More regular games

Game arena, winning condition

 $\mathcal{A} = (V_0, V_1, E), \quad \text{Win} \subseteq V^{\omega} \text{ winning condition}$

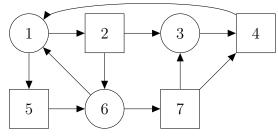
Reachability game. Given $F \subseteq V$, the wining condition Win is the set of plays that visit F at least once. The winning strategy of P_0 is the attractor strategy, and the one of P_1 is the trap strategy.

Safety game. Given $F \subseteq V$, the winning condition Win is the set of maximal plays that avoid F.

Reachability for P_0 = safety for P_1

Obligation games. Win is a boolean combination of reachability conditions. *Example*: visit either p and q and not r, or q and r and not p. Equivalent formulation:

- Win = \mathcal{F} , where $\mathcal{F} = \{F_1, \ldots, F_k\}, F_i \subseteq V$.
- A maximal play $\pi = v_0, v_1, \ldots$ is winning (for P_0) if $Occ(\pi) \in \mathcal{F}$. Notation: $Occ(\pi) = \{v \mid \exists i \text{ s.t. } v = v_i\}$ is the set of states visited by π .



Win: $\pi \in$ Win if and only if $\{2,7\} \subseteq Occ(\pi)$. In order to win, P_0 needs memory in state 1: she has to visit both 2 and 5.

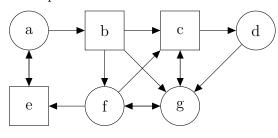
Solution for obligation games: reduction to weak parity games.

Weak parity games.

- The game arena \mathcal{A} is equipped with a priority function $p: V \to \{0, \ldots, d\}: p(v)$ is the priority (color) of v.
- Win is the set of maximal plays such that the *biggest* priority is even. Formally:

$$\pi \in \text{Win}$$
 iff $\max\{p(v) \mid v \in \text{Occ}(\pi)\}$ is even

Example.



$$p(a) = p(e) = 0, \ p(b) = p(f) = 1, \ p(c) = p(g) = 2, \ p(d) = 3.$$

- $d \in W_1$ and $\operatorname{Attr}_1(d) = \{d, c, b\} \subseteq W_1$
- $V' = V \setminus \{b, c, d\}$ is a trap for P_1 : player P_0 can keep the game within V'. In V', P_0 can avoid priority 3, and $\operatorname{Attr}_0(g) \mid_{V'} = \{g, f\} \subseteq W_0$
- $V'' = V' \setminus \{f, g\}$ is a trap for P_0 : P_1 can keep the game within V''. $W_1 \mid_{V''} = \emptyset, W_0 \mid_{V''} = \{a, e\}$

Conclusion: $W_0 = \{a, e, f, g\}, W_1 = \{b, c, d\}$. Both players have memoryless strategies.

Polyomial-time solution for weak parity games: decompose the game arena into attractors.

Exercices

Variants of reachability. Given the arena $\mathcal{A} = (V_0, V_1, E)$ and $F \subseteq V$, propose an algorithm to compute the winning regions and winning strategies for the two players, for the winning conditions listed below. Are the games determined? are the strategies memoryless?

- 1. Win is the set of maximal plays that visit F at most once.
- 2. Win is the set of maximal plays that visit F at most k times (k is fixed).
- 3. Win is the set of maximal plays that visit F at least |V| + 1 times.

Büchi games. A recursive algorithm:

Input: Büchi game $G = (V_0, V_1, E), F \subseteq V$ Output: Büchi $(G, F) = (W_0, W_1)$

if $V = \emptyset$ then \mid return (\emptyset, \emptyset) $A := \operatorname{Attr}_0(F);$ $B := \operatorname{Attr}_1(V \setminus A);$ $(W'_0, W'_1) = \operatorname{Büchi}(G \setminus B, F);$ return $(W'_0, B \cup W'_1);$

Apply the algorithm above to compute the winning regions and winning strategies for both players with $F = \{b, d, e\}$ and the game arena:

