REACHABILITY AND BUCHI GAMES

Py: CIRCLE, Pi: SQUARE

a c
b ¢ Reachability game:
F ={a}: Wo ={a,b,c, f}
F ={e}: Wo =V \{a}
Biichi games: same Wy as
above
d > e
g
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REACHABILITY GAMES

Attr)(F) F
AttrftN(F) = Attrg (F) U
{v eV | 3w € Attrg (F), (v,w) € E}
{veW |Vwtqg. (v,w) € E : w e Attrg (F)}

Attrd(F) C Attrd(F) C --- C Aterl’|(F)

Attr§ (F) is the set of vertices from which Py can reach F' after at most i

moves. Wy = Attrlovl(F) is the winning region of Py (smallest fixpoint), and

VA Attrl)V‘ (F) is the winning region of P;.

STRATEGIES

Reachability games have positional winning strategies (for both players), which
can be computed in polynomial time.
Positional strategy (for Py): mapping o : Vo — V.
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BUCHI GAMES

Biichi games have positional winning strategies (for both players), which can
be computed in polynomial time.

ALGORITHM

o Attrf (F): set of states from which Py can reach F in at least one move.
We can compute Attr] (F'), as well as a positional strategy, in polynomial
time.

o X@: set of states from which Py can go through F' at least i times
(without counting the starting state).

X9 = v, X% = A (XD N F)
Wo nile(i)

Notice that X(*1) C X (@) So there exists k with Wy = X®) = x(k+1).
W is a largest fixpoint.

o Strategy for Py in the Blichi game: positional strategy used by Py from
Wo = Attrf (Wo N F).
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WEAK PARITY GAMES

NODE COLORING x : V — {0,...,k}. WINNING CONDITION: MAXIMAL
VISITED COLOR IS EVEN.
b > C d
e f g

x(a) = x(e) =0, x(b) = x(f) = 1, x(c) = x(9) = 2, x(d) = 3.
o d € Wy and Attry(d) = {d,c,b} C W,

o V' =V \ {b,c,d} is a trap for P, defining a subarena for Py. So in V',
Py can avoid color 3, and Attro(g) |v/= {g, f} € Wo

o V" =V'\{f,g} is a trap for Py, so subarena for P;.
Wi lyn=0, Wo |yn={a,e}

Conclusion: Wy ={a,e, f,g}, W1 = {b, ¢, d}. Positional winning strategies for
both players (attractor strategies).
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WEAK PARITY GAMES

o The complement of an attractor C for P; is a trap pour P;: P; has no
outgoing transition from C, so Pi_; can force the play to stay in V' \ C.

o A trap C for P; is a subarena for Pi_;: every winning strategy for Pi_; in
C' is winning for Pi_; in V.

VE = x"(k).
O Suppose that the maximal color k is odd (otherwise exchange Py, P1).
Compute Attr (V")) (a subset of 7).

Q V' :=V\ Attr; (V®) is subarena for Py and the maximal color in V' is at
most k — 1. Compute inductively the winning region Wy of Py in V.
Every vertex in Wy is winning for Py in V (see above).

@ Every vertex in V' \ Wy is winning for P; in V: Py applies his winning
strategy from V' while staying in V’, and the attractor strategy as soon as
the game enters Attr; (V).

@ Strategies for both players are positional.

15/107

OBLIGATION GAMES

WINNING CONDITION

Win is given as a set F C P (V) of sets of states. Player Py wins a play 7 if
the set Occ(m) of states visited in 7 belongs to F.
Obligation games are thus Boolean combinations of reachability games.

EXAMPLE: CONJUNCTION OF REACHABILITY CONDITIONS

Play m € Win iff {2,7} C Occ(w). Player Py needs 1 bit of memory in state 1:
he needs to visit alternatively states 2 and 5.
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OBLIGATION GAMES (WEAK MULLER GAMES)

Reduce the obligation game to a simpler (and larger) weak parity game.
o Recall: Py wins in a weak parity game if the maximal visited color is even.
o General idea of the reduction: start with an obligation game G = (A, F)
and define a weak parity game G’ = (A’, x) such that:

Q A = (Vy,V{,E"), V/ =V; x M, with M finite (memory).

Q Transitions: ({(v,m), (w,m’')) € £’ if (v,w) € E and m' = f(m,v,w)
(f = memory update function).

@ With each play 7 in G starting in v, and each initial value mg € M, we
associate a unique play 7’ in G’ from (v, mg). In addition,  and =’ are
won by the same player.

o Since weak parity games have positional strategies, such a reduction then
provides finite memory strategies in the obligation game.

17/107

OBLIGATION GAMES (WEAK MULLER GAMES)

SOLUTION

Reduce the obligation game to a simpler (and larger) weak parity game.
o Recall: Py wins in a weak parity game if the maximal visited color is even.
o General idea of the reduction: start with an obligation game G = (A, F)
and define a weak parity game G’ = (A’, x) such that:
Q A = (Vy,V{,E'), V/ =V; x M, with M finite (memory).
Q Transitions: ((v,m), (w,m’)) € E' if (v,w) € E and m' = f(m, v, w)
(f = memory update function).

@ With each play 7 in G starting in v, and each initial value mg € M, we
associate a unique play 7’ in G’ from (v, mp). In addition, = and =’ are
won by the same player.

o Since weak parity games have positional strategies, such a reduction then
provides finite memory strategies in the obligation game.

REDUCTION
o M=2", E'={(v,R) - (w,RU{v}) | (v,w) € E}.
o Coloring: x(v,R) =2|R|if Re€ F; x(v,R) =2|R|—1if R¢ F.

o For every play 7’ = (vo, Ro), (v1, R1), ... in G’ we have
Ro C Ry CRy---, so for some i > 0 we have R; = R; for all j > 4. For
Ry = 0, the set R; equals Occ(w), where m = v, v1, . . ..
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MULLER AND PARITY GAMES

Let Inf(vovy --+) = {v € V| 3% : v = v;}. For simplicity, we assume that
there are no dead-ends in (V, E).

PARITY GAMES

Node coloring x : V — {1,...,k}.
Win = {m | max(x(Inf())) is even}.

MULLER GAMES
Let F C P(V).

Win = {r | Inf(7) € F}

REM.

Every game (A, Win) with Win C V* regular reduces to a Muller game. We
will show how to reduce Muller games to parity games, then how to solve parity
games.
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A PREPARATORY EXAMPLE

(DZIEMBOWSKI, JURDZINSKI, WALUKIEWICZ)
o Vo ={A,B,C,D}, Vi ={1,2,3,4}
o E=Vox VLUV x W
o Winning condition for player I

[Inf(7) N Vo| = max(Inf(7) N V1)

How can Py win? solution: Last Appearance Record (LAR).
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A PREPARATORY EXAMPLE

(DZIEMBOWSKI, JURDZINSKI, WALUKIEWICZ)
o Vo ={A,B,C,D}, Vi ={1,2,3,4}
o E=WWx Vi uVixVW
o Winning condition for player I:

[Inf(7) N V| = max(Inf(7) N V4)

How can P, win? solution: Last Appearance Record (LAR).

LAR

The order of visited V| states is recorded: the last visited state is moved to the
front of LAR, and the position where it occurred previously (if any) is
underlined — the hit position.

Example:

e A2 pa % copa%cpA2 pcAa2 pcA-CCDA---

If Inf(7) N Vo = {C, D} then infinitely often, the hit position in the LAR is 2
(we start to count from 1). Pi's (winning) strategy is to play the hit position
of the LAR.
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FrROM MULLER TO PARITY GAMES

o Let (G, F) be a Muller game with G = (Vy, Vi, E) and F C 2V,

o LAR: pairs (v1 ---vr, h), where 0 < h <r and v1,...,v, are distinct
states from V.
Let @ be the set of LAR’s. The initial LAR is go = (¢, 0), and the
transition function § : Q@ X V' — @ is given by:

(vv - - - vr, 0) if v # v, for all p

(V1 -+ Vp—1Upy1 -+ Ur,p) If V=1

0({v1 -+ vr, h),v) = {

Hit set of (v1 -+ vy, h): {v1,...,0n}.

o For an infinite play 7, let # = o7’ be such that Inf(r) is the set of states
occurring in ', If h is the maximal hit position repeated infinitely often,
then Inf(7) equals the hit set for the LAR's with hit position h in 7’.

2h if {v1,...,on} €F

x{({or---vr, B) = {Qh —1 else

Inf(7) € F iff the maximal LAR-color repeated infinitely often is even.
Thus, Muller games can be simulated by parity games (with n!-n
additional memory).



SOLVING PARITY GAMES

INDUCTIVE SOLUTION

Let G = (Vo, Vi, E) and x : V — {0, ...,k} be a parity game.
Induction over |V|. Suppose w.l.o.g. that the maximal color k is even and
let vo be some state with x(v) = k.
Let Ag = Attro(vo), so V' \ Ao is a subgame for P1. By induction, V' \ Ag
is partitioned into W{ and W7, and P; has a positional winning strategy
on W/.
2 cases (and exactly one applies):

O From wg, Py can get into Ag U W] in one step.

@ From vg, P; can get into Wl’ in one step.
Case 1: Wy = WOI U Ag, W1 = Wll
Case 2: vo € Attri(W7). Let Ay = Attri (W] U {vo}).
V' \ A1 is a subgame for Pi. Let W]’ be the winning region of P; in this
subgame (with positional strategies).
Wo = W§ and Wy = Wy’ U A;.
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SOLVING PARITY GAMES

Let G = (Vo, Vi, E) and x : V — {0, ...,k} be a parity game.
Induction over |V|. Suppose w.l.o.g. that the maximal color k is even and
let vo be some state with x(v) = k.
Let Ap = Attro(vg), so V' \ Ao is a subgame for P1. By induction, V' \ Ag
is partitioned into W and W7, and P; has a positional winning strategy
on W/.
2 cases (and exactly one applies):
@ From wvg, Py can get into Ag U Wé in one step.
@ From vg, P; can get into Wl’ in one step.
Case 1: Wy = Wé U Ay, W1 = Wll
Case 2: vy € Attr (W{). Let Ay = Attry (W] U {vo}).
V' \ A1 is a subgame for P;. Let W/’ be the winning region of P; in this

subgame (with positional strategies).
Wy = Wél and W7 = Wlll UA;.

COMPLEXITY

The above algorithm has exponential running time. Since strategies are
positional, computing the winning regions is in NP N co-NP.
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