fied number of input words (these
are statistically independent events)
and checks for each word whether the
resulting output of SUL and hypothesis
agrees. Only when there is full agree-
ment the conformance tester returns
answer yes to the learner. An hypoth-
esis is said to be an ε-approximation of
the SUL if the probability of selecting
a string that exhibits a difference is
at most ε. Given a bound on the num-
ber of states of the SUL, and two con-
stants ε and δ, Angluin’s polynomial
algorithm produces a model such
that the probability that this model
is an ε-approximation of the SUL is at
least 1 − δ. Angluin’s result is elegant
but not realistic in a setting of reac-
tive systems, since there we typically
do not have a fixed distribution over
the input words. (Inputs are under the
control of the environment of the SUL,
and this environment may change.)

Using traditional conformance test-
ing,29 we can devise a test suite that
can guarantee the correctness of a
learned model, given an upper bound
on the number of states of the SUL.
But such an approach is also not sat-
isfactory, since the required number
of test sequences grows exponentially
with the number of states of the SUL.
The challenge therefore is to establish
a middle ground between Angluin’s
approach and traditional conformance
testing. Systems logs often provide a
probability distribution on the set of

input words that may be used as a start-
ing point for defining a metric.

Opening the box. There can be many
reasons for using black box model
learning techniques. For instance, we
may want to understand the behavior
of a component but do not have access
to the code. Or we may have access to
the code but not to adequate tools for
analyzing it (for example, in the case
of legacy software). Even in “white
box” situations where we have access
both to the code and to powerful code
analysis tools, black box learning can
make sense, for instance because a
black box model can be used to gen-
erate regression tests, for checking
conformance to a standard, or as part
of model-based development of a
larger system. An important research
challenge is to combine black box
and white box model extraction tech-
niques and, for instance, to use white
box methods such as static analysis
and concolic testing to help answering
equivalence queries posed by a black
box learner.

Acknowledgments. Portions of
this work were performed in the con-
text of STW projects 11763 (ITALIA)
and 13859 (SUMBAT), and NWO
projects 628.001.009 (LEMMA) and
612.001.216 (ALSEP).

References
 1. Aarts, F., Fiterău-Broştean, P., Kuppens, H.,

Vaandrager, F. Learning register automata with fresh
value generation. In ICTAC’15, LNCS 9399 (2015).
Springer, 165–183.

 2. Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.
Generating models of infinite-state communication
protocols using regular inference with abstraction.
Formal Methods Syst. Des. 46, 1 (2015), 1–41.

 3. Aarts, F., de Ruiter, J., Poll, E. Formal models of bank
cards for free. In SECTEST’13 (2013). IEEE, 461–468.

 4. Aarts, F., Vaandrager, F. Learning I/O automata. In
CONCUR’10, LNCS 6269 (2010). Springer, 71–85.

 5. Alur, R., Madhusudan, P. Visibly pushdown languages.
In STOC’04 (2004). ACM, 202–211.

 6. Angluin, D. Learning regular sets from queries and
counterexamples. Inf. Comput. 75, 2 (1987), 87–106.

 7. Bennett, K. Legacy systems: coping with success.
IEEE Softw. 12, 1 (1995), 19–23.

 8. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M.,
Raffelt, H., Steffen, B. On the correspondence
between conformance testing and regular
inference. In FASE’05, LNCS 3442 (2005). Springer,
175–189.

 9. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M.,
Neider, D., Piegdon, D. libalf: The automata learning
framework. In CAV’10, LNCS 6174 (2010). Springer,
360–364.

 10. Cassel, S., Howar, F., Jonsson, B. RALib: A LearnLib
extension for inferring EFSMs. In DIFTS 15 (2015).

 11. Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen,
B. A succinct canonical register automaton model.
J. Log. Algebr. Meth. Program. 84, 1 (2015), 54–66.

 12. Cassel, S., Howar, F., Jonsson, B., Steffen, B. Active
learning for extended finite state machines. Formal
Asp. Comput. 28, 2 (2016), 233–263.

 13. Chalupar, G., Peherstorfer, S., Poll, E., Ruiter, J.
Automated reverse engineering using Lego. In
WOOT’14 (Aug. 2014). IEEE Computer Society.

 14. Cho, C., Babic, D., Shin, E., Song, D. Inference and
analysis of formal models of botnet command and
control protocols. In CCS’10 (2010). ACM, 426–439.

 15. Clarke, E., Grumberg, O., Peled, D. Model Checking.
MIT Press, Cambridge, MA, 1999.

 16. Feng, L., Lundmark, S., Meinke, K., Niu, F., Sindhu, M.,
Wong, P. Case studies in learning-based testing. In
ICTSS’13, LNCS 8254 (2013). Springer, 164–179.

 17. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.
Combining model learning and model checking to
analyze TCP implementations. In CAV’16, LNCS 9780
(2016). Springer, 454–471.

 18. Grinchtein, O., Jonsson, B., Leucker, M. Learning of
event-recording automata. Theor. Comput. Sci. 411,
47 (2010), 4029–4054.

 19. Groce, A., Peled, D., Yannakakis, M. Adaptive model
checking. Logic J. IGPL 14, 5 (2006), 729–744.

 20. Hagerer, A., Hungar, H., Niese, O., Steffen, B. Model
generation by moderated regular extrapolation. In
FASE’02, LNCS 2306 (2002). Springer, 80–95.

 21. Henrix, M. Performance improvement in automata
learning. Master thesis, Radboud University (2015).

 22. Hungar, H., Niese, O., Steffen, B. Domain-specific
optimization in automata learning. In CAV 2003,
LNCS 2725 (2003). Springer, 315–327.

 23. de la Higuera, C. Grammatical Inference: Learning
Automata and Grammars. Cambridge University
Press, 2010.

 24. Isberner, M. Foundations of active automata learning:
An algorithmic perspective. PhD thesis, Technical
University of Dortmund (2015).

 25. Isberner, M., Howar, F., Steffen, B. The TTT algorithm: A
redundancy-free approach to active automata learning.
In RV’14, LNCS 8734 (2014). Springer, 307–322.

 26. Isberner, M., Howar, F., Steffen, B. The open-source
LearnLib – A framework for active automata learning.
In CAV’15, LNCS 9206 (2015). Springer, 487–495.

 27. Jhala, R., Majumdar, R. Software model checking.
ACM Comput. Surv. 41, 4 (Oct. 2009), 21:1–21:54.

 28. Kearns, M.J., Vazirani, U.V. An Introduction to
Computational Learning Theory. MIT Press, 1994.

 29. Lee, D., Yannakakis, M. Principles and methods of
testing finite state machines—A survey. Proc. IEEE
84, 8 (1996), 1090–1123.

 30. Margaria, T., Niese, O., Raffelt, H., Steffen, B. Efficient
test-based model generation for legacy reactive
systems. In HLDVT’04 (2004). IEEE Computer
Society, 95–100.

 31. Moore, E. Gedanken-experiments on sequential
machines. In Automata Studies, Annals of Mathematics
Studies 34 (1956). Princeton University Press, 129–153.

 32. Peled, D., Vardi, M., Yannakakis, M. Black box checking.
J. Autom. Lang. Comb. 7, 2 (2002), 225–246.

 33. Rivest, R.L., Schapire, R.E. Inference of finite
automata using homing sequences. Inf. Comput. 103,
2 (1993), 299–347.

 34. de Ruiter, J., Poll, E. Protocol state fuzzing of TLS
implementations. In USENIX Security’15 (2015).
USENIX Association, 193–206.

 35. Schuts, M., Hooman, J., Vaandrager, F. Refactoring
of legacy software using model learning and
equivalence checking: an industrial experience report.
In iFM’16, LNCS 9681 (2016). Springer, 311–325.

 36. Shahbaz, M., Groz, R. Analysis and testing of black-box
component-based systems by inferring partial models.
Softw. Test. Verif. Reliab. 24, 4 (2014), 253–288.

 37. Valiant, L.G. A theory of the learnable. In STOC’84
(1984). ACM, 436–445.

 38. Volpato, M., Tretmans, J. Approximate active learning
of nondeterministic input output transition systems.
Electron. Commun. EASST 72 (2015).

 39. Windmüller, S., Neubauer, J., Steffen, B., Howar, F.,
Bauer, O. Active continuous quality control. In
CBSE’13 (2013). ACM, 111–120.

Frits Vaandrager (F.Vaandrager@cs.ru.nl), Department
of Software Science, Institute for Computing and
Information Sciences at Radboud University, Nijmegen,
The Netherlands.

© 2017 ACM 0001-0782/17/02 $15.00

Watch the author discuss
his work in this exclusive
Communications video.
http://cacm.acm.org/videos/
model-learning

