
Reachability and Büchi games

P
0

: circle, P
1

: square

a c

b

e

f

d

g

Reachability game:
F = {a}: W

0

= {a, b, c, f}
F = {e}: W

0

= V \ {a}

Büchi games: same W
0

as
above
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Reachability games

Attractors

Attr0
0

(F ) = F

Attrn+1

0

(F ) = Attrn
0

(F ) [
{v 2 V

0

| 9w 2 Attrn
0

(F ), (v, w) 2 E}
{v 2 V

1

| 8w t.q. (v, w) 2 E : w 2 Attrn
0

(F )}

Attr0
0

(F ) ✓ Attr1
0

(F ) ✓ · · · ✓ Attr|V |
0

(F )

Attri
0

(F ) is the set of vertices from which P
0

can reach F after at most i

moves. W
0

= Attr|V |
0

(F ) is the winning region of P
0

(smallest fixpoint), and

V \ Attr|V |
0

(F ) is the winning region of P
1

.

Strategies

Reachability games have positional winning strategies (for both players), which
can be computed in polynomial time.
Positional strategy (for P

0

): mapping � : V
0

! V .
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Büchi games

Strategies

Büchi games have positional winning strategies (for both players), which can
be computed in polynomial time.

Algorithm

Attr+
0

(F ): set of states from which P
0

can reach F in at least one move.
We can compute Attr+

0

(F ), as well as a positional strategy, in polynomial
time.

X(i): set of states from which P
0

can go through F at least i times
(without counting the starting state).

X(0)

= V, X(i+1)

= Attr+
0

(X(i) \ F )

W
0

= \i�1

X(i)

Notice that X(i+1) ✓ X(i). So there exists k with W
0

= X(k)

= X(k+1):
W

0

is a largest fixpoint.

Strategy for P
0

in the Büchi game: positional strategy used by P
0

from
W

0

= Attr+
0

(W
0

\ F ).
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Weak parity games

Node coloring � : V ! {0, . . . , k}. Winning condition: maximal
visited color is even.

a b c d

e f g

�(a) = �(e) = 0, �(b) = �(f) = 1, �(c) = �(g) = 2, �(d) = 3.

d 2 W
1

and Attr
1

(d) = {d, c, b} ✓ W
1

V 0
= V \ {b, c, d} is a trap for P

1

, defining a subarena for P
0

. So in V 0,
P

0

can avoid color 3, and Attr
0

(g) |V 0
= {g, f} ✓ W

0

V 00
= V 0 \ {f, g} is a trap for P

0

, so subarena for P
1

.
W

1

|V 00
= ;, W

0

|V 00
= {a, e}

Conclusion: W
0

= {a, e, f, g}, W
1

= {b, c, d}. Positional winning strategies for
both players (attractor strategies).
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Weak parity games

The complement of an attractor C for Pi is a trap pour Pi: Pi has no
outgoing transition from C, so P

1�i can force the play to stay in V \ C.

A trap C for Pi is a subarena for P
1�i: every winning strategy for P

1�i in
C is winning for P

1�i in V .

Solution

V (k)

:= ��1

(k).

1 Suppose that the maximal color k is odd (otherwise exchange P
0

, P
1

).
Compute Attr

1

(V (k)

) (a subset of W
1

).

2 V 0
:= V \Attr

1

(V (k)

) is subarena for P
0

and the maximal color in V 0 is at
most k � 1. Compute inductively the winning region W

0

of P
0

in V 0.
Every vertex in W

0

is winning for P
0

in V (see above).

3 Every vertex in V 0 \ W
0

is winning for P
1

in V : P
1

applies his winning
strategy from V 0 while staying in V 0, and the attractor strategy as soon as
the game enters Attr

1

(V (k)

).

4 Strategies for both players are positional.
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Obligation games

Winning condition

Win is given as a set F ✓ P(V ) of sets of states. Player P
0

wins a play ⇡ if
the set Occ(⇡) of states visited in ⇡ belongs to F .
Obligation games are thus Boolean combinations of reachability games.

Example: conjunction of reachability conditions

1 2 3 4

5 6 7

Play ⇡ 2 Win i↵ {2, 7} ✓ Occ(⇡). Player P
0

needs 1 bit of memory in state 1:
he needs to visit alternatively states 2 and 5.
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Obligation games (weak Muller games)

Solution

Reduce the obligation game to a simpler (and larger) weak parity game.

Recall: P
0

wins in a weak parity game if the maximal visited color is even.

General idea of the reduction: start with an obligation game G = (A,F)

and define a weak parity game G0 = (A0, �) such that:

1 A0 = (V 0
0

, V

0
1

, E

0), V

0
i = Vi ⇥M , with M finite (memory).

2
Transitions: (hv, mi, hw, m

0i) 2 E

0
if (v, w) 2 E and m

0 = f(m, v, w)
(f = memory update function).

3
With each play ⇡ in G starting in v, and each initial value m

0

2 M , we

associate a unique play ⇡

0
in G

0
from (v, m

0

). In addition, ⇡ and ⇡

0
are

won by the same player.

Since weak parity games have positional strategies, such a reduction then
provides finite memory strategies in the obligation game.

Reduction

M = 2

V , E0 = {(v, R) ! (w, R [ {v}) | (v, w) 2 E}.
Coloring: �(v, R) = 2|R| if R 2 F ; �(v, R) = 2|R|� 1 if R /2 F .

For every play ⇡0 = (v
0

, R
0

), (v
1

, R
1

), . . . in G0 we have
R

0

✓ R
1

✓ R
2

· · · , so for some i � 0 we have Rj = Ri for all j � i. For
R

0

= ;, the set Ri equals Occ(⇡), where ⇡ = v
0

, v
1

, . . ..
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Muller and parity games

Let Inf(v
0

v
1

· · · ) = {v 2 V | 91i : v = vi}. For simplicity, we assume that
there are no dead-ends in (V, E).

Parity games

Node coloring � : V ! {1, . . . , k}.

Win = {⇡ | max(�(Inf(⇡))) is even} .

Muller games

Let F ✓ P(V ).
Win = {⇡ | Inf(⇡) 2 F}

Rem.

Every game (A, Win) with Win ✓ V ! regular reduces to a Muller game. We
will show how to reduce Muller games to parity games, then how to solve parity
games.
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A preparatory example

(Dziembowski, Jurdzinski, Walukiewicz)

V
0

= {A, B, C, D}, V
1

= {1, 2, 3, 4}
E = V

0

⇥ V
1

[ V
1

⇥ V
0

Winning condition for player 1:

|Inf(⇡) \ V
0

| = max(Inf(⇡) \ V
1

)

How can P
1

win? solution: Last Appearance Record (LAR).

LAR

The order of visited V
0

states is recorded: the last visited state is moved to the
front of LAR, and the position where it occurred previously (if any) is
underlined – the hit position.
Example:

✏
A�! A

D�! DA
C�! CDA

C�! CDA
D�! DCA

D�! DCA
C�! CDA · · ·

If Inf(⇡) \ V
0

= {C, D} then infinitely often, the hit position in the LAR is 2
(we start to count from 1). P

1

’s (winning) strategy is to play the hit position
of the LAR.
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From Muller to parity games

Reduction

Let (G,F) be a Muller game with G = (V
0

, V
1

, E) and F ✓ 2

V .

LAR: pairs hv
1

· · · vr, hi, where 0  h  r and v
1

, . . . , vr are distinct
states from V .
Let Q be the set of LAR’s. The initial LAR is q

0

= h✏, 0i, and the
transition function � : Q⇥ V ! Q is given by:

�(hv
1

· · · vr, hi, v) =

(
hvv

1

· · · vr, 0i if v 6= vp for all p

hvv
1

· · · vp�1

vp+1

· · · vr, pi if v = vp

Hit set of hv
1

· · · vr, hi: {v1

, . . . , vh}.
For an infinite play ⇡, let ⇡ = ⇡

0

⇡0 be such that Inf(⇡) is the set of states
occurring in ⇡0. If h is the maximal hit position repeated infinitely often,
then Inf(⇡) equals the hit set for the LAR’s with hit position h in ⇡0.

�(hv
1

· · · vr, hi) =

(
2h if {v

1

, . . . , vh} 2 F
2h� 1 else

Inf(⇡) 2 F i↵ the maximal LAR-color repeated infinitely often is even.
Thus, Muller games can be simulated by parity games (with n! · n
additional memory).

22 / 107



Solving parity games

Inductive solution

Let G = (V
0

, V
1

, E) and � : V ! {0, . . . , k} be a parity game.

Induction over |V |. Suppose w.l.o.g. that the maximal color k is even and
let v

0

be some state with �(v) = k.

Let A
0

= Attr
0

(v
0

), so V \ A
0

is a subgame for P
1

. By induction, V \ A
0

is partitioned into W 0
0

and W 0
1

, and Pi has a positional winning strategy
on W 0

i .
2 cases (and exactly one applies):

1
From v

0

, P

0

can get into A

0

[W

0
0

in one step.

2
From v

0

, P

1

can get into W

0
1

in one step.

Case 1: W
0

= W 0
0

[A
0

, W
1

= W 0
1

.

Case 2: v
0

2 Attr
1

(W 0
1

). Let A
1

= Attr
1

(W 0
1

[ {v
0

}).
V \ A

1

is a subgame for P
1

. Let W 00
i be the winning region of Pi in this

subgame (with positional strategies).
W

0

= W 00
0

and W
1

= W 00
1

[A
1

.

Complexity

The above algorithm has exponential running time. Since strategies are
positional, computing the winning regions is in NP \ co-NP.
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